UPNP Device Architecture 2.0

Document Revision Date: April 17, 2020

PORTIONS OF THIS APPROVED SPECIFICATION WERE COMPLETED PRIOR TO THE
COMBINATION OF UPNP INTO THE OPEN CONNECTIVITY FOUNDATION. FOR PORTIONS
OF THE SPECIFICATION THAT WERE PUBLISHED ON OR PRIOR TO FEBRUARY 20, 2015
THE FOLLOWING APPLIES: ALL LICENSES, INTELLECTUAL PROPERTY RIGHTS, AND
OTHER RIGHTS, RESPONSIBILITIES, OBLIGATIONS, STANDARDS, AND PROTOCOLS
ASSOCIATED WITH PORTIONS OF THIS APPROVED SPECIFICATION THAT WERE
PUBLISHED ON OR PRIOR TO FEBRUARY 20, 2015 ARE SUBJECT TO THE UPNP BYLAWS
AND FORUM MEMBERSHIP AGREEMENT.

Legal Disclaimer

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY
KIND OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY
INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR
DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN IS
PROVIDED ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY
DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED,
STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN
CONNECTIVITY FOUNDATION, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF
NON-INFRINGEMENT, ACCURACY OR LACK OF VIRUSES.

The OCF Logo, UPnP Word Mark and UPnP Logo are trademarks of Open Connectivity
Foundation, Inc. in the United States or other countries. *Other names and brands may be
claimed as the property of others.

Copyright © 2016-2020 Open Connectivity Foundation, Inc. All rights reserved.

Copying or other form of reproduction and/or distribution of these works are strictly prohibited.

Authors* Company

Andrew Donoho IBM
Bryan Roe Intel
Maarten Bodlaender Philips
John Gildred Pioneer
Alan Messer Samsung
YoonSoo Kim Samsung
Bruce Fairman Sony
Jonathan Tourzan Sony

*Note: OCF in no way guarantees the accuracy or completeness of this contributor list and in no way implies any rights
for or support from those individuals and companies listed above.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

Contributors* Company

—2__

Alan Presser AllegroSoft
Devon Kemp Canon
Lee Farrell Canon
Wouter van der Beek Cisco
William Lupton Conexant
Grzegorz Kafel Comarch
Shinichi Tsuruyama Epson
Shivaun Albright HP

John Ritchie Intel
Mark Walker Intel
Colleen Evans Microsoft
Henry Rawas Microsoft
Toby Nixon Microsoft
Trevor Freeman Microsoft
Cathy Chan Nokia
Franklin Reynolds Nokia
Jose Costa-Requena Nokia
Yinghua Ye Nokia
Geert Knapen Philips
Jarno Guidi Philips
Lex Heerink Philips
Tom McGee Philips
Andrew Fiddian-Green Siemens
Markus Wischy Siemens
John Fuller Sony

Authors of Annex A* Company

Chris Grundeman CableLabs
Bich Nguyen Cisco
Barbara Stark AT&T
Clarke Stevens CableLabs

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

Authors of Annex C*

Clarke Stevens

Company

Cable Labs Inc

Wouter van der Beek

Cisco Systems

Keith Miller (Chair) Intel

Jeffrey Kang TP Vision

Mateusz Belicki Comarch

Contributors of Annex C* Company ‘

Clarke Stevens

Cable Labs Inc

Wouter van der Beek

Cisco Systems

Peter Waher Clayster
Bich Nguyen GoPro
Keith Miller Intel
Jeffrey Kang TP Vision
Mateusz Belicki Comarch

*Note: OCF in no way guarantees the accuracy or completeness of this author list and in no way implies any
rights for or support from those individuals and companies listed above. This list is not the specifications’

contributor list.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

CONTENTS
[F N1 o T 1N T3 410} o FO PPN 9
(O o [0 | =111 o o [PP 15
0.1 Determining whether to use AULO-IP ... 16
0.2 ChoOSING AN A0AINESS . et et e 16
0.3 Testing the A0dreSS ... e 16
0.4 FOrWarding FUIBS ...t et et ea e a e ans 17
0.5 Periodic checking for dynamic address availabilityc.cooooviiiiii i, 17
0.6 Device naming and DNS iNtEractionc.oiviiiiiiieii e 17
0.7 Name to IP address reSOIULION. ... 18
O T 4= =] €= o o == PP 18
N B 11T odo V2= o PP 18
1.1 SSDP MESSAQE fOrMAL .ouuiriiiii e e e e 21
10,1 SSDP Start-liNe e 21
1.1.2 SSDP message header fieldscocviiiiiiii i 21
1.1.3 SSDP header field eXteNSIONSocuiiiiiiii e 22
1.1.4 UUID format and recommended generation algorithmscoeeeneen. 22
1.1.5 SSDP ProCESSING NUIES ..euiniiiiieiie e e e 22
I o V7T o (= 1 0 1= o PP 23
1.2.1 Advertisement protocols and standardscoeeviieiiiiiii i 23
1.2.2 Device available - NOTIFY with ssdp:alive........ccooiiiiiiii, 24
1.2.3 Device unavailable -- NOTIFY with ssdp:byebye........ccoccoeiiiiiiiiiniinn, 31
1.2.4 Device Update — NOTIFY with ssdp:updateccoeiiiiiiiiiiiiiieee, 32
L3 S BAICI e s 34
1.3.1 Search protocols and standardsccooeiiiiiiiiiiiie 35
1.3.2 Search request with M-SEARCH ..o 35
1.3.3 SEAICh rESPONSE it 39
L4 RO OIS e e 42
72 I T == o1 1014 o 1 o S 42
2.1 Generic requirements 0N HTTP USBQE . ..uiuiuiiiiiieie e 45
2.2 Generic requirements 0N XML USAQE . ..cuuiiuiiuiiieiieiee e eeeeee e e et e e e eneeans 48
2.3 DEVICE AESCIIPLION et e et 48
2.4 UPNP DeViCe TeMPIAE ...eeiniiiiii e e 54
S T ST =Y VA T = I o 1= 1Yo] o) T o I 54
2.5.1 Defining and processing extended data typesSc..coveuiiiiiiiiiiiiiiiiiieeen, 61
2.5.2 String equivalents of extended data typesccovvviiiiiiiii e 63
2.5.3 GENEIIC FEQUIFEMENTS oot eaees 64
2.5.4 Ordering Of El&MENTS. ..ot 64
FZ208S TS T V4 =Y £ o o Yo Vo R 64
2.6 UPNP Service TemMPIAte ... e 65
2.7 Non-standard vendor extensions and limitationS...........ccoccovviiiiniiniinein e, 65
2.7.1 Placement of Additional Elements and Attributescoocoiiiiiiiiinne. 66
2.8 UPNP DEVICE SCREMA ..ouiiiiiiiii s 67
2.9 UPNP SErVICE SCREMA ..ot 67

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

2.10 UPNP Datatype SChemMaccuiieiiiiic e e 67
2.11 Retrieving a description USINg HT TP ... 67
2.02 REIBIENCES .. e 70
I 0 11 o PP 71
3.1 CONrOl PrOtOCOIS .o it 73
311 SOAP Profile e 73

T o1 10] L= PP 77
3.2.1 ACHION INVOCATION ..ieiiiii et et 77

3.2.2 ACHION RESPONSE ..ttt et 80

3.2.3 UPNP ACLION SCheMA ..oiiiiiiiiii e 82

3.2.4 Recommendations and additional requirements............cooiiiiiiiiiiiiineeen. 83

3.2.5 ACHION BITOT FESPONSE .. uitiieeei ettt et e e et e et e e e en e e 83

3.2.6 UPNP Error SChemMa ...ccviiiiiici e 86

3.3 QuUeEry for Variable. ... 87
34 REIEIBIMCES et 87
O VY (1 {1 o T PPN 87
I U T o T T = 1= A A= o1 1 o 88
411 SUBDSCIIPLION Lt 89

4.1.2 SUBSCRIBE with NT and CALLBACKcccuiiiiiiieiiiieie e 91

4.1.3 Renewing a subscription with SUBSCRIBE with SID.............ccooiiiiiiiiianie. 94

4.1.4 Canceling a subscription with UNSUBSCRIBE..........ccoccoviiiiiiiiiiiieeeeens 95

4.2 MUICAST EVENIING touiiiiii e e et e e e e e e e 97
N Y 1 4 LT ToT= T L S TP 99
4.3 1 EITOr CaSES ittt ittt 99

4.3.2 Unicast eventing: Event messages: NOTIFY ..., 100

4.3.3 Multicast Eventing: Event messages: NOTIFYcooiviiiiiiiiiieeeeeen, 103

4.4 UPNP EVENE SCREMA .. e e 106
4.5 Augmenting the UPnP Device and Service Schemasccoovviiiiiiiiiiiininiieen, 106
4.6 REIEIENCES et 107
oI o (=TT o1 7= 1 o o PPN 107
Bl REIBIENCES .. e 109
Annex A (normative) 1P VEersion 6 SUPPOItot e ea e 110
A0 NOtE (INTOIMALIVE) ... e e e 110
N A [016 o Yo IV L] o o I PP 110
A2 GENEIAl PriNCIPIES i 111
A.2.1 UPNP Device Architecture V1.0 ..o 111
A.2.2 UPNP Device ArchiteCture V2.0cc.oiiiiiiiiiiiiiiec e 111
A.2.3 IPV6 and Dual STacCKcouiiniiiiii 111
A.2.4 DEVICE OPEIAtION 1.ttt e e e 113
A.2.5 Control poiNt OPErationo 113

A3 AAArESSING et 113
A.3.1 UPNP Messaging on IPv6 Interfaces.......cccoeviiiiiiiiiiiii e 114
A.3.2 Summary of bOOt/StartuUp PrOCESS ...cuuieniiie e 114
A.3.3 Address Selection and RFC 6724cooviiiiiiiiiiiee e 114

YN A B 1 (=Y oTo V7= o PP 114
A4 L OPT and NLS oo e 115

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

A.4.2 AdVEIISEMENT et 115
A.4.3 Advertisement: Device unavailableooi 116
A.4.4 Advertisement: Device UPAatec.oiuiiiiniiiii e 116
A4 D S BAICN .. 116
A48 SEAICH rBSPONSE ..uitiiiii e 117

T I 1= o T o f o 117
ALB CONIIOl i e 117
N A A =T o | o Vo 117
R T = 1= 1= 01 2= Lo o S 118
AL REIBIENCES .. i 118
R T A N0} 3 = L1 118
A.9.2 INTOIMAtIVE .o 119

F N T = = 3o 1= 1 = 1 120
B.1 UPNP DEVICE SCREMA .uiiiiiii i e 120
B.2 UPNP SErVIiCe SCNEMA ..uiiiiii e e e e 124
B.3 UPNP CoNntrol SChemMa......c. i 129
A U] = o1 o o T Yo 1= 3 - 130
B.5 UPNP EVENt SChEMaA ...t e 131
B.6 UPNP CloUud SCREMAo e 131
2 S Yo 1= 0 = W =Y {1 =1 1= 1 133
N] 1= O @ o 11 o PP 134
L R 1 04 o T 0o o o 134
C.1.1 What is UPnNP™ Cloud Technology (UCA)? ... 134

L 7 N U o 1= o o] = 134
C.L.8 INthIS ANNEX i e 134
C.1.4 UDA compared t0 UCA .. it ea e 136
C.1.5 UCA General Communications Pathscoiiiiiiiiiiie, 138
C.1.6 UCA Specific Communication Paths ..o, 139
C.1.7 UCA Steps as Analogies t0 UDA ..o 140

C.2 Terms and DefinitioNS ... 142
O R AN o 0 1Y 1 1 142
C.2.2 General Cloud Terms and Definitionscccoiiiiiiiiiiii e, 142
C.2.3 Device and Control Point Terms and Definitionscoooiiiiiiinnnnne. 143
C.2.4 Service Terms and DefinitioNSccviiiiii e 143
O S T €1 (o ¥ o 1 ST TPPRP 143

O T = = =T 1= o o 144
C.4 General XMPP FRAtUIESt 145
C.4.1 XMPP Jabber IDS OF JIDS ...ouiiiiiiii et 145

C.5 Creating a Device or Control POiNt RESOUICE.......ciuviiiiiiiiiie e 146
C.5.1 FINAING 8 UCS .. i e ea e 146
C.5.2 ACCOUNE Creation ... e e e 147
C.5.3 AULNENTICALION L.ietiieii e e e 147
C.5.4 Binding Devices and Control Points as a Resource...........ccccceeeeveiiinennnnn. 150
C.5.5 EMbedded DEVICES....iiuiiiiiiie et e 153

C.6 Presence and DiSCOVEIY ...t et ea e e e 155
C.6.1 Presence (Analog to NOTIFY with ssdp:alive)......cccovvviiiiii i, 155

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

—7—

C.6.2 XMPP disco#items (analog to M-SEARCH for users UCCDs and

LU O O O = = P 159
C.6.3 Presence update (analog to NOTIFY with ssdp:update).........ccccceevvvennnnns 160
C.6.4 Presence "unavailable" (Analog to NOTIFY with ssdp:byebye) 161
C.6.5 Service LeVEI DiSCOVEIY ..uiuuiieiei it e e 161

C.6.6 1Q:Query for DDD and SCPD Exchange (analog of HTTP GET for
DDD @GN0 SCPD) cuuiiiiiieiiee et 161
C.7 PubSub (Analog of EVENTING) ..evuiieiiiiie e e e e 170
C.7.1 Creating the UCCD PubSub StrucCture.........ccccovviiiiiiii e, 174
C.7.2 Creating a UCCD PubSub collection.........cccooiiiiiiiiiii e, 177
C.7.3 Publishing a UCCD PubSub event ... 181
C.7.4 Subscribing to a UCCD PubSub collection.........c.coovoviiiiiiiiieeeeeee, 185
C.7.5 Unsubscribing to a UCCD PubSub collection..........ccooovviiiiiiiiiiiinccee, 187
C.7.6 Permissions MOAEl ..o e 188
C.8 SOAP over XMPP (Analog of Control)coooiiiiiiiiii e, 189
C.9 Support for Binary (Media) TranSPOrt......cc.viuee e e e e e en e enees 193
O O I U 0F N =T ¢ o] 6o o L3P 193
O I R U 0 NS o o =T o 1 - U PPN 193
C.12 ClOSING 8 UCA SESSION L1ttt et e enees 194
C.13 UCA over BOSH and WEDSOCKETiuiiiiiiiii e 194
Figure L: — ProtOCOl STACK.......iiiiiiii e e e e e e e e e e e ans 10
Figure 1-1: — DiSCOVErY arChit@CTUIEuee it 19
Figure 1-2: — Advertisement protoCol STACKot 23
Figure 1-3: — Initial and repeat announcements, no announcement spreading 26

Figure 1-4: — Initial and repeat announcements, message spreading of repeat

=Y ol aTe U gTod=T0 g =] o1 K- PP PTTRUPPR 27
Figure 1-5: — Search protoCol StACKouu i 35
Figure 2-1: — DesSCription arChite@CIUIEc.. i e 42
Figure 2-2: — Description retrieval protocol Stackccveuiiiiiiiiiir e 68
Figure 3-1: — CoNtrol @arChit@CtUIEiuie e e e e 71
Figure 3-2: — Control protoCol STACK........ceu i 73
Figure 4-1: — Unicast eventing arChit@CtUreoiuiiiiiii e 88
Figure 4-2: — Unicast eventing protoCol StaCKc.vvuiiiiiiiie e 89
Figure 4-3: — Multicast eventing archit@Ctureoooiiiii i 97
Figure 4-4: — Mulitcast eventing protocol StaCKo 98
Figure 5-1: — Presentation arChit@CtUre 107
Figure 5-2: — Presentation protoCol StACKccuviiiiiiiiii e 108
Figure C-1: — Protocol stacks UDA versus UCAciiiii i e e e 136
Figure C-2: — Protocol stack UCA UCCD/UCC-CP and UCA Servers (UCS or UCOD) 137
Figure C-3: — General UCA Configuration...... ..o 139
Figure C-4: — Specific UCA COMMUNICALIONS.....iuiiiiiiii e e e e e e eas 140
Figure C-5: — XMPP Authentication Negotiation...........oeuiiiiiiiiiie e 147
Figure C-6: — Stanza routing for applications with UCA and other XMPP functionality........ 152

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

—8—

Figure C-7: — UDA to UCA Mapping of embedded deViCes.........ccoviviiiiiiiiiiiiiiiiiieiiceeea 155
The individual presence exchange between the UCCDs, UCC-CPs, and UCS for an N
connected UPNP scenario is illustrated incoooooiiiiiii e 159
Figure C-8: — Self <presence> stanza flOWS........cooviiiiiiii e 159
Figure C-9: — Combined Connect, Announce and Describe Message FIOWc..ccene. 168
Figure C-10: — PubSub Hierarchy Event Structure Creation...........c.cooeiiiiiiiiiiiiiiicieeens 174
Figure C-11: — BOSH and WebSocket UCA Stackccooviiiiiiiiii e 194
Figure C-12: — BOSH and WebSocket at UCA component Stacksccooeviiiiiiiiiniineanne. 196
JI= Lo] =T R A o 0 Y o 1= 13
Table 1-1 — R0Ot device diSCOVEIY MESSATECS «.uuvuiririieiee et e e e e e e e et e e e enees 24
Table 1-2 — Embedded device diSCOVErY MeSSAQES . ..iuuiuu it iei e 24
Table 1-3 — Service diSCOVEIY MESSAGES . uuu it ittt et e e e aenees 25
Table 2-1: — Vendor @XIENSIONS ... cc.u ettt r e 65
Table 3-1: — SOAP 1.1 UPNP Profile.....e e 74
Table 3-2: — mustUnderstand attribUute. 75
Table 3-3: — UPNP Defined ACtiON €rror COUBS. 85
Table 4-4: — HTTP Status Codes indicating a Subscription Errorccocoveiiiiiiiiinineneenn, 94
Table 4-5: — HTTP Status Codes indicating a Resubscription Errorcoccoeeviiviiiinenennnnn. 95
Table 4-6: — HTTP Status Codes indicating a Cancel Subscription Errorcc.cooeiiieannen. 97
Table 4-7: — HTTP Status Codes indicating a Notify Errorcoooiiiiiiiiiiiiiiiceeeee 103
Table 4-8: — Multicast VENT IEVEIS ..o 105
Table A-1: — Matching of Device Address to Multicast SCOPE.......ccovvviiiiiiiiiiiiiiiiiieeeeeeen, 113
I Lo L O ey N od o] 0} Y/ 1 S PP 142
Table C-2: — Mapping of DDD iconList to [XEP-0084].....ccciiiiiiiiii e 165
Table C-3: — Summary of Requirements for DDD elementS..........ccooviiiiiiiiiiiiiiiiiiceeeee, 169
Table C-4: — PubSub NOdE TYPEeSuiiii 171
Table C-5: — PubSub Node ACCeSS MOUEISoiiiiiiic e 171
Table C-6: — PubSub Affiliations and their Privileges to "publishing” as defined by

[XEP-0060] and further restricted by UCA (see footnotes).......ccviuiieiiiiiiiiiiieeeeeea 172
Table C-7: — PubSub Affiliations and their Privileges to "subscribers".............c.cooeviiennn. 172

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

—9_—

Introduction
What is UPnP1 Technology?

UPnP technology defines an architecture for pervasive peer-to-peer network connectivity of
intelligent appliances, wireless devices, and PCs of all form factors. It is designed to bring
easy-to-use, flexible, standards-based connectivity to ad-hoc or unmanaged networks whether
in the home, in a small business, public spaces, or attached to the Internet. UPnP technology
provides a distributed, open networking architecture that leverages TCP/IP and Web
technologies to enable seamless proximity networking in addition to control and data transfer
among networked devices.

The UPnP Device Architecture (UDA) is more than just a simple extension of the plug and
play peripheral model. It is designed to support zero-configuration, "invisible" networking, and
automatic discovery for a breadth of device categories from a wide range of vendors. This
means a device can dynamically join a network, obtain an IP address, convey its capabilities,
and learn about the presence and capabilities of other devices. Finally, a device can leave a
network smoothly and automatically without leaving any unwanted state behind.

The technologies leveraged in the UPnP architecture include Internet protocols such as IP,
TCP, UDP, HTTP, and XML. Like the Internet, contracts are based on wire protocols that are
declarative, expressed in XML, and communicated via HTTP. Using Internet protocols is a
strong choice for UDA because of its proven ability to span different physical media, to enable
real world multiple-vendor interoperation, and to achieve synergy with the Internet and many
home and office intranets. The UPNP architecture has been explicitly designed to
accommodate these environments. Further, via bridging, UDA accommodates media running
non-1P protocols when cost, technology, or legacy prevents the media or devices attached to
it from running IP.

What is "universal” about UPnP technology? No device drivers; common protocols are used
instead. UPnP networking is media independent. UPnP devices can be implemented using
any programming language, and on any operating system. The UPnP architecture does not
specify or constrain the design of an API for applications; OS vendors may create APIs that
suit their customers’ needs.

UPNnP Forum

UPnP Forum is an industry initiative designed to enable easy and robust connectivity among
stand-alone devices and PCs from many different vendors. UPnP Forum seeks to develop
standards for describing device protocols and XML-based device schemas for the purpose of
enabling device-to-device interoperability in a scalable, networked environment.

UPnP Forum is comprised of member companies across many industries that promote the
adoption of uniform technical device interconnectivity standards and testing and certifying of
these devices. The Forum develops and administers the testing and certification process,
administers the UPnP logo program, and provides information to members and other
interested parties regarding the certification of UPnP devices. The UPnP device certification
process is open to any vendor who is an implementer level member of UPnP Forum, has paid
the implementer dues, and has devices that support UPnP functionality. For more information,
see http://www.upnp.org.

UPnP Forum has set up working committees in specific areas of domain expertise. These
working committees are charged with creating proposed device standards, building sample
implementations, and building appropriate test suites. This document indicates specific
technical decisions that are the purview of UPnP Forum working committees.

UPnNnP vendors can build compliant devices with confidence of interoperability and benefits of
shared intellectual property and the logo program. Separate from the logo program, vendors

1 The UPnP® Word Mark and UPnP® Logo are certification marks owned by UPnP Forum.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

http://www.upnp.org/

may also build devices that adhere to the UPnP Device Architecture defined herein without a
formal standards procedure. If vendors build non-standard devices, they determine technical
decisions that would otherwise be determined by a UPnP Forum working committee.

In this document

The UPnP Device Architecture (formerly known as the DCP Framework) contained herein
defines the protocols for communication between controllers, or control points, and devices.
For discovery, description, control, eventing, and presentation, the UPnP Device Architecture
uses the following protocol stack (the indicated colors and type styles are used throughout
this document to indicate where each protocol element is defined):

Figure 1: — Protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP Device Architecture [green-bold]

SOAP [blue] GENA [navy-bold]
SSDP [blue] Multicast events [navy-bold]

HTTP [black] || HTTP [black]
UDP [black] TCP [black]
IP [black]

At the highest layer, messages logically contain only UPnP vendor-specific information about
their devices. Moving down the stack, vendor content is supplemented by information defined
by UPnP Forum working committees. Messages from the layers above are hosted in UPnP-
specific protocols such as the Simple Service Discovery Protocol (SSDP), the General Event
Notification Architecture (GENA) and the multicast event protocol defined in this document,
and others that are referenced. SSDP is delivered via either multicast or unicast UDP.
Multicast events are delivered via multicast UDP. GENA is delivered via HTTP. Ultimately, all
messages above are delivered over IP. The remaining clauses of this document describe the
content and format for each of these protocol layers in detail. For reference, colors in [square
brackets] above indicate which protocol defines specific message components throughout this
document.

Two general classifications of devices are defined by the UPnP architecture: controlled
devices (or simply “devices”), and control points. A controlled device functions in the role of a
server, responding to requests from control points. Both control points and controlled devices
can be implemented on a variety of platforms including personal computers and embedded
systems. Multiple devices, control points, or both may be operational on the same network
endpoint simultaneously.

Note: This document is oriented toward an IPv4 environment. Considerations for an IPv6
environment are expressed in Annex A.

The foundation for UPnP networking is IP addressing. In an IPv4 environment, each device or
control point shall have a Dynamic Host Configuration Protocol (DHCP) client and search for a
DHCP server when the device or control point is first connected to the network. If a DHCP
server is available, i.e., the network is managed; the device or control point shall use the IP
address assigned to it. If no DHCP server is available, i.e., the network is unmanaged; the
device or control point shall use Auto IP to get an address. In brief, Auto IP defines how a
device or control point intelligently chooses an IP address from a set of reserved addresses
and is able to move easily between managed and unmanaged networks. If during the DHCP
transaction, the device or control point obtains a domain name, e.g., through a DNS server or
via DNS forwarding, the device or control point should use that name in subsequent network
operations; otherwise, the device or control point should use its IP address.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

Certain UPnP networks have more complex configurations such as multiple physical networks
and/or multiple logical networks to accommodate multiple non-overlapping addressing
schemes. Devices and control points may also have two or more network interfaces, and/or
two or more IP addresses assigned to each interface. In such configurations, a single device
or control point may be assigned multiple IP addresses from different logical networks in the
same UPnP network, resulting in devices appearing to a control point multiple times in the
network. Devices and control points that have multiple IP addresses on the same UPnP
network are referred to as multi-homed. Throughout this document, the term "UPnP-enabled
interface" is used to refer to an interface which is assigned an IP address belonging to the
UPnP network. Additional behaviors specific to multi-homed devices and control points will be
covered in applicable clauses throughout the document. However, as a general principle,
related interactions between control points and devices (e.g. action control request and
response messages, event subscription and event messages) shall occur using the same pair
of outgoing and incoming UPnP-enabled interfaces.

Given an IP address, Step 1 in UPnP networking is discovery. When a device is added to the
network, the UPnP discovery protocol allows that device to advertise its services to control
points on the network. Similarly, when a control point is added to the network, the UPnP
discovery protocol allows that control point to search for devices of interest on the network.
The fundamental exchange in both cases is a discovery message containing a few essential
specifics about the device or one of its services, e.g., its type, identifier, and a pointer to more
detailed information. The clause on Discovery below explains how devices advertise, how
control points search, and contains details about the format of discovery messages.

Step 2 in UPnP networking is description. After a control point has discovered a device, the
control point still knows very little about the device. For the control point to learn more about
the device and its capabilities, or to interact with the device, the control point shall retrieve the
device's description from the URL provided by the device in the discovery message. Devices
may contain other logical devices, as well as functional units, or services. The UPnP
description for a device is expressed in XML and includes vendor-specific manufacturer
information like the model name and number, the serial number, the manufacturer name,
URLs to vendor-specific Web sites, etc. The description also includes a list of any embedded
devices or services, as well as URLs for control, eventing, and presentation. For each service,
the description includes a list of the commands, or actions, to which the service responds,
and parameters, or arguments for each action; the description for a service also includes a list
of variables; these variables model the state of the service at run time, and are described in
terms of their data type, range, and event characteristics. The clause on Description below
explains how devices are described and how control points retrieve those descriptions.

Step 3 in UPnP networking is control. After a control point has retrieved a description of the
device, the control point can send actions to a device's services. To do this, a control point
sends a suitable control message to the control URL for the service (provided in the device
description). Control messages are also expressed in XML using the Simple Object Access
Protocol (SOAP). Like function calls, in response to the control message, the service returns
any action-specific values. The effects of the action, if any, are modeled by changes in the
variables that describe the run-time state of the service. The clause on Control below explains
the description of actions, state variables, and the format of control messages.

Step 4 in UPnP networking is eventing. A UPnP description for a service includes a list of
actions the service responds to and a list of variables that model the state of the service at
run time. The service publishes updates when these variables change, and a control point
may subscribe to receive this information. The service publishes updates by sending event
messages. Event messages contain the names of one or more state variables and the current
value of those variables. These messages are also expressed in XML. A special initial event
message is sent when a control point first subscribes; this event message contains the names
and values for all evented variables and allows the subscriber to initialize its model of the
state of the service. To support scenarios with multiple control points, eventing is designed to
keep all control points equally informed about the effects of any action. Therefore, all
subscribers are sent all event messages, subscribers receive event messages for all evented

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

variables that have changed, and event messages are sent no matter why the state variable
changed (either in response to a requested action or because the state the service is
modeling changed). Multicast eventing is a variant of Step 4 in UPnP networking. Through
multicast eventing, control points can listen to state changes in services without subscription.
This form of eventing is useful first when events which are not relevant to specific UPnP
interactions should be delivered to control points to inform users, and second when multiple
controlled devices want to inform multiple other control points. Multicast eventing is inherently
unreliable since it is based on UDP. To increase the probability of successful transmission,
the option to retransmit multicast event notifications is outlined. UPnP Working committees
should define whether specific events are multicast events. The clause on Eventing below
explains unicast event subscription and the format of both unicast and multicast event
messages.

Step 5 in UPnP networking is presentation. If a device has a URL for presentation, then the
control point can retrieve a page from this URL, load the page into a browser, and depending
on the capabilities of the page, allow a user to control the device and/or view device status.
The degree to which each of these can be accomplished depends on the specific capabilities
of the presentation page and device. The clause on Presentation below explains the protocol
for retrieving a presentation page.

Audience

The audience for this document includes UPnP device and control point vendors, members of
UPnP Forum working committees, and anyone else who has a need to understanding the
technical details of UPnP protocols.

This document assumes the reader is familiar with the HTTP, TCP, UDP, IP family of
protocols; this document makes no attempt to explain them. This document also assumes
most readers will be new to XML, and while it is not an XML tutorial, XML-related issues are
addressed in detail given the centrality of XML to the UPnP Device Architecture. This
document makes no assumptions about the reader's understanding of various programming or
scripting languages.

Conformance terminology

In this document, features are described as required, recommended, allowed or
DEPRECATED as follows:

Required (or shall or mandatory).

These basic features shall be implemented to comply with UPnP Device Architecture. The
phrases “shall not”, and “PROHIBITED” indicate behavior that is prohibited, i.e. that if
performed means the implementation is not in compliance.

Recommended (or should).

These features add functionality supported by UPnP Device Architecture and should be
implemented. Recommended features take advantage of the capabilities UPnP Device
Architecture, usually without imposing major cost increases. Notice that for compliance
testing, if a recommended feature is implemented, it shall meet the specified requirements
to be in compliance with these guidelines. Some recommended features could become
requirements in the future. The phrase “should not” indicates behavior that is permitted but
not recommended.

AllowedAllowed).
These features are neither required nor recommended by UPnP Device Architecture, but if

the feature is implemented, it shall meet the specified requirements to be in compliance
with these guidelines. These features are not likely to become requirements in the future.

DEPRECATED.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

Although these features are still described in this specification, they should not be
implemented except for backward compatibility. The occurrence of a deprecated feature
during operation of an implementation compliant with the current specification has no
effect on the implementation’s operation and does not produce any error conditions.
Backward compatibility may require that a feature is implemented and functions as
specified but it shall never be used by implementations compliant with this specification.

Acronyms
Table 1 — Acronyms

Acronym Meaning Acronym Meaning
ARP Address Resolution Protocol SOAP Simple Object Access Protocol
CP Control Point SSDP Simple Service Discovery Protocol
DCP Device Control Protocol UDA UPnP Device Architecture
DDD Device Description Document UPC Universal Product Code
DHCP Dynamic Host Configuration Protocol URI Uniform Resource ldentifier
DNS Domain Name System URL Uniform Resource Locator
GENA General Event Notification Architecture URN Uniform Resource Name
HTML Hypertext Markup Language UuID Universally Unique Identifier
HTTP Hypertext Trrdansfer Protocol XML Extensible Markup Language
SCPD Service Control Protocol Description
Glossary
action

Command exposed by a service. Takes one or more input or output arguments. May have a
return value. For more information, see clause 2, “Description” and clause 3, “Control”.

argument
Parameter for action exposed by a service. May be in or out. For more information, see clause
2, “Description” and clause 3, “Control”.

control point
Retrieves device and service descriptions, sends actions to services, polls for service state
variables, and receives events from services.

device

Logical device. A container. May embed other logical devices. Embeds one or more services.
Advertises its presence on network(s). For more information, see clause 1, “Discovery” and
clause 2, “Description”.

device description

Formal definition of a logical device, expressed in the UPnP Template Language. Written in
XML syntax. Specified by a UPnP vendor by filling in the placeholders in a UPnP Device
Template, including, e.g., manufacturer name, model name, model number, serial number,
and URLs for control, eventing, and presentation. For more information, see clause 2,
“Description”.

device type

Standard device types are denoted by urn:schemas-upnp-org:device: followed by a unique
name assigned by a UPnP Forum working committee. One-to-one relationship with UPnP
Device Templates. UPnP vendors may specify additional device types; these are denoted by
urn:domain-name:device: followed by a unique name assigned by the vendor, where domain-
name is a Vendor Domain Name. For more information, see clause 2, “Description” .

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

— 14 —

event
Notification of one or more changes in state variables exposed by a service. For more
information, see clause 4, “Eventing”.

GENA
General Event Notification Architecture. The event subscription and notification protocol
defined in clause 4, “Eventing”.

publisher
Source of event messages. Typically a device's service. For more information, see clause 4,
“Eventing”.

root device
A logical device that is not embedded in any other logical device. For more information, see
clause 2, “Description”.

service
Logical functional unit. Smallest units of control. Exposes actions and models the state of a
physical device with state variables. For more information, see clause 3, “Control”.

service description

Formal definition of a logical service, expressed in the UPnP Template language. Written in
XML syntax. Specified by a UPnP vendor by filling in any placeholders in a UPnP Service
Template. (Was SCPD.) For more information, see clause 2, “Description”.

service type

Standard service types are denoted by urn:schemas-upnp-org:service: followed by a unique
name assigned by a UPnP forum working committee, colon, and an integer version number.
One-to-one relationship with UPnP Service Templates. UPnP vendors may specify additional
services; these are denoted by urn:domain-name:service: followed by a unique name
assigned by the vendor, colon, and a version number, where domain-name is a Vendor
Domain Name. For more information, see clause 2, “Description”.

SOAP

Simple Object Access Protocol. A remote-procedure call mechanism based on XML that
sends commands and receives values over HTTP. For more information, see clause 3,
“Control”.

SSDP
Simple Service Discovery Protocol. A multicast discovery and search mechanism that uses a
multicast variant of HTTP over UDP. Defined in clause 1, “Discovery”.

state variable

Single facet of a model of a physical service. Exposed by a service. Has a name, data type,
optional default value, optional constraints values, and may trigger events when its value
changes. For more information, see clause 2, “Description” and clause 3, “Control”.

subscriber
Recipient of event messages. Typically a control point. For more information, see clause 4,
“Eventing”.

UPnP Device Template

Template listing device type, required embedded devices (if any), and required services.
Written in XML syntax and derived from the UPnP Device Schema. Defined by a UPnP Forum
working committee. One-to-one relationship with standard device types. For more information,
see clause 2, “Description”.

UPnP Service Template

Template listing action names, parameters for those actions, state variables, and properties of
those state variables. Written in XML syntax and derived from the UPnP Service Schema.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

Defined by a UPnP Forum working committee. One-to-one relationship with standard service
types. For more information, see clause 2, “Description”.

UPnP Device Schema

Defines the elements and attributes used in UPnP Device and Service Templates. Written in
XML syntax and derived from XML Schema (Part 1: Structures, Part 2: Datatypes). Defined by
the UPnP Device Architecture herein. For more information, see clause 2, “Description”.

Vendor Domain Name

A domain name that is supplied by a vendor. It is owned by the vendor, and shall be
registered with an ICANN accredited Registrar, such that it is unique. The vendor shall keep
the domain name registration up to date. A Vendor Domain Name length should be chosen to
be compatible with the use of the domain name in the UDA.

References and resources

RFC 2710, Multicast Listener Discovery for IPv6. Available at:
http://www.ietf.org/rfc/rfc2710.txt.

RFC 2616, HTTP: Hypertext Transfer Protocol 1.1. Available at:
http://www.ietf.org/rfc/rfc2616.txt.

RFC 2279, UTF-8, a transformation format of ISO 10646 (character encoding). Available at:
http://www.ietf.org/rfc/rfc2279.txt.

XML, Extensible Markup Language. W3C recommendation. Available at:
http://www.w3.org/XML/.

DEVICEPROTECTION, UPnP Device Protection specification. Available at
http://upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf.

Each clause in this document contains additional information about resources for specific
topics.

0 Addressing

Addressing is Step 0 of UPnP networking. Through addressing, devices and control points get
a network address. Addressing enables discovery (Step 1) where control points find
interesting device(s), description (Step 2) where control points learn about device capabilities,
control (Step 3) where a control point sends commands to device(s), eventing (Step 4) where
control points listen to state changes in device(s), and presentation (Step 5) where control
points display a user interface for device(s).

The foundation for UPnP networking is IP addressing. A UPnP device or control point is
allowed to support IP version 4-only, or both IP version 4 and IP version 6. This clause, and
the examples given throughout clauses 1 through 5 of this document, assumes an IPv4
implementation. Annex A of this document describes IPv6 operation. Each UPnP device or
control point which does not itself implement a DHCP server shall have a Dynamic Host
Configuration Protocol (DHCP) client and search for a DHCP server when the device or
control point is first connected to the network (if the device or control point itself implements a
DHCP server, it allowed to allocate itself an address from the pool that it controls). If a DHCP
server is available, i.e., the network is managed; the device or control point shall use the IP
address assigned to it. If no DHCP server is available, i.e., the network is unmanaged; the
device or control point shall use automatic IP addressing (Auto-IP) to obtain an address.

Auto-IP (defined in RFC 3927) defines how a device or control point: (a) determines if DHCP
is unavailable, and (b) intelligently chooses an IP address from a set of link-local IP
addresses. This method of address assignment enables a device or control point to easily
move between managed and unmanaged networks.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

http://www.ietf.org/rfc/rfc2710.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.w3.org/XML/
http://upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf

This clause provides an overview of the basic operation of Auto-IP. The operations described
in this clause are detailed and clarified in the reference documents listed below. Where
conflicts between this document and the reference documents exist, the reference document
always takes precedence.

0.1 Determining whether to use Auto-IP

A device or control point that supports Auto-IP and is configured for dynamic address
assignment begins by requesting an IP address via DHCP by sending out a DHCPDISCOVER
message. The amount of time this DHCP Client listens for DHCPOFFERSs is implementation
dependent. If a DHCPOFFER is received during this time, the device or control point shall
continue the process of dynamic address assignment. If no valid DHCPOFFERs are received,
the device or control point shall then auto-configure an IP address using Auto-IP.

0.2 Choosing an address

To auto-configure an IP address using Auto-IP, the device or control point uses an
implementation dependent algorithm for choosing an address in the 169.254/16 range. The
first and last 256 addresses in this range are reserved and shall NOT be used.

The selected address shall then be tested to determine if the address is already in use. If the
address is in use by another device or control point, another address shall be chosen and
tested, up to an implementation dependent number of retries. The address selection shall be
randomized to avoid collision when multiple devices or control points are attempting to
allocate addresses. The device or control point chooses an address using a pseudo-random
algorithm (distributed over the entire address range from 169.254.1.0 to 169.254.254.255) to
minimize the likelihood that devices or control points that join the network at the same time
will choose the same address and subsequently choose alternative addresses in the same
sequence when collisions are detected. This pseudo-random algorithm should be seeded
using the device’s or control point’s Ethernet hardware MAC address.

0.3 Testing the address

To test the chosen address, the device or control point shall use an Address Resolution
Protocol (ARP) probe. An ARP probe is an ARP request with the device or control point
hardware address used as the sender's hardware address and the sender's IP address set to
0s. The device or control point shall then listen for responses to the ARP probe, or other ARP
probes for the same IP address. If either of these ARP packets is seen, the device or control
point shall consider the address in use and try a different address. The ARP probe is allowed
to be repeated for greater certainty that the address is not already in use; it is recommended
that the probe be sent four times at two-second intervals.

After successfully configuring a link-local address, the device or control point shall send two
gratuitous ARPs, spaced two seconds apart, this time filling in the sender IP address. The
purpose of these gratuitous ARPs is to make sure that other hosts on the net do not have
stale ARP cache entries left over from some other host that may previously have been using
the same address.

Devices and control points that are equipped with persistent storage are allowed to record the
IP address they have selected and on the next boot use that address as their first candidate
when probing, in order to increase the stability of addresses and reduce the need to resolve
address conflicts.

Address collision detection is not limited to the address testing phase, when the device or
control point is sending ARP probes and listening for replies. Address collision detection is an
ongoing process that is in effect for as long as the device or control point is using a link-local
address. At any time, if a device or control point receives an ARP packet with its own IP
address given as the sender IP address, but a sender hardware address that does not match
its own hardware address, then the device or control point shall treat this as an address
collision and shall respond as described in either a) or b) below:

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

a) Immediately configure a new link-local IP address as described above; or,

b) If the device or control point currently has active TCP connections or other reasons to
prefer to keep the same IP address, and has not seen any other conflicting ARP packets
recently (e.g., within the last ten seconds) then it is allowed to elect to attempt to defend
its address once, by recording the time that the conflicting ARP packet was received, and
then broadcasting one single gratuitous ARP, giving its own IP and hardware addresses
as the source addresses of the ARP. However, if another conflicting ARP packet is
received within a short time after that (e.g., within ten seconds) then the device or control
point shall immediately configure a new Auto-IP address as described above.

The device or control point shall respond to conflicting ARP packets as described in either a)
or b) above; it shall NOT ignore conflicting ARP packets. If a new address is selected, the
device or control point shall cancel previous advertisements and re-advertise with the new
address.

After successfully configuring an Auto-IP address, all subsequent ARP packets (replies as
well as requests) containing an Auto-IP source address shall be sent using link-level
broadcast instead of link-level unicast, in order to facilitate timely detection of duplicate
addresses.

0.4 Forwarding rules

IP packets whose source or destination addresses are in the 169.254/16 range shall NOT be
sent to any router for forwarding. Instead, the senders shall ARP for the destination address
and then send the packets directly to the destination on the same link. IP datagrams with a
multicast destination address and an Auto-IP source address shall NOT be forwarded off the
local link. Devices and control points are allowed to assume that all 169.254/16 destination
addresses are on-link and directly reachable. The 169.254/16 address range shall not be
subnetted.

0.5 Periodic checking for dynamic address availability

A device or control point that has auto-configured an IP address shall periodically check for
the existence of a DHCP server. This is accomplished by sending DHCPDISCOVER
messages. How often this check is made is implementation dependent, but checking every 5
minutes would maintain a balance between network bandwidth required and connectivity
maintenance. If a DHCPOFFER is received, the device or control point shall proceed with
dynamic address allocation. Once a DHCP assigned address is in place, the device or control
point is allowed to release the auto-configured address, but is also allowed to choose to
maintain this address for a period of time (or indefinitely) to maintain connectivity.

To switch over from one IP address to a new one, the device should, if possible, cancel any
outstanding advertisements made on the previous address and shall issue new
advertisements on the new address. The clause on Discovery explains advertisements and
their cancellations. In addition, any event subscriptions are deleted by the device (see clause
on Eventing).

For a multi-homed device with multiple IP addresses, to switch one of the IP addresses to a
new one, the device should cancel any outstanding advertisements made on the previous IP
address, and shall issue new advertisements on the new IP addresses. Furthermore, it shall
also issue appropriate update advertisements on all unaffected IP addresses. The clause on
Discovery explains advertisements, their cancellations and updates. The clause on Eventing
explains the effect on event subscriptions.

0.6 Device naming and DNS interaction

Once a device has a valid IP address for the network, it can be located and referenced on that
network through that address. There may be situations where the end user needs to locate
and identify a device. In these situations, a friendly name for the device is much easier for a
human to use than an IP address. If a device chooses to provide a host name to a DHCP

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

server and register with a DNS server, the device should either ensure the requested host
name is unique or provide a means for the user to change the requested host name. Most
often, devices do not provide a host name, but provide URLs using literal (numeric) IP
addresses.

Moreover, names are much more static than IP addresses. Clients referring a device by name
don't require any modification when the IP address of a device changes. Mapping of the
device's DNS name to its IP address could be entered into the DNS database manually or
dynamically according to RFC 2136. While devices supporting dynamic DNS updates can
register their DNS records directly in the DNS, it is also possible to configure a DHCP server
to register DNS records on behalf of these DHCP clients.

0.7 Name to IP address resolution

A device that needs to contact another device identified by a DNS name needs to discover its
IP address. The device submits a DNS query according to RFC1034 and 1035 to the pre-
configured DNS server(s) and receives a response from a DNS server containing the IP
address of the target device. A device can be statically pre-configured with the list of DNS
servers. Alternatively a device could be configured with the list of DNS server through DHCP,
or after the address assignment through a DHCPINFORM message.

0.8 References

RFC1034, Domain Names - Concepts and Facilities. Available at:
http://www.ietf.org/rfc/rfc1034.txt.

RFC1035, Domain Names - Implementation and Specification. Available at:
http://www.ietf.org/rfc/rfc1035.txt.

RFC 2131, Dynamic Host Configuration Protocol. Available at:
http://www.ietf.org/rfc/rfc2131.txt.

RFC 2136, Dynamic Updates in the Domain Name System. Available at:
http://www.ietf.org/rfc/rfc2136.txt.

RFC 3927, Dynamic Configuration of IPv4 Link-Local Addresses. Available at:
http://www.ietf.org/rfc/rfc3927.txt.

1 Discovery

Discovery is Step 1 in UPnP™ networking. Discovery comes after addressing (Step 0) where
devices get a network address. Through discovery, control points find interesting device(s).
Discovery enables description (Step 2) where control points learn about device capabilities,
control (Step 3) where a control point sends commands to device(s), eventing (Step 4) where
control points listen to state changes in device(s), and presentation (Step 5) where control
points display a user interface for device(s).

Discovery is the first step in UPnP networking. When a device is added to the network, the
UPnP discovery protocol allows that device to advertise its services to control points on the
network. Similarly, when a control point is added to the network, the UPnP discovery protocol
allows that control point to search for devices of interest on the network. The fundamental
exchange in both cases is a discovery message containing a few, essential specifics about
the device or one of its services, e.g., its type, universally unigue identifier, a pointer to more
detailed information and optionally parameters that identify the current state of the device.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc3927.txt

Figure 1-1. — Discovery architecture

control point 1 root device 1

service

device

control point 2

advertise

service

control point 3

root device 2

service

device

service

unicast —

[multicast —»]

When a device knows it is newly added to the network, it shall multicast a number of
discovery messages advertising itself, its embedded devices, and its services (initial
announce). Any interested control point can listen to the standard multicast address for
notifications that new capabilities are available. A multi-homed device shall multicast the
discovery messages on all UPnP-enabled interfaces. A multi-homed control point is allowed to
listen to the standard multicast address on one, some or all of its UPnP-enabled interfaces.

When a new control point is added to the network, it is allowed to multicast a discovery
message searching for interesting devices, services, or both. All devices shall listen to the
standard multicast address for these messages and shall respond if any of their root devices,
embedded devices or services matches the search criteria in the discovery message. In
addition, a control point is allowed to unicast a discovery message to a specific IP address on
port 1900 or on the port specified by the optional SEARCHPORT.UPNP.ORG header field
(which supersedes port 1900 for this use), searching for a UPnP device or service at that
specific IP address. This action presumes the control point already knows the device at this IP
address is a UPnP device (which listens on the appropriate port). The control point can use
unicast search for a number of applications. A unicast search can quickly confirm a specific
device and provide the corresponding discovery information (e.g. UUID, URL) of this device.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

All devices shall listen to incoming unicast search messages on port 1900 or, if provided, the
port number specified in the SEARCHPORT.UPNP.ORG header field and shall respond if any
of their root devices, embedded devices or services matches the search criteria in the
discovery message.

A multi-homed control point is allowed to multicast discovery messages on one, some or all of
its UPnP-enabled interfaces. Multi-homed devices shall listen to the standard multicast
address on all UPnP-enabled interfaces for multicast discovery messages. Multi-homed
devices shall also listen to incoming unicast search messages on port 1900 or, if provided,
the port number specified in the SEARCHPORT.UPNP.ORG header field. The devices shall
respond if any of their root devices, embedded devices or services matches the search
criteria in the discovery message.

To reiterate, a control point is allowed to learn of a device of interest because that device sent
discovery messages advertising itself or because the device responded to a discovery
message searching for devices. In either case, if a control point is interested in a device and
wants to learn more about it, the control point uses the information in the discovery message
to send a description query message. The clause on Description explains description
messages in detail.

When a device is removed from the network, it should, if possible, multicast a number of
discovery messages revoking its earlier announcements, effectively declaring that its root
devices, embedded devices and services will no longer be available. When the IP address of
a device is changed, it should revoke any earlier announcements and it shall advertise using
the new IP address.

When a multi-homed device becomes unavailable to the network on any of its UPnP-enabled
interfaces, it should, if possible, multicast a number of discovery messages revoking its earlier
announcements on the affected UPnP-enabled interfaces, effectively declaring that its root
devices, embedded devices and services will no longer be available on those interfaces. If it
remains available to the network on any of its other UPnP-enabled interfaces, it shall NOT
multicast such discovery messages on the unaffected UPnP-enabled interfaces.

When a multi-homed device becomes available to the network on a new UPnP-enabled
interface (in addition to any existing UPnP-enabled interfaces), it shall increase its
BOOTID.UPNP.ORG field value (see clause 1.2 “Advertisement”), and multicast a number of
update messages on the existing UPnP-enabled interfaces to announce the new
BOOTID.UPNP.ORG field value. After all the update messages have been sent, it shall
multicast a number of discovery messages on all (existing and new) UPnP-enabled interfaces
with the new BOOTID.UPNP.ORG field value.

Similarly, when one of the IP addresses of a multi-homed device is changed, it should revoke
any earlier announcements on the previous I[P address. It shall increase its
BOOTID.UPNP.ORG field value (see clause 1.2 “Advertisement”), and multicast a number of
update messages on the existing UPnP-enabled interfaces to announce the new
BOOTID.UPNP.ORG field value. After all the update messages have been sent, it shall
multicast a number of discovery messages on all (existing and new) UPnP-enabled interfaces
with the new BOOTID.UPNP.ORG field value.

Finally, if a multi-homed device loses connectivity on one of its UPnP-enabled interfaces and
then regains connectivity, it shall increase its BOOTID.UPNP.ORG field value (see 1.2,
“Advertisement”), and multicast a number of update messages on the unaffected UPnP-
enabled interfaces to announce the new BOOTID.UPNP.ORG field value. After all the update
messages have been sent, it shall multicast a number of discovery messages on all (affected
and unaffected) UPnP-enabled interfaces with the new BOOTID.UPNP.ORG field value.

To limit network congestion, the time-to-live (TTL) of each IP packet for each multicast
message should default to 2 and should be configurable. When the TTL is greater than 1, it is
possible for multicast messages to traverse multiple routers; therefore control points and
devices using non-AutolP addresses shall send an IGMP Join message so that routers will

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

forward multicast messages to them (this is not necessary when using an Auto-IP address,
since packets with Auto-IP addresses will not be forwarded by routers).

Versioning: Discovery plays an important role in the interoperability of devices and control
points using different versions of UPnP networking. The UPnP Device Architecture (defined
herein) is versioned with both a major and a minor version, usually written as major.minor,
where both major and minor are integers (for example, version 2.10 [two dot ten] is newer
than version 2.2 [two dot two]). Advances in minor versions shall be a compatible superset of
earlier minor versions of the same major version. Advances in major version are not required
to be supersets of earlier versions and are not guaranteed to be backward compatible.
However UDA version 2.0 is specified as a superset of UDA 1.1 and is thus backwards
compatible with UDA 1.x versions. Therefore UDA 2.0 control points shall maintain
interoperability with UDA 1.x devices. UDA 1.x control points can work with UDA 2.0 devices,
but can’t access the additional functionality specified in UDA 2.0. Version information is
communicated in discovery and description messages. Discovery messages include the
version of UPnP networking that the devices and control points support (in the SERVER and
USER-AGENT header fields); the version of device and service types supported is also
included in relevant discovery messages. Additionally, description documents also include the
same information. SERVER and USER-AGENT header fields are also used in control and
eventing to communicate which version of UPnP networking the devices and control points
support. This clause explains the format of version information in discovery messages and
specific requirements on discovery messages to maintain compatibility with advances in minor
versions.

The remainder of this clause explains the UPnP discovery protocol known as SSDP (Simple
Service Discovery Protocol) in detail, enumerating how devices advertise and revoke their
advertisements as well as how control points search and devices respond.

1.1 SSDP message format

SSDP uses part of the header field format of HTTP 1.1 as defined in RFC 2616. However, it is
NOT based on full HTTP 1.1 as it uses UDP instead of TCP, and it has its own processing
rules. This subclause defines the generic format of a SSDP message.

All SSDP messages shall be formatted according to RFC 2616 clause 4.1 “generic message”.
SSDP messages shall have a start-line and a list of message header fields. SSDP messages
should not have a message body. If a SSDP message is received with a message body, the
message body is allowed to be ignored.

1.1.1 SSDP Start-line

Each SSDP message shall have exactly one start-line. See clause 1.2, “Advertisement” and
clause 1.3, “Search” below for the definition of all possible SSDP messages. The start-line
shall be formatted either as defined in RFC 2616 clause 5.1 or clause 6.1. Furthermore, the
start-line shall be one of the following three:

NOTIFY * HTTP/1.1\n\n
M-SEARCH * HTTP/1.1\r\n
HTTP/1.1 200 OK\r\n

As a clarification, while the start-line shall include “HTTP/1.1", this does not signal that SSDP
is fully based on HTTP 1.1; this start-line element is included for backward compatibility
reasons only.

1.1.2 SSDP message header fields

The message header fields in a SSDP message shall be formatted according to RFC 2616
clause 4.2. This specifies that each message header field consist of a case-insensitive field
name followed by a colon (":"), followed by the case-sensitive field value. SSDP restricts
allowed field values.

Example SSDP header:

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

HOST: 239.255.255.250:1900

1.1.3 SSDP header field extensions

UPnP working committees and UPnP vendors are allowed to extend SSDP messages with
additional SSDP header fields. Additional message header fields can also be defined by the
UPnP Forum Technical committee (e.g. clause 1.2, “Advertisement” defines
BOOTID.UPNP.ORG, CONFIGID.UPNP.ORG, NEXTBOOTID.UPNP.ORG, and
SEARCHPORT.UPNP.ORG header fields). To prevent name-clashes of header field
definitions (two parties accidentally define the same header field name with different
semantics), vendor-defined header field names shall have the following format:

field-name = token “.” domain-name

where the domain-name shall be Vendor Domain Name, and in addition shall satisfy the token
format as defined in RFC 2616, clause 2.2.

Example vendor-defined SSDP header fields:

myheader.philips.com: “some value”
myheader.sony.com: “other value”

1.1.4 UUID format and recommended generation algorithms

UPnP 2.0 devices shall format UUIDs according to the format specified below. However,
UPnP 2.0 control points shall also be able to accept UUIDs that have not been formatted
according to the rules specified below, as formatting rules are not specified in UPnP 1.0 other
than the requirement that a UUID is a string.

UUIDs are 128 bit numbers that shall be formatted as specified by the following grammar
(taken from [1]):

UUID = 4 * <hexOctet> “-" 2 * <hexOctet> “-” 2 * <hexOctet> “-" 2 * <hexOctet> “-" 6 * <hexOctet
hexOctet = <hexDigit> <hexDigit>
heXDIgIt = “o"l“1"'“2"'“3"|“4"|“5"|“6"|“7"|“8"|“9"|“a"|“b"|“C"|“d”|“e"|“f”|“A"|“B”|“C"|“D"l“E”l“F”

The following is an example of the string representation of a UUID:
“2fac1234-31f8-11b4-a222-08002b34c003”

UUIDs are allowed to be generated using any suitable generation algorithm?2 that satisfies the

following requirements:

a) Itis very unlikely to duplicate a UUID generated from some other resource.

b) It maps down to a 128-bit number.

¢) UUIDs shall remain fixed over time.

The following UUID generation algorithm is recommended:
Time & MAC-based algorithm as specified in [1], where the UUID is generated once and
stored in non-volatile memory if available.

1.1.5 SSDP processing rules

When an SSDP message is received that is not formatted according to clause 1.1, “SSDP
message format” (the clauses above), receivers should silently discard the message.
Receivers are allowed to try to parse such SSDP messages to try to interoperate.

2 The UUID generation algorithm specified in [1] is RECOMMENDED, but is not MANDATORY,
other UUID generation algorithms may be used instead, as long as they satisfy the three
requirements.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

When parsing SSDP header fields, receivers shall parse all required SSDP-defined header
fields (see clause 1.2, “Advertisement” and clause 1.3, “Search” below) and are allowed to
skip all other header fields. Receivers shall be able to skip header fields they do not
understand.

1.2 Advertisement

When a device is added to the network, the device advertises its services to control points. It
does this by multicasting discovery messages to a standard address and port
(239.255.255.250:1900). Control points listen to this port to detect when new capabilities are
available on the network. To advertise the full extent of its capabilities, a device shall
multicast a number of discovery messages corresponding to each of its root devices,
embedded devices and services. Each message contains information specific to the
embedded device (or service) as well as information about its enclosing device. Messages
shall include duration until the advertisements expire; if the device remains available, the
advertisements shall be re-sent (with new duration). If the device becomes unavailable, the
device should explicitly cancel its advertisements, but if the device is unable to do this, the
advertisements will expire on their own. If a multi-homed device becomes unavailable on
some, but not all, of its UPnP-enabled interfaces, the device should explicitly cancel its
advertisements on the affected UPnP-enabled interfaces (but NOT on the unaffected UPnP-
enabled interfaces), but if the device is unable to do this, the advertisements on those
interfaces or IP addresses will expire on their own. In addition, messages include the
following header fields defined in this document: BOOTID.UPNP.ORG,
NEXTBOOTID.UPNP.ORG, CONFIGID.UPNP.ORG, SEARCHPORT.UPNP.ORG. The field
value of the BOOTID.UPNP.ORG header field shall be increased each time a device (re)joins
the network and sends an initial announce (a “reboot” in UPnP terms), or adds a UPnP-
enabled interface. Unless the device explicitly announces a change in the
BOOTID.UPNP.ORG field value using an SSDP message, as long as the device remains
continuously available in the network, the same BOOTID.UPNP.ORG field value shall be used
in all repeat announcements, search responses, update messages and eventually bye-bye
messages. Control points can parse this header field to detect whether the device has
potentially lost its state (event subscriptions will have been lost, DCP specific state may have
been changed) due to a “reboot”. Since a device cannot change IP addresses without
changing the BOOTID.UPNP.ORG field value, the BOOTID.UPNP.ORG field value can also
be used to distinguish multi-homed devices (in this case, a control point will see SSDP
messages from different IP addresses with the same UUID, BOOTID.UPNP.ORG field value)
from devices that changed IP addresses (in this case, the BOOTID.UPNP.ORG field value will
be different). The field value of the NEXTBOOTID.UPNP.ORG header field indicates the field
value of the BOOTID.UPNP.ORG header field that a multi-homed device intends to use in
future announcements after adding a new UPnP-enabled interface. The field value of the
CONFIGID.UPNP.ORG header field identifies the current set of device and service
descriptions; control points can parse this header field to detect whether they need to send
new description query messages. The field value of the SEARCHPORT.UPNP.ORG header
field identifies the port at which the device listens to unicast M-SEARCH messages; control
points can parse this header field to know to which port unicast M-SEARCH messages shall
be sent. These header fields are explained in detail below.

1.2.1 Advertisement protocols and standards

To send (and receive) advertisements, devices (and control points) use the following subset
of the overall UPnP protocol stack. (The overall UPnP protocol stack is listed at the beginning
of this document.)

Figure 1-2: — Advertisement protocol stack

||UPnP vendor [purple-italic]

!!UPnP Forum [red-italic]

!!UPnP Device Architecture [green-bold]

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

— 24 —

SSDP [blue
|UDP [black]

1P [olack]

At the highest layer, discovery messages contain vendor-specific information, e.g., URL for
the device description and device identifier. Moving down the stack, vendor content is
supplemented by information from a UPnP Forum working committee, e.g., device type.
Messages from the layers above are hosted in UPnP-specific protocols, defined in this
document. In turn, the SSDP messages are delivered via UDP over IP. For reference, colors
in [square brackets] above indicate which protocol defines specific header fields and field
values in discovery messages listed below.

1.2.2 Device available - NOTIFY with ssdp:alive

When a device is added to the network, it shall multicast discovery messages to advertise its
root device, any embedded devices, and any services. Each discovery message shall contain
four major components:

a) A notification type (e.g., device type), sentin an NT (Notification Type) header field.

b) A composite identifier for the advertisement, sent in a USN (Unique Service Name) header
field.

¢) A URL for more information about the device (or enclosing device in the case of a service),
sent in a LOCATION header field.

d) A duration for which the advertisement is valid, sent in a CACHE-CONTROL header field.
To advertise its capabilities, a device multicasts a number of discovery messages. Specifically,
a root device shall multicast:
e Three discovery messages for the root device.
Table 1-1 — Root device discovery messages

NT USN a
1 | upnp:rootdevice uuid:device-UUID::upnp:rootdevice
2 | yuid:device-UuiD b uuid:device-UUID (for root device UUID)
3 | urn:schemas-upnp-org:device:deviceType:ver | uuid:device-UUID::urn:schemas-upnp-
or org:device:deviceType:ver (of root device)
urn:domain-name:device:deviceType:ver or

uuid:device-UUID::urn:domain-name:device:deviceType:ver

a Note that the prefix of the USN header field (before the double colon) shall match the value of the UDN element in
the device description. (Clause 2, “Description” explains the UDN element.)

b Note that the field value of this NT header field shall match the value of the UDN element in the device
description.

e Two discovery messages for each embedded device.
Table 1-2 — Embedded device discovery messages

NT USN a
1 | uuid:device-UulD b uuid:device-UUID
2 | urn:schemas-upnp-org:device:d uuid:device-UUID::urn:schemas-upnp-
eviceType:ver org:device:deviceType:ver
Elr'n:domain-name:M:deviceType:ver ELid:device-UUID::urn:domain-name:M:deviceType:ver

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

NT USN @

a8 Note that the prefix of the USN header field (before the double colon) shall match the value of the UDN element
in the device description. (Clause 2, “Description” explains the UDN element.)

b Note that the field value of this NT header field shall match the value of the UDN element in the device
description

e Once for each service type in each device.
Table 1-3 — Service discovery messages

NT USN a
1 | urn:schemas-upnp- uuid:device-UUID::urn:schemas-upnp-
org:service:serviceType:ver org:service:serviceType:ver
or or
urn:domain-name:service:serviceType:ver uuid:device-UUID::urn:domain-
name:service:serviceType:ver

a Note that the field value of this NT header field shall match the value of the UDN element in the device
description.

If a root device has d embedded devices and s embedded services but only k distinct service
types, this works out to 3+2d+k requests. If a particular device or embedded device contains
multiple instances of a particular service type, it is only necessary to advertise the service
type once (rather than once for each instance). Note that if two embedded devices contain a
service of the same service type, these services shall still be separately announced. This
advertises the full extent of the device's capabilities to interested control points. These
messages shall be sent out as a series with roughly comparable expiration times; order is
unimportant, but refreshing or canceling individual messages is PROHIBITED.

Updated UPnP device and service types are required to be fully backward compatible with
previous versions of the same type. Devices shall advertise the highest supported version of
each supported type. For example, if a device supports version 2 of the “Audio” service, it
would advertise only version 2, even though it also supports version 1. It shall NOT advertise
additional supported versions. Control points that support a given version of a device or
service are able to also interact with higher versions because of this backward compatibility
requirement, but only using the functionality that was defined in the lower version. For
example, if a control point supports only version “1” of the “Audio” service, and a device
advertises that it supports version “2” of the “Audio” service, the control point shall recognize
the device and be able to use it.

Choosing an appropriate duration for advertisements is a balance between minimizing
network traffic and maximizing freshness of device status. Relatively short durations close to
the minimum of 1800 seconds will ensure that control points have current device status at the
expense of additional network traffic; longer durations, say on the order of a day, compromise
freshness of device status but can significantly reduce network traffic. Generally, device
vendors should choose a value that corresponds to expected device usage: short durations
for devices that are expected to be part of the network for short periods of time, and
significantly longer durations for devices expected to be long-term members of the network.
Devices that frequently connect to and leave the network (such as mobile wireless devices)
should use a shorter duration so that control points have a more accurate view of their
availability. Advertisements in a set (both initial and subsequent) should have comparable
durations. Advertisements in the initial set should be sent as quickly as possible. Subsequent
refreshments of the advertisements are allowed to be spread over time rather than being sent
as a group.

Spreading refreshments of advertisements over time rather than being sent as a group
improves reliability in case there are network glitches: without increasing the total network
load it increases the frequency of sending announcements from devices to control points. The
two figures below show the announcement behavior without spreading and with spreading the

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

messages over the entire interval. The figures show a timeline from the moment a device joins
the network, sends its initial announcements (represented by vertical lines), and subsequently
periodically sends repeat announcements. In the second figure, these repeat announcements
are spread over the entire period rather than sent as a bunch.

Figure 1-3: — Initial and repeat announcements, no announcement spreading

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

Figure 1-4: — Initial and repeat announcements, message spreading of repeat
announcements

Devices should wait a random interval (e.g. between 0 and 100milliseconds) before sending
an initial set of advertisements in order to reduce the likelihood of network storms; this
random interval should also be applied on occasions where the device obtains a new IP
address or a new UPnP-enabled interface is installed.

Due to the unreliable nature of UDP, devices should send the entire set of discovery
messages more than once with some delay between sets e.g. a few hundred milliseconds. To
avoid network congestion discovery messages should not be sent more than three times. In
addition, the device shall re-send its advertisements periodically prior to expiration of the
duration specified in the CACHE-CONTROL header field; it is Recommended that such
refreshing of advertisements be done at a randomly-distributed interval of less than one-half
of the advertisement expiration time, so as to provide the opportunity for recovery from lost
advertisements before the advertisement expires, and to distribute over time the
advertisement refreshment of multiple devices on the network in order to avoid spikes in
network traffic. Note that UDP packets are also bounded in length (perhaps as small as 512
Bytes in some implementations); each discovery message shall fit entirely in a single UDP
packet. There is no guarantee that the above 3+2d+k messages will arrive in a particular
order.

A multi-homed device shall perform the above announcement procedures on each of its
UPnP-enabled interfaces. Advertisements sent on multiple UPnP-enabled interfaces shall
contain the same field values except for the HOST, CACHE-CONTROL and LOCATION
header fields. The HOST field value of an advertisement shall be the standard multicast
address specified for the protocol (IPv4 or IPv6) used on the interface. The URL specified by
the LOCATION header field shall be reachable on the interface on which the advertisement is
sent. Finally, advertisements sent on different interfaces are allowed to have different
CACHE-CONTROL field values and are allowed to be sent with different frequencies.

When a device is added to the network, it shall send a multicast message with method
NOTIFY and ssdp:alive in the NTS header field in the following format. Values in italics are
placeholders for actual values.

NOTIFY * HTTP/1.1

HOST: 239.255.255.250:1900

CACHE-CONTROL: max-age = seconds until advertisement expires

LOCATION: URL for UPnP description for root device

NT: notification type

NTS: ssdp:alive

SERVER: 0S/version UPnP/2.0 product/version

USN: composite identifier for the advertisement

BOOTID.UPNP.ORG: number increased each time device sends an initial announce or an update
message

CONFIGID.UPNP.ORG: number used for caching description information

SEARCHPORT .UPNP.ORG: number identifies port on which device responds to unicast M-SEARCH

Note: No body is sent for messages with method NOTIFY, but note that the message shall
have a blank line following the last header field.

The TTL for the IP packet should default to 2 and should be configurable.

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

Request line

Shall be “NOTIFY * HTTP/1.1”

NOTIFY

Method for sending notifications and events.

Message applies generally and not to a specific resource. shall be *.

HTTP/1.1

HTTP version.

Header fields

HOST

Required. Field value contains multicast address and port reserved for SSDP by Internet Assigned Numbers
Authority (IANA). shall be 239.255.255.250:1900. If the port number (*:1900") is omitted, the receiver shall
assume the default SSDP port number of 1900.

CACHE-CONTROL

Required. Field value shall have the max-age directive (“max-age=") followed by an integer that specifies the
number of seconds the advertisement is valid. After this duration, control points should assume the device (or
service) is no longer available; as long as a control point has received at least one advertisement that is still
valid from a root device, any of its embedded devices or any of its services, then the control point can assume
that all are available. The number of seconds should be greater than or equal to 1800 seconds (30 minutes),
although exceptions are defined in the text above. Specified by UPnP vendor. Other directives shall NOT be
sent and shall be ignored when received.

LOCATION

NT

Required. Field value contains a URL to the UPnP description of the root device. Normally the host portion
contains a literal IP address rather than a domain name in unmanaged networks. Specified by UPnP vendor.
Single absolute URL (see RFC 3986).

Required. Field value contains Notification Type. shall be one of the following. (See Table 1-1, “Root device
discovery messages”, Table 1-2, “Embedded device discovery messages”, and Table 1-3, “Service discovery
messages” above.) Single URI.

upnp:rootdevice
Sent once for root device.

uuid:device-UUID

Sent once for each device, root or embedded, where device-UUID is specified by the UPnP vendor.
See clause 1.1.4, “UUID format and recommended generation algorithms” for the MANDATORY UUID
format.

urn:schemas-upnp-org:device:deviceType:ver

Sent once for each device, root or embedded, where deviceType and ver are defined by UPnP Forum
working committee, and ver specifies the version of the device type.

urn:schemas-upnp-org:service:serviceType:ver

Sent once for each service where serviceType and ver are defined by UPnP Forum working committee
and ver specifies the version of the service type.

urn:domain-name:device:deviceType:ver

Sent once for each device, root or embedded, where domain-name is a Vendor Domain Name,
deviceType and ver are defined by the UPnP vendor, and ver specifies the version of the device type.
Period characters in the Vendor Domain Name shall be replaced with hyphens in accordance with
RFC 2141.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

urn:domain-name:service:serviceType:ver

Sent once for each service where domain-name is a Vendor Domain Name, serviceType and ver are
defined by UPnP vendor, and ver specifies the version of the service type. Period characters in the
Vendor Domain Name shall be replaced with hyphens in accordance with RFC 2141.

NTS
Required. Field value contains Notification Sub Type. shall be ssdp:alive. Single URI.

SERVER

Required. Specified by UPnP vendor. String. Field value shall begin with the following “product tokens”
(defined by HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version,
the second token represents the UPnP version and shall be UPnP/2.0, and the third token identifes the
product using the form product name/product version. For example, “SERVER: unix/5.1 UPnP/2.0
MyProduct/1.0".

USN

Required. Field value contains Unique Service Name. Identifies a unique instance of a device or service. shall
be one of the following. (See Table 1-1, “Root device discovery messages”, Table 1-2, “Embedded device
discovery messages”, and Table 1-3, “Service discovery messages” above.) The prefix (before the double
colon) shall match the value of the UDN element in the device description. (Clause 2, “Description” explains
the UDN element.) Single URI.

uuid:device-UUID::upnp:rootdevice
Sent once for root device where device-UUID is specified by UPnP vendor. See clause 1.1.4, “UUID
format and recommended generation algorithms” for the MANDATORY UUID format.

uuid:device-UUID

Sent once for every device, root or embedded, where device-UUID is specified by the UPnP vendor.
See clause 1.1.4, “UUID format and recommended generation algorithms”for the MANDATORY UUID
format.

uuid:device-UUID::urn:schemas-upnp-org:device:deviceType:ver

Sent once for every device, root or embedded, where device-UUID is specified by the UPnP vendor,
deviceType and ver are defined by UPnP Forum working committee and ver specifies version of the
device type. See clause 1.1.4, “UUID format and recommended generation algorithms” for the
MANDATORY UUID format.

uuid:device-UUID::urn:schemas-upnp-org:service:serviceType:ver

Sent once for every service where device-UUID is specified by the UPnP vendor, serviceType and ver
are defined by UPnP Forum working committee and ver specifies version of the device type. See
clause 1.1.4, “UUID format and recommended generation algorithms” for the MANDATORY UUID
format.

uuid:device-UUID::urn:domain-name:device:deviceType:ver

Sent once for every device, root or embedded, where device-UUID, domain-name (a Vendor Domain
Name), deviceType and ver are defined by the UPnP vendor and ver specifies the version of the
device type. See clause 1.1.4, “UUID format and recommended generation algorithms” for the
MANDATORY UUID format. Period characters in the Vendor Domain Name shall be replaced by
hyphens in accordance with RFC 2141.

uuid:device-UUID::urn:domain-name:service:serviceType:ver

Sent once for every service where device-UUID, domain-name (a Vendor Domain Name), serviceType
and ver are defined by the UPnP vendor and ver specifies the version of the service type. See clause
1.1.4, “UUID format and recommended generation algorithms” for the MANDATORY UUID format.
Period characters in the Vendor Domain Name shall be replaced by hyphens in accordance with RFC
2141.

BOOTID.UPNP.ORG

Required. The BOOTID.UPNP.ORG header field represents the boot instance of the device expressed
according to a monotonically increasing value. Its field value shall be a non-negative 31-bit integer; ASCII
encoded, decimal, without leading zeros (leading zeroes, if present, shall be ignored by the recipient) that shall
be increased on each initial announce of the UPnP device or shall be the same as the field value of the
NEXTBOOTID.UPNP.ORG header field in the last sent SSDP update message. Its field value shall remain the
same on all periodically repeated announcements. A convenient mechanism is to set this field value to the time
that the device sends its initial announcement, expressed as seconds elapsed since midnight January 1, 1970;
for devices that have a notion of time, this will not require any additional state to remember or be “flashed”.
However, it is perfectly acceptable to use a simple boot counter that is incremented on every initial

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

announcement as a field value of this header field. As such, control points shall NOT view this header field as
a timestamp. The BOOTID.UPNP.ORG header field shall be included in all announcements of a root device, its
embedded devices and its services. Unless the device explicitly updates its value by sending an SSDP update
message, as long as the device remains available in the network, the same BOOTID.UPNP.ORG field value
shall be used in all announcements, search responses, update messages and eventually bye-bye messages.

Control points can use this header field to detect the case when a device leaves and rejoins the network
(“reboots” in UPnP terms). It can be used by control points for a number of purposes such as re-establishing
desired event subscriptions, checking for changes to the device state that were not evented since the device
was off-line.

CONFIGID.UPNP.ORG

Required. The CONFIGID.UPNP.ORG field value shall be a non-negative, 31-bit integer, ASCIl encoded,
decimal, without leading zeros (leading zeroes, if present, shall be ignored by the recipient) that shall
represent the configuration number of a root device. UPnP 2.0 devices are allowed to be freely assign configid
numbers from 0 to 16777215 (2”24-1). Higher numbers are reserved for future use, and can be assigned by
the Technical Committee. The configuration of a root device consists of the following information: the DDD of
the root device and all its embedded devices, and the SCPDs of all the contained services. If any part of the
configuration changes, the CONFIGID.UPNP.ORG field value shall be changed. The CONFIGID.UPNP.ORG
header field shall be included in all announcements of a root device, its embedded devices and its services.
The configuration number that is present in a CONFIGID.UPNP.ORG field value shall satisfy the following rule:

e if a device sends out two messages with a CONFIGID.UPNP.ORG header field with the same field value K,
the configuration shall be the same at the moments that these messages were sent.

Whenever a control point receives a CONFIGID.UPNP.ORG header field with a field value K, and subsequently
downloads the configuration information, this configuration information is associated with K. As an additional
safeguard, the device shall include a configld attribute with value K in the returned description (see clause 2,
“Description”). The following caching rules for control points supersede the caching rules that are defined in
UPNP 1.0:

e Control points are allowed to ignore the CONFIGID.UPNP.ORG header field and use the caching rules that
are based on advertisement expirations as defined in Clause 2, Description: as long as at least one of the
discovery advertisements from a root device, its embedded devices and its services have not expired, a
control point is allowed to assume that the root device and all its embedded devices and all its services
are available. The device and service descriptions are allowed to be retrieved at any point since the
device and service descriptions are static as long as the device and its services are available.

e If no configuration number is included in a received SSDP message, control points should cache based on
advertisement expirations as defined in Clause 2 Description.

e |f a CONFIGID.UPNP.ORG header field with field value K is included in a received SSDP message, and a
control point has already cached information associated with field value K, the control point is allowed to
use this cached information as the current configuration of the device. Otherwise, a control point should
assume it has not cached the current configuration of the device and needs to send new description query
messages.

The CONFIGID.UPNP.ORG header field reduces peak loads on UPnP devices during startup and during
network hiccups. Only if a control point receives an announcement of an unknown configuration is downloading
required.

SEARCHPORT.UPNP.ORG

Allowed. If a device does not send the SEARCHPORT.UPNP.ORG header field, it shall respond to unicast M-
SEARCH messages on port 1900. Only if port 1900 is unavailable it is allowed for a device select a different
port to respond to unicast M-SEARCH messages. If a device sends the SEARCHPORT.UPNP.ORG header
field, its field value shall be an ASCII encoded integer, decimal, without leading zeros (leading zeroes, if
present, shall be ignored by the recipient), in the range 49152-65535 (RFC 4340). The device shall respond to
unicast M-SEARCH messages that are sent to the advertised port.

SECURELOCATION.UPNP.ORG

Allowed. Required when Device Protection is implemented.

The SECURELOCATION.UPNP.ORG header shall provide a base URL with “https:” for the scheme component
and indicate the correct “port” subcomponent in the “authority” component for a TLS connection. Because the
scheme and authority components are not included in relative URLs, these components are obtained from the
base URL provided by either LOCATION or SECURELOCATION.UPNP.ORG. See for more information Ref
DEVICEPROTECTION.

Note: No responses are sent for messages with method NOTIFY.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

1.2.3 Device unavailable -- NOTIFY with ssdp:byebye

When a device and its services are going to be removed from the network, the device should
multicast an ssdp:byebye message corresponding to each of the ssdp:alive messages it
multicasted that have not already expired. If the device is removed abruptly from the network,
it might not be possible to multicast a message. As a fallback, discovery messages shall
include an expiration value in a CACHE-CONTROL field value (as explained above); if not re-
advertised, the discovery message eventually expires on its own.

(Note: when a control point is about to be removed from the network, no discovery-related
action is required.)

When a device is about to be removed from the network, it should explicitly revoke its
discovery messages by sending one multicast message for each ssdp:alive message it sent.
Each multicast message shall have method NOTIFY and ssdp:byebye in the NTS header
field in the following format. Values in italics are placeholders for actual values.

When a multi-homed device is about to be removed from the network on one or more of its
UPnP-enabled interfaces, it should explicitly revoke its discovery messages by sending one
multicast message for each ssdp:alive message it has previously sent on those interfaces
and IP addresses. It shall NOT send such multicast messages to any of the UPnP-enabled
interfaces that remain available.

When ssdp:byebye messages are sent on multiple UPnP-enabled interfaces, the messages
shall contain identical field values except for the HOST field value. The HOST field value of
an advertisement shall be the standard multicast address specified for the protocol (IPv4 or
IPv6) used on the interface.

NOTIFY * HTTP/1.1

HOST: 239.255.255.250:1900

NT: notification type

NTS: ssdp:byebye

USN: composite identifier for the advertisement

BOOTID.UPNP.ORG: number increased each time device sends an initial announce or an update
message

CONFIGID.UPNP.ORG: number used for caching description information

Note: No body is present for messages with method NOTIFY, but note that the message shall
have a blank line following the last header field.

The TTL for the IP packet should default to 2 and should be configurable.

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.

Request line
Shall be “NOTIFY * HTTP/1.1”

NOTIFY

Method for sending notifications and events.

Message applies generally and not to a specific resource. shall be *.

HTTP/1.1
HTTP version.

Header fields

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

HOST

Required. Field value contains multicast address and port reserved for SSDP by Internet Assigned Numbers
Authority (IANA). shall be 239.255.255.250:1900. If the port number (“:1900") is omitted, the receiver shall
assume the default SSDP port number of 1900.

NT

Required. Field value contains Notification Type. (See list of required field values for the NT header field in
NOTIFY with ssdp:alive above.) Single URI.

NTS
Required. Field value contains Notification Sub Type. shall be ssdp:byebye. Single URI.

USN

Required. Field value contains Unique Service Name. (See list of required field values for the USN header field
in NOTIFY with ssdp:alive above.) Single URI.

BOOTID.UPNP.ORG
Required. As defined in clause 1.2, and 1.2.2.

CONFIGID.UPNP.ORG
Required. As defined in clause 1.2, and 1.2.2.

Note: No responses are sent for messages with method NOTIFY.

If a control point has received at least one ssdp:byebye message of a root device, any of its
embedded devices or any of its services then the control point can assume that all are no
longer available. As a fallback, if a control point fails to receive notification that a root device,
its embedded devices and its services are unavailable, the original discovery messages will
eventually expire yielding the same effect. Only when all original advertisements of a root
device, its embedded devices and its services have expired can a control point assume that
they are no longer available.

If a multi-homed control point has received at least one ssdp:byebye message of a root device,
any of its embedded devices or any of its services on one of its UPnP-enabled interfaces then
the control point can assume that all are no longer available on that UPnP-enabled interface.
However, the control point shall NOT assume that the device is also no longer available on all
of its other UPnP-enabled interfaces. As a fallback, if a control point fails to receive
notification that a root device, its embedded devices and its services are unavailable on a
particular UPnP-enabled interface, the original discovery messages will eventually expire
yielding the same effect. Only when all original advertisements of a root device, its embedded
devices and its services received on a UPnP-enabled interface have expired can a control
point assume that they are no longer available on that interface or IP address.

1.2.4 Device Update — NOTIFY with ssdp:update

When a new UPnP-enabled interface is added to a multi-homed device, the device shall
increase its BOOTID.UPNP.ORG field value, multicast an ssdp:update message for each of
the root devices, embedded devices and embedded services to all of the existing UPnP-
enabled interfaces to announce a change in the BOOTID.UPNP.ORG field value, and re-
advertise itself on all (existing and new) UPnP-enabled interfaces with the new
BOOTID.UPNP.ORG field value. Similarly, if a multi-homed device loses connectivity on a
UPnP-enabled interface and regains connectivity, or if the IP address on one of the UPnP-
enabled interfaces changes, the device shall increase the BOOTID.UPNP.ORG field value,
multicast an ssdp:update message for each of the root devices, embedded devices and
embedded services to all the unaffected UPnP-enabled interfaces to announce a change in
the BOOTID.UPNP.ORG field value, and re-advertise itself on all (affected and unaffected)
UPnP-enabled interfaces with the new BOOTID.UPNP.ORG field value. In all cases, the
ssdp:update message for the root devices shall be sent as soon as possible. Other
ssdp:update messages should be spread over time. However, all ssdp:update messages
shall be sent before any announcement messages with the new BOOTID.UPNP.ORG field
value can be sent.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

When ssdp:update messages are sent on multiple UPnP-enabled interfaces, the messages
shall contain identical field values except for the HOST and LOCATION field values. The
HOST field value of an advertisement shall be the standard multicast address specified for the
protocol (IPv4 or IPv6) used on the interface. The URL specified in the LOCATION field value
shall be reachable on the interface on which the advertisement is sent.

NOTIFY * HTTP/1.1

HOST: 239.255.255.250:1900

LOCATION: URL for UPnP description for root device

NT: notification type

NTS: ssdp:update

USN: composite identifier for the advertisement

BOOTID.UPNP.ORG: BOOTID value that the device has used in its previous announcements
CONFIGID.UPNP.ORG: number used for caching description information

NEXTBOOTID.UPNP.ORG: new BOOTID value that the device will use iIn subsequent announcements
SEARCHPORT .UPNP.ORG: number identifies port on which device responds to unicast M-SEARCH

Note: No body is present for messages with method NOTIFY, but note that the message shall
have a blank line following the last header field.

The TTL for the IP packet should default to 2 and should be configurable.

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.
Request line

Shall be “NOTIFY * HTTP/1.1"

NOTIFY

Method for sending notifications and events.

Message applies generally and not to a specific resource. Shall be *.

HTTP/1.1
HTTP version.

Header fields

HOST

Required. Field value contains multicast address and port reserved for SSDP by Internet Assigned Numbers
Authority (IANA). Shall be 239.255.255.250:1900. If the port number (*:1900”) is omitted, the receiver shall
assume the default SSDP port number of 1900.

LOCATION
Required. Field value shall be the same as the LOCATION field value that has been sent in previous SSDP
messages. Single absolute URL (see RFC 3986).

NT
Required. Field value contains Notification Type. (See list of required field values for the NT header field in
NOTIFY with ssdp:alive above.) Single URI.

NTS
Required. Field value contains Natification Sub Type. Shall be ssdp:update. Single URI.

USN
Required. Field value contains Unique Service Name. (See list of required field values for the USN header field
in NOTIFY with ssdp:alive above.) Single URI.

BOOTID.UPNP.ORG

Required. As defined in clause 1.2, and 1.2.2, Field value shall be the same as the BOOTID.UPNP.ORG field
value that has been sent in previous SSDP messages.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

— 34 —

CONFIGID.UPNP.ORG
Required. As defined in clause 1.2, and 1.2.2.

NEXTBOOTID.UPNP.ORG

Required. Field value contains the new BOOTID.UPNP.ORG field value that the device intends to use in the
subsequent device and service announcement messages. Its field value shall be a non-negative 31-bit integer;
ASCII encoded, decimal, without leading zeros (leading zeroes, if present, shall be ignored by the recipient)
and shall be greater than the field value of the BOOTID.UPNP.ORG header field.

SEARCHPORT.UPNP.ORG
Allowed. As defined in clause 1.2, and 1.2.2.

SECURELOCATION.UPNP.ORG
Allowed. As defined in section 1.2.2.

Note: No responses are sent for messages with method NOTIFY.

If a control point with a single UPnP-enabled interface receives an ssdp:update message,
the NEXTBOOTID.UPNP.ORG field value replaces the BOOTID.UPNP.ORG field value that
the control point has previously recorded for the device. It can expect future announcements,
search responses, update messages and eventually bye-bye messages from the device to
contain the “new” BOOTID.UPNP.ORG field value (that is: the field value of the
NEXTBOOTID.UPNP.ORG header field in the received ssdp:update message). The field
value in the NEXTBOOTID.UPNP.ORG header field shall be recorded as the current
BOOTID.UPNP.ORG field value of the device which is to be expected on all subsequent
SSDP messages.

If a multi-homed control point receives an ssdp:update message on its UPnP-enabled
interface(s), and the message arrives on the interface(s) that it uses for UPNnP
communications with the device (such as event subscriptions), it can assume that the device
has remained continuously available (including all device state), and that the
NEXTBOOTID.UPNP.ORG field value replaces the BOOTID.UPNP.ORG field value that the
control point has previously recorded for the device. It can expect future announcements,
search responses, update messages and eventually bye-bye messages from the device to
contain the “new” BOOTID.UPNP.ORG field value (that is: the field value of the
NEXTBOOTID.UPNP.ORG header field in the received ssdp:update message). The field
value in the NEXTBOOTID.UPNP.ORG header field shall be recorded as the current
BOOTID.UPNP.ORG field value of the device which is to be expected on all subsequent
SSDP messages.

If a control point receives an SSDP message with a BOOTID.UPNP.ORG field value different
(either higher or lower) from the value that the control point has previously recorded for the
device,it can assume that the device has become temporarily unavailable on that interface
and has become available again, and any stored state information about the device has
become invalid. It shall treat the device as a newly discovered device.

1.3 Search

When a control point is added to the network, the UPnP discovery protocol allows that control
point to search for devices of interest on the network. It does this by multicasting on the
reserved address and port (239.255.255.250:1900) a search message with a pattern, or target,
equal to a type or identifier for a device or service. Responses from devices contain discovery
messages essentially identical to those advertised by newly connected devices; the former
are unicast while the latter are multicast. Control points can also send a unicast search
message to a known |IP address and port 1900 or the port indicated by
SEARCHPORT.UPNP.ORG, to verify the existence of UPnP device(s) and service(s) at the
IP address. For example, a unicast search may be used to quickly check whether a known
UPnP device or service is still available on the network. Multi-homed control points are
allowed to choose to send discovery messages on any, some or all of its UPnP-enabled
interfaces.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

1.3.1 Search protocols and standards

To search for devices (and be discovered by control points), control points (and devices) use
the following subset of the overall UPnP protocol stack. (The overall UPnP protocol stack is
listed at the beginning of this document.)

Figure 1-5: — Search protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP Device Architecture [green-bold]

SSDP [blue]
UDP [black]

IP [black]

At the highest layer, search messages contain vendor-specific information, e.g., the control
point, device, and service identifiers. Moving down the stack, vendor content is supplemented
by information from a UPnP Forum working committee, e.g., device or service types.
Messages from the layers above are hosted in UPnP-specific protocols, defined in this
document. In turn, search requests are delivered via multicast and unicast SSDP messages
defined in this document. Search responses are delivered via a unicast SSDP messages
defined in this document. Both kinds of messages are delivered via UDP over IP. For
reference, colors in [square brackets] above indicate which protocol defines specific header
fields and field values in discovery messages listed below.

1.3.2 Search request with M-SEARCH

When a control point desires to search the network for devices, it shall send a multicast
request with method M-SEARCH in the following format. Control points that know the address
of a specific device are allowed to also use a similar format to send unicast requests with
method M-SEARCH.

For multicast M-SEARCH, the message format is defined below. Values in italics are
placeholders for actual values.

M-SEARCH * HTTP/1.1

HOST: 239.255.255.250:1900

MAN: *‘ssdp:discover"

MX: seconds to delay response

ST: search target

USER-AGENT: 0OS/version UPnP/2.0 product/version
CPEN.UPNP.ORG: friendly name of the control point
CPUUID.UPNP.ORG: uuid of the control point

Note: No body is present in requests with method M-SEARCH, but note that the message
shall have a blank line following the last header field.

Note: The TTL for the IP packet should default to 2 and should be configurable.

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.

Request line
Shall be “M-SEARCH * HTTP/1.1”

M-SEARCH

Method for search requests.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

Request applies generally and not to a specific resource. shall be *.
HTTP/1.1

HTTP version.
Header fields

HOST

Required. Field value contains the multicast address and port reserved for SSDP by Internet Assigned
Numbers Authority (IANA). shall be 239.255.255.250:1900.

MAN

Required by HTTP Extension Framework. Unlike the NTS and ST field values, the field value of the MAN
header field is enclosed in double quotes; it defines the scope (namespace) of the extension. shall be
"ssdp:discover".

MX

Required. Field value contains maximum wait time in seconds. shall be greater than or equal to 1 and should
be less than 5 inclusive. Device responses should be delayed a random duration between 0 and this many
seconds to balance load for the control point when it processes responses. This value is allowed to be
increased if a large number of devices are expected to respond. The MX field value should NOT be increased
to accommodate network characteristics such as latency or propagation delay (for more details, see the
explanation below). Specified by UPnP vendor. Integer.
ST

Required. Field value contains Search Target. shall be one of the following. (See NT header field in NOTIFY
with ssdp:alive above.) Single URI.

ssdp:all
Search for all devices and services.

upnp:rootdevice
Search for root devices only.

uuid:device-UUID

Search for a particular device. device-UUID specified by UPnP vendor. See clause 1.1.4, “UUID format
and recommended generation algorithms” for the MANDATORY UUID format.

urn:schemas-upnp-org:device:deviceType:ver

Search for any device of this type where deviceType and ver are defined by the UPnP Forum working
committee.

urn:schemas-upnp-org:service:serviceType:ver

Search for any service of this type where serviceType and ver are defined by the UPnP Forum
working committee.

urn:domain-name:device:deviceType:ver

Search for any device of this typewhere domain-name (a Vendor Domain Name), deviceType and ver
are defined by the UPnP vendor and ver specifies the highest specifies the highest supported version
of the device type. Period characters in the Vendor Domain Name shall be replaced with hyphens in
accordance with RFC 2141.

urn:domain-name:service:serviceType:ver

Search for any service of this type. Where domain-name (a Vendor Domain Name), serviceType and
ver are defined by the UPnP vendor and ver specifies the highest specifies the highest supported
version of the service type. Period characters in the Vendor Domain Name shall be replaced with
hyphens in accordance with RFC 2141.

USER-AGENT

Allowed. Specified by UPnP vendor. String. Field value shall begin with the following “product tokens” (defined
by HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the
second token represents the UPnP version and shall be UPnP/2.0, and the third token identifes the product
using the form product name/product version. For example, “USER-AGENT: wunix/5.1 UPnP/2.0
MyProduct/1.0".

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

TCPPORT.UPNP.ORG

Allowed. A control point can request that a device replies to a TCP port on the control point. When this header
is present it identifies the TCP port on which the device can reply to the search. If a control point sends the
TCPPORT.UPNP.ORG header field, its field value shall be an ASCII encoded integer, decimal, without leading
zeros (leading zeroes, if present, shall be ignored by the recipient), in the range 49152-65535 (RFC 4340).
The device shall respond to unicast M-SEARCH messages similar to sending the response to the originating
UDP port except that the notification messages are sent to the advertised TCPPORT.UPNP.ORG port over
TCP instead of UDP.

CPFN.UPNP.ORG

Required.Specifies the friendly name of the control point. The friendly name is vendor specific. When Device
Protection is implemented the cpfn.upnp.org shall be the same as the <Name> of Device Protection unless the
Device Protection <Alias> is defined, in which case it shall use the <Alias>.

CPUUID.UPNP.ORG

Allowed.uuid of the control point. When the control point is implemented in a UPnP device it is recommended
to use the UDN of the co-located UPnP device. When implemented, all specified requirements for uuid usage
in devices also apply for control points.See section 1.1.4. Note that when Device Protection is implemented
the CPUUID.UPNP.ORG shall be the same as the uuid used in Device Protection.

For unicast M-SEARCH, the message format is defined below. Values in italics are
placeholders for actual values.

M-SEARCH * HTTP/1.1
HOST: hostname:portNumber

MAN: *ssdp:discover™
ST: search target

USER-AGENT: 0S/version UPnP/2.0 product/version
Note: No body is present in requests with method M-SEARCH, but note that the message
shall have a blank line following the last header field.

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.

Request line
Shall be “M-SEARCH * HTTP/1.1"

M-SEARCH

Method for search requests.

Request applies generally and not to a specific resource. Shall be *.

HTTP/1.1
HTTP version.

Header fields

HOST
Required. For unicast requests, the field value shall be the domain name or IP address of the target device
and either port 1900 or the SEARCHPORT provided by the target device.

MAN

Required by HTTP Extension Framework. Unlike the NTS and ST field values, the field value of the MAN
header field is enclosed in double quotes; it defines the scope (namespace) of the extension. Shall be

"ssdp:discover".

ST

Required. Field value contains Search Target. Shall be one of the following. (See NT header field in NOTIFY
with ssdp:alive above.) Single URI.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

ssdp:all
Search for all devices and services.

upnp:rootdevice
Search for root devices only.

uuid:device-UUID

Search for a particular device. device-UUID specified by UPnP vendor. See clause 1.1.4, “UUID format
and recommended generation algorithms” for the MANDATORY UUID format.

urn:schemas-upnp-org:device:deviceType:ver

Search for any device of this type where deviceType and ver are defined by the UPnP Forum working
committee.

urn:schemas-upnp-org:service:serviceType:ver

Search for any service of this type where serviceType and ver are defined by the UPnP Forum
working committee.

urn:domain-name:device:deviceType:ver

Search for any device of this type where domain-name (a Vendor Domain Name), deviceType and ver
are defined by the UPnP vendor and ver specifies the highest supported version of the device type.
Period characters in the Vendor Domain Name shall be replaced with hyphens in accordance with
RFC 2141.

urn:domain-name:service:serviceType:ver

Search for any service of this type where domain-name (a Vendor Domain Name), serviceType and
ver are defined by the UPnP vendor and ver specifies the highest supported version of the service
type. Period characters in the Vendor Domain Name shall be replaced with hyphens in accordance
with RFC 2141.

USER-AGENT

Allowed. Specified by UPnP vendor. String. Field value shall begin with the following “product tokens” (defined
by HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the
second token represents the UPnP version and shall be UPnP/2.0, and the third token identifes the product
using the form product name/product version. For example, “USER-AGENT: unix/5.1 UPnP/2.0
MyProduct/1.0".

Due to the unreliable nature of UDP, control points should send each M-SEARCH message
more than once. As a fallback, to guard against the possibility that a device might not receive
the M-SEARCH message from a control point, a device should re-send its advertisements
periodically (see CACHE-CONTROL header field in NOTIFY with ssdp:alive above).

For a multicast request, the control point should wait at least the amount of time specified in
the MX header field for responses to arrive from devices. The random distribution of
responses over the MX interval means that a responder is allowed to send a response at MX
seconds after receiving the M-SEARCH request. The MX field value is allowed to be adjusted
by heuristics at the requester based on, for example, observed number of responders.
Network characteristics affecting the propagation of traffic cannot be addressed by increasing
the MX field value because of the reason cited above. A requester is allowed to adapt to
network characteristics with heuristics based on observed network behavior (the exact
heuristics are out of scope). The net effect is that the M-SEARCH request persists at the
requester for a period of time exceeding MX such that the characteristics of the network are
properly accommodated to minimize lost responses.

When a device receives a unicast M-SEARCH, it should respond within 1 second and it is
allowed to respond sooner. The sender of the unicast request should wait at least 1 second
for the response.

Updated versions of device and service types are required to be fully backward compatible
with previous versions. Devices shall respond to M-SEARCH requests for any supported
version. For example, if a device implements “urn:schemas-upnp-org:service:xyz:2", it shall
respond to search requests for both that type and “urn:schemas-upnp-org:service:xyz:1”. The
response shall specify the same version as was contained in the search request. If a control

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

point searches for a device or service of a particular version and receives no responses
(presumably because no device present on the network supports the specified version), but is
willing to operate using a lower version, it is allowed to repeat the search request specifying
the lower version.

1.3.3 Search response

To be found by a network search, a device shall send a unicast UDP response to the source
IP address and port that sent the request to the multicast address. Devices respond if the ST
header field of the M-SEARCH request is “ssdp:all”, “upnp:rootdevice”, “uuid:” followed by a
UUID that exactly matches the one advertised by the device, or if the M-SEARCH request
matches a device type or service type supported by the device. Multi-homed devices shall
send the search response using the same UPnP-enabled interface on which the search
request was received. The URL specified in the LOCATION field value shall specify an
address that is reachable on that interface.

Devices responding to a multicast M-SEARCH should wait a random period of time between 0
seconds and the number of seconds specified in the MX field value of the search request
before responding, in order to avoid flooding the requesting control point with search
responses from multiple devices. If the search request results in the need for a multiple part
response from the device, those multiple part responses should be spread at random intervals
through the time period from 0 to the number of seconds specified in the mMx header field.
Devices are allowed to assume an MX field value less than that specified in the mx header
field. If the mx header field specifies a field value greater than 5, the device should assume
that it contained the value 5 or less. Devices shall not stop responding to other requests while
waiting the random delay before sending a response.

For multicast M-SEARCH requests, if the search request does not contain an mx header field,
the device shall silently discard and ignore the search request. If the mx header field specifies
a field value greater than 5, the device should assume that it contained the value 5 or less.

For multicast M-SEARCH requests, if the search request does contains the
TCPPORT.UPNP.ORG header field, the device shall reply on the TCP port indicated in the M-
SEARCH request, however it does not have to spread and repeat the required messages
since the transport over TCP is reliable, hence ignoring the MX value. The reply to the control
point can be formatted as 1 message replying to all applicable USN as required by the M-
SEARCH syntax. The list of USNs can be conveyed by a comma separated list, see RFC
2616. Hence using this option will reduce the number of messages sent as responses to the
M-SEARCH and will speed up the detection of devices in the network.

Any device responding to a unicast M-SEARCH should respond within 1 second.

The URL specified in the LOCATION header field of the M-SEARCH response shall be reachable
by the control point to which the response is directed.

Responses to M-SEARCH requests are intentionally parallel to advertisements, and as such,
follow the same pattern as listed for NOTIFY with ssdp:alive (above) except that instead of the NT
header field there is an sT header field here. The response shall be sent in the following
format. Values in italics are placeholders for actual values.

HTTP/1.1 200 OK

CACHE-CONTROL: max-age = seconds until advertisement expires

DATE: when response was generated

EXT:

LOCATION: URL for UPnP description for root device

SERVER: 0S/version UPnP/2.0 product/version

ST: search target

USN: composite identifier for the advertisement

BOOTID.UPNP.ORG: number increased each time device sends an initial announce or an update
message

CONFIGID.UPNP.ORG: number used for caching description information

SEARCHPORT .UPNP.ORG: number identifies port on which device responds to unicast M-SEARCH

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

— 40 —

Note: No body is present in a response to a request with method M-SEARCH, but note that the
message shall have a blank line following the last header field.

(Note: No need to limit TTL for the IP packet in response to a search request.)

Listed below are details for the header fields appearing in the listing above. Field names are
not case sensitive. All field values are case sensitive except where noted.

Response line

Shall be “HTTP/1.1 200 OK”

Header fields

CACHE-CONTROL

Required. Field value shall have the max-age directive (“max-age=") followed by an integer that specifies the
number of seconds the advertisement is valid. After this duration, control points should assume the device (or
service) is no longer available; as long as a control point has received at least one advertisement that is still
valid from a root device, any of its embedded devices or any of its services, then the control point can assume
that all are available. The number of seconds should be greater than or equal to 1800 seconds (30 minutes),
although exceptions are defined in the text above. Specified by UPnP vendor. Other directives shall notbe sent
and shall be ignored when received.

DATE

EXT

Recommended. Field value contains date when response was generated. “rfc1123-date” as defined in RFC
2616.

Required for backwards compatibility with UPnP 1.0. (Header field name only; no field value.)

LOCATION

Required. Field value contains a URL to the UPnP description of the root device. Normally the host portion
contains a literal IP address rather than a domain name in unmanaged networks. Specified by UPnP vendor.
Single absolute URL (see RFC 3986).

SERVER

ST

Required. Specified by UPnP vendor. String. Field value shall begin with the following “product tokens”
(defined by HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version,
the second token represents the UPnP version and shall be UPnP/2.0, and the third token identifes the
product using the form product name/product version. For example, “SERVER: unix/5.1 UPnP/2.0
MyProduct/1.0".

Required. Field value contains Search Target. Single URI. The response sent by the device depends on the
field value of the ST header field that was sent in the request. In some cases, the device shall send multiple
response messages as follows. If the received ST field value was:

ssdp:all

Respond 3+2d+k times for a root device with d embedded devices and s embedded services but only
k distinct service types (see clause 1.1.2, “SSDP message header fields” for a definition of each
message to be sent). Field value for ST header field shall be the same as for the NT header field in
NOTIFY messages with ssdp:alive. (See above.)

upnp:rootdevice
Respond once for root device. Shall be upnp:rootdevice.

uuid:device-UUID

Respond once for each matching device, root or embedded. Shall be uuid:device-UUID where device-
UUID is specified by the UPnP vendor. See clause 1.1.4, “UUID format and recommended generation
algorithms” for the MANDATORY UUID format.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

— 41 —

urn:schemas-upnp-org:device:deviceType:ver

Respond once for each matching device, root or embedded. Shall be
urn:schemas-upnp-org:device:deviceType:ver where deviceType and ver are defined by UPnP Forum
working committee and ver shall contain the version of the device type contained in the M-SEARCH
request.

urn:schemas-upnp-org:service:serviceType:ver

Respond once for each matching service type. shall be
urn:schemas-upnp-org:service:serviceType:ver where serviceType and ver are defined by the UPnP
Forum working committee and ver shall contain the version of the service type contained in the M-
SEARCH request.

urn:domain-name:device:deviceType:ver

Respond once for each matching device, root or embedded. shall be urn:domain-
name:device:deviceType:ver where domain-name (a Vendor Domain Name), deviceType and ver are
defined by the UPnP vendor and ver shall contain the version of the device type from the M-SEARCH
request. Period characters in the Vendor Domain Name shall be replaced with hyphens in accordance
with RFC 2141.

urn:domain-name:service:serviceType:ver

Respond once for each matching service type. shall be urn: domain-name:service:serviceType:ver
where domain-name (a Vendor Domain Name), serviceType and ver are defined by the UPnP vendor
and ver shall contain the version of the service type from the M-SEARCH request. Period characters
in the Vendor Domain Name shall be replaced with hyphens in accordance with RFC 2141.

USN

Required. Field value contains Unique Service Name. |dentifies a unique instance of a device or service. shall
be one of the following. (See Table 1 1, “Root device discovery messages”, Table 1 2, “Embedded device
discovery messages”, and Table 1 3, “Service discovery messages” above.) The prefix (before the double
colon) shall match the value of the UDN element in the device description OR the lower ST version used in the
M-Search request. (Section 2, “Description” explains the UDN element.) Single URI.

uuid:device-UUID::upnp:rootdevice
Sent once for root device where device-UUID is specified by UPnP vendor. See section 1.1.4, “UUID
format and Recommended generation algorithms” for the MANDATORY UUID format.

uuid:device-UUID

Sent once for every device, root or embedded, where device-UUID is specified by the UPnP vendor.
See section 1.1.4, “UUID format and RECOMMENDED generation algorithms” for the MANDATORY
UUID format.

uuid:device-UUID::urn:schemas-upnp-org:device:deviceType:ver

Sent once for every device, root or embedded, where device-UUID is specified by the UPnP vendor,
deviceType and ver are defined by UPnP Forum working committee and ver specifies version of the
device type. See section 1.1.4, “UUID format and RECOMMENDED generation algorithms” for the
MANDATORY UUID format.

uuid:device-UUID::urn:schemas-upnp-org:service:serviceType:ver

Sent once for every service where device-UUID is specified by the UPnP vendor, serviceType and ver
are defined by UPnP Forum working committee and ver specifies version of the device type. See
section 1.1.4, “UUID format and RECOMMENDED generation algorithms” for the MANDATORY UUID
format.

uuid:device-UUID::urn:domain-name:device:deviceType:ver

Sent once for every device, root or embedded, where device-UUID, domain-name (a Vendor Domain
Name), deviceType and ver are defined by the UPnP vendor and ver specifies the version of the
device type. See section 1.1.4, “UUID format and RECOMMENDED generation algorithms” for the
MANDATORY UUID format. Period characters in the Vendor Domain Name shall be replaced by
hyphens in accordance with RFC 2141.

uuid:device-UUID::urn:domain-name:service:serviceType:ver

Sent once for every service where device-UUID, domain-name (a Vendor Domain Name), serviceType
and ver are defined by the UPnP vendor and ver specifies the version of the service type. See section
1.1.4, “UUID format and recommended generation algorithms” for the MANDATORY UUID format.
Period characters in the Vendor Domain Name shall be replaced by hyphens in accordance with RFC
2141.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

— 42 —

BOOTID.UPNP.ORG
Required. As defined in clause 1.2, and 1.2.2.

CONFIGID.UPNP.ORG
Allowed. As defined in clause 1.2, and 1.2.2.

SEARCHPORT.UPNP.ORG
Allowed. As defined in clause 1.2, and 1.2.2.

SECURELOCATION.UPNP.ORG
Allowed. As defined in clause 1.2.2.

If there is an error with the search request (such as an invalid field value in the MAN header
field, a missing MX header field, or other malformed content), the device shall silently discard
and ignore the search request; sending of error responses is PROHIBITED due to the
possibility of packet storms if many devices send an error response to the same request.

1.4 References
RFC 2141, URN Syntax. Available at: http://www.ietf.org/rfc/rfc2141.txt.

RFC 2616, HTTP: Hypertext Transfer Protocol 1.1. Available at:
http://www.ietf.org/rfc/rfc2616.txt.

RFC 2774, HTTP Extension Framework. Available at: http://www.ietf.org/rfc/rfc2774.txt.

RFC 3986, Uniform Resource ldentifiers (URI): Generic Syntax. Available at:
http://www.ietf.org/rfc/rfc3986.txt.

RFC 4340, Datagram Congestion Control Protocol (DCCP). Available at:
http://www.ietf.org/rfc/rfc4340.txt.

[1] DCE variant of Universal Unique Identifiers (UUIDs), The Open group, 1997, Available at:
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm.

2 Description

Description is Step 2 in UPnP networking. Description comes after addressing (Step 0) where
devices get a network address, and after discovery (Step 1) where control points find
interesting device(s). Description enables control (Step 3) where control points send
commands to device(s), eventing (Step 4) where control points listen to state changes in
device(s), and presentation (Step 5) where control points may display an html user interface
for device(s).

After a control point has discovered a device, the control point still knows very little about the
device -- only the information that was in the discovery message, i.e., the device's (or
service's) UPnP type, the device's universally-unique identifier, and a URL to the device's
UPnP description. For the control point to learn more about the device and its capabilities, or
to interact with the device, the control point shall retrieve a description of the device and its
capabilities from the URL provided by the device in the discovery message.

Figure 2-1: — Description architecture

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2774.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc4340.txt
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm

— 43 —

root device
control point —m
description Y\\ service
service URL \
- \
AN
N
* device
description W'
______ 4 .
------ ———@PRESD—w || enice

The UPnP description for a device is partitioned into two logical parts: a device description
describing the physical and logical containers, and service descriptions describing the
capabilities exposed by the device. A UPnP device description includes vendor-specific
manufacturer information like the model name and number, serial number, manufacturer
name, URLs to vendor-specific Web sites, etc. (details below). For each service included in
the device, the device description lists the service type, service name, a URL for a service
description, a URL for control, and a URL for eventing. A device description also includes a
description of all embedded devices and a URL for presentation of the aggregate. This clause
explains UPnP device descriptions, and the clauses on Control, Eventing, and Presentation
explain how URLSs for control, eventing, and presentation are used respectively.

Note that a single physical device is allowed to include multiple logical devices. Multiple
logical devices can be modeled as a single root device with embedded devices (and services)
or as multiple root devices (perhaps with no embedded devices). In the former case, there is
one UPnP device description for the root device, and that device description contains a
description for all embedded devices. In the latter case, there are multiple UPnP device
descriptions, one for each root device.

A UPnP device description is written by a UPnP vendor. The description is in XML syntax and
is usually based on a standard UPnP Device Template. A UPnP Device Template is produced
by a UPnP Forum working committee; they derive the template from the UPnP Device
Schema, which was derived from standard constructions in XML. This clause explains the
format for a UPnP device description, UPnP Device Templates, and the part of the UPnP
Device Schema that covers devices.

A UPnP service description includes a list of commands, or actions, to which the service
responds, and parameters, or arguments for each action. A service description also includes a
list of variables. These variables model the state of the service at run time, and are described
in terms of their data type, range, and event characteristics. This clause explains the
description of actions, arguments, state variables, and the properties of those variables. The
clause on Eventing explains event characteristics.

Like a UPnP device description, a UPnP service description is written by a UPnP vendor. The
description is in XML syntax and is usually based on a standard UPnP Service Template. A
UPnP Service Template is produced by a UPnP Forum working committee; they derived the
template from the UPnP Service Schema, augmenting it with human language where
necessary. The UPnP Service Schema is derived using the conventions of XML Schema. This
clause explains the format for a UPnP service description, UPnP Service Templates, typical
augmentations in human language, and the part of the UPnP Service Schema that covers
services.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

— 44 —

UPnP vendors can differentiate their devices by extending services (see clause 2.7, “Non-
standard vendor extensions and limitations”), including additional UPnP services, or
embedding additional devices. When a control point retrieves a particular device's description,
these added features are exposed to the control point for control and eventing. The device
and service descriptions authoritatively document the implementation of the device.

Retrieving a UPnP device description is simple: the control point issues an HTTP GET
request on the URL in the discovery message, and the device returns the device description.
Retrieving a UPnP service description is a similar process that uses a URL within the device
description. The protocol stack, method, header fields, and body for the response and request
are explained in detail below. Description documents shall be sent using the same IP address
on which the HTTP GET request was received.

As long as at least one of the discovery advertisements from a root device, any of its
embedded devices or any of its services have not expired and none of the advertisements
have been cancelled, a control point is allowed to assume that the root device and all its
embedded devices and all its services are available. The device and service descriptions are
allowed to be retrieved at any point since the device and service descriptions are static as
long as the device and its services are available. If a device cancels at least one of its
advertisements or if all the advertisements expire, a control point should assume the device
and its services are no longer available. If a device needs to change one of these descriptions,
it shall cancel its outstanding advertisements and re-advertise. Consequently, control points
should not assume that device and service descriptions are unchanged if a device re-appears
on the network, but they can detect whether descriptions changed if a changed
CONFIGID.UPNP.ORG field value is present in the announcements.

Like discovery, description plays an important role in the interoperability of devices and
control points using different versions of UPnP networking. As explained in clause 1,
“Discovery”, the UPnP Device Architecture is versioned with both a major and a minor version.
The major version and minor version are separate integer numbers; they are not to be
interpreted or compared as though they were a single decimal number, even though they are
allowed to appear as such in print. Advances in minor versions shall be a compatible superset
of earlier minor versions of the same major version; therefore device vendors are free to
implement standardized devices and services on versions of the architecture with a higher
minor version number. Advances in major version are not required to be supersets of earlier
versions and are not guaranteed to be backward compatible. However UDA version 2.0 is
specified as a superset of UDA 1.1 and is thus backwards compatible with UDA 1.x versions.
Therefore UDA 2.0 control points shall maintain interoperability with UDA 1.x devices. UDA
1.x control points can work with UDA 2.0 devices, but can’'t access the additional functionality
specified in UDA 2.0. The architecture version of a root device, all its embedded devices and
all its services shall be the same. Version information is communicated in description
messages as a backup to the information communicated in discovery messages. This clause
explains the format of version information in description messages.

Device and service types standardized by UPnP Forum working committees or created by
vendors have an integer version. Every later version of a device or service shall be a fully
backwardly compatible superset of the previous version, i.e., compared to earlier versions of
the device, it shall include all mandatory embedded devices and services of the same or later
version. The UPnP device or service type remains the same across all versions of a device
whereas the device or service version shall be larger for later versions. Versions of device
and service templates are allowed to have non-integer versions (such as “0.9”) during
development in the working committee, but this shall become an integer upon standardization.
Devices and services are allowed to have a version number greater than the major version
number of the architecture they are designed for (e.g., “Power:2" is allowed to be designed to
work on UDA version 1.0); there is no direct correlation between the version of a device or
service template and the architecture version with which it is designed to work. If a non-
backward-compatible version of a device or service is defined, it shall have a different device
or service name to indicate that it is not backwardly compatible (and version numbers of the
new type shall restart at 1).

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

— 45 —

UPnP device and service types are “building blocks” that is allowed to be assembled in
various combinations. Both standard and vendor-defined device types are allowed to be
embedded in standard device types. Both standard and vendor-defined device types are
allowed to be embedded in vendor-defined device types. Likewise, both standard and vendor-
defined service types are allowed be embedded in both standard and vendor-defined device
types. A control point that is capable of operating with a particular device or service type shall
at least recognize that device or service type even when it is embedded within another device
type (standard or vendor-defined) that it does not recognize. For example, if a standard
service type “Print:1” is defined, and a standard device type “Printer:1” is defined that
contains the “Print:1” service, a control point that wishes to use the “Print:1” service shall find
and use it whether the service is embedded within a “urn:schemas-upnp-org:device:Printer:1”
device or embedded within a vendor-defined “urn:acme-com:device:Printer:1” or “urn:acme-
com:device:AcmeMultifunctionPrinter:1” device.

The remainder of this clause first explains how devices are described, explaining details of
vendor-specific information, embedded devices, and URLs for control, eventing, and
presentation. Second, it explains UPnP Device Templates. Third, it explains how services are
described, explaining details of actions, arguments, state variables, and properties of those
variables. Then it explains UPnP Service Templates, and the UPnP Service Schema. Finally,
this clause explains in detail how a control point retrieves device and service descriptions
from a device.

2.1 Generic requirements on HTTP usage

This subclause defines generic requirements on HTTP usage in UPnP Version 2.0. HTTP is
the underlying transport for:

e Description (see clause 2, “Description”)
e Control (see clause 3, “Control”)

e Eventing (see clause 4, “Eventing”)

e Presentation (clause 5, “Presentation”)

The baseline transport for all devices and control points is recommended to be HTTP/1.1
compliant (as defined in RFC 2616) but at least shall be HTTP/1.0 compliant (as defined in
RFC 1945). Vendors are free to implement and Working Committees are free to require for
new device classes implementations of more recent versions of HTTP that are backwards
compatible with HTTP version 1.0, such as HTTP version 1.1 as defined in RFC 2616.
However whatever version is implemented, all required components defined by the specified
HTTP version shall be implemented.

If a control point uses an HTTP/1.0 binding on a SOAP request without setting the KeepAlive
token, the device shall close the socket after responding. If a control point uses an HTTP/1.1
binding on a SOAP request, and sets the “Connection:CLOSE” token, the device shall close
the socket after responding.

USER-AGENT header field

Control points can add the USER-AGENT header field to any UPnP-related HTTP request to
signal that they support UPnP 1.1. Working Committees are allowed to require presence of
this header on description retrieval, action invocations and event subscriptions for newly
defined services.

USER-AGENT: OS/version UPnP/2.0 product/version

USER-AGENT

Allowed.Specified by UPnP vendor. String. Field value shall begin with the following “product tokens” (defined
by HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

— 46 —

second token represents the UPnP version and shall be UPnP/2.0, and the third token identifes the product
using the form product name/product version. For example, “USER-AGENT: unix/5.1 UPnP/2.0
MyProduct/1.0".

Accept-Encoding header field

Control points can add the Accept-Encoding header field to any UPnP-related HTTP request
to signal that they support the type of encoding.

Accept-Encoding: compress, gzip

Accept-Encoding

Allowed.Specified by RFC2616 section 14.3. Allowed encoding are identitiy, compress and gzip. The identity
encoding shall be present and without value q=0. When the request is satisfied by the Server, then the
content-encoding header shall be present. The value of the content_encoding header specifies the used
encoding type of the response. Used values are vendor specific.

UPnP friendly Name header field

Control points shall add the CPFN.UPNP.ORG header field to any UPnP-related HTTP
reqguest to signal the friendly name of the control point.

CPEN.UPNP.ORG: friendly name

CPFN.UPNP.ORG

Required.Specifies the friendly name of the control point. The friendly name is vendor specific. When Device
Protection is implemented the CPFN.UPNP.ORG shall be the same as the <Name> of Device Protection unless
the Device Protection <Alias> is defined, in which case it shall use the <Alias>.

UPnP identifier header field

Control points can add the CPUUID.UPNP.ORG header field to any UPnP-related HTTP
request to signal the unique identifier of the control point.

CPUUID.UPNP.ORG: uuid of control point

CPUUID.UPNP.ORG

Allowed.uuid of the control point. When the control point is implemented in a UPnP device it is recommended
to use the UDN of the co-located UPnP device. When implemented, all specified requirements for uuid usage
in devices also apply for control points.See section 1.1.4. Note that when Device Protection is implemented
the CPUUID.UPNP.ORG shall be the same as the uuid used in Device Protection.

Vendor-defined or working committee-defined HTTP Header fields
HTTP field names defined by vendors or working committees shall have the following format:

field-name = token “.” domain-name

where the domain-name shall be a Vendor Domain Name or shall be “UPNP.ORG"” (for
working committee defined field names), and in addition shall satisfy the token format as
defined in RFC 2616 clause 2.2. Field names are case-insensitive.

HTTP/1.0 Persistent connections

Some implementations of HTTP/1.0 defined what is known as persistent connections. There
are many practical uses for this functionality, as it may reduce overhead for a given device by
allowing resources to be used more efficiently. However, this functionality for HTTP/1.0 is not
officially defined in the specification and classified as experimental. Further, the way it has
been experimentally defined is flawed in such a way that it may cause sessions to hang in
certain scenarios. This functionality shall not be implemented by any UPnP devices or control
points that implement HTTP version 1.0.

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

— 47 —

HTTP/1.0 HEAD request

Some implementations utilize the HEAD request to try to predetermine the amount of memory
required to process a GET request. Some servers may not know that size of the content
because it may be dynamic. In such cases, the responses will not contain a CONTENT-
LENGTH header field. As such, control points shall not rely on the CONTENT-LENGTH
header field being specified for a HEAD response.

HTTP/1.1 General

When a device or control point implements HTTP/1.1, all requirements of HTTP/1.0 shall be
maintained, with the exception of the CONTENT-LENGTH header field, which shall not be
specified when doing chunked transfers.

HTTP status codes

Servers shall return appropriate HTTP status codes for invalid requests. A device or control
point shall use a 4xx HTTP status code for responses that indicate a problem with the format
of a request or response. For example, if an HTTP client makes a PUT request to a server
that does not implement the PUT method, the server should return a "405 Method not
Allowed" HTTP status code and shall return a 4xx series HTTP status code. Another example
is if an HTTP client makes a request to a server that is malformed HTTP or not well formed
XML, the server should return a "400 Bad Request" HTTP status code and shall return a 4xx
series HTTP status code. While clients are not required to understand specific status codes,
they shall understand classes of status codes. For example, a 4xx series HTTP status code
signifies an improper request, whereas a 5xx series HTTP status code signifies a processing
error for a valid request.

HTTP/1.1 and HTTP/1.0 compatibility

Devices and control points that implement HTTP/1.1 shall be able to interoperate with
HTTP/1.0 control points and devices. Care shall be taken when devices and control points
process requests, such that the response generated is compatible with the HTTP version
specified in the request. For example, if an HTTP/1.0 request is made, the device or control
point shall not return an HTTP/1.1 chunked response.

HTTP/1.1 HOST header field and use of the HOST header field with HTTP/1.0

The ‘HOST’ header field shall be specified in all requests, because HTTP/1.1 allows support
for virtual domains, which rely on this header field to determine the target destination.

The HOST header field shall also be included in HTTP/1.0 requests, for backwards
compatibility with UPnP 1.0, which REQUIRES the HOST header field to be present without
explicitly mentioning a HTTP version.

HTTP/1.1 EXPECT: 100-Continue

Servers are allowed to send a “100-Continue” HTTP status code to let the client know that the
header fields received have been processed. If a client will rely on this status response before
sending the body, it shall send the “EXPECT: 100-Continue” header field in the request. If a
server received this header field in the request, it shall not wait for the request body before
sending the continue response. However, a client shall be prepared to handle cases when the
“EXPECT: 100-Continue” header field is not sent, but a “100-Continue” HTTP status code is
still received from the server.

HTTP/1.1 Chunked Encoding

Devices and control points that advertise support for HTTP/1.1 shall have support for
decoding chunked encoded messages. Chunked encoded messages are allowed to contain
Chunk-Extensions, which are delineated with a *;’. Extensions that are not recognized shall be
ignored, which includes the absence of an extension, but the presence of the delineator.

Chunked encoding also allows responses and requests to include trailer fields, which are
header fields that follow the body. Devices and control points shall only send trailer fields if

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

— 48 —

the request contained the ‘TE’ header field (indicates trailer processing is supported), or if the
trailer fields in the response only contain allowed metadata that can be safely ignored.

Before a control point uses chunked encoding to make a request to a device, it shall check to
ensure that the device is an HTTP/1.1 device. Devices are allowed to use different HTTP
engines (that support different versions) for description, control, eventing and presentation.
Therefore, to correctly identify which HTTP version is used for processing control requests, a
HEAD request is allowed to be issued to the corresponding control URL.

HTTP/1.1 Persistent Connections

Persistent connections is the default behavior defined by HTTP/1.1. It is strongly
recommended that this behavior be maintained, as it may be beneficial in many scenarios, as
it allows for resources to be utilized more efficiently. Support for Pipelined request handling is
also recommended if persistent connections are supported.

If a server responds with a “CONNECTION: close” header line, it shall close the session after
responding. Similarly if a client specifies “CONNECTION: close” in the request, the server
shall also close the session after responding.

When Requests are pipelined to a server, the server shall answer the requests in the order
that they are received. Clients shall also be prepared to retry connections if pipelining fails,
for example, if the server does not support them.

HTTP/1.1 Redirect restrictions

HTTP/1.1 defines allowed support for redirecting an HTTP request. UPnP 2.0 devices are
allowed to redirect a request, although this is not recommended. If a UPnP 2.0 device
redirects a request, it shall respond with a “307 Temporary Redirect” HTTP status code (see
also RFC 2616). UPnP 2.0 devices shall not return any other HTTP/1.1 redirect options.
Control points shall implement HTTP/1.1 redirect and should redirect the request upon
receiving a “307 Temporary Redirect” HTTP status code (see also RFC 2616).

2.2 Generic requirements on XML usage

XML namespace prefixes do not have to be the specific strings that are used in the examples
in this specification. They can be any value that obeys the rules of the general XML
namespace mechanism as outlined in the Namespaces in XML specification. Devices shall
accept requests that use other legal XML namespace prefixes.

If an XML element has no value (i.e. it contains the empty string), it is valid to combine the
opening and closing XML tags (e.g., “<actionname/>" instead of
“<actionname></actionname>").

2.3 Device description

The UPnP description for a device contains several pieces of vendor-specific information,
definitions of all embedded devices, URL for presentation of the device, and listings for all
services, including URLs for control and eventing. In addition to defining non-standard
devices (which is allowed to contain both vendor-defined and standard embedded devices and
services), UPnP vendors are allowed to add embedded devices and services to standard
devices. To illustrate these, below is a listing with placeholders (in italics) for actual elements
and values. Some of these placeholders would be specified by a UPnP Forum working
committee (colored red) or by a UPnP vendor (colored purple). For a non-standard device, all
of these placeholders would be specified by a UPnP vendor. Elements defined by the UPnP
Device Architecture are colored green. Immediately following the listing is a detailed
explanation of the elements, attributes, and values.

<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0"
configld="configuration number">

<specVersion>

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

— 49 —

<major>2</major>
<minor>0</minor>
</specVersion>
<device>
<deviceType>urn:schemas-upnp-org:device:deviceType:v</deviceType>
<friendlyName>short user-friendly title</friendlyName>
<manufacturer>manufacturer name</manufacturer>
<manufacturerURL>URL to manufacturer site</manufacturerURL>
<modelDescription>long user-friendly title</modelDescription>
<mode IName>model name</modelName>
<mode INumber>model number</modelNumber>
<modelURL>URL to model site</modelURL>
<serialNumber>manufacturer®s serial number</serialNumber>
<UDN>uuid:UUID</UDN>
<UPC>Universal Product Code</UPC>
<iconList>
<icon>
<mimetype>image/format</mimetype>
<width>horizontal pixels</width>
<height>vertical pixels</height>
<depth>color depth</depth>
<url>URL to icon</url>
</icon>
<I-- XML to declare other icons, if any, go here -->
</iconList>
<serviceList>
<service>
<serviceType>urn:schemas-upnp-org:service:serviceType:v</serviceType>
<serviceld>urn:upnp-org:serviceld:servicelD</serviceld>
<SCPDURL>URL to service description</SCPDURL>
<controlURL>URL for control</controlURL>
<eventSubURL>URL for eventing</eventSubURL>
</service>
<I-- Declarations for other services defined by a UPnP Forum working committee
(if any) go here -->
<I-- Declarations for other services added by UPnP vendor (if any) go here -->
</servicelList>
<devicelList>
<I-- Description of embedded devices defined by a UPnP Forum working committee
(if any) go here -->
<!-- Description of embedded devices added by UPnP vendor (if any) go here -->
</devicelList>
<presentationURL>URL for presentation</presentationURL>
</device>
</root>

Listed below are details for each of the elements, attributes, and values appearing in the
listing above. All elements and attributes are case sensitive; HTTP specifies case sensitivity
for URLs; other values are not case sensitive except where noted. The order of elements is
significant. Except where noted: required elements shall occur exactly once (no duplicates),
and recommended or allowed elements are allowed to occur at most once. Note that some
implementations are allowed to strictly enforce the length limits for various elements noted
below, and therefore working committees are advised to heed all limits specified.

<?xml>

Required for all XML documents. Case sensitive.

<root>

Required. Shall have “urn:schemas-upnp-org:device-1-0" as the value for the xmIns attribute; this references
the UPnP Device Schema (described below). Case sensitive. Has the following attribute:

configld

Required. Specifies the configuration number to which the device description belongs. See clause 1,
“Discovery” for further definition and usage of the configuration number.

Contains all other elements describing the root device, i.e., contains the following child elements:

© 2015 Open Connectivity Foundation, Inc. All Rights Reserved.

<specVersion>

Required. In device templates, defines the lowest version of the architecture on which the device can
be implemented. In actual UPnP devices,