Legal Disclaimer

THIS IS A DRAFT SPECIFICATION DOCUMENT ONLY AND HAS NOT BEEN ADOPTED BY THE OPEN CONNECTIVITY FOUNDATION. THIS DRAFT DOCUMENT MAY NOT BE RELIED UPON FOR ANY PURPOSE OTHER THAN REVIEW OF THE CURRENT STATE OF THE DEVELOPMENT OF THIS DRAFT DOCUMENT. THE OPEN CONNECTIVITY FOUNDATION AND ITS MEMBERS RESERVE THE RIGHT WITHOUT NOTICE TO YOU TO CHANGE ANY OR ALL PORTIONS HEREOF, DELETE PORTIONS HEREOF, MAKE ADDITIONS HERETO, DISCARD THIS DRAFT DOCUMENT IN ITS ENTIRETY OR OTHERWISE MODIFY THIS DRAFT DOCUMENT AT ANY TIME. YOU SHOULD NOT AND MAY NOT RELY UPON THIS DRAFT DOCUMENT IN ANY WAY, INCLUDING BUT NOT LIMITED TO THE DEVELOPMENT OF ANY PRODUCTS OR SERVICES. IMPLEMENTATION OF THIS DRAFT DOCUMENT IS DONE AT YOUR OWN RISK AND IT IS NOT SUBJECT TO ANY LICENSING GRANTS OR COMMITMENTS UNDER THE OPEN CONNECTIVITY FOUNDATION INTELLECTUAL PROPERTY RIGHTS POLICY OR OTHERWISE. IN CONSIDERATION OF THE OPEN CONNECTIVITY FOUNDATION GRANTING YOU ACCESS TO THIS DRAFT DOCUMENT, YOU DO HEREBY WAIVE ANY AND ALL CLAIMS ASSOCIATED HEREWTH INCLUDING BUT NOT LIMITED TO THOSE CLAIMS DISCUSSED BELOW, AS WELL AS CLAIMS OF DETRIMENTAL RELIANCE.

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or other countries. *Other names and brands may be claimed as the property of others.

Copyright © 2021 Open Connectivity Foundation, Inc. All rights reserved.

Copying or other form of reproduction and/or distribution of these works are strictly prohibited.
7.6.3.9.1.1 OCF MQTT Proxy

An MQTT proxy is an OCF Device that acts as a proxy between MQTT and CoAP transports. An MQTT proxy enables the ability for OCF clients in the MQTT domain to talk to OCF Devices in the CoAP domain.

An MQTT proxy contains the following functionality:

- An OCF Client, talking to OCF Servers on the local network
- An MQTT Client that creates OCF Servers in the MQTT domain, e.g. it represents the proxied devices in MQTT domain.

This is depicted in figure [A0].

![Diagram of OCF CoAP domain and OCF MQTT domain interconnected by Proxy](image)

Figure 1 [A0] OCF CoAP domain and OCF MQTT domain interconnected by Proxy

The OCF Servers to be proxied will be provisioned by an OCF (mediator) Client on the MQTT Proxy

7.6.3.10 Resources for MQTT proxy
Figure 2 [A] OCF extended with OCF Clients in the MQTT domain

To represent the OCF CoAP Servers on the MQTT network, the following Resources are exposed by the OCF Device "oic.d.mqttproxy" on the CoAP side of the MQTT proxy:

- "oic.r.mqtt.conf" Resource Type
- "oic.r.d2dservlist" Resource Type

The "oic.r.mqtt.conf" Resource Type is used to configure the MQTT client to connect to an MQTT server. The Resource Type is available on the CoAP side so that proximal interaction is possible to configure the MQTT proxy to connect to an MQTT server. The information supplied to the MQTT client also includes security information. The connection to the MQTT server should be secured by TLS. The information to be supplied to the Mediator to configure the "oic.r.mqtt.conf" Resource is provided out of band; this information determines how the MQTT proxy is being used in a larger setup. The "oic.r.d2dservlist" Resource Type is used to list OCF Devices that will be proxied from the CoAP domain to the MQTT domain. This list is maintained from the CoAP OCF domain.

7.6.3.10.1 Connecting to a MQTT Server

The information of the MQTT client to connect to the MQTT server may be conveyed by an OCF Resource. This means that the MQTT proxy may be headless and may be configured with a Mediator (OCF client). The configuration information consists of data to contact the MQTT server and also of data to secure the connection.

@startuml
 ' participant "AMS \nService" as ams
 participant "D2D Device \n(di: <d2d_di>)" as d2d
 participant "MQTT-Proxy \n(di: <proxy_di>)" as cp
 participant "Mediator \n(di: <med_di>)" as med
 participant "OBT" as obt
 participant "MQTT Server" as cloud

 ' global configuration
 autonumber

 skinparam {
 ' DefaultFontSize 50
User triggers authorization of the OCF MQTT User’s Mediator

```

note over d2d, med
User triggers authorization of the OCF MQTT User’s Mediator
end note

group MQTT Proxy registration
med -> cp: Set access information

   cp -> cloud: Connect to MQTT Proxy
   cloud -> cloud: check access
   cp <- cloud: return <color blue><connection status ></color>

end group

'group Resource publication
' cp -> cloud: Publish D2DServerList Resource
'end group

@enduml
```
Figure 3 - Registration of the MQTT proxy (as MQTT client) with an MQTT Server

Table 1 – Properties of "oic.r.mqtt.conf" Resource

<table>
<thead>
<tr>
<th>Property title</th>
<th>Property name</th>
<th>Value type</th>
<th>Value rule</th>
<th>Unit</th>
<th>Access mode</th>
<th>Mandatory to implement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server address</td>
<td>"server"</td>
<td>string</td>
<td>N/A</td>
<td>N/A</td>
<td>RW</td>
<td>No</td>
<td>The connection information of the MQTT server may be an ip address or a URI e.g. "192.168.178.89" "test.mosquitto.org"</td>
</tr>
<tr>
<td>connection</td>
<td>"port"</td>
<td>integer</td>
<td>N/A</td>
<td>N/A</td>
<td>RW</td>
<td>Yes</td>
<td>The port number of the MQTT server e.g. 1883 for unsecured ports or 8883 for secured ports</td>
</tr>
<tr>
<td>Keep alive interval</td>
<td>"kai"</td>
<td>integer</td>
<td>N/A</td>
<td>seconds</td>
<td>RW</td>
<td>Yes</td>
<td>The keep alive interval for the MQTT client sServer connection.</td>
</tr>
<tr>
<td>User identifier</td>
<td>"uid"</td>
<td>string</td>
<td>N/A</td>
<td>RW</td>
<td>Yes</td>
<td>No</td>
<td>User ID, if supported by the MQTT server</td>
</tr>
<tr>
<td>password</td>
<td>"pwd"</td>
<td>string</td>
<td>N/A</td>
<td>RW</td>
<td>Yes</td>
<td>No</td>
<td>Password or token belonging to the user ID.</td>
</tr>
<tr>
<td>certificate authority file of the MQTT server</td>
<td>"cacert"</td>
<td>string</td>
<td>As byte array</td>
<td>R</td>
<td>Yes</td>
<td>No</td>
<td>The credential, if supported by the MQTT server</td>
</tr>
<tr>
<td>Client certificate to authenticate</td>
<td>"clcert"</td>
<td>string</td>
<td>As byte array</td>
<td>R</td>
<td>Yes</td>
<td>No</td>
<td>The credential, if supported by the MQTT server</td>
</tr>
</tbody>
</table>
7.6.3.10.2 Proxying an OCF Device

The OCF Devices to be proxied are listed in the d2dserver list Resource. Which Vertical Resources are proxied per OCF Device is implementation dependent.

```text
@startuml

participant "Mediator (di: <med_di>)" as med
participant "D2D Device (di: <d2d_di>)" as d2d
participant "MQTT Proxy (di: <proxy_di>)" as cp
' participant "OBT" as obt
participant "MQTT server" as cloud
' participant "Authorization Server" as auth
' participant "OCF Cloud Client" as cc

' global configuration
autonumber

skippair {
' DefaultFontSize 50
' SequenceMessageAlignment center
' SequenceTitleFontSize 40
}

' Onboard new D2D Device
'
d2d <- med: Mediator provisions access control entries into the D2D Device and peer Devices

' Register D2D Device with MQTT server
'
group D2D Device registration (OCF Domain)

cp <- med: UPDATE /d2dserverlistURI&di=<d2d_di>
cp -> cp: Adds received "di" to "oic.r.d2dserverlist:dis"
' cp --> med: UPDATE Response

d2d <- cp: RETRIEVE /oic/res
```

Table:

<table>
<thead>
<tr>
<th>Connection</th>
<th>The connection</th>
<th>Log</th>
<th>MQTT Reason Codes</th>
<th>Log Reason Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log</td>
<td>"log"</td>
<td>String</td>
<td>NA</td>
<td>R</td>
</tr>
<tr>
<td>MQTT</td>
<td>"crcode"</td>
<td>Integer</td>
<td>NA</td>
<td>R</td>
</tr>
</tbody>
</table>

Note that before connecting, the value should be initialized on -1 indicating, "not yet connected".

All Properties listed in table XXX are required to be implemented, e.g., listed in the IDD as optional. Not all Properties have to be on the wire though, the Property usage depends on the used MQTT server.
d2d --> cp: RETRIEVE Response

end group

' == Publish Device ==

Group Device Publication (MQTT domain)
cp -> cloud: Publish Resources as MQTT topics

d2d device registration (OCF Domain)
1. Mediator provisions access control entries to the D2D Device and peer Devices
2. UPDATE /d2dservicelistURL&d=<d2d_di>
3. Adds received "di" to "oic.r.d2dservicelist:dis"
4. RETRIEVE /oic/res
5. RETRIEVE Response

Device Publication (MQTT domain)
6. Publish Resources as MQTT topics

D2D Device registration
2. UPDATE /d2dservicelistURL&d=<d2d_di>
3. Adds received "di" to "oic.r.d2dservicelist:dis"
4. RETRIEVE /oic/res
5. RETRIEVE Response

Figure 4 – Device publication to an MQTT server
7.6.3.10.3 Security considerations

The OCF Client in the MQTT proxy needs to be granted access to the D2D Device. Even if a privileged OCF Client adds a D2D Device to the "oic.r.d2dserverlist" Resource, the access may still be denied by the D2D Device. This is because the OCF Client in the MQTT proxy needs to be given access to any of the D2D Devices in its list and having the correct access levels set up for the OCF Client in the MQTT proxy.

The connection from a MQTT client to the MQTT server needs to be secure, e.g., using a TLS connection. However, MQTT specifies multiple mechanisms to create a secure connection from an MQTT client to an MQTT server. The used MQTT server should only connect to other MQTT clients via a secure connection.

See also Security considerations [MQTT security considerations].