
CloudTransport:1 Service

For UPnP Version 2.0

Status: Standardized DCP (SDCP)

Date: December 31, 2015

Document Version: 1.0

Service Template Version: 2.00

THIS APPROVED SPECIFICATION WAS COMPLETED PRIOR TO THE COMBINATION OF UPNP
INTO THE OPEN CONNECTIVITY FOUNDATION. ALL LICENSES, INTELLECTUAL PROPERTY
RIGHTS, AND OTHER RIGHTS, RESPONSIBILITIES, OBLIGATIONS, STANDARDS, AND
PROTOCOLS ASSOCIATED WITH THIS APPROVED SPECIFICATION ARE SUBJECT TO THE
UPNP BYLAWS AND FORUM MEMBERSHIP AGREEMENT.

Legal Disclaimer

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY
KIND OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY
INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR
DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN IS
PROVIDED ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY
DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED,
STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN
CONNECTIVITY FOUNDATION, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF
NON-INFRINGEMENT, ACCURACY OR LACK OF VIRUSES.

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or
other countries. *Other names and brands may be claimed as the property of others.

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

Copying or other form of reproduction and/or distribution of these works are strictly prohibited

Authors a Company

Clarke Stevens Cablelabs

Wouter van der Beek (Chair) Cisco

Bich Nguyen GoPro

Keith Miller BKM Systems Group, LLC

a The UPnP forum in no way guarantees the accuracy or completeness of this author list and in no way implies
any rights for or support from those members listed. This list is not the specifications’ contributor list that is
kept on the UPnP Forum’s website.

CloudTransport:1 2

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

CONTENTS

1 Scope ... 4
1.1 Introduction ... 4

2 Normative References .. 4
3 Terms, Definitions and Abbreviations .. 5

3.1 Non-Restrictable ... 5
3.2 Restrictable ... 5

4 Security Feature ... 5
4.1 Device Protection .. 5
4.2 Restrictable and Non-Restrictable actions ... 6

5 Notations and conventions ... 6
5.1 Notation .. 6
5.2 Data Types .. 7
5.3 Vendor-defined Extensions .. 7

6 Service Modelling Definitions .. 7
6.1 Service Type ... 7
6.2 CloudTransport:1 Service Architecture .. 7
6.3 Key Concepts .. 8
6.4 State Variables .. 11

6.4.1 State Variable Overview .. 11
6.4.2 State Variable A_ARG_TYPE_Host ... 11
6.4.3 State Variable A_ARG_TYPE_Method ... 11
6.4.4 State Variable A_ARG_TYPE_Identifier ... 11
6.4.5 State Variable A_ARG_TYPE_Headers ... 12
6.4.6 State Variable A_ARG_TYPE_Body... 12
6.4.7 State Variable A_ARG_TYPE_UI4 ... 12
6.4.8 State Variable A_ARG_TYPE_Flag .. 12

6.5 Eventing and Moderation ... 12
6.6 Actions .. 12

6.6.1 Introduction ... 12
6.6.2 HTTPConnectMethod() .. 13
6.6.3 HTTPWriteHeaders() ... 15
6.6.4 HTTPReadHeaders() ... 16
6.6.5 HTTPReadBody() .. 18
6.6.6 HTTPWriteBody() .. 20

7 Theory of Operations (informative) ... 22
7.1 General Usage Scenarios .. 22

7.1.1 HTTP HEAD REQUEST and RESPONSE .. 22
7.1.2 HTTP GET REQUEST and RESPONSE ... 25
7.1.3 HTTP GET REQUEST with "Chunked" RESPONSE 29
7.1.4 HTTP POST REQUEST with "100-Continue" ... 30
7.1.5 Closing an HTTP Connection ... 30

8 XML Service Description .. 30

CloudTransport:1 3

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

Table 4-1 — Assignment of Restrictable/Non-Restrictable Roles .. 6
Table 6-1 — State Variables ... 11
Table 6-2 — Eventing and Moderation .. 12
Table 6-3 — Actions ... 13
Table 6-4 — Typical Action Sequences for HTTP REQUEST and RESPONSE 13
Table 6-5 — Arguments for HTTPConnectMethod() .. 14
Table 6-6 — Error Codes for HTTPConnectMethod() .. 15
Table 6-7 — Arguments for HTTPWriteMethod() ... 15
Table 6-8 — Error Codes for HTTPWriteHeaders() ... 16
Table 6-9 — Arguments for HTTPReadHeaders() ... 17
Table 6-10 — Error Codes for HTTPReadHeaders().. 18
Table 6-11 — Arguments for HTTPReadBody() ... 19
Table 6-12 — Error Codes for HTTPReadBody() ... 20
Table 6-13 — Arguments for HTTPWriteBody() ... 21
Table 6-14 — Error Codes for HTTPWriteBody() ... 22

Figure 6-1 CloudTransport Architecture UDA-to-UDA and UDA-to-UCA 8
Figure 6-2 CloudTransport Generalized Call Flow ... 10
Figure 7-1 HTTP HEAD REQUEST and RESPONSE ... 23
Figure 7-2 HTTP GET REQUEST and RESPONSE Part 1 ... 26
Figure 7-3 HTTP GET REQUEST and RESPONSE Part 2 ... 27

CloudTransport:1 4

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

1 SCOPE

1.1 INTRODUCTION
This document defines the service CloudTransport:1, which identifies Version 1 of the service
named CloudTransport:1. This Publicly Available Specification is applicable to Standardized
DCPs of the UPnP Forum which include this service.

This service definition is compliant with the UPnP Device Architecture, version 2.0.

2 NORMATIVE REFERENCES
The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments) applies.

[UDA] UPnP Device Architecture, version 2.0, UPnP Forum, February 20, 2015. Available at:
http://upnp.org/specs/arch/UPnPDA10_20000613.pdf. Latest version available at:
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf.

[ISO_8601] ISO 8601 Data elements and interchange formats – Information interchange --
Representation of dates and times, International Standards Organization, December 21, 2000.
Available at: http://www.iso.org (ISO 8601:2004).

[CDS4] UPnP Content Directory Service, version 4.0, UPnP Forum, June 30, 2015. Available
at http://www.upnp.org/specs/av/ContentDirectory-av-v4-Service-201150630.pdf. Latest
version available at: http://www.upnp.org/specs/av/ContentDirectory-av-v4-Service.pdf.

[RFC_2119] IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, S.
Bradner, 1997. Available at: http://www.faqs.org/rfcs/rfc2119.html.

[HTTP1.1] HyperText Transport Protocol – HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, T. Berners-Lee, June 1999. Available at:
http://www.ietf.org/rfc/rfc2616.txt.

[RFC_3339] IETF RFC 3339, Date and Time on the Internet: Timestamps, G. Klyne, Clearswift
Corporation, C. Newman, Sun Microsystems, July 2002. Available at:
http://www.ietf.org/rfc/rfc3339.txt.

[RFC_6122] IETF RFC 6122, Extensible Messeging and Presence Protocol, P. Saint-Andre,
Cisco, March, 2011. Available at: http://www.ietf.org/rfc/rfc6122.txt.

[XML 1.0] Extensible Markup Language (XML) 1.0 (Third Edition), François Yergeau, Tim Bray,
Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, eds., W3C Recommendation, February 4,
2004. Available at: http://www.w3.org/TR/2004/REC-xml-20040204.

[XSD 2.0] XML Schema Part 2: Data Types, Second Edition, Paul V. Biron, Ashok Malhotra,
W3C Recommendation, 28 October 2004. Available at: http://www.w3.org/TR/2004/REC-
xmlschema-2-20041028.

[PROXY] UPnP CloudProxy:1 Device, UPnP Forum July 1, 2013. Available at:
http://www.upnp.org/specs/cloud/UPnP-cloud-CloudProxy-v1-Device-20130701.pdf. Latest
version available at: http://www.upnp.org/specs/smgt/UPnP-smgt-SensorManagement-v1-
Device.pdf.

[DP] UPnP DeviceProtection:1 Service, UPnP Forum, February 24, 2011.
Available at: http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service-

http://upnp.org/specs/arch/UPnPDA10_20000613.pdf
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
http://www.iso.org/
http://www.upnp.org/specs/av/ContentDirectory-av-v4-Service-201150630.pdf
http://www.upnp.org/specs/av/ContentDirectory-av-v4-Service.pdf
http://www.faqs.org/rfcs/rfc2119.html
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3339.txt
http://www.ietf.org/rfc/rfc6122.txt
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.upnp.org/specs/smgt/UPnP-smgt-SensorManagement-v1-Device-20130701.pdf
http://www.upnp.org/specs/smgt/UPnP-smgt-SensorManagement-v1-Device.pdf
http://www.upnp.org/specs/smgt/UPnP-smgt-SensorManagement-v1-Device.pdf
http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service-20110224.pdf

CloudTransport:1 5

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

20110224.pdf. Latest version available at: http://www.upnp.org/specs/gw/UPnP-gw-
DeviceProtection-v1-Service.pdf.

[CPROXY] UPnP CloudProxy:1 Service, UPnP Forum, December 31, 2015.
Available at: http://www.upnp.org/specs/cloud/UPnP-cloud-CloudProxy-v1-Service-
20151231.pdf. Latest version available at: http://www.upnp.org/specs/cloud/UPnP-cloud-
CloudProxy-v1-Service.pdf.

[CTS] UPnP CloudTransport:1 Service, UPnP Forum, December 31, 2015. Available at:
http://www.upnp.org/specs/cloud/UPnP-cloud-CloudTransport-v1-Service-20151231.pdf.
Latest version available at: http://www.upnp.org/specs/cloud/UPnP-cloud-CloudTransport-v1-
Service.pdf.

[XSD_CPU] XML Schema UPnP CloudProxy Update IDs, UPnP Forum, December 31, 2015.
Available at: http://www.upnp.org/schemas/cloud/cloudproxyupdate-v1-20151231.xsd. Latest
version available at: http://www.upnp.org/schemas/cloud/cloudproxyupdate.xsd.

[XSD_CPDL] XML Schema UPnP CloudProxy Device List, UPnP Forum, December 31, 2015.
Available at: http://www.upnp.org/schemas/cloud/devicelist-v1-20151231.xsd. Latest version
available at: http://www.upnp.org/schemas/cloud/devicelist.xsd.

[XSD_CPPL] XML Schema UPnP CloudProxy Proxy List, UPnP Forum, December 31, 2015.
Available at: http://www.upnp.org/schemas/cloud/proxylist-v1-20151231.xsd. Latest version
available at: http://www.upnp.org/schemas/cloud/proxylist.xsd.

[XSD_CPUL] XML Schema UPnP CloudProxy UCS List, UPnP Forum, December 31, 2015.
Available at: http://www.upnp.org/schemas/cloud/ucslist-v1-20151231.xsd. Latest version
available at: http://www.upnp.org/schemas/cloud/ucslist.xsd.

3 TERMS, DEFINITIONS AND ABBREVIATIONS
For the purposes of this document, the terms and definitions given in [UDA], [CDS4], [CPROXY],
[DP], and [PROXY] apply.

3.1 NON-RESTRICTABLE
A category of action that, when the DeviceProtection [DP] service is implemented on the device, cannot
be blocked according to the presence or absence of a specific Role attached to a Control Point Identity
or User Identity. See [CDS4] for further explanation of Role, Control Point Identity and User Identity.

3.2 RESTRICTABLE
A category of actions that, when the DeviceProtection [DP] service is implemented on the device, can
be blocked according to the presence or absence of a specific Role attached to a Control Point Identity
or User Identity.

4 SECURITY FEATURE

4.1 DEVICE PROTECTION
The CloudTransport Service should be implemented on a device supporting the
DeviceProtection service [DP]. If the DeviceProtection service is implemented it shall support
the following roles:

• Public – A control point with the Public role can successfully invoke any of the actions as
long as the target connection is not an HTTPS session.

http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service-20110224.pdf
http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf
http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf
http://www.upnp.org/specs/cloud/UPnP-cloud-CloudProxy-v1-Service-20151231.pdf
http://www.upnp.org/specs/cloud/UPnP-cloud-CloudProxy-v1-Service-20151231.pdf
http://www.upnp.org/specs/cloud/UPnP-cloud-CloudProxy-v1-Service.pdf
http://www.upnp.org/specs/cloud/UPnP-cloud-CloudProxy-v1-Service.pdf
http://www.upnp.org/specs/cloud/UPnP-cloud-CloudTransport-v1-Service-20151231.pdf
http://www.upnp.org/specs/cloud/UPnP-cloud-CloudTransport-v1-Service.pdf
http://www.upnp.org/specs/cloud/UPnP-cloud-CloudTransport-v1-Service.pdf
http://www.upnp.org/schemas/cloud/cloudproxyupdate-v1-20151231.xsd
http://www.upnp.org/schemas/cloud/cloudproxyupdate.xsd
http://www.upnp.org/schemas/cloud/devicelist-v1-20151231.xsd
http://www.upnp.org/schemas/ds/drecstatus.xsd
http://www.upnp.org/schemas/cloud/proxylist-v1-20151231.xsd
http://www.upnp.org/schemas/ds/drecstatus.xsd
http://www.upnp.org/schemas/cloud/ucslist-v1-20151231.xsd
http://www.upnp.org/schemas/ds/drecstatus.xsd

CloudTransport:1 6

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

• Basic – A control point with the Basic role can successfully invoke any of the actions as it
will have been authenticated over a TLS connection.

• Admin – A control point with the Admin role can successfully invoke any of the actions as
as it will have been authenticated over a TLS connection.

If the DeviceProtection service is not implemented then HTTPS connections are only supported for
UCC-CPs actions on the UCA interface.

4.2 RESTRICTABLE AND NON-RESTRICTABLE ACTIONS
The CloudTransport service actions defined in this specification have the Restrictable, Non-
Restrictable assignments as indicated in Table 4-1 — Assignment of Restrictable/Non-Restrictable
Roles.

Table 4-1 — Assignment of Restrictable/Non-Restrictable Roles

Action Name Restrictable/Non-Restrictable to Indicated Role1

 No
DeviceProtection

Public Basic Admin UCC-CP

HTTPConnectMethod() HTTP HTTP HTTP, HTTPS HTTP, HTTPS HTTP, HTTPS

HTTPReadHeaders() HTTP HTTP HTTP, HTTPS HTTP, HTTPS HTTP, HTTPS

HTTPWriteHeaders() HTTP HTTP HTTP, HTTPS HTTP, HTTPS HTTP, HTTPS

HTTPReadBody() HTTP HTTP HTTP, HTTPS HTTP, HTTPS HTTP, HTTPS

HTTPWriteBody() HTTP HTTP HTTP, HTTPS HTTP, HTTPS HTTP, HTTPS

5 NOTATIONS AND CONVENTIONS

5.1 NOTATION
• Strings that are to be taken literally are enclosed in “double quotes”.

• Words that are emphasized are printed in italic.

• Keywords that are defined by the UPnP Working Committee are printed using the forum
character style.

• Keywords that are defined by the UPnP Device Architecture are printed using the arch
character style.

• Keywords that are defined specific to the UPnP Device Architecture Annex C are printed
using UCA character style.

• Keywords that are defined specific to XMPP are printed using XMPP character style.

• A double colon delimiter, “::”, signifies a hierarchical parent-child (parent::child) relationship
between the two objects separated by the double colon. This delimiter is used in multiple
contexts, for example: Service::Action(), Action()::Argument, parentProperty::childProperty.

1 An HTTP value in the table indicates that the CloudTransport service is allowed to communicate using unencrypted

HTTP REQUESTs and RESPONSEs on a local connection when the invoking control point either has the indicated
Role, has no Role in the case of no DeviceProtection support or is a UCC-CP communicating on the UCA interface,
that is HTTP communication is Non-Restrictable.

 An HTTPS value in the table indicates that the CloudTransport service is allowed to communicate using encrypted
HTTP REQUESTs and RESPONSEs on a local connection when the invoking control point either has the indicated
Role or is an UCC-CP communicating on the UCA interface, otherwise a service specific 704 ErrorCode is issued,
that is HTTPS communication is Restrictable.

CloudTransport:1 7

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

5.2 DATA TYPES
This specification uses data type definitions from two different sources. The UPnP Device
Architecture defined data types are used to define state variable and action argument data
types UPnP Device Architecture, version 2.0 [UDA]. The XML Schema namespace is used to
define property data types XML Schema Part 2: Data Types, Second Edition [XSD 2.0].

For UPnP Device Architecture defined Boolean data types, it is strongly recommended to use
the value “0” for false, and the value “1” for true. The values “true”, “yes”, “false”, or “no” may
also be used but are not recommended. The values “yes” and “no” are deprecated and shall
not be sent out by devices but shall be accepted on input.

For XML Schema defined Boolean data types, it is strongly recommended to use the value “0”
for false, and the value “1” for true. The values “true”, “yes”, “false”, or “no” may also be used
but are not recommended. The values “yes” and “no” are deprecated and shall not be sent out
by devices but shall be accepted on input.

5.3 VENDOR-DEFINED EXTENSIONS
Whenever vendors create additional vendor-defined state variables, actions or properties, their
assigned names and XML representation shall follow the naming conventions and XML rules
as specified in UPnP Device Architecture, version 2.0 [UDA], Clause 2.5, “Description: Non-
standard vendor extensions”.

6 SERVICE MODELLING DEFINITIONS

6.1 SERVICE TYPE
The following URN identifies a service that is compliant with this specification:

urn:schemas-upnp-org:service:CloudTransport:1

CloudTransport service is used herein to refer to this service type.

6.2 CLOUDTRANSPORT:1 SERVICE ARCHITECTURE
The CloudTransport service consists of these architectural elements:

• A device hosting the CloudTransport service, this device may be a UDA (local) device or a
UCCD.

• An HTTP Client for each connection (typically local) that the CloudTransport service will
support that can interact with the CloudTransport service.

• Internal buffering for temporary storage of the HTTP REQUEST and RESPONSE messages
on the device or UCCD implementing the CloudTransport service.

Two typical configurations are illustrated in Figure 6-2. The first being a scenario involving a
CloudTransport service connecting two separate local networks the second being a scenario
connecting a UCC-CP to a local network.

CloudTransport:1 8

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

Figure 6-1 CloudTransport Architecture UDA-to-UDA and UDA-to-UCA

6.3 KEY CONCEPTS
The CloudTransport service provides the functionality to relay HTTP REQUESTs and
RESPONSEs over a remote endpoint. It is suitable for usage over a UCA interface, as well as,
a UDA (local) interface; although it could be used to connect UDA devices on the same local
network, or different local networks, its main applicability will be for connecting UCA entities to
UDA (local) resources. The UCA use cases are emphasized in this specification. For example,
a content item available on a MediaServer with a resource of:

<res protocolInfo="http-get:*:audio/mpeg:*">
 http://192.168.0.1/audio/goodsong.mp3
</res>

CloudTransport:1 9

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

would be reachable for devices and control points on the local network but not normally to
UCCDs and UCC-CPs not connected to the same local network.

Utilizing the CloudTransport service, new actions are made available to CloudTransport control
points, UCC-CPs or UCCDs (via an embedded UCC-CP) allowing them to open a local
connection on the UDA side of a device (or UCCD), via an embedded HTTP Client, and execute
HTTP REQUEST and RESPONSE transactions on the same or different UDA (local) interface
or the UDA side of a UCCD. On the UCA side the, HTTP REQUESTs and RESPONSEs are
distinguished by HEADER and BODY data type arguments, encoded and decoded using
BASE64 transformations as needed for the CloudTransport actions and sent as SOAP or SOAP
over XMPP messages. Also, because the UCA (XMPP) message sizes will typically be smaller
than HTTP REQUEST over the local network some buffering will be needed on the device
supporting the CloudTransport service, as well as, fragmentation and re-assemble of the HTTP
stream. No lower level transport, that is TCP, occurs over the UCA interface.

CloudTransport:1 10

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

Figure 6-2 CloudTransport Generalized Call Flow

CloudTransport:1 11

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

* This connection may be of type linklocal, that is, the <res> item is on the same device as the CloudTransport
service or between two devices in the local network, for example, one device is hosting an HTTP file server and the
other is a UCCD MediaServer or a CloudProxy device [PROXY].

6.4 STATE VARIABLES
Note: For first-time reader, it may be more insightful to read the theory of operations first and then the action
definitions before reading the state variable definitions.

6.4.1 State Variable Overview

Table 6-1 — State Variables

Variable Name R/A a Data Type Allowed Value Default
Value

Eng.
Units

A_ARG_TYPE_Host R String See 6.4.2

A_ARG_TYPE_Headers R string See 6.4.3

A_ARG_TYPE_Identifier R string See 6.4.4

A_ARG_TYPE_Headers R string See 6.4.5

A_ARG_TYPE_Body R string See 6.4.6

A_ARG_TYPE_UI4 R ui4 See 6.4.7

A_ARG_TYPE_Flag R boolean See 6.4.8

Non-standard state variables implemented
by a UPnP vendor go here

X TBD TBD TBD TBD

NOTES:

a For a device this column indicates whether the state variable shall be implemented or not, where R = required,
A = allowed, CR = conditionally required, CA = conditionally allowed, X = Non-standard, add -D when deprecated
(e.g., R-D, A-D).

b CSV stands for Comma-Separated Value list. The type between brackets denotes the UPnP data type used for
the elements inside the list. The CSV list concept is defined more formally in the ContentDirectory service
template.

c See referenced subclause for conditions under which the implementation of this state variable is required.

6.4.2 State Variable A_ARG_TYPE_Host

This required state variable provides type information for identifying an HTTP server endpoint on the
local network that the CloudTransport service is to connect to. It is of the form "host[:port]" where
the value of the host part is an IPv4 or IPv6 literal and optional [post] part is a string value
corresponding to an unsigned 2 byte integer. An example would be "192.168.0.5:37222". The data
type is string.

6.4.3 State Variable A_ARG_TYPE_Method

This required state variable provides type information for identifying a complete HTTP METHOD
REQUEST line to be used by the CloudTransport service action to connect to a local device on
a UDA. The data type is string.

6.4.4 State Variable A_ARG_TYPE_Identifier

This required state variable provides type information for identifying a specific HTTP connection
in use by the CloudTransport service and tying the UCA side to a specific connection on the
UDA side. The data type is string.

CloudTransport:1 12

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

6.4.5 State Variable A_ARG_TYPE_Headers

This required state variable provides type information for HTTP HEADER data for
CloudTransport service actions. The data type is string.

6.4.6 State Variable A_ARG_TYPE_Body

This required state variable provides type information for HTTP Body data for CloudTransport
service actions. The data type is base64.

6.4.7 State Variable A_ARG_TYPE_UI4

This required state variable provides type information for indicating the size (length) of
operations of type read and write on HTTP REQUEST and RESPONSE for CloudTransport
service actions. The data type is ui4.

6.4.8 State Variable A_ARG_TYPE_Flag

This required state variable provides type information for indicating a Boolean "1" or "0" ("true"
or "false") input or output argument. The data type is boolean.

6.5 EVENTING AND MODERATION
The CloudTransport service has no evented state variables.

Table 6-2 — Eventing and Moderation

 Moderation

Variable Name Evented Moder-
ated a

Criteria

a YES = The state variable shall be moderated with the criteria

6.6 ACTIONS
6.6.1 Introduction

The CloudTransport service defines the actions in Table 6-3 and uses specific combinations
to realize HTTP REQUEST and RESPONSE messaging across a UCA interface with an HTTP
endpoint on a local network.

CloudTransport:1 13

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

Table 6-3 — Actions

Name

Device

R/A a
Control

Point R/A b

HTTPConnectMethod() R R

HTTPWriteHeaders() R R

HTTPReadHeaders() R R

HTTPReadBody() R R

HTTPWriteBody() R R

a For a device this column indicates whether the action shall be implemented or not, where R = required, O
= allowed, CR = conditionally required, CA = conditionally allowed, X = Non-standard, add -D when
deprecated (e.g., R-D, O-D).

b For a control point this column indicates whether a control point shall be capable of invoking this action,
where R = required, A = allowed, CR = conditionally required, CA = conditionally allowed, X = Non-standard,
add -D when deprecated (e.g., R-D, O-D).

By using the actions in a specific order, complete HTTP transactions such as HEAD, DELETE, GET,
POST and PUT can be realized. Table 6-4 shows the typical action sequence for realizing an HTTP
REQUEST and RESPONSE transaction.

Table 6-4 — Typical Action Sequences for HTTP REQUEST and RESPONSE

CloudTransport
Action(s)a,e

HTTP HEAD and
DELETE

HTTP GET HTTP POST and PUT

HTTPConnectMethod() 1b 1 1

HTTPWriteHeaders() 1 1 1

HTTPWriteBody() 0 0 [1 - N]

HTTPReadHeaders() 1c 1c 1

HTTPReadBody() 0 [0 to N]d [0 to N]d

a The order of the actions, from top to bottom, indicates the order of execution to implement the HTTP
REQUEST and RESPONSE indicated in the adjacent columns.

b This value indicates the number of invocations of the particular action typically needed to implement the
HTTP REQUEST and RESPONSE indicated in the adjacent columns, where 0 indicates the action is not
needed, 1 indicates it is needed once, N incidates more than 1, and bracketed values indicate low and high
number of executions.

c If the HEADER RESPONSE is a "100 CONTINUE" then the next call(s) should be an HTTPReadHeaders()
action until a non "100 CONTINUE" is received or the connection is closed.

d The control point should examine the RESPONSE HEADERS and determine if the transfer includes
"TRANSFER-ENCODING: chunked" and/or "CONTENT-LENGTH" HEADERs and execute HTTPReadBody()
actions as appropriate according to [HTTP1.1].

e Pipelines REQUESTs and RESPONSEs are allowed as long as the connection remains open. This is the
default behaviour for HTTP 1.1 persistent connections.

6.6.2 HTTPConnectMethod()

This required action opens a connection between a local device, identified by the Host input
argument and the CloudTransport service and sends an HTTP METHOD LINE described in the
Method input argument to the UCCD for forming an HTTP REQUEST on the local network. Upon
success it returns the Identifier output argument for the specific connection.

CloudTransport:1 14

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

6.6.2.1 Arguments

Table 6-5 — Arguments for HTTPConnectMethod()

Argument Direction relatedStateVariable

Host IN A_ARG_TYPE_Host

MethodLine IN A_ARG_TYPE_Headers

Identifier OUT A_ARG_TYPE_Identifier

ConnectWriteCount OUT A_ARG_TYPE_UI4

6.6.2.2 Argument Host

This input argument contains a string identifying a "host:port" value that the CloudTransport
service should be able to connect toon its local (UDA) interface and exchange HTTP messages.

6.6.2.3 Argument MethodLine

This input argument contains an HTTP METHOD LINE according to [HTTP1.1]; For example:

"GET /MediaRenderer3.xml HTTP 1.1"

or

 "HEAD /music/goodband/goodsong.mp3 HTTP 1.1" .

6.6.2.4 Argument Identifier

This output argument provides a temporary, unique identifier that allows the CloudTransport
service to distinquish all of its current connections to local devices back to the UCC-CPs using
the CloudTransport service. It is recommended that it have a high degree of randomization to
prevent guessing by other UCC-CPs.

6.6.2.5 Argument ConnectWriteCount

This output argument indicates the number of CloudTransport write related actions -
HTTPConnectMehod(), HTTPWriterHeaders(), HTTPWriteBody() - transacted on the
connection identified by Identifier since it was opened. It is a monotonically increasing value
with the first transaction having a value of "1" and each subsequent transaction causing the
value to increment by "1".

6.6.2.6 Service Requirements

This action is a Restrictable action as described in 4.2.

6.6.2.7 Control Point Requirements When Calling The Action

Successful invocation of the action on HTTPS connections is dependent on the control point
Role or if the control point is a UCC-CP. See Table 4-1 — Assignment of Restrictable/Non-
Restrictable Roles for details.

6.6.2.8 Dependency on Device State

If the connection is already open between the UDA interface of the CloudTransport service and
the local device for the same "host:port" combination then the Identifier value returned will
be the same as previously returned for that connection.

6.6.2.9 Effect on Device State

None.

CloudTransport:1 15

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

6.6.2.10 Errors

Table 6-6 — Error Codes for HTTPConnectMethod()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

700 Not Connected The connection failed.

701 Host not found The indicated host could not be found

702 Invalid Connection The connection indicated in Identifier is not recognized

703 Method in Queue A METHOD LINE was already in the HTTP REQUEST buffer, flush
or resend.

704 HTTPS not allowed The control point is not allowed an HTTPS connection.

6.6.3 HTTPWriteHeaders()

This required action writes HTTP HEADER LINEs to an existing, open connection. It is highly
recommended that it follow the successful invocation of a HTTPConnectMethod() action within
5 seconds.

6.6.3.1 Arguments

Table 6-7 — Arguments for HTTPWriteMethod()

Argument Direction relatedStateVariable

Identifier IN A_ARG_TYPE_Identifier

Headers IN A_ARG_TYPE_Headers

ConnectWriteCount OUT A_ARG_TYPE_UI4

6.6.3.2 Argument Identifier

This input argument identifies the HTTP connection that the HTTP REQUEST HEADER LINEs
will be written to.

6.6.3.3 Argument Headers

This input argument contains the HTTP HEADER LINES according to [HTTP1.1]; For example:

"HOST: 192.168.0.5:37222<CR>1<LF>2
DATE: Mon, 12 Oct 2015 13:18:19 GMT<CR><LF>
CONNECTION: close<CR><LF>
USER-AGENT: 6.1.7601 2/Service Pack 1, UPnP/1.0, Portable SDK for UPnP
devices/1.6.19<CR><LF>
<CR><LF>"

It includes all <CR> and <LF> elements that would appear in the HEADER LINEs of a properly
constructed HTTP REQUEST including the BLANK LINE. It shall not include an HTTP METHOD
LINE. Its HOST HEADER LINE shall match the "host:port" value on the preceeding
HTTPConnectMethod() action.

1 Carriage-Return will be HEX 0x0D and equals 1 byte of data on the wire.

2 Line-Feed will be HEX 0x0A and equals 1 byte of data on the wire.

CloudTransport:1 16

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

6.6.3.4 Argument ConnectWriteCount

This output argument indicates the number of CloudTransport write related actions -
HTTPConnectMehod(), HTTPWriterHeaders(), HTTPWriteBody() - transacted on the
connection identified by Identifier since it was opened. It is a monotonically increasing value
with the first transaction having a value of "1" and each subsequent transaction causing the
value to increment by "1".

6.6.3.5 Service Requirements

This action is a Restrictable action as described in 4.2.

6.6.3.6 Control Point Requirements When Calling The Action

Successful invocation of the action on HTTPS connections is dependent on the control point
Role or if the control point is a UCC-CP. See Table 4-1 — Assignment of Restrictable/Non-
Restrictable Roles for details.

6.6.3.7 Dependency on Device State

The connection indicated by Identifier shall be open to execute the action.

6.6.3.8 Effect on Device State

None.

6.6.3.9 Errors

Table 6-8 — Error Codes for HTTPWriteHeaders()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

700 Invalid Connection The connection indicated in Identifier is not recognized

704 HTTPS not allowed The control point is not allowed an HTTPS connection.

706 No METHOD LINE
in Queue

A METHOD LINE is not in the HTTP REQUEST buffer, flush and
send an HTTP METHOD LINE before sending HEADER LINES.

6.6.4 HTTPReadHeaders()

This required action reads the HTTP RESPONSE STATUS and HEADER LINES from an
existing HTTP connection on the local network indicated by Identifier. It shall read to the first
BLANK LINE encountered and include the BLANK LINE in the returned response.

CloudTransport:1 17

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

6.6.4.1 Arguments

Table 6-9 — Arguments for HTTPReadHeaders()

Argument Direction relatedStateVariable

Identifier IN A_ARG_TYPE_Identifier

CRLFFlag IN A_ARG_TYPE_Flag

Headers OUT A_ARG_TYPE_Headers

ReadLength OUT A_ARG_TYPE_UI4

ConnectReadCount OUT A_ARG_TYPE_UI4

6.6.4.2 Argument Identifier

This input argument identifies an existing HTTP connection that an HTTP STATUS LINE and
RESPONSE HEADER LINEs will be read from.

6.6.4.3 Argument CRLFFlag

This input argument indicates if the action should return results after encountering a <CR><LF>.
A value of "1" indicates to return the RESPONSE HEADER LINEs up to and including the first
<CR><LF>. A value of "0" indicates to return the RESPONSE HEADER LINEs up to nd including
the first BLANK LINE.

6.6.4.4 Argument Headers

This output argument contains an HTTP RESPONSE string composed of the STATUS and
HEADER LINES including the <CR> and <LF> as a single string, for example, the HTTP
RESPONSE to the HEAD METHOD

"HEAD /music/goodband/goodsong.mp3 HTTP 1.1",

would be

"HTTP/1.1 200 OK<CR><LF>
Date: Thu, 15 Oct 2015 21:37:54 GMT<CR><LF>
Content-Type: audio/mpeg<CR><LF>
Content-Length: 4001377<CR><LF>
contentFeatures:
dlna.orgDLNA.ORG_PN=MP3;DLNA.ORG_OP=01;DLNA.ORG_FLAGS=0170000000000000
0000000000000000<CR><LF>
Connection: close<CR><LF>
<CR><LF>"1

It is the responsibility of the device supporting the CloudTransport service to parse and send
only the HTTP RESPONSE STATUS and HEADER LINEs.

6.6.4.5 Argument ReadLength

This output argument shall indicate the actual length of HTTP RESPONSE HEADER LINEs data
read and returned, in chars, including <CR><LF> and end of HEADERs "blank line". For
example, in the example above the returned value of ReadLength would be 212.

1 Note that some line formatting has been added to improve readability.

CloudTransport:1 18

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

6.6.4.6 Argument ConnectReadCount

This output argument indicates the number of CloudTransport read related actions -
HTTPReadHeaders() and HTTPReadBody() - transacted on the connection identified by
Identifier since it was opened. It is a monotonically increasing value with the first transaction
having a value of "1" and each subsequent transaction causing the value to increment by "1".

6.6.4.7 Service Requirements

This action is a Restrictable action as described in 4.2.

6.6.4.8 Control Point Requirements When Calling The Action

Successful invocation of the action on HTTPS connections is dependent on the control point
Role or if the control point is a UCC-CP. See Table 4-1 — Assignment of Restrictable/Non-
Restrictable Roles for details.

6.6.4.9 Dependency on Device State

The connection indicated by Identifier shall be open to execute the action.

6.6.4.10 Effect on Device State

If the HTTP RESPONSE includes a "CONNECTION: Close" HEADER then the connection will
be closed and the previously used Identifier deleted from the list of active connections at or
before action invocation completion.

6.6.4.11 Errors

Table 6-10 — Error Codes for HTTPReadHeaders()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

700 Invalid Connection The connection indicated in Identifier is not recognized

704 HTTPS not allowed The control point is not allowed an HTTPS connection.

707 No RESPONSE in
Queue

Read RESPONSE does not appear to be RESPONSE STATUS and
HEADER LINEs.

708 Connection closed
prematurely

The connection was closed before the read could be completed.

6.6.5 HTTPReadBody()

This required action reads Size bytes of data from the HTTP RESPONSE BODY from the
existing connection described by Identifier. The data shall be BASE64 encoded to make it
suitable for inclusion in a UCA XMPP stanza. This means that the ratio of actual data to XMPP
stanza payload will be 3 to 4 in most cases (BASE64 involves some padding when the data
stream length is not divisible by 3).

CloudTransport:1 19

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

6.6.5.1 Arguments

Table 6-11 — Arguments for HTTPReadBody()

Argument Direction relatedStateVariable

Identifier IN A_ARG_TYPE_Identifier

Size IN A_ARG_TYPE_UI4

CRLFFlag IN A_ARG_TYPE_Flag

Body OUT A_ARG_TYPE_Body

ReadLength OUT A_ARG_TYPE_UI4

ConnectReadCount OUT A_ARG_TYPE_UI4

6.6.5.2 Argument Identifier

This input argument identifies the HTTP connection that a HTTP BODY data will be read from.

6.6.5.3 Argument Size

This input argument indicates the amount of BODY data to be read in bytes.

6.6.5.4 Argument CRLFFlag

This input argument indicates if the action should return results after encountering a <CR><LF>.
A value of "1" indicates to return the RESPONSE HEADER LINEs up to and including the first
<CR><LF>. A value of "0" indicates to return the RESPONSE HEADER LINEs up to nd including
the first BLANK LINE.

6.6.5.5 Argument Body

This output argument contains BASE64 HTTP BODY data with length equivalent to Size when
converted back from BASE64. The CloudTransport service does not try to interpret the data
only convert it for UCA transmission. It is highly recommended to keep Size less than 6144
(6KB) to fit within typical XMPP stanza limitations. For example, if in the example in 6.6.4.4
instead of a HTTP HEAD METHOD REQUEST an HTTP GET METHOD REQUEST was made
then after the HTTPReadHeaders() action was executed the HTTP BODY containing the media
data would be obtained by issuing a series of HTTPReadBody() actions (roughly 652
invocations1) to retrieve the entire body.

For example a raw data stream (represented by the HEX equivalent below) would be converted

"a709ae369b6114a345e09c3e09d004fffb9260cc8005715f57d3067b6a700afae9316
66d0d754b5d0798cda129a26cb4b28974f9bdb8818486a310f7424da4a71fbb2863ec5
5b27e7b21345fffff6ae9a6dfdb4aab6dbcc64e9a6bbaa8368b8090fb2a7923b33cf19
3eba18b25cb0024c6926e5ffdda102e45d4bc909bb2a62329ce565f1325dd1d279b119
3c5901d54f289213d8d983a471a95174d0a867fa534abe3b259890a4af37fef9d"

to its BASE64 equivalent:

"YTcwOWFlMzY5YjYxMTRhMzQ1ZTA5YzNlMDlkMDA0ZmZmYjkyNjBjYzgwMDU3MTVmNTdkMz
A2N2I2YTcwMGFmYWU5MzE2NjZkMGQ3NTRiNWQwNzk4Y2RhMTI5YTI2Y2I0YjI4OTc0Zjli
ZGI4ODE4NDg2YTMxMGY3NDI0ZGE0YTcxZmJiMjg2M2VjNTViMjdlN2IyMTM0NWZmZmZmNm
FlOWE2ZGZkYjRhYWI2ZGJjYzY0ZTlhNmJiYWE4MzY4YjgwOTBmYjJhNzkyM2IzM2NmMTkz
ZWJhMThiMjVjYjAwMjRjNjkyNmU1ZmZkZGExMDJlNDVkNGJjOTA5YmIyYTYyMzI5Y2U1Nj

1 4001377 ÷ 6144 = 651.267

CloudTransport:1 20

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

VmMTMyNWRkMWQyNzliMTE5M2M1OTAxZDU0ZjI4OTIxM2Q4ZDk4M2E0NzFhOTUxNzRkMGE4
NjdmYTUzNGFiZTNiMjU5ODkwYTRhZjM3ZmVmOWQ="

to generate the Body output argument.

6.6.5.6 Argument ReadLength

This output argument shall indicate the actual length of HTTP BODY data read and returned, in
bytes, prior to conversion to BASE64 encoding. For example, the returned value of ReadLength
would be 6144 if the local HTTP client's buffer is full.

6.6.5.7 Argument ConnectReadCount

This output argument indicates the number of CloudTransport read related actions -
HTTPReadHeaders() and HTTPReadBody() - transacted on this connection since it was opened.
It is a monotonically increasing value with the first transaction having a value of "1" and each
subsequent transaction causing the value to increment by "1".

6.6.5.8 Service Requirements

This action is a Restrictable action as described in 4.2.

6.6.5.9 Control Point Requirements When Calling The Action

Successful invocation of the action on HTTPS connections is dependent on the control point
Role or if the control point is a UCC-CP. See Table 4-1 — Assignment of Restrictable/Non-
Restrictable Roles for details.

The control point issuing the HTTPReadBody() actions shall calculate the number of bytes
needed to be read by using either the HEADER LINE "Content-Length" value or in-stream
"Chunked" length values.

6.6.5.10 Dependency on Device State

The connection indicated by Identifier shall be open to execute the action.

6.6.5.11 Effect on Device State

None unless the connection is closed.

6.6.5.12 Errors

Table 6-12 — Error Codes for HTTPReadBody()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

700 Invalid Connection The connection indicated in Identifier is not recognized

704 HTTPS not allowed The control point is not allowed an HTTPS connection.

708 Connection closed
prematurely

The connection was closed before the read was completed.

6.6.6 HTTPWriteBody()

This required action writes HTTP BODY Size bytes of data to an existing connection described
by Identifier. The data shall be BASE64 encoded to make it suitable for inclusion in a UCA XMPP
stanza. This means that the ratio of actual data to XMPP stanza payload will be 3 to 4.

CloudTransport:1 21

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

6.6.6.1 Arguments

Table 6-13 — Arguments for HTTPWriteBody()

Argument Direction relatedStateVariable

Identifier IN A_ARG_TYPE_Identifier

Body IN A_ARG_TYPE_Body

Size IN A_ARG_TYPE_UI4

ConnectWriteCount OUT A_ARG_TYPE_UI4

6.6.6.2 Argument Identifier

This input argument provides a temporary, unique identifier that allows the CloudTransport
service to distinquish all of its current connections to a local device to UCC-CPs using the
CloudTransport service.

6.6.6.3 Argument Body

This input argument contains BASE64 HTTP BODY data with length equivalent to Size when
converted back from BASE64.

6.6.6.4 Argument Size

This input argument indicates the amount of BODY data to be written in bytes when converted
back from BASE64.

6.6.6.5 Argument ConnectWriteCount

This output argument indicates the number of CloudTransport write related actions -
HTTPConnectMehod(), HTTPWriterHeaders(), HTTPWriteBody() - transacted on the
connection identified by Identifier since it was opened. It is a monotonically increasing value
with the first transaction having a value of "1" and each subsequent transaction causing the
value to increment by "1".

6.6.6.6 Service Requirements

This action is a Restrictable action as described in 4.2.

6.6.6.7 Control Point Requirements When Calling The Action

Successful invocation of the action on HTTPS connections is dependent on the control point
Role or if the control point is a UCC-CP. See Table 4-1 — Assignment of Restrictable/Non-
Restrictable Roles for details.

The control point issuing the HTTPWriteBody() actions shall keep track of the number of bytes
sent and make sure it corresponds to the HEADER LINE "Content-Length" value or in-stream
"Chunked" length values sent in respective HTTPWriteHeaders() actions.

6.6.6.8 Dependency on Device State

The connection indicated by Identifier shall be open to execute the action.

6.6.6.9 Effect on Device State

None unless the connection is closed.

CloudTransport:1 22

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

6.6.6.10 Errors

Table 6-14 — Error Codes for HTTPWriteBody()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

700 Invalid Connection The connection indicated in Identifier is not recognized

704 HTTPS not allowed The control point is not allowed an HTTPS connection.

708 Connection closed
prematurely

The connection was closed before the write could be completed.

7 THEORY OF OPERATIONS (INFORMATIVE)
This section describes several typical scenarios encountered where the CloudTransport service is
utilized. The device supporting the CloudTransport service will provide socket and TCP support,
including TCP keep-alives on its local interface where the HTTP Server and Client will run. It will also
need to include buffering to manage HTTP traffic over the local connection for fragmentation and
reassemble to the CloudTransport actions.

7.1 GENERAL USAGE SCENARIOS
7.1.1 HTTP HEAD REQUEST and RESPONSE

In the first scenario the UCC-CP wants to execute a HTTP HEAD REQUEST to get the size of a media
item used in a previous example. This will require the sequence of action invocations of
HTTPConnectMethod() followed by HTTPWriteHeaders() and HTTPReadHeaders(). The transaction
flow is illustrated in Figure 7-1 and described afterwards.

CloudTransport:1 23

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

Figure 7-1 HTTP HEAD REQUEST and RESPONSE

CloudTransport:1 24

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

7.1.1.1 Opening a Connection with HTTPConnectMethod()

A UCC-CP knows a <res> is available at
"http://192.168.0.5/music/goodband/goodsong.mp3" and wants to use an HTTP HEAD
REQUEST to get any additional information, such as, the resources size. It invokes the
HTTPConnectMethod() action as follows:

Request (SOAP/XMPP):
HTTPConnectMethod(
 192.168.0.5:37222,
 HEAD /music/goodband/goodsong.mp3 HTTP 1.1
)

The UCCD first tries to open a TCP connection at "192.168.0.5:37222". Upon success, it
creates a unique identifier of the specific connection for the Identifier output argument and since
this port was just opened assigns a ConnectWriteCount value of "1" to this connection. The
CloudTransport service will most likely buffer the HEAD METHOD LINE as it is expecting the
HTTP HEADER LINEs in the subsequent HTTPWriteHeaders() action. The device supporting the
CloudTransport service is responsible for keeping the connection alive while the UCC-CP builds
the complete HTTP REQUEST stream.

Response (SOAP/XMPP):
HTTPConnectMethod(
 "MxMGY3NDI0ZGE0YTcxZmJiMjg2M2VjNTViMjdlN2IyMTM",
 "1"
)

7.1.1.2 Completing the HTTP REQUEST with HTTPWriteHeaders()

The UCC-CP then completes the HTTP HEAD REQUEST by supplying the HTTP HEADER
LINEs to the CloudTransport service for the previously opened connection as follows.

Request (SOAP/XMPP):

HTTPWriteHeaders(
 MxMGY3NDI0ZGE0YTcxZmJiMjg2M2VjNTViMjdlN2IyMTM,
 HOST: 192.168.0.5:37222<CR><LF>
 DATE: Mon, 12 Oct 2015 13:18:19 GMT<CR><LF>
 CONNECTION: close<CR><LF>
 USER-AGENT: 6.1.7601 2/Service Pack 1, UPnP/1.0, Portable SDK for UPnP
 devices/1.6.19<CR><LF>
 <CR><LF>
)

The CloudTransport service knowing that the HTTP HEAD REQUEST is complete then sends
the HTTP REQUEST on its local connection to the HTTP Server and more than likely receive
the HTTP RESPONSE in its local connection before the UCC-CP issues the expected
HTTPReadHeaders() action. Since this is the second write to this connection it will also increment
the ConnectWriteCount output argument for this connection to "2". Below is the response from
the action.

Response (SOAP/XMPP):
HTTPWriteHeaders(2)

Note that even though the connection may have been closed after the HTTP RESPONSE was sent on
the local network this is not indicated until after the buffer on the CloudTranport service side has been
read by an HTTPReadHeaders() action or an implementation defined timeout has occurred.

CloudTransport:1 25

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

7.1.1.3 Completing the HTTP RESPONSE with HTTPReadHeaders()

The UCC-CP is now expecting a response from the HTTP Server on the local network so it
issues an HTTPReadHeaders() action on the connection that it has written the HTTP RESPONSE
on as follows:

Request (SOAP/XMPP):
HTTPReadHeaders(
 MxMGY3NDI0ZGE0YTcxZmJiMjg2M2VjNTViMjdlN2IyMTM,
 0
)

The CloudTransport service reads the HTTP RESPONSE LINES from its connection buffer
increments the ConnectReadCount to "1" since this is the first read on the connection, and
returns the HTTP RESPONSE as follows:

Response (SOAP/XMPP)
HTTPReadHeaders(
 HTTP/1.1 200 OK<CR><LF>
 Date: Thu, 15 Oct 2015 21:37:54 GMT<CR><LF>
 Content-Type: audio/mpeg<CR><LF>
 Content-Length: 4001377<CR><LF>
 contentFeatures:
 dlna.orgDLNA.ORG_PN=MP3;DLNA.ORG_OP=01;
 DLNA.ORG_FLAGS=01700000000000000000000000000000<CR><LF>
 Connection: close<CR><LF>
 <CR><LF>,
 231,
 1
)

The UCC-CP should recognize that the connection has been closed by examining the HTTP
RESPONSE message and not try to re-use the previous Identifier.

7.1.2 HTTP GET REQUEST and RESPONSE

In the second scenario the UCC-CP wants to execute a HTTP GET REQUEST to retrieve the
media item from the previous example. This will require the sequence of action invocations of
HTTPConnectMethod() followed by HTTPWriteHeaders(), HTTPReadHeaders() and then a series

of HTTPReadBody() actions. The transaction flow is illustrated in Figure 7-2 and Figure 7-3
and described afterwards.

CloudTransport:1 26

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

Figure 7-2 HTTP GET REQUEST and RESPONSE Part 1

CloudTransport:1 27

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

Figure 7-3 HTTP GET REQUEST and RESPONSE Part 2

CloudTransport:1 28

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

7.1.2.1 The HTTP GET REQUEST

The HTTP GET REQUEST is formed in almost the identical fashion as the HTTP HEAD request
described in sections 0 and 7.1.1.2 and the HTTP RESPONSE HEADER line retrieval executed
as described in section.7.1.1.3. The main difference is in the actual METHOD LINE. For this
example, the HTTPConnectMethod(), HTTPWriteHeaders(), and HTTPReadHeaders() actions
have already been executed.

7.1.2.2 The HTTP BODY RESPONSE

In this example the HTTP RESPONSE is not Chunked and the HTTP Server will start sending
the BODY to the CloudTransport service over its local connection. This data will need to be
buffered in the CloudTransport service since the local interface will usually be much faster the
UCA interface. The local connection will have to be managed to keep the buffer from overflowing
using lower layer techniques such as TCP throttling. If the buffer of the CloudTransport service
is large enough and the link fast enough, the complete BODY of the requested resource could
be buffered in the CloudTransport service host device before any significant part of it has been
sent to the UCC-CP.

The UCC-CP will know that the next data in the connection will be the BODY data since it
successfully invoked the HTTPReadHeaders() action just previous to the invocation of the first
HTTPReadBody() action as shown next. The UCC-CP requests that CloudTransport service
retrieve 6000 bytes of data from the HTTP stream (this will actually be 8000 bytes of BASE64
encoded stanza data).

Request (SOAP/XMPP):

HTTPReadBody(
 2VjNTViMjdlN2MxMGY3NDI0ZGIyMTME0YTcxZmJiMjg2M,
 6000,
 0
)

The CloudTransport service pulls 6000 bytes from its buffer (or to EOF),

0023565c61690023542e7ca90800450005dccd4540004006e66ac0a80005c0a8001684
aafc0fc73ef2ceb09cca14501000edd3c6000049443303000000020f76415049430000
1f48000000696d6167652f6a7067000000ffd8ffe000104a4649460001010000010
 . . .
b48d233065307ed3e77d3ef6cfc315b709f19c9aabc72c97df607b62e1d018e58a4588
7ca411870cfdc7392690f5ee5487e11ddc1a25ee9ababdb11776f6b13486062cad0b67
239e87d3b1aded4bc0b75a97f664c750823b9d36e966b76f2cb829cef57cf2c5b

converts the data to BASE64 and sends the response as follows:

Response (SOAP/XMPP):

HTTPReadBody(

MDAyMzU2NWM2MTY5MDAyMzU0MmU3Y2E5MDgwMDQ1MDAwNWRjY2Q0NTQwMDA0MDA2ZTY2YWMw
YTgwMDA1YzBhODAwMTY4NGFhZmMwZmM3M2VmMmNlYjA5Y2NhMTQ1MDEwMDBlZGQzYzYwMDAw
NDk0NDMzMDMwMDAwMDAwMjBmNzY0MTUwNDk0MzAwMDAxZjQ4MDAwMDAwNjk2ZDYxNjc2NTJm
N…
GM3MzkyNjkwZjVlZTU0ODdlMTFkZGMxYTI1ZWU5YWJhYmRiMTE3NzZmNmIxMzQ4NjA2MmNhZ
DBiNjcyMzllODdkM2IxYWRlZDRiYzBiNzVhOTdmNjY0Yzc1MDgyM2I5ZDM2ZTk2NmI3NmYyY
2I4MjljZWY1N2NmMmM1Yg==,
6000,

 2
)

The UCC-CP continues to issue the HTTPReadBody() action until it has transferred the
complete 4001377 bytes indicated in the "Content-Length" HEADER.

The last HTTPReadBody() action would look like this:

CloudTransport:1 29

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

Request (SOAP/XMPP):

HTTPReadBody(
 2VjNTViMjdlN2MxMGY3NDI0ZGIyMTME0YTcxZmJiMjg2M,
 5377,
 0
)

with response

Response (SOAP/XMPP):

HTTPReadBody(

. . .
AwMDAwNDg2OTczNzQ2ZjcyNzkzYTIwNDE2ZDY1NzI2OTYzNjEyNzczMjA0NzcyNjU2MTc0Nj
U3Mzc0MjA0ODY5MzEzOTM3MzUyMDIwMjAyMDIwMjAyMDIwMjAyMDIwMjAyMDIwMjAyMDIwMj
AyMDIwMjAyMDIwMjAyMDIwMjAyMDAwMDEwYw==,
5377,

 668
)

7.1.3 HTTP GET REQUEST with "Chunked" RESPONSE

If the HTTP RESPONSE includes the "Transfer-Encoding: chunked" HEADER and there
is an absence of a "Content-Length" HEADER then the UCC-CP should expect the BODY to be
"chunked" and will need to use the HTTPReadBody() action(s) appropriately.

In this "chunked" example, the BODY data is sent in 3 "chunks" of length 60 bytes, 60 bytes,
and 30 bytes (plus the zero bytes line to end the "chunking"). On the wire this would look like:

• 0x32<CR><LF> or the 6 octets "320D0A" converted to BASE64 (or "MzIwRDBB")

• [60 Bytes of Data] converted to BASE64 (80 Bytes in the Body payload)

• 0x32<CR><LF> or the 6 octets "320D0A" converted to BASE64 (or "MzIwRDBB")

• [60 Bytes of Data] converted to BASE64 (80 Bytes in the Body payload)

• 0x1A<CR><LF> or "160D0A" converted to BASE64 (or "MzIwRDBB")

• [30 Bytes of Data] converted to BASE64 (40 Bytes in the Body payload)

• 0x0<CR><LF> "00D0A" or converted to BASE64 (or "MDBEMEE=")

A conservative strategy is used to get the BODY data using 7 HTTPReadBody() actions. The
first, third, fifth, and seventh are used to nibble the chunk sizes, the, second, fourth, and sixth
are used to return the BODY data. The invocations for the first two actions are shown as follows:

First HTTPBodyRead() to get length with CRLFFlag set to "1"

Request (SOAP/XMPP):

HTTPReadBody(
 MjdlN2MxMGY3NDI0ZGIyMT2VjNTVi,
 500,
 1
)

with response

Response (SOAP/XMPP):

CloudTransport:1 30

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

HTTPReadBody(
MzIwRDBB,
6,

 725
)

and second HTTPReadBody() to get first BODY data chunk with CRLFFlag set to "0"

Request (SOAP/XMPP):

HTTPReadBody(
 MjdlN2MxMGY3NDI0ZGIyMT2VjNTVi,
 60,
 0
)

with response

Response (SOAP/XMPP):

HTTPReadBody(

MDEyMzQ1Njc4OTAxMjM0NTY3ODkwMTIzNDU2Nzg5MDEyMzQ1Njc4OTAxMjM0NTY3ODkwMTIz
NDU2Nzg5,
60,

 726

)

MzIwRDBB

7.1.4 HTTP POST REQUEST with "100-Continue"

When sending an HTTP POST REQUEST to the HTTP Server with an "EXPECT: 100-
Continue" HEADER LINE included, the Client (UCC-CP) should issue a HTTPReadHeaders()
action to get the "HTTP/1.1 100 CONTINUE" HTTP STATUS or other HTTP status message
before sending the BODY data for the POST REQUEST using the HTTPWriteBody() action.

7.1.5 Closing an HTTP Connection

There is no explicit action for closing an HTTP connection instead a normal HTTP "Connection:
close" HEADER is used with the HTTP Server closing the connection after sending the HTTP
RESPONSE and the HTTP Client, in the device, closing after receiving the last RESPONSE.

8 XML SERVICE DESCRIPTION
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>HTTPConnectMethod</name>
 <argumentList>
 <argument>
 <name>Host</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Host
 </relatedStateVariable>
 </argument>
 <argument>
 <name>MethodLine</name>

CloudTransport:1 31

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Headers
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Identifier</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Identifier
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ConnectWriteCount</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_UI4
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>HTTPWriteHeaders</name>
 <argumentList>
 <argument>
 <name>Identifier</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Identifier
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Headers</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Headers
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ConnectWriteCount</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_UI4
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>HTTPReadHeaders</name>
 <argumentList>
 <argument>
 <name>Identifier</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Identifier
 </relatedStateVariable>
 </argument>
 <argument>
 <name>CRLFFlag</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Flag
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Headers</name>
 <direction>out</direction>
 <relatedStateVariable>

CloudTransport:1 32

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

 A_ARG_TYPE_Headers
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ReadLength</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_UI4
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ConnectReadCount</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_UI4
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>HTTPReadBody</name>
 <argumentList>
 <argument>
 <name>Identifier</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Identifier
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Size</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_UI4
 </relatedStateVariable>
 </argument>
 <argument>
 <name>CRLFFlag</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Flag
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Body</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Body
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ReadLength</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_UI4
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ConnectReadCount</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_UI4
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>HTTPWriteBody</name>

CloudTransport:1 33

Copyright © 2015 Open Connectivity Foundation, Inc. All rights reserved.

 <argumentList>
 <argument>
 <name>Identifier</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Identifier
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Body</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Body
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Size</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_UI4
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ConnectWriteCount</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_UI4
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Host</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Headers</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Identifier</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Body</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_UI4</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Flag</name>
 <dataType>boolean</dataType>
 </stateVariable>
 </serviceStateTable>
</scpd>

	1 Scope
	1.1 Introduction

	2 Normative References
	3 Terms, Definitions and Abbreviations
	3.1 Non-Restrictable
	3.2 Restrictable

	4 Security Feature
	4.1 Device Protection
	4.2 Restrictable and Non-Restrictable actions

	5 Notations and conventions
	5.1 Notation
	5.2 Data Types
	5.3 Vendor-defined Extensions

	6 Service Modelling Definitions
	6.1 Service Type
	6.2 CloudTransport:1 Service Architecture
	6.3 Key Concepts
	6.4 State Variables
	6.4.1 State Variable Overview
	6.4.2 State Variable A_ARG_TYPE_Host
	6.4.3 State Variable A_ARG_TYPE_Method
	6.4.4 State Variable A_ARG_TYPE_Identifier
	6.4.5 State Variable A_ARG_TYPE_Headers
	6.4.6 State Variable A_ARG_TYPE_Body
	6.4.7 State Variable A_ARG_TYPE_UI4
	6.4.8 State Variable A_ARG_TYPE_Flag

	6.5 Eventing and Moderation
	6.6 Actions
	6.6.1 Introduction
	6.6.2 HTTPConnectMethod()
	6.6.2.1 Arguments
	6.6.2.2 Argument Host
	6.6.2.3 Argument MethodLine
	6.6.2.4 Argument Identifier
	6.6.2.5 Argument ConnectWriteCount
	6.6.2.6 Service Requirements
	6.6.2.7 Control Point Requirements When Calling The Action
	6.6.2.8 Dependency on Device State
	6.6.2.9 Effect on Device State
	6.6.2.10 Errors

	6.6.3 HTTPWriteHeaders()
	6.6.3.1 Arguments
	6.6.3.2 Argument Identifier
	6.6.3.3 Argument Headers
	6.6.3.4 Argument ConnectWriteCount
	6.6.3.5 Service Requirements
	6.6.3.6 Control Point Requirements When Calling The Action
	6.6.3.7 Dependency on Device State
	6.6.3.8 Effect on Device State
	6.6.3.9 Errors

	6.6.4 HTTPReadHeaders()
	6.6.4.1 Arguments
	6.6.4.2 Argument Identifier
	6.6.4.3 Argument CRLFFlag
	6.6.4.4 Argument Headers
	6.6.4.5 Argument ReadLength
	6.6.4.6 Argument ConnectReadCount
	6.6.4.7 Service Requirements
	6.6.4.8 Control Point Requirements When Calling The Action
	6.6.4.9 Dependency on Device State
	6.6.4.10 Effect on Device State
	6.6.4.11 Errors

	6.6.5 HTTPReadBody()
	6.6.5.1 Arguments
	6.6.5.2 Argument Identifier
	6.6.5.3 Argument Size
	6.6.5.4 Argument CRLFFlag
	6.6.5.5 Argument Body
	6.6.5.6 Argument ReadLength
	6.6.5.7 Argument ConnectReadCount
	6.6.5.8 Service Requirements
	6.6.5.9 Control Point Requirements When Calling The Action
	6.6.5.10 Dependency on Device State
	6.6.5.11 Effect on Device State
	6.6.5.12 Errors

	6.6.6 HTTPWriteBody()
	6.6.6.1 Arguments
	6.6.6.2 Argument Identifier
	6.6.6.3 Argument Body
	6.6.6.4 Argument Size
	6.6.6.5 Argument ConnectWriteCount
	6.6.6.6 Service Requirements
	6.6.6.7 Control Point Requirements When Calling The Action
	6.6.6.8 Dependency on Device State
	6.6.6.9 Effect on Device State
	6.6.6.10 Errors

	7 Theory of Operations (informative)
	7.1 General Usage Scenarios
	7.1.1 HTTP HEAD REQUEST and RESPONSE
	7.1.1.1 Opening a Connection with HTTPConnectMethod()
	7.1.1.2 Completing the HTTP REQUEST with HTTPWriteHeaders()
	7.1.1.3 Completing the HTTP RESPONSE with HTTPReadHeaders()

	7.1.2 HTTP GET REQUEST and RESPONSE
	7.1.2.1 The HTTP GET REQUEST
	7.1.2.2 The HTTP BODY RESPONSE

	7.1.3 HTTP GET REQUEST with "Chunked" RESPONSE
	7.1.4 HTTP POST REQUEST with "100-Continue"
	7.1.5 Closing an HTTP Connection

	8 XML Service Description

