
Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 0

scons --debug=explain VERBOSE=true RELEASE=false TARGET_TRANSPORT=IP 1

BUILD_SAMPLE=ON 2
 3
 4

OCF BRIDGING
SPECIFICATION

Version 0.8

Open Connectivity Foundation (OCF)
admin@openconnectivity.org

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 1

Legal Disclaimer 1
 2

THIS IS A DRAFT SPECIFICATION ONLY AND HAS NOT BEEN ADOPTED BY THE OPEN 3
CONNECTIVITY FOUNDATION. THIS DRAFT SPECIFICATION MAY NOT BE RELIED UPON 4
FOR ANY PURPOSE OTHER THAN REVIEW OF THE CURRENT STATE OF THE 5
DEVELOPMENT OF THIS DRAFT SPECIFICATION. THE OPEN CONNECTIVITY FOUNDATION 6
AND ITS MEMBERS RESERVE THE RIGHT WITHOUT NOTICE TO YOU TO CHANGE ANY OR 7
ALL PORTIONS HEREOF, DELETE PORTIONS HEREOF, MAKE ADDITIONS HERETO, 8
DISCARD THIS DRAFT SPECIFICATION IN ITS ENTIRETY OR OTHERWISE MODIFY THIS 9
DRAFT SPECIFICATION AT ANY TIME. YOU SHOULD NOT AND MAY NOT RELY UPON THIS 10
DRAFT SPECIFICATION IN ANY WAY, INCLUDING BUT NOT LIMITED TO THE DEVELOPMENT 11
OF ANY PRODUCTS OR SERVICES. IMPLEMENTATION OF THIS DRAFT SPECIFICATION IS 12
DONE AT YOUR OWN RISK AMEND AND IT IS NOT SUBJECT TO ANY LICENSING GRANTS 13
OR COMMITMENTS UNDER THE OPEN CONNECTIVITY FOUNDATION INTELLECTUAL 14
PROPERTY RIGHTS POLICY OR OTHERWISE. IN CONSIDERATION OF THE OPEN 15
CONNECTIVITY FOUNDATION GRANTING YOU ACCESS TO THIS DRAFT SPECIFICATION, 16
YOU DO HEREBY WAIVE ANY AND ALL CLAIMS ASSOCIATED HEREWITH INCLUDING BUT 17
NOT LIMITED TO THOSE CLAIMS DISCUSSED BELOW, AS WELL AS CLAIMS OF 18
DETRIMENTAL RELIANCE. 19

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or other 20
countries. *Other names and brands may be claimed as the property of others. 21

Copyright © 2017 Open Connectivity Foundation, Inc. All rights reserved. 22

Copying or other form of reproduction and/or distribution of these works are strictly prohibited. 23
 24

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 2

 1

CONTENTS 2

 3

1 Scope ... 6 4

2 Normative references .. 6 5

3 Terms, definitions, symbols and abbreviations .. 7 6

3.1 Terms and definitions ... 7 7

3.2 Symbols and abbreviations ... 9 8

3.3 Conventions ... 9 9

4 Document conventions and organization ... 9 10

4.1 Notation .. 9 11

4.2 Data types .. 10 12

4.3 Document structure .. 10 13

5 Operational Scenarios ... 10 14

5.1 “Deep translation” vs. “on-the-fly” ... 10 15

5.2 Use of introspection .. 11 16

5.3 Stability and loss of data .. 11 17

6 OCF Bridge Device ... 12 18

6.1 Resource Discovery.. 12 19

6.2 General Requirements .. 16 20

6.3 Security .. 17 21

 Blocking communication of Bridged Devices with the OCF ecosystem 18 22

7 AllJoyn Translation .. 18 23

7.1 Requirements Specific to an AllJoyn Translator .. 18 24

 Exposing AllJoyn producer devices to OCF Clients 18 25

 Exposing OCF resources to AllJoyn consumer applications 25 26

7.2 On-the-Fly Translation from D-Bus and OCF payloads.. 31 27

 Translation without aid of introspection ... 31 28

 Translation with aid of introspection .. 37 29

8 Device Type Definitions ... 42 30

9 Resource Type definitions ... 42 31

9.1 List of resource types ... 42 32

9.2 Secure Mode .. 42 33

9.2.1 Introduction ... 42 34

9.2.2 Example URI ... 42 35

9.2.3 Resource Type .. 43 36

9.2.4 RAML Definition .. 43 37

9.2.5 Property Definition .. 45 38

9.2.6 CRUDN behaviour ... 45 39

9.3 AllJoyn Object .. 45 40

 Introduction ... 45 41

 Example URI ... 45 42

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 3

 Resource Type .. 45 1

 RAML Definition .. 45 2

 CRUDN behaviour ... 47 3

 4

 5

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 4

Figures 1
Figure 1. OCF Bridge Device Components ... 7 2

Figure 2: Schematic overview of an OCF Bridge Device bridging non-OCF devices 12 3

 4

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 5

Tables 1
Table 7 Alphabetical list of resource types .. 42 2

Table 1: oic.wk.d resource type definition ... 21 3

Table 2: oic.wk.con resource type definition ... 22 4

Table 3: oic.wk.p Resource Type definition ... 24 5

Table 4: oic.wk.con.p Resource Type definition .. 25 6

Table 5: AllJoyn About Data fields .. 27 7

Table 6: AllJoyn Configuration Data fields .. 30 8

Table 7 Alphabetical list of resource types .. 42 9

 10
11

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 6

1 Scope 1

This document specifies a framework for translation between OCF devices and other ecosystems, 2
and specifies the behaviour of a translator that exposes AllJoyn producer applications to OCF 3
clients, and exposes OCF servers to AllJoyn consumer applications. Translation of specific AllJoyn 4
interfaces to or from specific OCF resource types is left to other specifications. Translation of 5
protocols other than AllJoyn is left to a future version of this specification. This document provides 6
generic requirements that apply unless overridden by a more specific document. 7

2 Normative references 8

The following documents, in whole or in part, are normatively referenced in this document and are 9
indispensable for its application. For dated references, only the edition cited applies. For undated 10
references, the latest edition of the referenced document (including any amendments) applies. 11

AllJoyn About Interface Specification, About Feature Interface Definitions, Version 14.12 12
https://allseenalliance.org/framework/documentation/learn/core/about-announcement/interface 13

AllJoyn Configuration Interface Specification, Configuration Interface Definition, Version 14.12 14
https://allseenalliance.org/framework/documentation/learn/base-services/configuration/interface 15

D-Bus Specification, D-Bus Specification 16
https://dbus.freedesktop.org/doc/dbus-specification.html 17

IEEE 754, IEEE Standard for Floating-Point Arithmetic, August 2008 18

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005 19
https://www.rfc-editor.org/info/rfc4122 20

IETF RFC 4648, The Base16, Base32, and Base64 Data Encodings, October 2006 21
https://www.rfc-editor.org/info/rfc4648 22

IETF RFC 6973, Privacy Considerations for Internet Protocols, July 2013 23
https://www.rfc-editor.org/info/rfc6973 24

IETF RFC 7049, Concise Binary Object Representation (CBOR), October 2013 25
https://www.rfc-editor.org/info/rfc7049 26

IETF RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format, March 2014 27
https://www.rfc-editor.org/info/rfc7159 28

JSON Schema Core, JSON Schema: core definitions and terminology, January 2013 29
http://json-schema.org/latest/json-schema-core.html 30

JSON Schema Validation, JSON Schema: interactive and non interactive validation, January 31
2013 32
http://json-schema.org/latest/json-schema-validation.html 33

JSON Hyper-Schema, JSON Hyper-Schema: A Vocabulary for Hypermedia Annotation of JSON, 34
October 2016 35
http://json-schema.org/latest/json-schema-hypermedia.html 36

OCF 1.0 Core Specification, Open Connectivity Foundation Core Specification, Version 1.0 37

OCF Security Specification, Open Connectivity Foundation Security Specification, Version 1.0 38

https://allseenalliance.org/framework/documentation/learn/core/about-announcement/interface
https://allseenalliance.org/framework/documentation/learn/base-services/configuration/interface
https://dbus.freedesktop.org/doc/dbus-specification.html
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7159
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-validation.html

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 7

OCF ASA Mapping, OCF Resource to ASA Interface Mapping, v0.3 candidate, July 2016 1
https://workspace.openconnectivity.org/apps/org/workgroup/smarthome_tg/download.php/6287/O2
CF_Resource_to_ASA_Interface_Mapping_v.0.3_candidate.docx 3

OIC 1.1 Core Specification, Open Interconnect Consortium Core Specification, Version 1.1 4

RAML Specification, Restful API modelling language, Version 0.8. 5
https://github.com/raml-org/raml-spec/blob/master/versions/raml-08/raml-08.md 6

3 Terms, definitions, symbols and abbreviations 7

3.1 Terms and definitions 8

3.1.1 9
OCF Bridge Device 10
An OCF Device that is capable of representing devices that exist on the network but communicate 11
using a Bridged Protocol rather than OCF protocols. 12

Bridged
Client

OCF
Server

OCF
Client

Bridged
Server

Virtual
OCF

Server

OCF
Protocol

Bridged
Protocol

Virtual
Bridged
Client

Translator
Bridged
Protocol

OCF
Protocol

Virtual
OCF

Client

Virtual
Bridged
Server

OCF Bridge Device

13
 14

Figure 1. OCF Bridge Device Components 15

3.1.2 16
Bridged Protocol 17
another protocol (e.g., AllJoyn) that is being translated to or from OCF protocols 18

3.1.3 19
Translator 20
an OCF Bridge Device component that is responsible for translating to or from a specific Bridged 21
Protocol. More than one translator can exist on the same OCF Bridge Device, for different Bridged 22
Protocols. 23

3.1.4 24
OCF Client 25
a logical entity that accesses an OCF Resource on an OCF Server, which might be a Virtual OCF 26
Server exposed by the OCF Bridge Device. 27

3.1.5 28
Bridged Client 29
a logical entity that accesses data via a Bridged Protocol. For example, an AllJoyn Consumer 30
application is a Bridged Client. 31

https://workspace.openconnectivity.org/apps/org/workgroup/smarthome_tg/download.php/6287/OCF_Resource_to_ASA_Interface_Mapping_v.0.3_candidate.docx
https://workspace.openconnectivity.org/apps/org/workgroup/smarthome_tg/download.php/6287/OCF_Resource_to_ASA_Interface_Mapping_v.0.3_candidate.docx
https://github.com/raml-org/raml-spec/blob/master/versions/raml-08/raml-08.md

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 8

3.1.6 1
Virtual OCF Client 2
a logical representation of a Bridged Client, which an OCF Bridge Device exposes to OCF Servers. 3

3.1.7 4
Virtual Bridged Client 5
a logical representation of an OCF Client, which an OCF Bridge Device exposes to Bridged Servers. 6

3.1.8 7
OCF Device 8
a logical entity that assumes one or more OCF roles (OCF Client, OCF Server). More than one 9
OCF Device can exist on the same physical platform. 10

3.1.9 11
Virtual OCF Server 12
a logical representation of a Bridged Server, which an OCF Bridge Device exposes to OCF Clients. 13

3.1.10 14
Bridged Server 15
a logical entity that provides data via a Bridged Protocol. For example, an AllJoyn Producer is a 16
Bridged Server. More than one Bridged Server can exist on the same physical platform. 17

3.1.11 18
Virtual Bridged Server 19
a logical representation of an OCF Server, which an OCF Bridge Device exposes to Bridged Clients. 20

3.1.12 21
OCF Resource 22
represents an artifact modelled and exposed by the OCF Framework 23

3.1.13 24
Virtual OCF Resource 25
a logical representation of a Bridged Resource, which an OCF Bridge Device exposes to OCF 26
Clients. 27

3.1.14 28
Bridged Resource 29
represents an artifact modelled and exposed by a Bridged Protocol. For example, an AllJoyn 30
object is a Bridged Resource. 31

3.1.15 32
OCF Resource Property 33
a significant aspect or notion including metadata that is exposed through the OCF Resource 34

3.1.16 35
OCF Resource Type 36
an OCF Resource Property that represents the data type definition for the OCF Resource 37

3.1.17 38
Bridged Resource Type 39

a schema used with a Bridged Protocol. For example, AllJoyn Interfaces are Bridged Resource 40
Types. 41

3.1.18 42
OCF Server 43
a logical entity with the role of providing resource state information and allowing remote control of 44
its resources. 45

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 9

3.1.19 1
Onboarding Tool 2
defined by the OCF Security Specification as: A logical entity within a specific IoT network that 3
establishes ownership for a specific device and helps bring the device into operational state within 4
that network. 5

3.1.20 6
Bridged Device 7
a Bridged Client or Bridged Server. 8

3.1.21 9
Virtual OCF Device 10
a Virtual OCF Client or Virtual OCF Server. 11

3.2 Symbols and abbreviations 12

3.2.1 13
CRUDN 14
Create Read Update Delete Notify 15
indicating which operations are possible on the resource 16

3.2.2 17
CSV 18
Comma Separated Value List 19
construction to have more fields in 1 string separated by commas. If a value contains a comma, 20
then the comma can be escaped by adding “\” in front of the comma. 21

3.2.3 22
OCF 23
Open Connectivity Foundation 24
organization that created these specifications 25

3.2.4 26
RAML 27
RESTful API Modeling Language 28
Simple and succinct way of describing practically RESTful APIs (see the RAML Specification) 29

3.3 Conventions 30

In this specification a number of terms, conditions, mechanisms, sequences, parameters, events, 31
states, or similar terms are printed with the first letter of each word in uppercase and the rest 32
lowercase (e.g., Network Architecture). Any lowercase uses of these words have the normal 33
technical English meaning. 34

4 Document conventions and organization 35

For the purposes of this document, the terms and definitions given in the OCF 1.0 Core 36
Specification apply. 37

4.1 Notation 38

In this document, features are described as required, recommended, allowed or DEPRECATED as 39
follows: 40

Required (or shall or mandatory). 41

– These basic features shall be implemented to comply with this specification. The phrases “shall 42
not”, and “PROHIBITED” indicate behaviour that is prohibited, i.e. that if performed means the 43
implementation is not in compliance. 44

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 10

Recommended (or should). 1

– These features add functionality supported by this specification and should be implemented. 2
Recommended features take advantage of the capabilities of this specification, usually without 3
imposing major increase of complexity. Notice that for compliance testing, if a recommended 4
feature is implemented, it shall meet the specified requirements to be in compliance with these 5
guidelines. Some recommended features could become requirements in the future. The phrase 6
“should not” indicates behaviour that is permitted but not recommended. 7

Allowed (or allowed). 8

– These features are neither required nor recommended, but if the feature is implemented, it 9
shall meet the specified requirements to be in compliance with these guidelines. 10

Conditionally allowed (CA) 11

– The definition or behaviour depends on a condition. If the specified condition is met, then the 12
definition or behaviour is allowed, otherwise it is not allowed. 13

Conditionally required (CR) 14

– The definition or behaviour depends on a condition. If the specified condition is met, then the 15
definition or behaviour is required. Otherwise the definition or behaviour is allowed as default 16
unless specifically defined as not allowed. 17

DEPRECATED 18

– Although these features are still described in this specification, they should not be implemented 19
except for backward compatibility. The occurrence of a deprecated feature during operation of 20
an implementation compliant with the current specification has no effect on the 21
implementation’s operation and does not produce any error conditions. Backward compatibility 22
may require that a feature is implemented and functions as specified but it shall never be used 23
by implementations compliant with this specification. 24

Strings that are to be taken literally are enclosed in “double quotes”. 25

Words that are emphasized are printed in italic. 26

4.2 Data types 27

Data types are defined in the OCF 1.0 Core Specification. 28

4.3 Document structure 29

Section 5 discusses operational scenarios. Section 6 covers generic requirements for any OCF 30
Bridge, and section 7 covers the specific requirements for a Bridge that translates to/from AllJoyn. 31
These are covered separately in order to ease the task of defining translation to other protocols in 32
the future. 33

5 Operational Scenarios 34

The overall goals are to: 35

1. make Bridged Servers appear to OCF clients as if they were native OCF servers, and 36

2. make OCF servers appear to Bridged Clients as if they were native non-OCF servers 37

5.1 “Deep translation” vs. “on-the-fly” 38

When translating a service between a Bridged Protocol (e.g., AllJoyn) and OCF protocols, there 39
are two possible types of translation. Translators are expected to dedicate most of their logic to 40
“deep translation” types of communication, in which data models used with the Bridged Protocol 41

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 11

are mapped to the equivalent OCF Resource Types and vice-versa, in such a way that a compliant 1
OCF Client or Bridged Client would be able to interact with the service without realising that a 2
translation was made. 3

“Deep translation” is out of the scope of this document, as the procedure far exceeds mapping of 4
types. For example, clients on one side of a translator may decide to represent an intensity as an 5
8-bit value between 0 and 255, whereas the devices on the other may have chosen to represent 6
that as a floating-point number between 0.0 and 1.0. It’s also possible that the procedure may 7
require storing state in the translator. Either way, the programming of such translation will require 8
dedicated effort and study of the mechanisms on both sides. 9

The other type of translation, the “on-the-fly” or “one-to-one” translation, requires no prior 10
knowledge of the device-specific schema in question on the part of the translator. The burden is, 11
instead, on one of the other participants in the communication, usually the client application. That 12
stems from the fact that “on-the-fly” translation always produces Bridged Resource Types and OCF 13
Resource Types as vendor extensions. 14

For AllJoyn, deep translation is specified in OCF ASA Mapping, and on-the-fly translation is 15
covered in section 7.2 of this document. 16

5.2 Use of introspection 17

Whenever possible, the translation code should make use of metadata available that indicates 18
what the sender and recipient of the message in question are expecting. For example, devices that 19
are AllJoyn Certified are required to carry the introspection data for each object and interface they 20
expose. The OIC 1.1 Core Specification makes no such requirement, but the OCF 1.0 Core 21
Specification does. When the metadata is available, translators should convert the incoming 22
payload to exactly the format expected by the recipient and should use information when 23
translating replies to form a more useful message. 24

For example, for an AllJoyn translator, the expected interaction list is presented on the list below: 25

Message Type Sender Receiver Metadata

Request AllJoyn 16.10 OIC 1.1 Not available

Request AllJoyn 16.10 OCF 1.0 Available

Request OIC 1.1 or OCF 1.0 AllJoyn 16.10 Available

Response AllJoyn 16.10 OIC 1.1 or OCF 1.0 Available

Response OIC 1.1 AllJoyn 16.10 Not available

Response OCF 1.0 AllJoyn 16.10 Available

5.3 Stability and loss of data 26

Round-tripping through the translation process specified in this document is not expected to 27
reproduce the same original message. The process is, however, designed not to lose data or 28
precision in messages, though it should be noted that both OCF and AllJoyn payload formats allow 29
for future extensions not taken into account in this document. 30

However, a third round of translation should produce the same identical message as was 31
previously produced, provided the same information is available. That is to say, in the following 32
chain, payloads 2 and 4 as well as 3 and 5 should be identical. 33

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 12

6 OCF Bridge Device 1

This section describes the functionality of an OCF Bridge Device; such a device is illustrated in 2
Figure 2. 3

An OCF Bridge Device is a device that represents one or more Bridged Devices as Virtual OCF 4
Devices on the network and/or represents one or more OCF Devices as Virtual Devices using 5
another protocol on the network. The Bridged Devices themselves are out of the scope of this 6
document. The only difference between a native OCF Device and a Virtual Bridged Device is how 7
the device is encapsulated in an OCF Bridge Device. 8

An OCF Bridge Device shall be indicated on the OCF network with a Device Type of “oic.d.bridge”. 9
This provides to an OCF Client an explicit indication that the discovered Device is performing a 10
bridging function. This is useful for a number of reasons; 1) when establishing a home network 11
the Client can determine that the bridge is reachable and functional when no bridged devices are 12
present, 2) allows for specific actions to be performed on the bridge taking into account the known 13
functionality a bridge supports, 3) should the bridged devices be subject to a progressive reveal it 14
enables user indications to be provided showing that sequence of discovery, 4) allows for explicit 15
discovery of all devices that are serving a bridging function which benefits trouble shooting and 16
maintenance actions on behalf of a user. When such a device is discovered the exposed Resources 17
on the OCF Bridge Device describe other devices. For example, as shown in Figure 2. 18

OCF Bridge Device

Virtual OCF Server 1
(oic.d.fan)

Virtual OCF Server 2
(oic.d.light)

Virtual OCF Server 3
(oic.d.light)

OCF facing

Light 2

Light 1

Fan

Bridged Devices

 19

Figure 2: Schematic overview of an OCF Bridge Device bridging non-OCF devices 20

It is expected that the OCF Bridge Device creates a set of devices during the start-up of the OCF 21
Bridge Device. The exposed set of Virtual OCF Devices can change as Bridged Devices are added 22
or removed from the bridge. The adding and removing of Bridged Devices is implementation 23
dependent. When an OCF Bridge Device changes the set of exposed Virtual OCF Devices, it shall 24
notify any OCF Clients subscribed to its “/oic/res”. 25

6.1 Resource Discovery 26

An OCF Bridge Device shall detect devices that arrive and leave the Bridged network or the OCF 27
network. Where there is no pre-existing mechanism to reliably detect the arrival and departure of 28
devices on a network, an OCF Bridge Device shall periodically poll the network to detect arrival 29

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 13

and departure of devices, for example using COAP multicast discovery (a multicast RETRIEVE of 1
“/oic/res”) in the case of the OCF network. OCF Bridge Device implementations are encouraged to 2
use a poll interval of 30 seconds plus or minus a random delay of a few seconds. 3

An OCF Bridge Device shall respond to network discovery commands on behalf of the exposed 4
bridged devices. All bridged devices with all their Resources shall be listed in “/oic/res” of the 5
Bridge. The response to a RETRIEVE on “/oic/res” shall only include the devices that match the 6
RETRIEVE request. 7

The resource reference determined from each Link exposed by “/oic/res” on the Bridge shall be 8
unique. The Bridge shall meet the requirements defined in the OCF 1.0 Core Specification for 9
population of the Properties and Link parameters in “/oic/res”. 10

For example, if an OCF Bridge Device exposes Virtual OCF Servers for the fan and lights shown 11
in Figure 2, the bridge might return the following information corresponding to the JSON below to a 12
legacy OIC 1.1 client doing a RETRIEVE on “/oic/res”. (Note that what is returned is not in the 13
JSON format but in a suitable encoding as defined in the OCF 1.0 Core Specification.) 14
 15

[16
 { 17
 "di": "e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 18
 "links": [19
 { 20
 "href": "coap://[fe80::b1d4]:55555/oic/res", 21
 "rel": "self", 22
 "rt": "oic.wk.res", 23
 "if": ["oic.if.ll", "oic.if.baseline"], 24
 "p": {"bm": 3, "sec": true, "port": 11111} 25
 }, 26
 { 27
 "href": "/oic/p", 28
 "rt": ["oic.wk.p"], 29
 "if": ["oic.if.r", "oic.if.baseline"], 30
 "p": {"sec": true, "port": 11111} 31
 }, 32
 { 33
 "href": "/oic/d", 34
 "rt": ["oic.wk.d", "oic.d.bridge"], 35
 "if": ["oic.if.r", "oic.if.baseline"], 36
 "p": {"sec": true, "port": 11111} 37
 }, 38
 { 39
 "href": "/mySecureMode", 40
 "rt": ["oic.r.securemode"], 41
 "if": ["oic.if.rw", "oic.if.baseline"], 42
 "p": {"sec": true, "port": 11111} 43
 } 44
] 45
 }, 46
 { 47
 "di": "88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 48
 "links": [49
 { 50
 "anchor": "coaps://[fe80::b1d4]:22222", 51
 "href": "/oic/p", 52
 "rt": ["oic.wk.p"], 53
 "if": ["oic.if.r", "oic.if.baseline"] 54
 }, 55
 { 56
 "anchor": "coaps://[fe80::b1d4]:22222", 57
 "href": "/oic/d", 58

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 14

 "rt": ["oic.wk.d", "oic.d.fan"], 1
 "if": ["oic.if.r", "oic.if.baseline"] 2
 }, 3
 { 4
 "anchor": "coaps://[fe80::b1d4]:22222", 5
 "href": "/myFan", 6
 "rt": ["oic.r.switch.binary"], 7
 "if": ["oic.if.a", "oic.if.baseline"] 8
 } 9
] 10
 }, 11
 { 12
 "di": "dc70373c-1e8d-4fb3-962e-017eaa863989", 13
 "links": [14
 { 15
 "anchor": "coaps://[fe80::b1d4]:33333", 16
 "href": "/oic/p", 17
 "rt": ["oic.wk.p"], 18
 "if": ["oic.if.r", "oic.if.baseline"] 19
 }, 20
 { 21
 "anchor": "coaps://[fe80::b1d4]:33333", 22
 "href": "/oic/d", 23
 "rt": ["oic.wk.d", "oic.d.light"], 24
 "if": ["oic.if.r", "oic.if.baseline"] 25
 }, 26
 { 27
 "anchor": "coaps://[fe80::b1d4]:33333", 28
 "href": "/myLight", 29
 "rt": ["oic.r.switch.binary"], 30
 "if": ["oic.if.a", "oic.if.baseline"] 31
 } 32
] 33
 }, 34
 { 35
 "di": "2983844a-5893-468b-bac93957ddf7", 36
 "links": [37
 { 38
 "anchor": "coaps://[fe80::b1d4]:44444", 39
 "href": "/oic/p", 40
 "rt": ["oic.wk.p"], 41
 "if": ["oic.if.r", "oic.if.baseline"] 42
 }, 43
 { 44
 "anchor": "coaps://[fe80::b1d4]:44444", 45
 "href": "/oic/d", 46
 "rt": ["oic.wk.d", "oic.d.light"], 47
 "if": ["oic.if.r", "oic.if.baseline"] 48
 }, 49
 { 50
 "anchor": "coaps://[fe80::b1d4]:44444", 51
 "href": "/myLight", 52
 "rt": ["oic.r.switch.binary"], 53
 "if": ["oic.if.a", "oic.if.baseline"] 54
 } 55
] 56
 }, 57
] 58

The above example illustrates that each Virtual OCF Server has its own “di” and endpoint exposed 59
by the bridge, and that “/oic/p” and “/oic/d” are available for each Virtual OCF Server. 60
 61

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 15

When an OCF Client requests a content format of “application/vnd.ocf+cbor”, the same bridge will return 1
information corresponding to the JSON below. (Note that what is returned is not in the JSON format but in 2
a suitable encoding as defined in the OCF 1.0 Core Specification.) 3
 4

[5
 { 6
 "href": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9/oic/res", 7
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 8
 "rel": "self", 9
 "rt": "oic.wk.res", 10
 "if": ["oic.if.ll", "oic.if.baseline"], 11
 "eps": [{"ep": "coap://[fe80::b1d4]:55555"}, 12
 {"ep": "coaps://[fe80::b1d4]:11111"}], 13
 "p": {"bm": 3} 14
 }, 15
 { 16
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 17
 "href": "/oic/p", 18
 "rt": ["oic.wk.p"], 19
 "if": ["oic.if.r", "oic.if.baseline"], 20
 "eps": [{"ep": "coaps://[fe80::b1d4]:11111"}] 21
 }, 22
 { 23
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 24
 "href": "/oic/d", 25
 "rt": ["oic.wk.d", "oic.d.bridge"], 26
 "if": ["oic.if.r", "oic.if.baseline"], 27
 "eps": [{"ep": "coaps://[fe80::b1d4]:11111"}] 28
 }, 29
 { 30
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 31
 "href": "/mySecureMode", 32
 "rt": ["oic.r.securemode"], 33
 "if": ["oic.if.rw", "oic.if.baseline"], 34
 "eps": [{"ep": "coaps://[fe80::b1d4]:11111"}] 35
 } 36
 37
 38
 { 39
 "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 40
 "href": "/oic/p", 41
 "rt": ["oic.wk.p"], 42
 "if": ["oic.if.r", "oic.if.baseline"], 43
 "eps": [{"ep": "coaps://[fe80::b1d4]:22222"}] 44
 }, 45
 { 46
 "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 47
 "href": "/oic/d", 48
 "rt": ["oic.wk.d", "oic.d.fan"], 49
 "if": ["oic.if.r", "oic.if.baseline"], 50
 "eps": [{"ep": "coaps://[fe80::b1d4]:22222"}] 51
 }, 52
 { 53
 "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 54
 "href": "/myFan", 55
 "rt": ["oic.r.switch.binary"], 56
 "if": ["oic.if.a", "oic.if.baseline"], 57
 "eps": [{"ep": "coaps://[fe80::b1d4]:22222"}] 58
 }, 59
 60
 61
 { 62

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 16

 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 1
 "href": "/oic/p", 2
 "rt": ["oic.wk.p"], 3
 "if": ["oic.if.r", "oic.if.baseline"], 4
 "eps": [{"ep": "coaps://[fe80::b1d4]:33333"}] 5
 }, 6
 { 7
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 8
 "href": "/oic/d", 9
 "rt": ["oic.wk.d", "oic.d.light"], 10
 "if": ["oic.if.r", "oic.if.baseline"], 11
 "eps": [{"ep": "coaps://[fe80::b1d4]:33333"}] 12
 }, 13
 { 14
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 15
 "href": "/myLight", 16
 "rt": ["oic.r.switch.binary"], 17
 "if": ["oic.if.a", "oic.if.baseline"], 18
 "eps": [{"ep": "coaps://[fe80::b1d4]:33333"}] 19
 }, 20
 21
 22
 { 23
 "anchor": "ocf://2983844a-5893-468b-bac93957ddf7", 24
 "href": "/oic/p", 25
 "rt": ["oic.wk.p"], 26
 "if": ["oic.if.r", "oic.if.baseline"], 27
 "eps": [{"ep": "coaps://[fe80::b1d4]:44444"}] 28
 }, 29
 { 30
 "anchor": "ocf://2983844a-5893-468b-bac93957ddf7", 31
 "href": "/oic/d", 32
 "rt": ["oic.wk.d", "oic.d.light"], 33
 "if": ["oic.if.r", "oic.if.baseline"], 34
 "eps": [{"ep": "coaps://[fe80::b1d4]:44444"}] 35
 }, 36
 { 37
 "anchor": "ocf://2983844a-5893-468b-bac93957ddf7", 38
 "href": "/myLight", 39
 "rt": ["oic.r.switch.binary"], 40
 "if": ["oic.if.a", "oic.if.baseline"], 41
 "eps": [{"ep": "coaps://[fe80::b1d4]:44444"}] 42
 } 43
] 44

6.2 General Requirements 45
 46
The translator shall check the protocol-independent UUID of each device and shall not advertise 47
back into a Bridged Protocol a device originally seen via that Bridged Protocol. The translator 48
shall stop translating any Bridged Protocol device exposed in OCF via another translator if the 49
translator sees the device via the Bridged Protocol. Similarly, the translator shall not advertise an 50
OCF Device back into OCF, and the translator shall stop translating any OCF device exposed in 51
the Bridged Protocol via another translator if the translator sees the device via OCF. These require 52
that the translator can determine when a device is already being translated. A Virtual OCF Device 53
shall be indicated on the OCF network with a Device Type of “oic.d.virtual”. This allows translators 54
to determine if a device is already being translated when multiple translators are present. How a 55
translator determines if a device is already being translated on a non-OCF network is described in 56
the protocol-specific sections below. 57
 58

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 17

Each Bridged Server shall be exposed as a separate Virtual OCF Server, with its own endpoint, 1
and its own “/oic/d” and “/oic/p”. The Virtual OCF Server’s “/oic/res” resource would be the same 2
as for any ordinary OCF Server that uses a resource directory. That is, it does not respond to 3
multicast discovery requests (because the OCF Bridge Device responds on its behalf), but a 4
unicast query elicits a response listing its own resources with a “rel”=“hosts” relationship, and an 5
appropriate “anchor” to indicate that it is not the OCF Bridge Device itself. This allows platform-6
specific, device-specific, and resource-specific fields to all be preserved across translation. 7

6.3 Security 8

The OCF Bridge Device shall go through OCF ownership transfer as any other onboardee would. 9
Separately, it shall go through the Bridged Protocol’s ownership transfer mechanism (e.g., AllJoyn 10
claiming) normally as any other onboardee would. 11
 12
The OCF Bridge Device shall be field updatable. (This requirement need not be tested but can 13
be certified via a vendor declaration.) 14
 15
Unless an administrator opts in to allow it (see section 9.2), a translator shall not expose 16
connectivity to devices that it cannot get a secure connection to. 17

Each Virtual OCF Device shall be provisioned for security by an OCF Onboarding tool. Each Virtual 18
Bridged Device should be provisioned as appropriate in the Bridged ecosystem. In other words, 19
Virtual Devices are treated the same way as physical Devices. They are entities that have to be 20
provisioned in their network. 21

The Translator shall provide a “piid” value that can be used to correlate a non-OCF Device with its 22
corresponding Virtual OCF Device, as specified in Section 6.2. An Onboarding Tool might use this 23
correlation to improve the Onboarding user experience by eliminating or reducing the need for user 24
input, by automatically creating security settings for Virtual OCF Devices that are equivalent to the 25
security settings of their corresponding non-OCF Devices. See the OCF Security Specification for 26
detailed information about Onboarding. 27

Each Virtual Device shall implement the security requirements of the ecosystem that it is connected 28
to. For example, each Virtual OCF Device shall implement the behaviour required by the OCF 1.0 29
Core Specification and the OCF Security Specification. Each Virtual OCF Device shall perform 30
authentication, access control, and encryption according to the security settings it received from 31
the Onboarding Tool. 32

Depending on the architecture of the Translator, authentication and access control might take 33
place just within each ecosystem, but not within the Translator. For example, when an OCF Client 34
sends a request to a Virtual OCF Server: 35

- Authentication and access control might be performed by the Virtual OCF Server, when 36
receiving the request from the OCF Client 37

- The Translator might not perform authentication or access control when the request travels 38
through the Translator to the corresponding Virtual Bridged Client 39

- Authentication and access control might be performed by the target Bridged Server, when 40
it receives the request from the Virtual Bridged Client, according to the security model of 41
the Bridged ecosystem 42

A Translator may receive unencrypted data coming from a Bridged Client, through a Virtual Bridged 43
Device. The translated message shall be encrypted by the corresponding Virtual OCF Client, 44
before sending it to the target OCF Device, if this OCF Device requires encryption 45

A Translator may receive unencrypted data coming from an OCF Client, through a Virtual OCF 46
Server. After translation, this data shall be encrypted by the corresponding Virtual Bridged Client, 47
before sending it to the target Bridged Server, if this Bridged Server requires encryption. 48

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 18

A Translator shall protect the data while that data travels between a Virtual Client and a Virtual 1
Server, through the Translator. For example, if the Translator sends data over a network, the 2
Translator shall perform appropriate authentication and access control, and shall encrypt the data, 3
between all peers involved in this communication. 4

 Blocking communication of Bridged Devices with the OCF ecosystem 5

An OCF Onboarding Tool shall be able to block the communication of all OCF Devices with all 6
Bridged Devices that don’t communicate securely with the Bridge, by using the Bridge 7
Device’s ”oic.r.securemode” Resource. 8

In addition, an OCF Onboarding Tool can block the communication of a particular Virtual OCF 9
Client with all OCF Servers, or block the communication of all OCF Clients with a particular Virtual 10
OCF Server, in the same way as it would for any other OCF Device. See section 8.5 of the OCF 11
Security Specification for information about the soft reset state. 12

7 AllJoyn Translation 13

7.1 Requirements Specific to an AllJoyn Translator 14

The translator shall be an AllJoyn Router Node. (This is a requirement so that users can expect 15
that a certified OCF Bridge Device will be able to talk to any AllJoyn device, without the user having 16
to buy some other device.) 17

The requirements in this section apply when using algorithmic translation, and by default apply to 18
deep translation unless the relevant specification for such deep translation specifies otherwise. 19

 Exposing AllJoyn producer devices to OCF Clients 20

As specified in the OCF Security Specification, the value of the “di” property of OCF Devices 21
(including Virtual OCF Devices) shall be established as part of Onboarding of that Virtual OCF 22
Device. 23
 24
Each AllJoyn object shall be mapped to one or more Virtual OCF Resources. If all AllJoyn 25
interfaces can be translated to resource types on the same resource (as discussed below), there 26
should be a single Virtual OCF Resource, and the path component of the URI of the Virtual OCF 27
Resource shall be the AllJoyn object path. Otherwise, a Resource with that path shall exist with a 28
Resource type of [“oic.wk.col”, “oic.r.alljoynobject”] which is a Collection of links, where 29
“oic.r.alljoynobject” is defined in Section 9.3, and the items in the collection are the Resources with 30
the translated Resource Types as discussed below. 31
 32
The value of the “piid” property of “/oic/d” for each Virtual OCF Device shall be the value of the 33
OCF-defined AllJoyn field “org.openconnectivity.piid” in the AllJoyn About Announce signal, if that 34
field exists, else it shall be calculated by the Translator as follows: 35
 36

• If the AllJoyn device supports security, the value of the “piid” property value shall be the 37
peer GUID. 38

• If the AllJoyn device does not support security but the device is being bridged anyway (see 39
section 9.2), the “piid” property value shall be derived from the DeviceId and AppId 40
properties (in the About data), by concatenating the DeviceId value (not including any null 41
termination) and the AppId bytes and using the result as the “name” to be used in the 42
algorithm specified in IETF RFC 4122 section 4.3, with SHA-1 as the hash algorithm, and 43
8f0e4e90-79e5-11e6-bdf4-0800200c9a66 as the name space ID. (This is to address the 44
problem of being able to de-duplicate AllJoyn devices exposed via separate OCF Bridge 45
Devices.) 46

A translator implementation is encouraged to listen for AllJoyn About Announce signals matching 47
any AllJoyn interface name. It can maintain a cache of information it received from these signals, 48

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 19

and use the cache to quickly handle “/oic/res” queries from OCF Clients (without having to wait for 1
Announce signals while handling the queries). 2
 3
A translator implementation is encouraged to listen for other signals (including 4
EmitsChangedSignal of properties) only when there is a client subscribed to a corresponding 5
resource on a Virtual AllJoyn Device. 6
 7
There are multiple types of AllJoyn interfaces, which shall be handled as follows. 8

• If the AllJoyn interface is in a well-defined set (defined in OCF ASA Mapping or section 9
7.1.1.1 below) of interfaces where standard forms exist on both the AllJoyn and OCF 10
sides, the translator shall either: 11

a. follow the specification for translating that interface specially, or 12
b. not translate the AllJoyn interface. 13

• If the AllJoyn interface is not in the well-defined set, the translator shall either: 14
a. not translate the AllJoyn interface, or 15
b. algorithmically map the AllJoyn interface as specified in section 7.2 to 16

custom/vendor-defined Resource Types by converting the AllJoyn interface 17
name to OCF resource type name(s). 18
 19

An AllJoyn interface name shall be converted to a Device Type or a set of one or more OCF 20
Resource Types as follows: 21

1) If the AllJoyn interface has any members, append a suffix “.<seeBelow>” where <seeBelow> 22
is described below. 23

2) For each upper-case letter present in the entire string, replace it with a hyphen followed by 24
the lower-case version of that letter (e.g., convert “A” to “-a”). 25

3) If an underscore appears followed by a (lower-case) letter or a hyphen, for each such 26
occurrence, replace the underscore with two hyphens (e.g., convert “_a” to “--a", “_-a” to 27
“---a”). 28

4) For each underscore remaining, replace it with a hyphen (e.g., convert “_1" to “-1”). 29
5) Prepend the “x.” prefix 30

 31
Some examples are shown in the table below. The first three are normal AllJoyn names 32
converted to unusual OCF names. The last three are unusual AllJoyn names converted 33
(perhaps back) to normal OCF names. (“xn--" is a normal domain name prefix for the 34
Punycode-encoded form of an Internationalized Domain Name, and hence can appear in a 35
normal vendor-specific OCF name.) 36
 37

From AllJoyn name To OCF name
example.Widget x.example.-widget
example.my_widget x.example.my--widget
example.My_Widget x.example.-my---widget
xn_p1ai.example x.xn--p1ai.example
xn__90ae.example x.xn--90ae.example
example.myName_1 x.example.my-name-1

 38
Each AllJoyn interface that has members and is using algorithmic mapping shall be mapped to one 39
or more Resource Types as follows: 40

• AllJoyn Properties with the same EmitsChangedSignal value are mapped to the same 41
Resource Type where the value of the <seeBelow> label is the value of 42
EmitsChangedSignal. AllJoyn Properties with EmitsChangedSignal values of “const” or 43
“false”, are mapped to Resources that are not Observable, whereas AllJoyn Properties with 44
EmitsChangedSignal values of “true” or “invalidates” result in Resources that are 45

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 20

Observable. The Version property in an AllJoyn interface is always considered “const”, 1
even if not specified in introspection XML. 2

• Resource Types mapping AllJoyn Properties with access “readwrite” shall support the 3
“oic.if.rw” Interface. Resource Types mapping AllJoyn Properties with access “read” shall 4
support the “oic.if.r” Interface. Resource Types supporting both the “oic.if.rw” and “oic.if.r” 5
Interfaces shall choose “oic.if.r” as the default Interface. 6

• Each AllJoyn Method is mapped to a separate Resource Type, where the value of the 7
<seeBelow> label is the AllJoyn Method name. The Resource Type shall support the 8
“oic.if.rw” Interface. Each argument of the AllJoyn Method is mapped to a separate 9
Property on the Resource Type, where the name of that Property is prefixed with the 10
AllJoyn Method name in order to help get uniqueness across all Resource Types on the 11
same Resource. When the AllJoyn argument name is not specified, the name of the 12
property shall be “x.<AllJoynInterfaceName>.<MethodName>arg<#>”, where 13
<AllJoynInterfaceName> is transformed as described above and <#> is the 0-indexed 14
position of the argument in the AllJoyn introspection XML, prefixed with the AllJoyn Method 15
name. In addition, that Resource Type has an extra 16
“x.<AllJoynInterfaceName>.<MethodName>validity” property that indicates whether the 17
rest of the properties have valid values. When the values are sent as part of an UPDATE 18
response, the validity property is true and any other properties have valid values. In a 19
RETRIEVE (GET or equivalent in the relevant transport binding) response, the validity 20
property is false and any other properties can have meaningless values. If the validity 21
property appears in an UPDATE request, its value shall be true (a value of false shall result 22
in an error response). 23

• Each AllJoyn Signal (whether sessionless, sessioncast, or unicast) is mapped to a separate 24
Resource Type on an Observable Resource, where the value of the <seeBelow> label is 25
the AllJoyn Signal name. The Resource Type shall support the “oic.if.r” Interface. Each 26
argument of the AllJoyn Signal is mapped to a separate Property on the Resource Type, 27
where the name of that Property is prefixed with the AllJoyn Signal name in order to help 28
get uniqueness across all Resource Types on the same Resource. When the AllJoyn 29
argument name is not specified, the name of the property shall be 30
“x.<AllJoynInterfaceName>.<SignalName>arg<#>”, where <AllJoynInterfaceName> is 31
transformed as described above and <#> is the 0-indexed position of the argument in the 32
AllJoyn introspection XML, prefixed with the AllJoyn Signal name. In addition, that 33
Resource Type has an extra “x.<AllJoynInterfaceName>.<SignalName>validity” property 34
(also prefixed with the Signal name) that indicates whether the rest of the properties have 35
valid values. When the values are sent as part of a NOTIFY response, the validity property 36
is true and any other properties have valid values. In a RETRIEVE (GET or equivalent in 37
the relevant transport binding) response, the validity property is false and any other 38
properties returned can have meaningless values. This is because in AllJoyn, the signals 39
are instantaneous events and the values are not necessarily meaningful beyond the lifetime 40
of that message. Note that AllJoyn does have a TTL field that allows store-and-forward 41
signals, but such support is not required in OCF 1.0. We expect that in the future, the TTL 42
may be used to allow valid values in response to a RETRIEVE that is within the TTL. 43

When an algorithmic mapping is used, AllJoyn data types shall be mapped to OCF property types 44
according to Section 7.2. 45
 46
If an AllJoyn operation fails, the translator shall send an appropriate OCF error response to the 47
OCF client. If an AllJoyn error name is available, it shall construct an appropriate OCF error 48
message (e.g., diagnostic payload if using CoAP) from the AllJoyn error name and AllJoyn error 49
message (if any), using the form "<error name>: <error message>“. The <error name> shall be 50
taken from the AllJoyn error name field, with the “org.openconnectivity.Error." prefix removed if it 51

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 21

is present. If the resulting error name is of the form "<#>" where <#> is an error code without a 1
decimal (e.g., “404"), the error code shall be the error code indicated by the error name. Example: 2
“org.openconnectivity.Error.404" becomes “404", which shall result in an error 4.04 for a CoAP 3
transport. 4

7.1.1.1 Exposing an AllJoyn producer application as a Virtual OCF Server 5

Table 1 shows how OCF Device properties, as specified in Table 20 in the OCF 1.0 Core 6
Specification, shall be derived, typically from fields specified in the AllJoyn About Interface 7
Specification and AllJoyn Configuration Interface Specification. 8
 9

Table 1: oic.wk.d resource type definition 10
To OCF
Property
title

OCF
Propert
y name

OCF Description OCF
Mand
?

From AJ Field name AJ Description AJ Mand?

(Device)
Name

n Human friendly
name
For example,
“Bob’s Thermostat”

Y AppName
(no exact equivalent
exists)

Application name
assigned by the
app manufacturer
(developer or the
OEM).

Y

Spec
Version

lcv Spec version of the
core specification this
device is
implemented to, The
syntax is
"core.major.minor”]

Y (none) Translator should
return its own value

Device ID di Unique identifier for
Device. This value
shall be as defined in
[OCF Security] for
DeviceID.

Y (none) Use as defined in
the OCF Security
Specification

Protocol-
Independe
nt ID

piid Unique identifier for
OCF Device (UUID)

Y org.openconnectivity.
piid if it exists, else
“Peer GUID” (not in
About, but exposed
by protocol) if
authenticated, else
Hash(DeviceId,AppId
) where the Hash is
done by
concatenating the
Device Id (not
including any null
terminator) and the
AppId and using the
algorithm in
IETF RFC 4122
section 4.3, with
SHA-1.

This means that the
value of di may
change if the
resource is read both
before and after
authentication, in
order to mitigate
privacy concerns
discussed in RFC
6973.

Peer GUID: The
peer GUID is the
only persistent
identity for a peer.
Peer GUIDs are
used by the
authentication
mechanisms to
uniquely and
identify a remote
application
instance. The peer
GUID for a remote
peer is only
available if the
remote peer has
been authenticated.

DeviceId: Device
identifier set by
platform-specific
means.

AppId: A 128-bit
globally unique
identifier for the
application. The
AppId shall be a
universally unique
identifier as
specified in
IETF RFC 4122.

Peer
GUID:
conditional
ly Y

DeviceId:
Y

AppId: Y

Data Model
Version

dmv Spec version(s) of the
vertical specifications
this device data

Y Comma separated list
of the Version
property values of

This specification
assumes that the
value of the

N, but
required
by IRB for

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 22

model is implemented
to. The syntax is a
comma separated list
of
"<vertical>.major.min
or”]. <vertical> is the
name of the vertical
(i.e. sh for Smart
Home)

each interface listed
in the
objectDescription
argument of the
Announce signal of
About. Each value is
formatted as
"<interface
name>.<Version
property value>".

Version property is
the same as the
value of the
"org.gtk.GDBus.Sin
ce" annotation of
the interface in the
AllJoyn
introspection XML,
and therefore the
value of the
Version property
may be determined
through
introspection alone.

Note that AllJoyn
specifies that the
default value is 1 if
the
"org.gtk.GDBus.Sin
ce" annotation is
absent.

all
standard
interfaces,
and
absence
can be
used to
imply a
constant
(e.g., 0)

Localized
Description
s

ld Detailed description
of the Device, in one
or more languages.
This property is an
array of objects
where each object
has a ‘language’ field
(containing an RFC
5646 language tag)
and a ‘value’ field
containing the device
description in the
indicated language.

N Description Detailed
description
expressed in
language tags as in
RFC 5646.

Y

Software
Version

sv Version of the device
software.

N SoftwareVersion Software version of
the app.

Y

Manufactur
er Name

dmn Name of
manufacturer of the
Device, in one or
more languages.
This property is an
array of objects
where each object
has a ‘language’ field
(containing an RFC
5646 language tag)
and a ‘value’ field
containing the
manufacturer name in
the indicated
language.

N Manufacturer The manufacturer's
name of the app.

Y

Model
Number

dmno Model number as
designated by
manufacturer.

N ModelNumber The app model
number.

Y

 1
In addition, any additional vendor-defined fields in the AllJoyn About data shall be mapped to 2
vendor-defined properties in the OCF core resource “/oic/d” (which implements the “oic.wk.d” 3
resource type), with a property name formed by prepending “x.” to the AllJoyn field name. 4
 5
Table 2 shows how configurable OCF Device properties, as specified in Table 15 in the OCF 1.0 6
Core Specification, shall be derived: 7
 8

Table 2: oic.wk.con resource type definition 9
To OCF
Property
title

OCF
Property
name

OCF Description OCF
Mand?

From AJ Field name AJ Description AJ
Mand?

http://tools.ietf.org/html/rfc5646

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 23

(Device)
Name

n Human friendly
name
For example,
“Bob’s
Thermostat”

Y AppName
(no exact equivalent
exists)

Application name
assigned by the
app manufacturer
(developer or the
OEM).

Y

Location loc Provides location
information where
available.

N org.openconnectivity.loc
(if it exists, else property
shall be absent)

 N

Location
Name

locn Human friendly
name for location
For example,
“Living Room”.

N org.openconnectivity.locn
(if it exists, else property
shall be absent)

 N

Currency c Indicates the
currency that is
used for any
monetary
transactions

N org.openconnectivity.c (if
it exists, else property
shall be absent)

 N

Region r Free form text
Indicating the
current region in
which the device
is located
geographically.
The free form text
shall not start with
a quote (").

N org.openconnectivity.r (if
it exists, else property
shall be absent)

 N

Localized
Names

ln Human-friendly
name of the
Device, in one or
more languages.
This property is an
array of objects
where each object
has a ‘language’
field (containing
an RFC 5646
language tag) and
a ‘value’ field
containing the
device name in
the indicated
language. If this
property and the
Device Name (n)
property are both
supported, the
Device Name (n)
value shall be
included in this
array.

N AppName Application name
assigned by the
app manufacturer
(developer or the
OEM).

Y

Default
Language

dl The default
language
supported by the
Device, specified
as an RFC 5646
language tag. By
default, clients
can treat any
string property as
being in this
language unless
the property
specifies
otherwise.

N DefaultLanguage The default
language
supported by the
device. Specified
as an IETF
language tag
listed in RFC
5646.

Y

 1
In addition, any additional vendor-defined fields in the AllJoyn Configuration data shall be mapped 2
to vendor-defined properties in the OCF core resource “/oic/con” (which implements the 3

http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5646

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 24

“oic.wk.con” resource type), with a property name formed by prepending “x.” to the AllJoyn field 1
name. 2
 3
Table 3 shows how platform properties, as specified in Table 21 in the OCF 1.0 Core Specification, 4
are derived, typically from fields specified in the AllJoyn About Interface Specification and AllJoyn 5
Configuration Interface Specification. 6
 7

Table 3: oic.wk.p Resource Type definition 8
To OCF
Property title

OCF
Property
name

OCF
Description

OCF
Mand?

From AJ Field name AJ
Description

AJ
Mand?

Platform ID pi Unique
identifier for the
physical
platform
(UIUID); this
shall be a UUID
in accordance
with IETF RFC
4122. It is
recommended
that the UUID
be created
using the
random
generation
scheme
(version 4
UUID) specific
in the RFC.

Y DeviceId if it is a UUID,
else generate a name-
based UUID from the
DeviceId using the
DeviceId value (not
including any null
termination) as the “name”
to be used in the algorithm
specified in
IETF RFC 4122 section
4.3, with SHA-1 as the
hash algorithm, and
8f0e4e90-79e5-11e6-bdf4-
0800200c9a66 as the
name space ID.

Name of the
device set by
platform-
specific means
(such as Linux
and Android).

Y

Manufacturer
Name

mnmn Name of
manufacturer
(not to exceed
16 characters)

Y Manufacturer
(in DefaultLanguage,
truncated to 16
characters)

The
manufacturer's
name of the
app.

Y

Manufacturer
Details Link
(URL)

mnml URL to
manufacturer
(not to exceed
32 characters)

N org.openconnectivity.mnml
(if it exists, else property
shall be absent)

 N

Model Number mnmo Model number
as designated
by
manufacturer

N ModelNumber The app model
number.

Y

Date of
Manufacture

mndt Manufacturing
date of device

N DateOfManufacture Date of
manufacture
using format
YYYY-MM-DD
(known as XML
DateTime
format).

N

Platform
Version

mnpv Version of
platform –
string (defined
by
manufacturer)

N org.openconnectivity.mnpv
(if it exists, else property
shall be absent)

 N

OS Version mnos Version of
platform
resident OS –
string (defined
by
manufacturer)

N org.openconnectivity.mnos
(if it exists, else property
shall be absent)

 N

Hardware
Version

mnhw Version of
platform
hardware

N HardwareVersion Hardware
version of the
device on
which the app
is running.

N

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 25

Firmware
version

mnfv Version of
device firmware

N org.openconnectivity.mnfv
(if it exists, else property
shall be absent)

 N

Support URL mnsl URL that points
to support
information
from
manufacturer

N SupportUrl Support URL
(populated by
the
manufacturer)

N

SystemTime st Reference time
for the device

N org.openconnectivity.st (if
it exists, else property
shall be absent)

 N

Vendor ID vid Vendor defined
string for the
platform. The
string is
freeform and up
to the vendor
on what text to
populate it.

N DeviceId Name of the
device set by
platform-
specific means
(such as Linux
and Android).

Y

 1
Table 4 shows how configurable OCF Platform properties, as specified in Table 16 in the OCF 1.0 2
Core Specification, shall be derived: 3
 4

Table 4: oic.wk.con.p Resource Type definition 5
To OCF
Property title

OCF
Property
name

OCF
Description

OCF
Mand?

From AJ Field
name

AJ Description AJ
Mand?

Platform
Names

mnpn Platform
Identifier

N DeviceName Name of the
device set by
platform-
specific means
(such as Linux
and Android).

Device
name
assigned
by the
user. The
device
name
appears
on the UI
as the
friendly
name of
the
device.

 6
In addition, the oic.wk.mnt properties Factory_Reset and Reboot shall be mapped to AllJoyn 7
Configuration methods FactoryReset and Restart, respectively. 8

 Exposing OCF resources to AllJoyn consumer applications 9

Unless specified otherwise, each OCF resource shall be mapped to a separate AllJoyn object. 10
 11
Each OCF Server shall be exposed as a separate AllJoyn producer application, with its own About 12
data. This allows platform-specific, device-specific, and resource-specific fields to all be 13
preserved across translation. However, this requires that AllJoyn Claiming of such producer 14
applications be solved in a way that does not require user interaction, but this is left as an 15
implementation issue. 16
 17
The AllJoyn producer application shall implement the “oic.d.virtual” AllJoyn interface. This allows 18
translators to determine if a device is already being translated when multiple translators are 19
present. The “oic.d.virtual” interface is defined as follows: 20
 21

<interface name="oic.d.virtual"/> 22
 23
The implementation may choose to implement this interface by the AllJoyn object at path “/oic/d”. 24
 25

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 26

The AllJoyn peer ID shall be the OCF device ID (“di”). 1
 2
Unless specified otherwise, the AllJoyn object path on the resource shall be the OCF URI path. 3
The AllJoyn About data shall be populated per Table 5 below. 4
 5
A translator implementation is encouraged to maintain a cache of OCF resources to handle 6
WhoImplements queries from the AllJoyn side, and emit an Announce Signal for each OCF Server. 7
Specifically, the translator could always Observe “/oic/res” changes and only Observe other 8
resources when there is a client with a session on a Virtual AllJoyn Device. 9
 10
There are multiple types of resources, which shall be handled as follows. 11

• If the Resource Type is in a well-defined set (defined in OCF ASA Mapping or section 12
7.1.2.1 below) of resource types where standard forms exist on both the AllJoyn and OCF 13
sides, the translator shall either: 14

a. follow the specification for translating that resource type specially, or 15
b. not translate the Resource Type. 16

• If the Resource Type is not in the well-defined set (but is not a Device Type), the translator 17
shall either: 18

a. not translate the Resource Type, or 19
b. algorithmically map the Resource Type as specified in section 7.2 to a 20

custom/vendor-defined AllJoyn interface by converting the OCF Resource Type 21
name to an AllJoyn Interface name. 22
 23

An OCF Resource Type or Device Type name shall be converted to an AllJoyn interface name as 24
follows: 25

1) Remove the “x.” prefix if present 26
2) For each occurrence of a hyphen (in order from left to right in the string): 27

a. If the hyphen is followed by a letter, replace both characters with a single upper-28
case version of that letter (e.g., convert “-a” to “A”). 29

b. Else, if the hyphen is followed by another hyphen followed by either a letter or a 30
hyphen, replace two hyphens with a single underscore (e.g., convert “--a" to “_a”). 31

c. Else, convert the hyphen to an underscore (i.e., convert “-” to “_”). 32
 33

Some examples are shown in the table below. The first three are unusual OCF names 34
converted (perhaps back) to normal AllJoyn names. The last three are normal OCF names 35
converted to unusual AllJoyn names. (“xn--" is a normal domain name prefix for the Punycode-36
encoded form of an Internationalized Domain Name, and hence can appear in a normal vendor-37
specific OCF name.) 38
 39

From OCF name To AllJoyn name
x.example.-widget example.Widget
x.example.my--widget example.my_widget
x.example.-my---widget example.My_Widget
x.xn--p1ai.example xn_p1ai.example
x.xn--90ae.example xn__90ae.example
x.example.my-name-1 example.myName_1

 40
An OCF Device Type is mapped to an AllJoyn interface with no members. 41
 42
Unless specified otherwise, each OCF Resource Type shall be mapped to an AllJoyn interface as 43
follows: 44

• Each OCF property is mapped to an AllJoyn property in that interface. 45

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 27

• The EmitsChangedSignal value for each AllJoyn property shall be set to “true” if the 1
resource type supports NOTIFY, or “false” if it does not. (The value is never set to “const” 2
or “invalidates” since those concepts cannot currently be expressed in OCF.) 3

• The “access” attribute for each AllJoyn property shall be “read” if the OCF property is read-4
only, or “readwrite” if the OCF property is read-write. 5

• If the resource supports DELETE, a Delete() method shall appear in the interface. 6
• If the resource supports CREATE, a Create() method shall appear in the interface, with 7

input arguments of each property of the resource to create. (Such information is not 8
available algorithmically in OIC 1.1, but can be determined in OCF 1.0 via introspection.) 9
If such information is not available, a CreateWithDefaultValues() method shall appear 10
which takes no input arguments. In either case, the output argument shall be an 11
OBJECT_PATH containing the path of the created resource. 12

• If the resource type supports UPDATE, then an AllJoyn property set (i.e., an 13
org.freedesktop.DBus.Properties.Set() method call) shall be mapped to a Partial UPDATE 14
(i.e., POST) with the corresponding OCF property. 15

• If a Resource has a Resource Type “oic.r.alljoynobject”, then instead of separately 16
translating each of the Resources in the collection to its own AllJoyn object, all Resources 17
in the collection shall instead be translated to a single AllJoyn object whose object path is 18
the OCF URI path of the collection. 19

OCF property types shall be mapped to AllJoyn data types according to Section 7.2. 20
 21
If an OCF operation fails, the translator shall send an appropriate AllJoyn error response to the 22
AllJoyn consumer. If an error message is present in the OCF response, and the error message 23
(e.g., diagnostic payload if using CoAP) fits the pattern "<error name>: <error message>“ where 24
<error name> conforms to the AllJoyn error name syntax requirements, the error name and error 25
message shall be extracted from the error message. Otherwise, the error name shall be 26
“org.openconnectivity.Error.<#>" where <#> is the error code without a decimal (e.g., “404"). 27
 28

7.1.2.1 Exposing an OCF server as a Virtual AllJoyn Producer 29

Table 5 shows how AllJoyn About Interface fields are derived, based on properties in “oic.wk.d”, 30
“oic.wk.con”, “oic.wk.p”, or “oic.wk.con.p”. 31
 32

Table 5: AllJoyn About Data fields 33

To AJ Field name AJ Description
AJ
Mand?

From OCF
Property
title

OCF
Property
name

OCF Description OCF
Mand?

AppId

A 128-bit globally
unique identifier
for the
application. The
AppId shall be a
universally unique
identifier as
specified in RFC
4122.

Y Device ID
(no exact
equivalent
exists)

di Unique identifier for OCF
Device (UUID)

Y

DefaultLanguage

The default
language
supported by the
device. Specified
as an IETF
language tag
listed in RFC
5646.

Y Default
Language

dl The default language
supported by the Device,
specified as an RFC 5646
language tag. By default,
clients can treat any string
property as being in this
language unless the
property specifies
otherwise.

N

http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5646

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 28

To AJ Field name AJ Description
AJ
Mand?

From OCF
Property
title

OCF
Property
name

OCF Description OCF
Mand?

If absent, the translator
shall return a constant,
e.g., empty string

DeviceName (per
supported language)

Name of the
device set by
platform-specific
means (such as
Linux and
Android).

N Platform
Names

mnpn Friendly name of the
Platform. This property is
an array of objects where
each object has a
‘language’ field (containing
an RFC 5646 language
tag) and a ‘value’ field
containing the platform
friendly name in the
indicated language.

For example,
[{“language”:”en”,
 “value”:”Dave’s Laptop”}]

N

DeviceId
Device identifier
set by platform-
specific means.

Y Platform ID pi Platform Identifier Y

AppName (per supported
language)

Application name
assigned by the
app manufacturer
(developer or the
OEM).

Y Localized
Names, if it
exists,
else
(Device)
Name

ln
or
n

Human-friendly name of
the Device, in one or more
languages. This property
is an array of objects
where each object has a
‘language’ field (containing
an RFC 5646 language
tag) and a ‘value’ field
containing the device
name in the indicated
language. If this property
and the Device Name (n)
property are both
supported, the Device
Name (n) value shall be
included in this array.

N (ln),
Y (n)

Manufacturer (per
supported language)

The
manufacturer's
name of the app.

Y Manufacturer
Name

dmn Name of manufacturer of the
Device, in one or more
languages. This property is
an array of objects where
each object has a ‘language’
field (containing an RFC 5646
language tag) and a ‘value’
field containing the
manufacturer name in the
indicated language.

N

ModelNumber The app model
number.

Y Model
Number

dmno Model number as designated
by manufacturer

N

SupportedLanguages List of supported
languages.

Y language
fields of
Localized
Names

ln If ln is supported, return
the list of values of the
language field of each
array element, else return
empty array

N

Description (per supported
language)

Detailed
description
expressed in
language tags as
in RFC 5646..

Y Localized
Descriptions

ld Detailed description of the
Device, in one or more
languages. This property
is an array of objects
where each object has a
‘language’ field (containing
an RFC 5646 language
tag) and a ‘value’ field

N

http://tools.ietf.org/html/rfc5646

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 29

To AJ Field name AJ Description
AJ
Mand?

From OCF
Property
title

OCF
Property
name

OCF Description OCF
Mand?

containing the device
description in the indicated
language.

DateOfManufacture

Date of
manufacture
using format
YYYY-MM-DD
(known as XML
DateTime format).

N Date of
Manufacture

mndt Manufacturing date of device N

SoftwareVersion Software version
of the app.

Y Software
Version

sv Software version of the
device.

N

AJSoftwareVersion

Current version of
the AllJoyn SDK
used by the
application.

Y (none) Translator should return its
own value

HardwareVersion

Hardware version
of the device on
which the app is
running.

N Hardware
Version

mnhw Version of platform hardware N

SupportUrl
Support URL
(populated by the
manufacturer).

N Support URL mnsl URL that points to support
information from
manufacturer

N

org.openconnectivity.mnml

N Manufacturer
Details Link
(URL)

mnml (if it
exists,
else field
shall be
absent)

URL to manufacturer (not to
exceed 32 characters)

N

org.openconnectivity.mnpv

N Platform
Version

mnpv (if it
exists,
else field
shall be
absent)

Version of platform – string
(defined by manufacturer)

N

org.openconnectivity.mnos

N OS Version mnos (if it
exists,
else field
shall be
absent)

Version of platform resident
OS – string (defined by
manufacturer)

N

org.openconnectivity.mnfv

N Firmware
version

mnfv (if it
exists,
else field
shall be
absent)

Version of device firmware N

org.openconnectivity.st

N SystemTime st (if it
exists,
else field
shall be
absent)

Reference time for the device N

org.openconnectivity.piid

N Protocol-
Independent
ID

piid A unique and immutable
Device identifier. A Client can
detect that a single Device
supports multiple
communication protocols if it
discovers that the Device
uses a single Protocol
Independent ID value for all
the protocols it supports.

Y

 1
In addition, any additional vendor-defined properties in the OCF core resource “/oic/d” (which 2
implements the “oic.wk.d” resource type) and the OCF core resource “/oic/p” (which implements 3

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 30

the “oic.wk.p” resource type) shall be mapped to vendor-defined fields the AllJoyn About data, with 1
a field name formed by removing the leading “x.” from the property name. 2
 3
Table 6 shows how AllJoyn Configuration Interface fields shall be derived, based on properties in 4
“oic.wk.con” or “oic.wk.con.p”. 5
 6

Table 6: AllJoyn Configuration Data fields 7

To AJ Field name AJ Description
AJ
Mand?

From OCF
Property title

OCF
Property
name

OCF Description OCF
Mand?

DefaultLanguage
Default language
supported by the
device.

N Default
Language

dl The default language
supported by the Device,
specified as an RFC 5646
language tag. By default,
clients can treat any string
property as being in this
language unless the property
specifies otherwise.

N

DeviceName

Device name
assigned by the
user. The device
name appears
on the UI as the
friendly name of
the device.

N PlatformNames mnpn Friendly name of the
Platform. This property is
an array of objects where
each object has a
‘language’ field (containing
an RFC 5646 language
tag) and a ‘value’ field
containing the platform
friendly name in the
indicated language.

For example,
[{“language”:”en”,
 “value”:”Dave’s Laptop”}]

N

org.openconnectivity.loc

N Location

loc (if it
exists,
else field
shall be
absent)

Provides location
information where
available.

N

org.openconnectivity.locn

N Location Name locn (if it
exists,
else field
shall be
absent)

Human friendly name for
location
For example, “Living
Room”.

N

org.openconnectivity.c

N Currency c (if it
exists,
else field
shall be
absent)

Indicates the currency that is
used for any monetary
transactions

N

org.openconnectivity.r

N Region r (if it
exists,
else field
shall be
absent)

Free form text Indicating
the current region in which
the device is located
geographically. The free
form text shall not start
with a quote (").

N

 8
In addition, the Configuration methods FactoryReset and Restart shall be mapped to “oic.wk.mnt” 9
properties Factory_Reset and Reboot, respectively, and any additional vendor-defined properties 10
in the OCF core resource “/oic/con” (which implements the “oic.wk.con” resource type and 11
optionally the “oic.wk.con.p” resource type) shall be mapped to vendor-defined fields the AllJoyn 12
Configuration data, with a field name formed by removing the leading “x.” from the property name. 13
. 14

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 31

7.2 On-the-Fly Translation from D-Bus and OCF payloads 1

The “dbus1” payload format is specified in the D-Bus Specification and AllJoyn adopted the D-Bus 2

protocol and made it distributed over the network. The modifications done by AllJoyn to the format are all 3

in the header part of the packet, not in the data payload itself, which remains compatible with “dbus1”. Other 4

variants of the protocol that have been proposed by the Linux community (“GVariant” and “kdbus” payloads) 5

contain slight incompatibilities and are not relevant for this discussion. 6

 Translation without aid of introspection 7

This section describes how translators shall translate messages between the two payload formats in the 8

absence of introspection metadata from the actual device. This situation arises in the following cases: 9

• Requests to OIC 1.1 devices 10

• Replies from OIC 1.1 devices 11

• Content not described by introspection, such as the inner payload of AllJoyn properties of type 12

“D-Bus VARIANT”. 13

Since introspection is not available, the translator cannot know the rich JSON sub-type, only the underlying 14

CBOR type and from that it can infer the JSON generic type, and hence translation is specified below in 15

terms of those generic types. 16

7.2.1.1 Booleans 17

Boolean conversion is trivial, since both sides support this type. 18

D-Bus type JSON type

“b” – BOOLEAN boolean (true or false)

7.2.1.2 Numeric types 19

The translation of numeric types is lossy and that is unavoidable due to the limited expressiveness 20
of the JSON generic types. This can only be solved with introspection. 21

The translation of numeric types is direction-specific. 22

From D-Bus type To JSON type

“y” - BYTE (unsigned 8-bit) number

“n” - UINT16 (unsigned 16-bit)

“u” - UINT32 (unsigned 32-bit)

“t” - UINT64 (unsigned 64-bit)(1)

“q” - INT16 (signed 16-bit)

“”" - INT32 (signed 32-bit)

”x” - INT64 (signed 64-bit)(1)

“d” - DOUBLE (IEEE 754 double precision)
 23

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 32

From JSON type To D-Bus type

number “d” - DOUBLE(2)

 1

Notes and rationales: 2

1. D-Bus payloads of types “t” (UINT64) and “x” (INT64) can contain values that cannot be perfectly 3

represented in IEEE 754 double-precision floating point. The RFCs governing JSON do not forbid 4

such numbers but caution that many implementations may not be able to deal with them. 5

Currently, OCF transports its payload using CBOR instead of JSON, which is capable of 6

representing those numbers with fidelity. However, it should be noted that the OCF 1.0 Core 7

Specification does not allow for integral numbers outside the range −253 ≤ 𝑥𝑥 ≤ 253. 8

2. In order to provide the most predictable result, all translations from OCF to AllJoyn produce 9

values of type “d” DOUBLE (IEEE 754 double precision). 10

7.2.1.3 Text strings 11

D-Bus type JSON type

“s” - STRING string
 12

Conversion between D-Bus and JSON strings is simple, as both require their content to be valid Unicode. 13

For example, an implementation can typically do a direct byte copy, as both protocols specify UTF-8 as 14

the encoding of the data, neither constrains the data to a given normalisation format nor specify whether 15

private-use characters or non-characters should be disallowed. 16

Since the length of D-Bus strings is always known, it is recommended translators not use CBOR 17

indeterminate text strings (first byte 0x7f). 18

7.2.1.4 Byte arrays 19

The translation of a byte array is direction-specific. 20

From D-Bus type To JSON type

“ay” - ARRAY of BYTE (base64-encoded) string
 21

The base64url encoding is specified in IETF RFC 4648 section 5. 22

7.2.1.5 D-Bus Variants 23

D-Bus type JSON type
“v” - VARIANT see below

 24

D-Bus has a type called VARIANT (“v”) that is a wrapper around any other D-Bus type. It’s a way for the 25

type system to perform type-erasure. JSON, on the other hand, is not type-safe, which means that all 26

JSON values are, technically, variants. The conversion for a D-Bus variant to JSON is performed by 27

entering that variant and encoding the type carried inside as per the rules in this document. 28

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 33

The algorithm must be recursive, as D-Bus variants are allowed to contain variants themselves. 1

7.2.1.6 D-Bus Object Paths and Signatures 2

The translation of D-Bus object paths and signatures is unidirectional (there is no mapping to them, 3
only from them). In the reverse direction, Section 7.2.1.3 always converts to D-Bus STRING 4
rather than OBJECT_PATH or SIGNATURE since it is assumed that “s” is the most common string 5
type in use. 6

From D-Bus type To JSON type

“o” - OBJECT_PATH string

“g” - SIGNATURE
 7

Both D-Bus object paths and D-Bus type signatures are US-ASCII strings with specific formation rules, 8

found in the D-Bus Specification. They are very seldomly used and are not expected to be found in 9

resources subject to translation without the aid of introspection. 10

7.2.1.7 D-Bus Structures 11

The translation of the following types is direction-specific: 12

From D-Bus type To JSON type

“r” - STRUCT array, length > 0
 13

D-Bus structures can be interpreted as a fixed-length array containing a pre-determined list of types for 14

each member. This is how such a structure is mapped to JSON: as an array of heterogeneous content, 15

which are the exact members of the D-Bus structure, in the order in which they appear in the structure. 16

7.2.1.8 Arrays 17

The translation of the following types is bidirectional: 18

D-Bus type JSON type

“ay” - ARRAY of BYTE (base64-encoded) string – see Section 7.2.1.4

“ae” - ARRAY of DICT_ENTRY object – see Section 7.2.1.9
 19

The translation of the following types is direction-specific: 20

From D-Bus type To JSON type

“a” – ARRAY of anything else not specified above array
 21

 22

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 34

From
JSON type

Condition To D-Bus type

array length=0 “av” – ARRAY of VARIANT

array length>0, all elements of
same type

“a” – ARRAY

array length>0, elements of
different types

“r” – STRUCT

 1

Aside from arrays of bytes and arrays of dictionary entries, which are mapped to JSON strings and objects 2

respectively, arrays in JSON cannot be constrained to a single type (i.e., heterogeneous arrays). For that 3

reason, strictly speaking all D-Bus arrays excepting arrays of bytes and arrays of dictionary entries must 4

first be converted to arrays of variant “av” and then that array can be converted to JSON. 5

Conversion of D-Bus arrays of variants uses the conversion of variants as specified above, which simply 6

eliminates the distinction between a variant containing a given value and that value outside a variant. In 7

other words, the elements of a D-Bus array are extracted and sent as elements of the JSON array, as per 8

the other rules of this document. 9

7.2.1.9 Dictionaries / Objects 10

D-Bus type JSON type
“a{sv}” - dictionary of STRING to VARIANT object

 11

The choice of “dictionary of STRING to VARIANT” is made because that is the most common type of 12

dictionary found in payloads and is an almost perfect superset of all possible dictionaries in D-Bus anyway. 13

Moreover, it is able to represent JSON Objects with fidelity, which is the representation that OCF uses in 14

its data models, which in turn means those D-Bus dictionaries will be able to carry with fidelity any OCF 15

JSON Object in current use. 16

D-Bus dictionaries that are not mapping string to variant are first converted to those constraints and then 17

encoded in CBOR. 18

7.2.1.10 Non-translatable types 19

D-Bus Type
“h” – UNIX_FD (Unix file descriptor)

JSON type
null

undefined (not officially valid JSON, but some
implementations permit it)

 20

The above types are not translatable and the translator should drop the incoming message. None of the 21

types above are in current use by either AllJoyn, OIC 1.1, or future OCF 1.0 devices, so the inability to 22

translate them should not be a problem. 23

7.2.1.11 Examples 24

 25

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 35

Source D-Bus JSON Result

BOOLEAN(FALSE) false

BOOLEAN(TRUE) true

VARIANT(BOOLEAN(FALSE)) false

VARIANT(BOOLEAN(TRUE)) true

BYTE(0) 0.0

BYTE(255) 255.0

INT16(0) 0.0

INT16(-1) -1.0

INT16(-32768) -32768.0

UINT16(0) 0.0

UINT16(65535) 65535.0

INT32(0) 0.0

INT32(-2147483648) -2147483648.0

INT32(2147483647) 2147483647.0

UINT32(0) 0.0

UINT32(4294967295) 4294967295.0

INT64(0) 0.0

INT64(-1) -1.0

UINT64(18446744073709551615) 18446744073709551615.0(1)

DOUBLE(0.0) 0.0

DOUBLE(0.5) 0.5

STRING(“”) “”

STRING(“Hello”) “Hello”

ARRAY<BYTE>() “”

ARRAY<BYTE>(0x48, 0x65, 0x6c, 0x6c, 0x6f) ”SGVsbG8”

OBJECT_PATH(“/”) “/”

SIGNATURE() “”

SIGNATURE(“s”) “s”

VARIANT(INT32(0)) 0

VARIANT(VARIANT(INT32(0))) 0

VARIANT(STRING(“Hello”)) “Hello”
 1

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 36

 1

Source JSON D-Bus Result

false BOOLEAN(false)

true BOOLEAN(true)

0 DOUBLE(0.0)

-1 DOUBLE(-1.0)

-2147483648 DOUBLE(-2147483648.0)

2147483647 DOUBLE(2147483647.0)

2147483648 DOUBLE(2147483648.0)

-2147483649 DOUBLE(-2147483649.0)

9223372036854775808(1) DOUBLE(9223372036854775808.0)

0.0 DOUBLE(0.0)

0.5 DOUBLE(0.5)

0.0f DOUBLE(0.0)

0.5f DOUBLE(0.5)

“” STRING(“”)

“Hello” STRING(“Hello”)

[] ARRAY<VARIANT>()

[1] ARRAY<IDOUBLE>(DOUBLE(1.0))

[1, 2147483648, false, “Hello”] STRUCT<DOUBLE, DOUBLE, BOOLEAN, STRING>(DOUBLE(1.0),
DOUBLE(2147483648.0),
 BOOLEAN(false), STRING(“Hello”)

{} map<STRING, VARIANT>()

{1: 1} map<STRING, VARIANT>(“1” → DOUBLE(1.0))

{“1”: 1} map<STRING, VARIANT>(“1” → DOUBLE(1.0))

{“rep”:
 {
 “state”: false,
 “power”: 1.0,
 “name”: “My Light”
 }
}

map<STRING, VARIANT>(
 {“rep”, map<STRING, VARIANT>(
 {“state”, BOOLEAN(FALSE)},
 {“power”, DOUBLE(1.0)},
 {“name”, STRING(“My Light”)}
)}
)

 2
Note: 3

1. This value cannot be represented with IEEE754 double-precision floating point without loss 4
of information. It is also outside the currently-allowed range of integrals in OCF. 5

 6

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 37

 Translation with aid of introspection 1

When introspection is available, the translator can use the extra metadata provided by the side offering the 2

service to expose a higher-quality reply to the other side. This chapter details modifications to the translation 3

described in the previous chapter when the metadata is found. 4

Introspection metadata can be used for both translating requests to services and replies from those services. 5

When used to translate requests, the introspection is “constraining”, since the translator must conform 6

exactly to what that service expects. When used to translate replies, the introspection is “relaxing”, but may 7

be used to inform the receiver what other possible values may be encountered in the future. 8

Note that OCF introspection uses JSON types, media attributes, and format attributes, not CBOR encoding. 9

The actual encoding of each JSON type is discussed in Section 12.3 of the OCF 1.0 Core Specification, 10

JSON format attribute values are as defined in JSON Schema Validation, and JSON media attribute 11

values are as defined in JSON Hyper-Schema. 12

7.2.2.1 Translation of the introspection itself 13

Note that both OCF 1.0 and AllJoyn require all services exposed to include introspection metadata, which 14

means the translator will need to translate the introspection information on-the-fly for each OCF resource 15

or AllJoyn producer it finds. The translator shall preserve as much of the original information as can be 16

represented in the translated format. This includes both the information used in machine interactions and 17

the information used in user interactions, such as description and documentation text. 18

7.2.2.2 Variability of introspection data 19

Introspection data is not a constant and the translator may find, upon discovering further services, that the 20

D-Bus interface or OCF Resource Type it had previously encountered is different than previously seen. The 21

translator needs to take care about how the destination side will react to a change in introspection. 22

D-Bus interfaces used by AllJoyn services may be updated to newer versions, which means a given type 23

of service may be offered by two distinct versions of the same interface. Updates to standardised interfaces 24

must follow strict guidelines established by the AllSeen Interface Review Board, mapping each version to 25

a different OCF Resource Type should be possible without much difficulty. However, there’s no guarantee 26

that vendor-specific extensions follow those requirements. Indeed, there’s nothing preventing two revisions 27

of a product to contain completely incompatible interfaces that have the same name and version number. 28

On the opposite direction, the rules are much more lax. Since OCF specifies optional properties to its 29

Resource Types, a simple monotonically-increasing version number like AllJoyn consumer applications 30

expect is not possible. 31

However, it should be noted that services created by the translator by “on-the-fly” translation will only be 32

accessed by generic client applications. Dedicated applications will only use “deep binding” translation. 33

7.2.2.3 Numeric types 34

For numeric values, all D-Bus and JSON numeric types are treated equally as source and may all be 35

translated into any of the other side’s types. When translating a request to a service, the translator need 36

only verify whether there would be loss of information when translating from source to destination. For 37

example, when translating the number 1.5 to either a JSON integer or to one of the D-Bus integral types, 38

there would be loss of information, in which case the translator should refuse the incoming message. 39

Similarly, the value 1,234,567 does not fit the range of a D-Bus byte, 16-bit signed or unsigned integer. 40

When translating the reply from the service, the translator shall use the following rules. 41

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 38

The following table indicates how to translate from a JSON type to the corresponding D-Bus type, where 1

the first matching row shall be used. If the JSON schema does not indicate the minimum value of a JSON 2

integer, 0 is the default. If the JSON schema does not indicate the maximum value of a JSON integer, 232 3

– 1 is the default. The resulting AllJoyn introspection XML shall contain “org.alljoyn.Bus.Type.Min” and 4

“org.alljoyn.Bus.Type.Max” annotations whenever the minimum or maximum, respectively, of the JSON 5

value is different from the natural minimum or maximum of the D-Bus type. 6

From JSON type Condition To D-Bus Type

integer

minimum ≥ 0 AND maximum < 28 “y” (BYTE)

minimum ≥ 0 AND maximum < 216 “n” (UINT16)

minimum ≥ -215 AND maximum < 215 “q” (INT16)

minimum ≥ 0 AND maximum < 232 “u” (UINT32)

minimum ≥ -231 AND maximum < 231 “i" (INT32)

minimum ≥ 0 ”t” (UINT64)

 “x” (INT64)

Number “d” (DOUBLE)

String pattern = “^0|([1-9][0-9]{0,19})$” “t” (UINT64)

pattern = “^0|(-?[1-9][0-9]{0,18)}$” “x” (INT64)

 7

The following table indicates how to translate from a D-Bus type to the corresponding JSON type. 8

From D-Bus type To JSON type Note

 “y” (BYTE) integer

“minimum” and “maximum” in the
JSON schema shall be set to the
value of the
“org.alljoyn.Bus.Type.Min” and
“org.alljoyn.Bus.Type.Max”
(respectively) annotations if
present, or to the min and max
values of the D-Bus type’s range if
such annotations are absent.

 “n” (UINT16)

 “q” (INT16)

 “u” (UINT32)

 “i" (INT32)

 “t” (UINT64) integer if org.alljoyn.Bus.Type.Max ≤ 253, else
string with JSON format attribute “uint64”

IETF RFC 7159 section 6 explains
that higher JSON integers are not
interoperable.

 “x” (INT64) integer (if org.alljoyn.Bus.Type.Min ≥ -253 AND
org.alljoyn.Bus.Type.Max ≤ 253), else string
with JSON format attribute “int64”

IETF RFC 7159 section 6 explains
that other JSON integers are not
interoperable.

 “d” (double) number

 9

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 39

7.2.2.4 Text string and byte arrays 1

D-Bus Type JSON type JSON media attribute,
binaryEncoding property

“s” – STRING string (none)

“ay” - ARRAY of BYTE string base64

 2

There’s no difference in the translation of text strings and byte arrays compared to the previous section. 3

This section simply lists the JSON equivalent types for the generated OCF introspection. 4

In addition, the mapping of the following JSON Types is direction-specific: 5

From JSON
type

Condition To D-Bus Type

String pattern = “^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-
fA-F0-9]{4}-[a-fA-F0-9]{12}$”

“ay” – ARRAY of BYTE

 6

JSON strings with any other format value (e.g., date-time, uri, etc.) or pattern value not shown in this table 7

above shall be treated the same as if the format and pattern attributes were absent, by simply mapping 8

the value to a D-Bus string. 9

7.2.2.5 D-Bus Variants 10

D-Bus Type JSON Type

“v” – VARIANT see below
 11

If the introspection of an AllJoyn producer indicates a value in a request should be a D-Bus VARIANT, the 12

translator should create such a variant and encode the incoming value as the variant’s payload as per the 13

rules in the rest of this document. 14

7.2.2.6 D-Bus Object Paths and Signatures 15

From D-Bus Type To JSON Type

“o” - OBJECT_PATH string

“g” - SIGNATURE
 16

If the introspection of an AllJoyn producer indicates a value in a request should be a D-Bus Object Path or 17

D-Bus Signature, the translator should perform a validity check in the incoming CBOR Text String. If the 18

incoming data fails to pass this check, the message should be rejected. 19

7.2.2.7 D-Bus Structures 20

D-Bus structure members are described in the introspection XML with the 21
“org.alljoyn.Bus.Struct.StructureName.Field.fieldName.Type” annotation. The translator shall use 22
the AJSoftwareVersion field of the About data obtained from a bridged AllJoyn producer as follows. 23

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 40

When the version of AllJoyn implemented on the Bridged Device is v16.10.00 or greater and the 1
member annotations are present, the translator shall use a JSON object to represent a structure, 2
mapping each member to the entry with that name. The translator needs to be aware that the 3
incoming CBOR payload may have changed the order of the fields, when compared to the D-Bus 4
structure. When the version of AllJoyn implemented on the Bridged Device is less than v16.10.00, 5
the translator shall follow the rule for translating D-Bus structures without the aid of introspection 6
data. 7

7.2.2.8 Arrays and Dictionaries 8

If the introspection of the AllJoyn interface indicates that the array is neither an ARRAY of BYTE (“ay”) nor 9

an ARRAY of VARIANT (“av”) or that the dictionary is not mapping STRING to VARIANT (“a{sv}”), the 10

translator shall apply the constraining or relaxing rules specified in other sections. 11

Similarly, if the OCF introspection indicates a homogeneous array type, the information about the array’s 12

element type should be used as the D-Bus array type instead of VARIANT (“v”). 13

7.2.2.9 Other JSON format attribute values 14

The JSON format attribute may include other custom attribute types. They are not known at this time, but 15

it is expected that those types be handled by their type and representation alone. 16

7.2.2.10 Examples 17

AllJoyn Source AllJoyn Introspection
Notes

Translated JSON
Payload

OCF Introspection Notes

UINT32 (0) 0 JSON schema should indicate:
type = integer,
minimum = 0
maximum = 4294967295

INT64 (0) 0 Since no Min/Max
annotations exist in AllJoyn,
JSON schema should indicate:
type = string
pattern = ^0|(-?[1-9][0-
9]{0,18)}$

UINT64 (0) “0” Since no Max annotation
exists in AllJoyn, JSON
schema should indicate:
type = string
pattern = ^0|([1-9][0-
9]{0,19})$

STRING(“Hello”) “Hello” JSON schema should indicate:
type = string

OBJECT_PATH(“/”) “/” JSON schema should indicate:
type = string

SIGNATURE(“g”) “g” JSON schema should indicate:
type = string

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 41

AllJoyn Source AllJoyn Introspection
Notes

Translated JSON
Payload

OCF Introspection Notes

ARRAY<BYTE>(0x48,
0x65, 0x6c, 0x6c,
0x6f)

 “SGVsbG8” JSON schema should indicate:
type = string
media binaryEncoding =
base64

VARIANT(anything) ? JSON schema should indicate:
type = value

ARRAY<INT32>() [] JSON schema should indicate:
type = array
items = integer

ARRAY<INT64>() [] JSON schema should indicate:
type = array
items = string
items.pattern = ^0|([1-9][0-
9]{0,19})$

STRUCT< INT32,
INT32>(
 0, 1
)

AllJoyn introspection
specifies the argument
with the annotation:
<struct
name="Point">
 <field
name="x"
type="i"/>
 <field
name="y"
type="i"/>
</struct>

[“x”: 0, “y”: 1] JSON schema should indicate:
type = object
element.x.type = integer
element.y.type = integer

 1

CBOR
Payload

OCF Introspection Notes Translated AllJoyn AllJoyn Introspection Notes

0 JSON type is “integer” INT32(0)

0 JSON type is “integer”
minimum = -240

maximum = 240

INT64(0)

org.alljoyn.Bus.Type.Min = -240

org.alljoyn.Bus.Type.Max = 240

0 JSON type is “integer”
minimum = 0
maximum = 248

UINT64(0)

org.alljoyn.Bus.Type.Max = 248

0.0 JSON type is “float” DOUBLE(0.0)

[1] JSON schema indicates:
type = array

ARRAY<UINT64>(1) org.alljoyn.Bus.Type.Max = 246

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 42

CBOR
Payload

OCF Introspection Notes Translated AllJoyn AllJoyn Introspection Notes

items = integer
element.minimum = 0
element.maximum = 246

8 Device Type Definitions 1

The required Resource Types are listed in the table below. 2

Device Name

 (informative)

Device Type (“rt”)

(Normative)

Required
Resource
name

Required Resource Type

Bridge oic.d.bridge Secure Mode oic.r.securemode

Virtual Device oic.d.virtual Device oic.wk.d

9 Resource Type definitions 3

9.1 List of resource types 4

Table 7 Alphabetical list of resource types 5

Friendly Name (informative) Resource Type (rt) Section

Secure Mode oic.r.securemode 9.2

AllJoyn Object oic.r.alljoynobject 9.3

 6

9.2 Secure Mode 7

9.2.1 Introduction 8

This resource describes a secure mode on/off feature (on/off). 9

A secureMode value of “true” means that the feature is on, and: 10

• any Bridged Server that cannot be communicated with securely shall not have a 11
corresponding Virtual OCF Server, and 12

• any Bridged Client that cannot be communicated with securely shall not have a 13
corresponding Virtual OCF Client. 14

A secureMode value of “false” means that the feature is off, and: 15

• any Bridged Server can have a corresponding Virtual OCF Server, and 16

• any Bridged Client can have a corresponding Virtual OCF Client. 17

9.2.2 Example URI 18

/example/SecureModeResURI 19

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 43

9.2.3 Resource Type 1

The resource type (rt) is defined as: oic.r.securemode. 2

9.2.4 RAML Definition 3

#%RAML 0.8 4

title: OCFSecureMode 5
version: v1.0.0-20160719 6

traits: 7
 - interface : 8
 queryParameters: 9

 if: 10
 enum: ["oic.if.rw", "oic.if.baseline"] 11

 12

/example/SecureModeResURI: 13

 description: | 14
 This resource describes a secure mode on/off feature (on/off). 15
 A secureMode value of “true” means that the feature is on, and any Bridged Server that cannot 16
be communicated with securely shall not have a corresponding Virtual OCF Server, and any Bridged 17
Client that cannot be communicated with securely shall not have a corresponding Virtual OCF Client. 18
 A secureMode value of “false” means that the feature is off, any Bridged Server can have a 19
corresponding Virtual OCF Server, and any Bridged Client can have a corresponding Virtual OCF 20
Client. 21
 22

 is : ['interface'] 23

 get: 24
 responses : 25

 200: 26

 body: 27
 application/json: 28

 schema: | 29

 { 30
 "id": "http://openinterconnect.org/iotdatamodels/schemas/oic.r.securemode.json#", 31
 "$schema": "http://json-schema.org/draft-04/schema#", 32
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 33
reserved.", 34
 "title": "Secure Mode", 35
 "definitions": { 36
 "oic.r.securemode": { 37
 "type": "object", 38
 "properties": { 39
 "secureMode": { 40
 "type": "boolean", 41
 "description": "Status of the Secure Mode" 42
 } 43
 } 44
 } 45
 }, 46
 "type": "object", 47
 "allOf": [48
 {"$ref": "oic.core.json#/definitions/oic.core"}, 49
 {"$ref": "oic.baseResource.json#/definitions/oic.r.baseresource"}, 50
 {"$ref": "#/definitions/oic.r.securemode"} 51
], 52
 "required": ["secureMode"] 53
 } 54
 55

 example: | 56

 { 57
 "rt": ["oic.r.securemode"], 58
 "id": "unique_example_id", 59
 "secureMode": false 60

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 44

 } 1
 2

 post: 3
 body: 4
 application/json: 5

 schema: | 6

 { 7
 "id": "http://openinterconnect.org/iotdatamodels/schemas/oic.r.securemode.json#", 8
 "$schema": "http://json-schema.org/draft-04/schema#", 9
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 10
reserved.", 11
 "title": "Secure Mode", 12
 "definitions": { 13
 "oic.r.securemode": { 14
 "type": "object", 15
 "properties": { 16
 "secureMode": { 17
 "type": "boolean", 18
 "description": "Status of the Secure Mode" 19
 } 20
 } 21
 } 22
 }, 23
 "type": "object", 24
 "allOf": [25
 {"$ref": "oic.core.json#/definitions/oic.core"}, 26
 {"$ref": "oic.baseResource.json#/definitions/oic.r.baseresource"}, 27
 {"$ref": "#/definitions/oic.r.securemode"} 28
], 29
 "required": ["secureMode"] 30
 } 31
 32

 example: | 33

 { 34
 "id": "unique_example_id", 35
 "secureMode": true 36
 } 37
 38

 responses : 39

 200: 40

 body: 41
 application/json: 42

 schema: | 43

 { 44
 "id": "http://openinterconnect.org/iotdatamodels/schemas/oic.r.securemode.json#", 45
 "$schema": "http://json-schema.org/draft-04/schema#", 46
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 47
reserved.", 48
 "title": "Secure Mode", 49
 "definitions": { 50
 "oic.r.securemode": { 51
 "type": "object", 52
 "properties": { 53
 "secureMode": { 54
 "type": "boolean", 55
 "description": "Status of the Secure Mode" 56
 } 57
 } 58
 } 59
 }, 60
 "type": "object", 61
 "allOf": [62
 {"$ref": "oic.core.json#/definitions/oic.core"}, 63
 {"$ref": "oic.baseResource.json#/definitions/oic.r.baseresource"}, 64
 {"$ref": "#/definitions/oic.r.securemode"} 65

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 45

], 1
 "required": ["secureMode"] 2
 } 3
 4

 example: | 5

 { 6
 "id": "unique_example_id", 7
 "secureMode": true 8
 } 9
 10
 11

9.2.5 Property Definition 12

Property name Value type Mandatory Access mode Description
secureMode boolean yes Read Write Status of the Secure Mode

9.2.6 CRUDN behaviour 13

Example Resource URI Create Read Update Delete Notify
/example/SecureModeResURI get post get

 14

9.3 AllJoyn Object 15

 Introduction 16

This resource is a collection of resources that were all derived from the same AllJoyn object. 17

 Example URI 18

/example/AllJoynObjectBaselineResURI 19

 Resource Type 20

The resource type (rt) is defined as: oic.r.alljoynobject. 21

 RAML Definition 22

#%RAML 0.8 23
title: OCFAllJoynObject 24
version: v1.0.0-20170305 25
traits: 26
 - interface-baseline: 27
 queryParameters: 28
 if: 29
 enum: ["oic.if.baseline"] 30
 - interface-ll: 31
 queryParameters: 32
 if: 33
 enum: ["oic.if.ll"] 34
 35
 36
/example/AllJoynObjectBaselineResURI: 37
 description: | 38
 The resource is a collection of resources that were all derived from the same AllJoyn object. 39
 40
 is: [interface-baseline] 41
 42
 get: 43
 description: | 44
 Retrieves the current AllJoyn object information. 45
 responses: 46
 200: 47
 body: 48
 application/json: 49
 schema: | 50
 { 51

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 46

 "id": 1
"http://openinterconnect.org/iotdatamodels/schemas/oic.r.alljoynobject.json#", 2
 "$schema": "http://json-schema.org/draft-04/schema#", 3
 "description" : "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights 4
reserved.", 5
 "title": "AllJoyn Object", 6
 "definitions": { 7
 "oic.r.alljoynobject": { 8
 "type": "object", 9
 "allOf": [10
 { 11
 "$ref": "oic.collection-schema.json#/definitions/oic.collection" 12
 }, 13
 { 14
 "rt": { 15
 "type": "array", 16
 "minItems": 2, 17
 "maxItems": 2, 18
 "uniqueItems": true, 19
 "items": { 20
 "enum": ["oic.r.alljoynobject","oic.wk.col"] 21
 } 22
 } 23
 } 24
] 25
 } 26
 }, 27
 "type": "object", 28
 "allOf": [29
 {"$ref": "oic.core.json#/definitions/oic.core"}, 30
 {"$ref": "#/definitions/oic.r.alljoynobject"} 31
] 32
 } 33
 example: | 34
 { 35
 "rt": ["oic.r.alljoynobject","oic.wk.col"], 36
 "id": "unique_example_id", 37
 "links": [38
 {"href": "/myRes1URI", "rt": ["x.example.widget.false"], "if": 39
["oic.if.r","oic.if.rw","oic.if.baseline"]}, 40
 {"href": "/myRes2URI", "rt": ["x.example.widget.true"], "if": 41
["oic.if.r","oic.if.rw","oic.if.baseline"]}, 42
 {"href": "/myRes3URI", "rt": ["x.example.widget.method1"], "if": 43
["oic.if.rw","oic.if.baseline"]}, 44
 {"href": "/myRes4URI", "rt": ["x.example.widget.method2"], "if": 45
["oic.if.rw","oic.if.baseline"]} 46
] 47
 } 48
 49
/example/AllJoynObjectLLResURI: 50
 description: | 51
 The resource is a collection of resources that were all derived from the same AllJoyn object. 52
 53
 displayName: AllJoyn Object 54
 is: [interface-ll] 55
 56
 get: 57
 responses: 58
 200: 59
 body: 60
 application/json: 61
 schema: | 62
 { 63
 "id": "http://openinterconnect.org/iotdatamodels/schemas/oic.r.alljoynobject-ll#", 64
 "$schema": "http://json-schema.org/draft-04/schema#", 65
 "description" : "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights 66
reserved.", 67
 "title": "AllJoyn Object Link List Schema", 68
 "definitions": { 69
 "oic.r.alljoynobject-ll": { 70
 "type": "object", 71

Copyright Open Connectivity Foundation, Inc. © 2017. All rights Reserved. 47

 "allOf": [1
 { 2
 "$ref": "oic.collection.linkslist-3
schema.json#/definitions/oic.collection.alllinks" 4
 } 5
] 6
 } 7
 }, 8
 "type": "object", 9
 "allOf": [10
 {"$ref": "oic.core.json#/definitions/oic.core"}, 11
 {"$ref": "#/definitions/oic.r.alljoynobject-ll"} 12
] 13
 } 14
 example: | 15
 { 16
 "links": [17
 {"href": "/myRes1URI", "rt": ["x.example.widget.false"], "if": 18
["oic.if.r","oic.if.rw","oic.if.baseline"]}, 19
 {"href": "/myRes2URI", "rt": ["x.example.widget.true"], "if": 20
["oic.if.r","oic.if.rw","oic.if.baseline"]}, 21
 {"href": "/myRes3URI", "rt": ["x.example.widget.method1"], "if": 22
["oic.if.rw","oic.if.baseline"]}, 23
 {"href": "/myRes4URI", "rt": ["x.example.widget.method2"], "if": 24
["oic.if.rw","oic.if.baseline"]} 25
] 26
 } 27
 28

 CRUDN behaviour 29

Example Resource URI Create Read Update Delete Notify
/example/SecureModeResURI get post get

 30

	1 Scope
	2 Normative references
	3 Terms, definitions, symbols and abbreviations
	3.1 Terms and definitions
	3.2 Symbols and abbreviations
	3.3 Conventions

	4 Document conventions and organization
	4.1 Notation
	4.2 Data types
	4.3 Document structure

	5 Operational Scenarios
	5.1 “Deep translation” vs. “on-the-fly”
	5.2 Use of introspection
	5.3 Stability and loss of data

	6 OCF Bridge Device
	6.1 Resource Discovery
	6.2 General Requirements
	6.3 Security
	6.3.1 Blocking communication of Bridged Devices with the OCF ecosystem

	7 AllJoyn Translation
	7.1 Requirements Specific to an AllJoyn Translator
	7.1.1 Exposing AllJoyn producer devices to OCF Clients
	7.1.1.1 Exposing an AllJoyn producer application as a Virtual OCF Server

	7.1.2 Exposing OCF resources to AllJoyn consumer applications
	7.1.2.1 Exposing an OCF server as a Virtual AllJoyn Producer

	7.2 On-the-Fly Translation from D-Bus and OCF payloads
	7.2.1 Translation without aid of introspection
	7.2.1.1 Booleans
	7.2.1.2 Numeric types
	7.2.1.3 Text strings
	7.2.1.4 Byte arrays
	7.2.1.5 D-Bus Variants
	7.2.1.6 D-Bus Object Paths and Signatures
	7.2.1.7 D-Bus Structures
	7.2.1.8 Arrays
	7.2.1.9 Dictionaries / Objects
	7.2.1.10 Non-translatable types
	7.2.1.11 Examples

	7.2.2 Translation with aid of introspection
	7.2.2.1 Translation of the introspection itself
	7.2.2.2 Variability of introspection data
	7.2.2.3 Numeric types
	7.2.2.4 Text string and byte arrays
	7.2.2.5 D-Bus Variants
	7.2.2.6 D-Bus Object Paths and Signatures
	7.2.2.7 D-Bus Structures
	7.2.2.8 Arrays and Dictionaries
	7.2.2.9 Other JSON format attribute values
	7.2.2.10 Examples

	8 Device Type Definitions
	9 Resource Type definitions
	9.1 List of resource types
	9.2 Secure Mode
	9.2.1 Introduction
	9.2.2 Example URI
	9.2.3 Resource Type
	9.2.4 RAML Definition
	9.2.5 Property Definition
	9.2.6 CRUDN behaviour

	9.3 AllJoyn Object
	9.3.1 Introduction
	9.3.2 Example URI
	9.3.3 Resource Type
	9.3.4 RAML Definition
	9.3.5 CRUDN behaviour

