
 
 

 

CONTACT admin@openconnectivity.org 
Copyright Open Connectivity Foundation, Inc. © 2017.  
All Rights Reserved. 

 

 OCF Bridging Specification 
VERSION 1.3.0  |  November 2017 

mailto:admin@openconnectivity.org


Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 1 
  

Legal Disclaimer 5 
 6 

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY 7 
KIND OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY 8 
INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR 9 
DEVELOPERS OF THIS DOCUMENT.  THE INFORMATION CONTAINED HEREIN IS PROVIDED 10 
ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, 11 
THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY DISCLAIM ALL OTHER 12 
WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT 13 
COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF 14 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  OPEN CONNECTIVITY 15 
FOUNDATION, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF NON-16 
INFRINGEMENT, ACCURACY OR LACK OF VIRUSES. 17 

 18 

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or other 19 
countries.  *Other names and brands may be claimed as the property of others. 20 

 21 

Copyright © 2017 Open Connectivity Foundation, Inc.  All rights reserved.   22 

 23 

Copying or other form of reproduction and/or distribution of these works are strictly prohibited. 24 

  25 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 2 
  

 26 

CONTENTS 27 

 28 

1 Scope ............................................................................................................................. 6 29 

2 Normative references ...................................................................................................... 6 30 

3 Terms, definitions, symbols and abbreviations ................................................................ 7 31 

3.1 Terms and definitions ............................................................................................. 7 32 

3.2 Symbols and abbreviations ..................................................................................... 9 33 

3.3 Conventions ........................................................................................................... 9 34 

4 Document conventions and organization ......................................................................... 9 35 

4.1 Notation ................................................................................................................ 10 36 

4.2 Data types ............................................................................................................ 10 37 

4.3 Document structure .............................................................................................. 10 38 

5 Operational Scenarios ................................................................................................... 10 39 

5.1 “Deep translation” vs. “on-the-fly” ......................................................................... 11 40 

5.2 Use of introspection .............................................................................................. 11 41 

5.3 Stability and loss of data ...................................................................................... 11 42 

6 OCF Bridge Device ....................................................................................................... 12 43 

6.1 Resource Discovery.............................................................................................. 13 44 

6.2 General Requirements .......................................................................................... 22 45 

6.3 Security ................................................................................................................ 22 46 

 Blocking communication of Bridged Devices with the OCF ecosystem ........... 23 47 

7 AllJoyn Translation ........................................................................................................ 23 48 

7.1 Requirements Specific to an AllJoyn Translator .................................................... 23 49 

 Exposing AllJoyn producer devices to OCF Clients ....................................... 24 50 

 Exposing OCF resources to AllJoyn consumer applications ........................... 31 51 

7.2 On-the-Fly Translation from D-Bus and OCF payloads.......................................... 37 52 

 Translation without aid of introspection ......................................................... 37 53 

 Translation with aid of introspection .............................................................. 43 54 

8 Device Type Definitions ................................................................................................. 48 55 

9 Resource Type definitions ............................................................................................. 48 56 

9.1 List of resource types ........................................................................................... 48 57 

9.2 Secure Mode ........................................................................................................ 48 58 

9.2.1 Introduction ................................................................................................... 48 59 

9.2.2 Example URI Path ......................................................................................... 49 60 

9.2.3 Resource Type .............................................................................................. 49 61 

9.2.4 RAML Definition ............................................................................................ 49 62 

 Swagger2.0 Definition ................................................................................... 51 63 

9.2.6 Property Definition ........................................................................................ 53 64 

9.2.7 CRUDN behaviour ......................................................................................... 53 65 

9.3 AllJoyn Object ...................................................................................................... 53 66 

 Introduction ................................................................................................... 53 67 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 3 
  

 Example URI Path ......................................................................................... 53 68 

 Resource Type .............................................................................................. 53 69 

 RAML Definition ............................................................................................ 54 70 

 Swagger2.0 Definition ................................................................................... 56 71 

 CRUDN behaviour ......................................................................................... 58 72 

  73 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 4 
  

Figures 74 
Figure 1. OCF Bridge Device Components ............................................................................. 7 75 

Figure 2: Schematic overview of an OCF Bridge Device bridging non-OCF devices .............. 12 76 

  77 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 5 
  

Tables 78 
Table 1: oic.wk.d resource type definition ............................................................................. 27 79 

Table 2: oic.wk.con resource type definition ......................................................................... 28 80 

Table 3: oic.wk.p Resource Type definition ........................................................................... 30 81 

Table 4: oic.wk.con.p Resource Type definition .................................................................... 31 82 

Table 5: AllJoyn About Data fields ........................................................................................ 33 83 

Table 6: AllJoyn Configuration Data fields ............................................................................ 36 84 

Table 7 Alphabetical list of resource types ............................................................................ 48 85 

 86 
87 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 6 
  

1 Scope 88 

This document specifies a framework for translation between OCF devices and other ecosystems, 89 
and specifies the behaviour of a translator that exposes AllJoyn producer applications to OCF 90 
clients, and exposes OCF servers to AllJoyn consumer applications.  Translation of specific AllJoyn 91 
interfaces to or from specific OCF resource types is left to other specifications.  Translation of 92 
protocols other than AllJoyn is left to a future version of this specification.  This document provides 93 
generic requirements that apply unless overridden by a more specific document. 94 

2 Normative references 95 

The following documents, in whole or in part, are normatively referenced in this document and are 96 
indispensable for its application. For dated references, only the edition cited applies. For undated 97 
references, the latest edition of the referenced document (including any amendments) applies. 98 

AllJoyn About Interface Specification, About Feature Interface Definitions, Version 14.12 99 
https://allseenalliance.org/framework/documentation/learn/core/about-announcement/interface  100 

AllJoyn Configuration Interface Specification, Configuration Interface Definition, Version 14.12 101 
https://allseenalliance.org/framework/documentation/learn/core/configuration/interface   102 

D-Bus Specification, D-Bus Specification 103 
https://dbus.freedesktop.org/doc/dbus-specification.html  104 

IEEE 754, IEEE Standard for Floating-Point Arithmetic, August 2008 105 
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933   106 

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005 107 
https://www.rfc-editor.org/info/rfc4122  108 

IETF RFC 4648, The Base16, Base32, and Base64 Data Encodings, October 2006 109 
https://www.rfc-editor.org/info/rfc4648  110 

IETF RFC 6973, Privacy Considerations for Internet Protocols, July 2013 111 
https://www.rfc-editor.org/info/rfc6973 112 

IETF RFC 7049, Concise Binary Object Representation (CBOR), October 2013 113 
https://www.rfc-editor.org/info/rfc7049  114 

IETF RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format, March 2014 115 
https://www.rfc-editor.org/info/rfc7159  116 

JSON Schema Core, JSON Schema: core definitions and terminology, January 2013 117 
http://json-schema.org/latest/json-schema-core.html  118 

JSON Schema Validation, JSON Schema: interactive and non-interactive validation, January 119 
2013 120 
http://json-schema.org/latest/json-schema-validation.html 121 

JSON Hyper-Schema, JSON Hyper-Schema: A Vocabulary for Hypermedia Annotation of JSON, 122 
October 2016 123 
http://json-schema.org/latest/json-schema-hypermedia.html  124 

OCF Core Specification, Open Connectivity Foundation Core Specification, Version 1.3 125 
Available at: https://openconnectivity.org/specs/OCF_Core_Specification_v1.3.0.pdf 126 
Latest version available at: https://openconnectivity.org/specs/OCF_Core_Specification.pdf 127 

https://allseenalliance.org/framework/documentation/learn/core/about-announcement/interface
https://allseenalliance.org/framework/documentation/learn/core/configuration/interface
https://dbus.freedesktop.org/doc/dbus-specification.html
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7159
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-validation.html
http://json-schema.org/latest/json-schema-hypermedia.html
https://openconnectivity.org/specs/OCF_Core_Specification_v1.3.0.pdf
https://openconnectivity.org/specs/OCF_Core_Specification.pdf


Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 7 
  

OCF Security Specification, Open Connectivity Foundation Security Specification, Version 1.3 128 
https://openconnectivity.org/specs/OCF_Security_Specification_v1.3.0.pdf  129 
Latest version available at: https://openconnectivity.org/specs/OCF_Security_Specification.pdf  130 

OCF Resource to AllJoyn Interface Mapping Specification, Open Connectivity Foundation 131 
Resource to AllJoyn Interface Mapping Specification, Version 1.3 132 
Available at: 133 
https://openconnectivity.org/specs/OCF_Resource_to_AllJoyn_Interface_Mapping_v1.3.0.pdf 134 
Latest version available at: 135 
https://openconnectivity.org/specs/OCF_Resource_to_AllJoyn_Interface_Mapping.pdf     136 

OIC Core Specification, Open Interconnect Consortium Core Specification, Version 1.1 137 
https://openconnectivity.org/specs/OIC_Core_Specification_v1.1.2.pdf  138 

RAML Specification, RESTful API Modeling Language, Version 0.8 139 
https://github.com/raml-org/raml-spec/blob/master/versions/raml-08/raml-08.md 140 

OpenAPI Specification, Version 2.0 141 
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md 142 

3 Terms, definitions, symbols and abbreviations 143 

3.1 Terms and definitions 144 

3.1.1  145 
OCF Bridge Device 146 
An OCF Device that can represent devices that exist on the network but communicate using a 147 
Bridged Protocol rather than OCF protocols. 148 

Bridged
Client

OCF 
Server

OCF 
Client

Bridged
Server

Virtual 
OCF

Server

OCF
Protocol

Bridged
Protocol

Virtual 
Bridged 
Client

Translator

Bridged
Protocol

OCF
Protocol

Virtual 
OCF

Client

Virtual 
Bridged 
Server

OCF Bridge Device

149 
 150 

Figure 1. OCF Bridge Device Components 151 

3.1.2  152 
Bridged Protocol 153 
another protocol (e.g., AllJoyn) that is being translated to or from OCF protocols 154 

3.1.3  155 
Translator 156 
an OCF Bridge Device component that is responsible for translating to or from a specific Bridged 157 
Protocol.  More than one translator can exist on the same OCF Bridge Device, for different Bridged 158 
Protocols. 159 

https://openconnectivity.org/specs/OCF_Security_Specification_v1.3.0.pdf
https://openconnectivity.org/specs/OCF_Security_Specification.pdf
https://openconnectivity.org/specs/OCF_Resource_to_AllJoyn_Interface_Mapping_v1.3.0.pdf
https://openconnectivity.org/specs/OCF_Resource_to_AllJoyn_Interface_Mapping.pdf
https://openconnectivity.org/specs/OIC_Core_Specification_v1.1.2.pdf
https://github.com/raml-org/raml-spec/blob/master/versions/raml-08/raml-08.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md


Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 8 
  

3.1.4  160 
OCF Client 161 
a logical entity that accesses an OCF Resource on an OCF Server, which might be a Virtual OCF 162 
Server exposed by the OCF Bridge Device. 163 

3.1.5  164 
Bridged Client 165 
a logical entity that accesses data via a Bridged Protocol.  For example, an AllJoyn Consumer 166 
application is a Bridged Client. 167 

3.1.6  168 
Virtual OCF Client 169 
a logical representation of a Bridged Client, which an OCF Bridge Device exposes to OCF Servers. 170 

3.1.7  171 
Virtual Bridged Client 172 
a logical representation of an OCF Client, which an OCF Bridge Device exposes to Bridged Servers. 173 

3.1.8  174 
OCF Device 175 
a logical entity that assumes one or more OCF roles (OCF Client, OCF Server).  More than one 176 
OCF Device can exist on the same physical platform. 177 

3.1.9  178 
Virtual OCF Server 179 
a logical representation of a Bridged Server, which an OCF Bridge Device exposes to OCF Clients. 180 

3.1.10  181 
Bridged Server 182 
a logical entity that provides data via a Bridged Protocol.  For example, an AllJoyn Producer is a 183 
Bridged Server.  More than one Bridged Server can exist on the same physical platform. 184 

3.1.11  185 
Virtual Bridged Server 186 
a logical representation of an OCF Server, which an OCF Bridge Device exposes to Bridged Clients. 187 

3.1.12   188 
OCF Resource 189 
represents an artifact modelled and exposed by the OCF Framework 190 

3.1.13   191 
Virtual OCF Resource 192 
a logical representation of a Bridged Resource, which an OCF Bridge Device exposes to OCF 193 
Clients. 194 

3.1.14   195 
Bridged Resource 196 
represents an artifact modelled and exposed by a Bridged Protocol.  For example, an AllJoyn 197 
object is a Bridged Resource. 198 

3.1.15  199 
OCF Resource Property 200 
a significant aspect or notion including metadata that is exposed through the OCF Resource 201 

3.1.16  202 
OCF Resource Type 203 
an OCF Resource Property that represents the data type definition for the OCF Resource  204 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 9 
  

3.1.17  205 
Bridged Resource Type 206 

a schema used with a Bridged Protocol.  For example, AllJoyn Interfaces are Bridged Resource 207 
Types. 208 

3.1.18  209 
OCF Server 210 
a logical entity with the role of providing resource state information and allowing remote control of 211 
its resources. 212 

3.1.19  213 
Onboarding Tool 214 
defined by the OCF Security Specification as: A logical entity within a specific IoT network that 215 
establishes ownership for a specific device and helps bring the device into operational state within 216 
that network. 217 

3.1.20  218 
Bridged Device 219 
a Bridged Client or Bridged Server. 220 

3.1.21  221 
Virtual OCF Device 222 
a Virtual OCF Client or Virtual OCF Server. 223 

3.2 Symbols and abbreviations 224 

3.2.1  225 
CRUDN 226 
Create Read Update Delete Notify 227 
indicating which operations are possible on the resource 228 

3.2.2  229 
CSV 230 
Comma Separated Value List 231 
construction to have more fields in 1 string separated by commas. If a value contains a comma, 232 
then the comma can be escaped by adding “\” in front of the comma. 233 

3.2.3  234 
OCF 235 
Open Connectivity Foundation 236 
organization that created these specifications 237 

3.2.4  238 
RAML 239 
RESTful API Modeling Language 240 
Simple and succinct way of describing practically RESTful APIs (see the RAML Specification) 241 

3.3 Conventions 242 

In this specification several terms, conditions, mechanisms, sequences, parameters, events, 243 
states, or similar terms are printed with the first letter of each word in uppercase and the rest 244 
lowercase (e.g., Network Architecture). Any lowercase uses of these words have the normal 245 
technical English meaning. 246 

4 Document conventions and organization 247 

For the purposes of this document, the terms and definitions given in the OCF 1.0 Core 248 
Specification apply. 249 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 10 
  

4.1 Notation 250 

In this document, features are described as required, recommended, allowed or DEPRECATED as 251 
follows: 252 

Required (or shall or mandatory). 253 

– These basic features shall be implemented to comply with this specification. The phrases “shall 254 
not”, and “PROHIBITED” indicate behaviour that is prohibited, i.e. that if performed means the 255 
implementation is not in compliance. 256 

Recommended (or should). 257 

– These features add functionality supported by this specification and should be implemented. 258 
Recommended features take advantage of the capabilities of this specification, usually without 259 
imposing major increase of complexity. Notice that for compliance testing, if a recommended 260 
feature is implemented, it shall meet the specified requirements to be in compliance with these 261 
guidelines. Some recommended features could become requirements in the future. The phrase 262 
“should not” indicates behaviour that is permitted but not recommended. 263 

Allowed (or allowed). 264 

– These features are neither required nor recommended, but if the feature is implemented, it 265 
shall meet the specified requirements to be in compliance with these guidelines.  266 

Conditionally allowed (CA) 267 

– The definition or behaviour depends on a condition. If the specified condition is met, then the 268 
definition or behaviour is allowed, otherwise it is not allowed. 269 

Conditionally required (CR) 270 

– The definition or behaviour depends on a condition. If the specified condition is met, then the 271 
definition or behaviour is required. Otherwise the definition or behaviour is allowed as default 272 
unless specifically defined as not allowed. 273 

DEPRECATED 274 

– Although these features are still described in this specification, they should not be implemented 275 
except for backward compatibility. The occurrence of a deprecated feature during operation of 276 
an implementation compliant with the current specification has no effect on the 277 
implementation’s operation and does not produce any error conditions. Backward compatibility 278 
may require that a feature is implemented and functions as specified but it shall never be used 279 
by implementations compliant with this specification. 280 

Strings that are to be taken literally are enclosed in “double quotes”. 281 

Words that are emphasized are printed in italic. 282 

4.2 Data types 283 

Data types are defined in the OCF 1.0 Core Specification.  284 

4.3 Document structure 285 

Section 5 discusses operational scenarios.  Section 6 covers generic requirements for any OCF 286 
Bridge, and section 7 covers the specific requirements for a Bridge that translates to/from AllJoyn.  287 
These are covered separately to ease the task of defining translation to other protocols in the 288 
future. 289 

5 Operational Scenarios 290 

The overall goals are to: 291 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 11 
  

1. make Bridged Servers appear to OCF clients as if they were native OCF servers, and 292 

2. make OCF servers appear to Bridged Clients as if they were native non-OCF servers. 293 

5.1 “Deep translation” vs. “on-the-fly” 294 

When translating a service between a Bridged Protocol (e.g., AllJoyn) and OCF protocols, there 295 
are two possible types of translation. Translators are expected to dedicate most of their logic to 296 
“deep translation” types of communication, in which data models used with the Bridged Protocol 297 
are mapped to the equivalent OCF Resource Types and vice-versa, in such a way that a compliant 298 
OCF Client or Bridged Client would be able to interact with the service without realising that a 299 
translation was made.  300 

“Deep translation” is out of the scope of this document, as the procedure far exceeds mapping of 301 
types. For example, clients on one side of a translator may decide to represent an intensity as an 302 
8-bit value between 0 and 255, whereas the devices on the other may have chosen to represent 303 
that as a floating-point number between 0.0 and 1.0. It’s also possible that the procedure may 304 
require storing state in the translator. Either way, the programming of such translation will require 305 
dedicated effort and study of the mechanisms on both sides. 306 

The other type of translation, the “on-the-fly” or “one-to-one” translation, requires no prior 307 
knowledge of the device-specific schema in question on the part of the translator. The burden is, 308 
instead, on one of the other participants in the communication, usually the client application. That 309 
stems from the fact that “on-the-fly” translation always produces Bridged Resource Types and OCF 310 
Resource Types as vendor extensions. 311 

For AllJoyn, deep translation is specified in OCF ASA Mapping, and on-the-fly translation is 312 
covered in section 7.2 of this document. 313 

5.2 Use of introspection 314 

Whenever possible, the translation code should make use of metadata available that indicates 315 
what the sender and recipient of the message in question are expecting. For example, devices that 316 
are AllJoyn Certified are required to carry the introspection data for each object and interface they 317 
expose. The OIC 1.1 Core Specification makes no such requirement, but the OCF 1.0 Core 318 
Specification does. When the metadata is available, translators should convert the incoming 319 
payload to exactly the format expected by the recipient and should use information when 320 
translating replies to form a more useful message. 321 

For example, for an AllJoyn translator, the expected interaction list is presented on the list below: 322 

Message Type Sender Receiver Metadata 

Request AllJoyn 16.10 OIC 1.1 Not available 

Request AllJoyn 16.10 OCF 1.0 Available 

Request OIC 1.1 or OCF 1.0 AllJoyn 16.10 Available 

Response AllJoyn 16.10 OIC 1.1 or OCF 1.0 Available 

Response OIC 1.1 AllJoyn 16.10 Not available 

Response OCF 1.0 AllJoyn 16.10 Available 

5.3 Stability and loss of data 323 

Round-tripping through the translation process specified in this document is not expected to 324 
reproduce the same original message. The process is, however, designed not to lose data or 325 
precision in messages, though it should be noted that both OCF and AllJoyn payload formats allow 326 
for future extensions not considered in this document. 327 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 12 
  

However, a third round of translation should produce the same identical message as was 328 
previously produced, provided the same information is available. That is, in the above chain, 329 
payloads 2 and 4 as well as 3 and 5 should be identical. 330 

6 OCF Bridge Device 331 

This section describes the functionality of an OCF Bridge Device; such a device is illustrated in 332 
Figure 2. 333 

An OCF Bridge Device is a device that represents one or more Bridged Devices as Virtual OCF 334 
Devices on the network and/or represents one or more OCF Devices as Virtual Devices using 335 
another protocol on the network. The Bridged Devices themselves are out of the scope of this 336 
document. The only difference between a native OCF Device and a Virtual Bridged Device is how 337 
the device is encapsulated in an OCF Bridge Device. 338 

An OCF Bridge Device shall be indicated on the OCF network with a Device Type of “oic.d.bridge”. 339 
This provides to an OCF Client an explicit indication that the discovered Device is performing a 340 
bridging function.  This is useful for several reasons; 1) when establishing a home network the 341 
Client can determine that the bridge is reachable and functional when no bridged devices are 342 
present, 2) allows for specific actions to be performed on the bridge considering the known 343 
functionality a bridge supports, 3) allows for explicit discovery of all devices that are serving a 344 
bridging function which benefits trouble shooting and maintenance actions on behalf of a user. 345 
When such a device is discovered the exposed Resources on the OCF Bridge Device describe 346 
other devices. For example, as shown in Figure 2. 347 

OCF Bridge Device

Virtual OCF Server 1 
(oic.d.fan)

Virtual OCF Server 2 
(oic.d.light)

Virtual OCF Server 3 
(oic.d.light)

OCF facing

Light 2

Light 1

Fan

Bridged Devices

 348 

Figure 2: Schematic overview of an OCF Bridge Device bridging non-OCF devices 349 

It is expected that the OCF Bridge Device creates a set of devices during the start-up of the OCF 350 
Bridge Device. The exposed set of Virtual OCF Devices can change as Bridged Devices are added 351 
or removed from the bridge. The adding and removing of Bridged Devices is implementation 352 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 13 
  

dependent. When an OCF Bridge Device changes the set of exposed Virtual OCF Devices, it shall 353 
notify any OCF Clients subscribed to its “/oic/res”.  354 

6.1 Resource Discovery 355 

An OCF Bridge Device shall detect devices that arrive and leave the Bridged network or the OCF 356 
network. Where there is no pre-existing mechanism to reliably detect the arrival and departure of 357 
devices on a network, an OCF Bridge Device shall periodically poll the network to detect arrival 358 
and departure of devices, for example using COAP multicast discovery (a multicast RETRIEVE of 359 
“/oic/res”) in the case of the OCF network. OCF Bridge Device implementations are encouraged to 360 
use a poll interval of 30 seconds plus or minus a random delay of a few seconds. 361 

An OCF Bridge Device shall respond to network discovery commands on behalf of the exposed 362 
bridged devices. All bridged devices with all their Resources shall be listed in “/oic/res” of the 363 
Bridge. The response to a RETRIEVE on “/oic/res” shall only include the devices that match the 364 
RETRIEVE request. 365 

The resource reference determined from each Link exposed by “/oic/res” on the Bridge shall be 366 
unique. The Bridge shall meet the requirements defined in the OCF 1.0 Core Specification for 367 
population of the Properties and Link parameters in “/oic/res”.  368 

For example, if an OCF Bridge Device exposes Virtual OCF Servers for the fan and lights shown 369 
in Figure 2, the bridge might return the following information corresponding to the JSON below to 370 
a legacy OIC 1.1 client doing a RETRIEVE on “/oic/res”.  (Note that what is returned is not in the 371 
JSON format but in a suitable encoding as defined in the OCF 1.0 Core Specification.) 372 

 373 
[ 374 
  { 375 
    "di": "e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 376 
    "links": [ 377 
      { 378 
        "href": "coap://[2001:db8:a::b1d4]:55555/oic/res", 379 
        "rel": "self", 380 
        "rt": ["oic.wk.res"], 381 
        "if": ["oic.if.ll", "oic.if.baseline"], 382 
        "p": {"bm": 3, "sec": true, "port": 11111} 383 
      }, 384 
      { 385 
        "href": "/oic/d", 386 
        "rt": ["oic.wk.d", "oic.d.bridge"], 387 
        "if": ["oic.if.r", "oic.if.baseline"], 388 
        "p": {"bm": 3, "sec": true, "port": 11111} 389 
      }, 390 
      { 391 
        "href": "/oic/p", 392 
        "rt": ["oic.wk.p"], 393 
        "if": ["oic.if.r", "oic.if.baseline"], 394 
        "p": {"bm": 3, "sec": true, "port": 11111} 395 
      }, 396 
      { 397 
        "href": "/mySecureMode", 398 
        "rt": ["oic.r.securemode"], 399 
        "if": ["oic.if.rw", "oic.if.baseline"], 400 
        "p": {"bm": 3, "sec": true, "port": 11111} 401 
      }, 402 
      { 403 
        "href": "/oic/sec/doxm", 404 
        "rt": ["oic.r.doxm"], 405 
        "if": ["oic.if.baseline"], 406 
        "p": {"bm": 1, "sec": true, "port": 11111} 407 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 14 
  

      }, 408 
      { 409 
        "href": "/oic/sec/pstat", 410 
        "rt": ["oic.r.pstat"], 411 
        "if": ["oic.if.baseline"], 412 
        "p": {"bm": 1, "sec": true, "port": 11111} 413 
      }, 414 
      { 415 
        "href": "/oic/sec/cred", 416 
        "rt": ["oic.r.cred"], 417 
        "if": ["oic.if.baseline"], 418 
        "p": {"bm": 1, "sec": true, "port": 11111} 419 
      }, 420 
      { 421 
        "href": "/oic/sec/acl2", 422 
        "rt": ["oic.r.acl2"], 423 
        "if": ["oic.if.baseline"], 424 
        "p": {"bm": 1, "sec": true, "port": 11111} 425 
      }, 426 
      { 427 
        "href": "/myIntrospection", 428 
        "rt": ["oic.wk.introspection"], 429 
        "if": ["oic.if.r", "oic.if.baseline"], 430 
        "p": {"bm": 3, "sec": true, "port": 11111} 431 
      } 432 
    ] 433 
  }, 434 
  { 435 
    "di": "88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 436 
    "links": [ 437 
      { 438 
        "href": "coaps://[2001:db8:a::b1d4]:22222/oic/res", 439 
        "rt": ["oic.wk.res"], 440 
        "if": ["oic.if.ll", "oic.if.baseline"], 441 
        "p": {"bm": 3, "sec": true, "port": 22222} 442 
      }, 443 
      { 444 
        "href": "coaps://[2001:db8:a::b1d4]:22222/oic/d", 445 
        "rt": ["oic.wk.d", "oic.d.fan", "oic.d.virtual"], 446 
        "if": ["oic.if.r", "oic.if.baseline"], 447 
        "p": {"bm": 3, "sec": true, "port": 22222} 448 
      }, 449 
      { 450 
        "href": "coaps://[2001:db8:a::b1d4]:22222/oic/p", 451 
        "rt": ["oic.wk.p"], 452 
        "if": ["oic.if.r", "oic.if.baseline"], 453 
        "p": {"bm": 3, "sec": true, "port": 22222} 454 
      }, 455 
      { 456 
        "href": "coaps://[2001:db8:a::b1d4]:22222/myFan", 457 
        "rt": ["oic.r.switch.binary"], 458 
        "if": ["oic.if.a", "oic.if.baseline"], 459 
        "p": {"bm": 3, "sec": true, "port": 22222} 460 
      }, 461 
      { 462 
        "href": "coaps://[2001:db8:a::b1d4]:22222/oic/sec/doxm", 463 
        "rt": ["oic.r.doxm"], 464 
        "if": ["oic.if.baseline"], 465 
        "p": {"bm": 1, "sec": true, "port": 22222} 466 
      }, 467 
      { 468 
        "href": "coaps://[2001:db8:a::b1d4]:22222/oic/sec/pstat", 469 
        "rt": ["oic.r.pstat"], 470 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 15 
  

        "if": ["oic.if.baseline"], 471 
        "p": {"bm": 1, "sec": true, "port": 22222} 472 
      }, 473 
      { 474 
        "href": "coaps://[2001:db8:a::b1d4]:22222/oic/sec/cred", 475 
        "rt": ["oic.r.cred"], 476 
        "if": ["oic.if.baseline"], 477 
        "p": {"bm": 1, "sec": true, "port": 22222} 478 
      }, 479 
      { 480 
        "href": "coaps://[2001:db8:a::b1d4]:22222/oic/sec/acl2", 481 
        "rt": ["oic.r.acl2"], 482 
        "if": ["oic.if.baseline"], 483 
        "p": {"bm": 1, "sec": true, "port": 22222} 484 
      }, 485 
      { 486 
        "href": "coaps://[2001:db8:a::b1d4]:22222/myFanIntrospection", 487 
        "rt": ["oic.wk.introspection"], 488 
        "if": ["oic.if.r", "oic.if.baseline"], 489 
        "p": {"bm": 3, "sec": true, "port": 22222} 490 
      } 491 
    ] 492 
  }, 493 
  { 494 
    "di": "dc70373c-1e8d-4fb3-962e-017eaa863989", 495 
    "links": [ 496 
      { 497 
        "href": "coaps://[2001:db8:a::b1d4]:33333/oic/res", 498 
        "rt": ["oic.wk.res"], 499 
        "if": ["oic.if.ll", "oic.if.baseline"], 500 
        "p": {"bm": 3, "sec": true, "port": 33333} 501 
      }, 502 
      { 503 
        "href": "coaps://[2001:db8:a::b1d4]:33333/oic/d", 504 
        "rt": ["oic.wk.d", "oic.d.light", "oic.d.virtual"], 505 
        "if": ["oic.if.r", "oic.if.baseline"], 506 
        "p": {"bm": 3, "sec": true, "port": 33333} 507 
      }, 508 
      { 509 
        "href": "coaps://[2001:db8:a::b1d4]:33333/oic/p", 510 
        "rt": ["oic.wk.p"], 511 
        "if": ["oic.if.r", "oic.if.baseline"], 512 
        "p": {"bm": 3, "sec": true, "port": 33333} 513 
      }, 514 
      { 515 
        "href": "coaps://[2001:db8:a::b1d4]:33333/myLight", 516 
        "rt": ["oic.r.switch.binary"], 517 
        "if": ["oic.if.a", "oic.if.baseline"], 518 
        "p": {"bm": 3, "sec": true, "port": 33333} 519 
      }, 520 
      { 521 
        "href": "coaps://[2001:db8:a::b1d4]:33333/oic/sec/doxm", 522 
        "rt": ["oic.r.doxm"], 523 
        "if": ["oic.if.baseline"], 524 
        "p": {"bm": 1, "sec": true, "port": 33333} 525 
      }, 526 
      { 527 
        "href": "coaps://[2001:db8:a::b1d4]:33333/oic/sec/pstat", 528 
        "rt": ["oic.r.pstat"], 529 
        "if": ["oic.if.baseline"], 530 
        "p": {"bm": 1, "sec": true, "port": 33333} 531 
      }, 532 
      { 533 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 16 
  

        "href": "coaps://[2001:db8:a::b1d4]:33333/oic/sec/cred", 534 
        "rt": ["oic.r.cred"], 535 
        "if": ["oic.if.baseline"], 536 
        "p": {"bm": 1, "sec": true, "port": 33333} 537 
      }, 538 
      { 539 
        "href": "coaps://[2001:db8:a::b1d4]:33333/oic/sec/acl2", 540 
        "rt": ["oic.r.acl2"], 541 
        "if": ["oic.if.baseline"], 542 
        "p": {"bm": 1, "sec": true, "port": 33333} 543 
      },    544 
      { 545 
        "href": "coaps://[2001:db8:a::b1d4]:33333/myLightIntrospection", 546 
        "rt": ["oic.wk.introspection"], 547 
        "if": ["oic.if.r", "oic.if.baseline"], 548 
        "p": {"bm": 3, "sec": true, "port": 33333} 549 
      } 550 
    ] 551 
  }, 552 
  { 553 
    "di": "8202138e-aa22-452c-b512-9ebad02bef7c", 554 
    "links": [ 555 
      { 556 
        "href": "coaps://[2001:db8:a::b1d4]:44444/oic/res", 557 
        "rt": ["oic.wk.res"], 558 
        "if": ["oic.if.ll", "oic.if.baseline"], 559 
        "p": {"bm": 3, "sec": true, "port": 44444} 560 
      }, 561 
      { 562 
        "href": "coaps://[2001:db8:a::b1d4]:44444/oic/d", 563 
        "rt": ["oic.wk.d", "oic.d.light", "oic.d.virtual"], 564 
        "if": ["oic.if.r", "oic.if.baseline"], 565 
        "p": {"bm": 3, "sec": true, "port": 44444} 566 
      }, 567 
      { 568 
        "href": "coaps://[2001:db8:a::b1d4]:44444/oic/p", 569 
        "rt": ["oic.wk.p"], 570 
        "if": ["oic.if.r", "oic.if.baseline"], 571 
        "p": {"bm": 3, "sec": true, "port": 44444} 572 
      }, 573 
      { 574 
        "href": "coaps://[2001:db8:a::b1d4]:44444/myLight", 575 
        "rt": ["oic.r.switch.binary"], 576 
        "if": ["oic.if.a", "oic.if.baseline"], 577 
        "p": {"bm": 3, "sec": true, "port": 44444} 578 
      }, 579 
      { 580 
        "href": "coaps://[2001:db8:a::b1d4]:44444/oic/sec/doxm", 581 
        "rt": ["oic.r.doxm"], 582 
        "if": ["oic.if.baseline"], 583 
        "p": {"bm": 1, "sec": true, "port": 44444} 584 
      }, 585 
      { 586 
        "href": "coaps://[2001:db8:a::b1d4]:44444/oic/sec/pstat", 587 
        "rt": ["oic.r.pstat"], 588 
        "if": ["oic.if.baseline"], 589 
        "p": {"bm": 1, "sec": true, "port": 44444} 590 
      }, 591 
      { 592 
        "href": "coaps://[2001:db8:a::b1d4]:44444/oic/sec/cred", 593 
        "rt": ["oic.r.cred"], 594 
        "if": ["oic.if.baseline"], 595 
        "p": {"bm": 1, "sec": true, "port": 44444} 596 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 17 
  

      }, 597 
      { 598 
        "href": "coaps://[2001:db8:a::b1d4]:44444/oic/sec/acl2", 599 
        "rt": ["oic.r.acl2"], 600 
        "if": ["oic.if.baseline"], 601 
        "p": {"bm": 1, "sec": true, "port": 44444} 602 
      },    603 
      { 604 
        "href": "coaps://[2001:db8:a::b1d4]:44444/myLightIntrospection", 605 
        "rt": ["oic.wk.introspection"], 606 
        "if": ["oic.if.r", "oic.if.baseline"], 607 
        "p": {"bm": 3, "sec": true, "port": 44444} 608 
      } 609 
    ] 610 
  } 611 
] 612 

The above example illustrates that each Virtual OCF Server has its own “di” and endpoint 613 
exposed by the bridge, and that “/oic/p” and “/oic/d” are available for each Virtual OCF Server. 614 
 615 
When an OCF Client requests a content format of “application/vnd.ocf+cbor”, the same bridge 616 
will return information corresponding to the JSON below.  (Note that what is returned is not in the 617 
JSON format but in a suitable encoding as defined in the OCF 1.0 Core Specification.) 618 
 619 

[ 620 
 { 621 
   "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9",  622 
   "href": "/oic/res",  623 
   "rel": "self", 624 
   "rt": ["oic.wk.res"], 625 
   "if": ["oic.if.ll", "oic.if.baseline"], 626 
   "p": {"bm": 3}, 627 
   "eps": [{"ep": "coap://[2001:db8:a::b1d4]:55555"}, 628 
           {"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 629 
 },  630 
 { 631 
   "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 632 
   "href": "/oic/d", 633 
   "rt": ["oic.wk.d", "oic.d.bridge"], 634 
   "if": ["oic.if.r", "oic.if.baseline"], 635 
   "p": {"bm": 3}, 636 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 637 
 }, 638 
 { 639 
   "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 640 
   "href": "/oic/p", 641 
   "rt": ["oic.wk.p"], 642 
   "if": ["oic.if.r", "oic.if.baseline"], 643 
   "p": {"bm": 3}, 644 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 645 
 }, 646 
 { 647 
   "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 648 
   "href": "/mySecureMode", 649 
   "rt": ["oic.r.securemode"], 650 
   "if": ["oic.if.rw", "oic.if.baseline"], 651 
   "p": {"bm": 3}, 652 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 653 
 }, 654 
 { 655 
   "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 656 
   "href": "/oic/sec/doxm", 657 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 18 
  

   "rt": ["oic.r.doxm"], 658 
   "if": ["oic.if.baseline"], 659 
   "p": {"bm": 1}, 660 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 661 
 }, 662 
 { 663 
   "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 664 
   "href": "/oic/sec/pstat", 665 
   "rt": ["oic.r.pstat"], 666 
   "if": ["oic.if.baseline"], 667 
   "p": {"bm": 1}, 668 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 669 
 }, 670 
 { 671 
   "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 672 
   "href": "/oic/sec/cred", 673 
   "rt": ["oic.r.cred"], 674 
   "if": ["oic.if.baseline"], 675 
   "p": {"bm": 1}, 676 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 677 
 }, 678 
 { 679 
   "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 680 
   "href": "/oic/sec/acl2", 681 
   "rt": ["oic.r.acl2"], 682 
   "if": ["oic.if.baseline"], 683 
   "p": {"bm": 1}, 684 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 685 
 }, 686 
 { 687 
   "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 688 
   "href": "/myIntrospection", 689 
   "rt": ["oic.wk.introspection"], 690 
   "if": ["oic.if.r", "oic.if.baseline"], 691 
   "p": {"bm": 3}, 692 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 693 
 }, 694 
  695 
 696 
 { 697 
   "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 698 
   "href": "/oic/res", 699 
   "rt": ["oic.wk.res"], 700 
   "if": ["oic.if.ll", "oic.if.baseline"], 701 
   "p": {"bm": 3}, 702 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 703 
 },  704 
 { 705 
   "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 706 
   "href": "/oic/d", 707 
   "rt": ["oic.wk.d", "oic.d.fan", "oic.d.virtual"], 708 
   "if": ["oic.if.r", "oic.if.baseline"], 709 
   "p": {"bm": 3}, 710 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 711 
 }, 712 
 { 713 
   "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 714 
   "href": "/oic/p", 715 
   "rt": ["oic.wk.p"], 716 
   "if": ["oic.if.r", "oic.if.baseline"], 717 
   "p": {"bm": 3}, 718 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 719 
 }, 720 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 19 
  

 { 721 
   "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 722 
   "href": "/myFan", 723 
   "rt": ["oic.r.switch.binary"], 724 
   "if": ["oic.if.a", "oic.if.baseline"], 725 
   "p": {"bm": 3}, 726 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 727 
 }, 728 
 { 729 
   "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 730 
   "href": "/oic/sec/doxm", 731 
   "rt": ["oic.r.doxm"], 732 
   "if": ["oic.if.baseline"], 733 
   "p": {"bm": 1}, 734 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 735 
 }, 736 
 { 737 
   "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 738 
   "href": "/oic/sec/pstat", 739 
   "rt": ["oic.r.pstat"], 740 
   "if": ["oic.if.baseline"], 741 
   "p": {"bm": 1}, 742 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 743 
 }, 744 
 { 745 
   "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 746 
   "href": "/oic/sec/cred", 747 
   "rt": ["oic.r.cred"], 748 
   "if": ["oic.if.baseline"], 749 
   "p": {"bm": 1}, 750 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 751 
 }, 752 
 { 753 
   "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 754 
   "href": "/oic/sec/acl2", 755 
   "rt": ["oic.r.acl2"], 756 
   "if": ["oic.if.baseline"], 757 
   "p": {"bm": 1}, 758 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 759 
 }, 760 
 { 761 
   "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 762 
   "href": "/myFanIntrospection", 763 
   "rt": ["oic.wk.introspection"], 764 
   "if": ["oic.if.r", "oic.if.baseline"], 765 
   "p": {"bm": 3}, 766 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 767 
 }, 768 
 769 
 { 770 
   "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 771 
   "href": "/oic/res", 772 
   "rt": ["oic.wk.res"], 773 
   "if": ["oic.if.ll", "oic.if.baseline"], 774 
   "p": {"bm": 3}, 775 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 776 
 },  777 
 { 778 
   "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 779 
   "href": "/oic/d", 780 
   "rt": ["oic.wk.d", "oic.d.light", "oic.d.virtual"], 781 
   "if": ["oic.if.r", "oic.if.baseline"], 782 
   "p": {"bm": 3}, 783 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 20 
  

   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 784 
 }, 785 
 { 786 
   "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 787 
   "href": "/oic/p", 788 
   "rt": ["oic.wk.p"], 789 
   "if": ["oic.if.r", "oic.if.baseline"], 790 
   "p": {"bm": 3}, 791 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 792 
 }, 793 
 { 794 
   "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 795 
   "href": "/myLight", 796 
   "rt": ["oic.r.switch.binary"], 797 
   "if": ["oic.if.a", "oic.if.baseline"], 798 
   "p": {"bm": 3}, 799 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 800 
 }, 801 
 { 802 
   "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 803 
   "href": "/oic/sec/doxm", 804 
   "rt": ["oic.r.doxm"], 805 
   "if": ["oic.if.baseline"], 806 
   "p": {"bm": 1}, 807 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 808 
 }, 809 
 { 810 
   "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 811 
   "href": "/oic/sec/pstat", 812 
   "rt": ["oic.r.pstat"], 813 
   "if": ["oic.if.baseline"], 814 
   "p": {"bm": 1}, 815 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 816 
 }, 817 
 { 818 
   "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 819 
   "href": "/oic/sec/cred", 820 
   "rt": ["oic.r.cred"], 821 
   "if": ["oic.if.baseline"], 822 
   "p": {"bm": 1}, 823 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 824 
 }, 825 
 { 826 
   "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 827 
   "href": "/oic/sec/acl2", 828 
   "rt": ["oic.r.acl2"], 829 
   "if": ["oic.if.baseline"], 830 
   "p": {"bm": 1}, 831 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 832 
 }, 833 
 { 834 
   "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 835 
   "href": "/myLightIntrospection", 836 
   "rt": ["oic.wk.introspection"], 837 
   "if": ["oic.if.r", "oic.if.baseline"], 838 
   "p": {"bm": 3}, 839 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 840 
 }, 841 
 842 
 { 843 
   "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 844 
   "href": "/oic/res", 845 
   "rt": ["oic.wk.res"], 846 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 21 
  

   "if": ["oic.if.ll", "oic.if.baseline"], 847 
   "p": {"bm": 3}, 848 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 849 
 },  850 
 { 851 
   "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 852 
   "href": "/oic/d", 853 
   "rt": ["oic.wk.d", "oic.d.light", "oic.d.virtual"], 854 
   "if": ["oic.if.r", "oic.if.baseline"], 855 
   "p": {"bm": 3}, 856 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 857 
 }, 858 
 { 859 
   "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 860 
   "href": "/oic/p", 861 
   "rt": ["oic.wk.p"], 862 
   "if": ["oic.if.r", "oic.if.baseline"], 863 
   "p": {"bm": 3}, 864 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 865 
 }, 866 
 { 867 
   "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 868 
   "href": "/myLight", 869 
   "rt": ["oic.r.switch.binary"], 870 
   "if": ["oic.if.a", "oic.if.baseline"], 871 
   "p": {"bm": 3}, 872 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 873 
 }, 874 
 { 875 
   "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 876 
   "href": "/oic/sec/doxm", 877 
   "rt": ["oic.r.doxm"], 878 
   "if": ["oic.if.baseline"], 879 
   "p": {"bm": 1}, 880 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 881 
 }, 882 
 { 883 
   "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 884 
   "href": "/oic/sec/pstat", 885 
   "rt": ["oic.r.pstat"], 886 
   "if": ["oic.if.baseline"], 887 
   "p": {"bm": 1}, 888 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 889 
 }, 890 
  { 891 
   "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 892 
   "href": "/oic/sec/cred", 893 
   "rt": ["oic.r.cred"], 894 
   "if": ["oic.if.baseline"], 895 
   "p": {"bm": 1}, 896 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 897 
 }, 898 
 { 899 
   "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 900 
   "href": "/oic/sec/acl2", 901 
   "rt": ["oic.r.acl2"], 902 
   "if": ["oic.if.baseline"], 903 
   "p": {"bm": 1}, 904 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 905 
 }, 906 
 { 907 
   "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 908 
   "href": "/myLightIntrospection", 909 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 22 
  

   "rt": ["oic.wk.introspection"], 910 
   "if": ["oic.if.r", "oic.if.baseline"], 911 
   "p": {"bm": 3}, 912 
   "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 913 
 } 914 
] 915 

6.2 General Requirements 916 
 917 
The translator shall check the protocol-independent UUID (“piid” in OCF) of each device and shall 918 
not advertise back into a Bridged Protocol a device originally seen via that Bridged Protocol.  The 919 
translator shall stop translating any Bridged Protocol device exposed in OCF via another translator 920 
if the translator sees the device via the Bridged Protocol.  Similarly, the translator shall not 921 
advertise an OCF Device back into OCF, and the translator shall stop translating any OCF device 922 
exposed in the Bridged Protocol via another translator if the translator sees the device via OCF.  923 
These require that the translator can determine when a device is already being translated.  A 924 
Virtual OCF Device shall be indicated on the OCF network with a Device Type of “oic.d.virtual”.  925 
This allows translators to determine if a device is already being translated when multiple translators 926 
are present.  How a translator determines if a device is already being translated on a non-OCF 927 
network is described in the protocol-specific sections below. 928 
 929 
The translator shall detect duplicate virtual devices (with the same protocol-independent UUID) 930 
present in a network and shall not create more than one corresponding virtual device as it 931 
translates those duplicate devices into another network. 932 
 933 
Each Bridged Server shall be exposed as a separate Virtual OCF Server, with its own endpoint, 934 
and its own “/oic/d” and “/oic/p”.  The Virtual OCF Server’s “/oic/res” resource would be the same 935 
as for any ordinary OCF Server that uses a resource directory. That is, it does not respond to 936 
multicast discovery requests (because the OCF Bridge Device responds on its behalf), but a 937 
unicast query elicits a response listing its own resources with a “rel”=“hosts” relationship, and an 938 
appropriate “anchor” to indicate that it is not the OCF Bridge Device itself. This allows platform-939 
specific, device-specific, and resource-specific fields to all be preserved across translation.  940 
 941 
The introspection data provided by the translator shall include information about all the virtual 942 
devices (and their resources) exposed by the translator at that point in time. This means that the 943 
introspection data provided by the translator before and after a new virtual device is exposed would 944 
be different. 945 

6.3 Security 946 

The OCF Bridge Device shall go through OCF ownership transfer as any other onboardee would. 947 
Separately, it shall go through the Bridged Protocol’s ownership transfer mechanism (e.g., AllJoyn 948 
claiming) normally as any other onboardee would. 949 
 950 
The OCF Bridge Device shall be field updatable.   (This requirement need not be tested but can 951 
be certified via a vendor declaration.) 952 
 953 
Unless an administrator opts in to allow it (see section 9.2), a translator shall not expose 954 
connectivity to devices that it cannot get a secure connection to. 955 

Each Virtual OCF Device shall be provisioned for security by an OCF Onboarding tool. Each Virtual 956 
Bridged Device should be provisioned as appropriate in the Bridged ecosystem. In other words, 957 
Virtual Devices are treated the same way as physical Devices. They are entities that have to be 958 
provisioned in their network. 959 

The Translator shall provide a “piid” value that can be used to correlate a non-OCF Device with its 960 
corresponding Virtual OCF Device, as specified in Section 6.2. An Onboarding Tool might use this 961 
correlation to improve the Onboarding user experience by eliminating or reducing the need for user 962 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 23 
  

input, by automatically creating security settings for Virtual OCF Devices that are equivalent to the 963 
security settings of their corresponding non-OCF Devices. See the OCF Security Specification for 964 
detailed information about Onboarding. 965 

Each Virtual Device shall implement the security requirements of the ecosystem that it is connected 966 
to. For example, each Virtual OCF Device shall implement the behaviour required by the OCF 1.0 967 
Core Specification and the OCF Security Specification. Each Virtual OCF Device shall perform 968 
authentication, access control, and encryption according to the security settings it received from 969 
the Onboarding Tool. 970 

Depending on the architecture of the Translator, authentication and access control might take 971 
place just within each ecosystem, but not within the Translator. For example, when an OCF Client 972 
sends a request to a Virtual OCF Server: 973 

- Authentication and access control might be performed by the Virtual OCF Server when 974 
receiving the request from the OCF Client. 975 

- The Translator might not perform authentication or access control when the request travels 976 
through the Translator to the corresponding Virtual Bridged Client. 977 

- Authentication and access control might be performed by the target Bridged Server when 978 
it receives the request from the Virtual Bridged Client, according to the security model of 979 
the Bridged ecosystem. 980 

A Translator may receive unencrypted data coming from a Bridged Client through a Virtual Bridged 981 
Device. The translated message shall be encrypted by the corresponding Virtual OCF Client, 982 
before sending it to the target OCF Device, if this OCF Device requires encryption. 983 

A Translator may receive unencrypted data coming from an OCF Client through a Virtual OCF 984 
Server. After translation, this data shall be encrypted by the corresponding Virtual Bridged Client, 985 
before sending it to the target Bridged Server, if this Bridged Server requires encryption. 986 

A Translator shall protect the data while that data travels between a Virtual Client and a Virtual 987 
Server, through the Translator. For example, if the Translator sends data over a network, the 988 
Translator shall perform appropriate authentication and access control, and shall encrypt the data, 989 
between all peers involved in this communication. 990 

 Blocking communication of Bridged Devices with the OCF ecosystem 991 

An OCF Onboarding Tool shall be able to block the communication of all OCF Devices with all 992 
Bridged Devices that don’t communicate securely with the Bridge, by using the Bridge Device’s 993 
“oic.r.securemode” Resource. 994 

In addition, an OCF Onboarding Tool can block the communication of a particular Virtual OCF 995 
Client with all OCF Servers, or block the communication of all OCF Clients with a particular Virtual 996 
OCF Server, in the same way as it would for any other OCF Device.  See section 8.5 of the OCF 997 
Security Specification for information about the soft reset state. 998 

7 AllJoyn Translation 999 

7.1 Requirements Specific to an AllJoyn Translator 1000 

The translator shall be an AllJoyn Router Node.   (This is a requirement so that users can expect 1001 
that a certified OCF Bridge Device will be able to talk to any AllJoyn device, without the user having 1002 
to buy some other device.) 1003 

The requirements in this section apply when using algorithmic translation, and by default apply to 1004 
deep translation unless the relevant specification for such deep translation specifies otherwise.  1005 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 24 
  

 Exposing AllJoyn producer devices to OCF Clients 1006 

As specified in the OCF Security Specification, the value of the “di” property of OCF Devices 1007 
(including Virtual OCF Devices) shall be established as part of Onboarding of that Virtual OCF 1008 
Device. 1009 
 1010 
Each AllJoyn object shall be mapped to one or more Virtual OCF Resources.  If all AllJoyn 1011 
interfaces can be translated to resource types on the same resource (as discussed below), there 1012 
should be a single Virtual OCF Resource, and the path component of the URI of the Virtual OCF 1013 
Resource shall be the AllJoyn object path, where each “_h” in the AllJoyn object path is 1014 
transformed to “-” (hyphen), each “_d” in the AllJoyn object path is transformed to “.” (dot), each 1015 
“_t” in the AllJoyn object path is transformed to “~” (tilde), and each “_u” in the AllJoyn object path 1016 
is transformed to “_” (underscore).  Otherwise, a Resource with that path shall exist with a 1017 
Resource Type of [“oic.wk.col”, “oic.r.alljoynobject”] which is a Collection of links, where 1018 
“oic.r.alljoynobject” is defined in Section 9.3, and the items in the collection are the Resources with 1019 
the translated Resource Types as discussed below. 1020 
 1021 
The value of the “piid” property of “/oic/d” for each Virtual OCF Device shall be the value of the 1022 
OCF-defined AllJoyn field “org.openconnectivity.piid” in the AllJoyn About Announce signal, if that 1023 
field exists, else it shall be calculated by the Translator as follows: 1024 
 1025 

• If the AllJoyn device supports security, the value of the “piid” property value shall be the 1026 
peer GUID. 1027 

• If the AllJoyn device does not support security but the device is being bridged anyway (see 1028 
section 9.2), the “piid” property value shall be derived from the DeviceId and AppId 1029 
properties (in the About data), by concatenating the DeviceId value (not including any null 1030 
termination) and the AppId bytes and using the result as the “name” to be used in the 1031 
algorithm specified in IETF RFC 4122 section 4.3, with SHA-1 as the hash algorithm, and 1032 
8f0e4e90-79e5-11e6-bdf4-0800200c9a66 as the name space ID. (This is to address the 1033 
problem of being able to de-duplicate AllJoyn devices exposed via separate OCF Bridge 1034 
Devices.) 1035 

A translator implementation is encouraged to listen for AllJoyn About Announce signals matching 1036 
any AllJoyn interface name. It can maintain a cache of information it received from these signals, 1037 
and use the cache to quickly handle “/oic/res” queries from OCF Clients (without having to wait for 1038 
Announce signals while handling the queries). 1039 
 1040 
A translator implementation is encouraged to listen for other signals (including 1041 
EmitsChangedSignal of properties) only when there is a client subscribed to a corresponding 1042 
resource on a Virtual AllJoyn Device. 1043 
 1044 
There are multiple types of AllJoyn interfaces, which shall be handled as follows. 1045 

• If the AllJoyn interface is in a well-defined set (defined in OCF ASA Mapping or section 1046 
7.1.1.1 below) of interfaces where standard forms exist on both the AllJoyn and OCF 1047 
sides, the translator shall either: 1048 

a. follow the specification for translating that interface specially, or 1049 
b. not translate the AllJoyn interface. 1050 

• If the AllJoyn interface is not in the well-defined set, the translator shall either: 1051 
a. not translate the AllJoyn interface, or 1052 
b. algorithmically map the AllJoyn interface as specified in section 7.2 to 1053 

custom/vendor-defined Resource Types by converting the AllJoyn interface 1054 
name to OCF resource type name(s). 1055 
 1056 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 25 
  

An AllJoyn interface name shall be converted to a Device Type or a set of one or more OCF 1057 
Resource Types as follows: 1058 

1) If the AllJoyn interface has any members, append a suffix “.<seeBelow>” where <seeBelow> 1059 
is described below. 1060 

2) For each upper-case letter present in the entire string, replace it with a hyphen followed by 1061 
the lower-case version of that letter (e.g., convert “A” to “-a”). 1062 

3) If an underscore appears followed by a (lower-case) letter or a hyphen, for each such 1063 
occurrence, replace the underscore with two hyphens (e.g., convert “_a” to “--a", “_-a” to 1064 
“---a”). 1065 

4) For each underscore remaining, replace it with a hyphen (e.g., convert “_1” to “-1”). 1066 
5) Prepend the “x.” prefix. 1067 

 1068 
Some examples are shown in the table below.  The first three are normal AllJoyn names 1069 
converted to unusual OCF names.  The last three are unusual AllJoyn names converted 1070 
(perhaps back) to normal OCF names.  (“xn--” is a normal domain name prefix for the 1071 
Punycode-encoded form of an Internationalized Domain Name, and hence can appear in a 1072 
normal vendor-specific OCF name.) 1073 
 1074 

From AllJoyn name To OCF name 
example.Widget x.example.-widget 
example.my__widget x.example.my----widget 
example.My_Widget x.example.-my---widget 
xn_p1ai.example x.xn--p1ai.example 
xn__90ae.example x.xn--90ae.example 
example.myName_1 x.example.my-name-1 

 1075 
Each AllJoyn interface that has members and is using algorithmic mapping shall be mapped to one 1076 
or more Resource Types as follows: 1077 

• AllJoyn Properties with the same EmitsChangedSignal value are mapped to the same 1078 
Resource Type where the value of the <seeBelow> label is the value of 1079 
EmitsChangedSignal.   AllJoyn Properties with EmitsChangedSignal values of “const” or 1080 
“false”, are mapped to Resources that are not Observable, whereas AllJoyn Properties with 1081 
EmitsChangedSignal values of “true” or “invalidates” result in Resources that are 1082 
Observable.  The Version property in an AllJoyn interface is always considered to have an 1083 
EmitsChangedSignal value of “const”, even if not specified in introspection XML. The name 1084 
of each property on the Resource Type shall be 1085 
“<ResourceType>.<AllJoynPropertyName>”, where each “_d” in the 1086 
<AllJoynPropertyName> is transformed to “.” (dot), and each “_h” in the 1087 
<AllJoynPropertyName> is transformed to “-” (hyphen). 1088 

• Resource Types mapping AllJoyn Properties with access “readwrite” shall support the 1089 
“oic.if.rw” Interface.  Resource Types mapping AllJoyn Properties with access “read” shall 1090 
support the “oic.if.r” Interface.  Resource Types supporting both the “oic.if.rw” and “oic.if.r” 1091 
Interfaces shall choose “oic.if.r” as the default Interface. 1092 

• Each AllJoyn Method is mapped to a separate Resource Type, where the value of the 1093 
<seeBelow> label is the AllJoyn Method name.  The Resource Type shall support the 1094 
“oic.if.rw” Interface.  Each argument of the AllJoyn Method shall be mapped to a separate 1095 
Property on the Resource Type, where the name of that Property is prefixed with 1096 
“<ResourceType>arg<#>”, where <#> is the 0-indexed position of the argument in the 1097 
AllJoyn introspection xml, in order to help get uniqueness across all Resource Types on 1098 
the same Resource.   Therefore, when the AllJoyn argument name is not specified, the 1099 
name of that property is “<ResourceType>arg<#>”, where <#> is the 0-indexed position of 1100 
the argument in the AllJoyn introspection XML. In addition, that Resource Type has an 1101 
extra “<ResourceType>validity” property that indicates whether the rest of the properties 1102 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 26 
  

have valid values.  When the values are sent as part of an UPDATE response, the validity 1103 
property is true, and any other properties have valid values.  In a RETRIEVE (GET or 1104 
equivalent in the relevant transport binding) response, the validity property is false, and 1105 
any other properties can have meaningless values. If the validity property appears in an 1106 
UPDATE request, its value shall be true (a value of false shall result in an error response). 1107 

• Each AllJoyn Signal (whether sessionless, sessioncast, or unicast) is mapped to a separate 1108 
Resource Type on an Observable Resource, where the value of the <seeBelow> label is 1109 
the AllJoyn Signal name.  The Resource Type shall support the “oic.if.r” Interface.  Each 1110 
argument of the AllJoyn Signal is mapped to a separate Property on the Resource Type, 1111 
where the name of that Property is prefixed with “<ResourceType>arg<#>”, where <#> is 1112 
the 0-indexed position of the argument in the AllJoyn introspection xml, in order to help get 1113 
uniqueness across all Resource Types on the same Resource.  Therefore, when the 1114 
AllJoyn argument name is not specified, the name of that property is 1115 
“<ResourceType>arg<#>”, where <#> is the 0-indexed position of the argument in the 1116 
AllJoyn introspection XML.  In addition, that Resource Type has an extra 1117 
“<ResourceType>validity” property  that indicates whether the rest of the properties have 1118 
valid values.  When the values are sent as part of a NOTIFY response, the validity property 1119 
is true, and any other properties have valid values.  In a RETRIEVE (GET or equivalent in 1120 
the relevant transport binding) response, the validity property is false, and any other 1121 
properties returned can have meaningless values.   This is because in AllJoyn, the signals 1122 
are instantaneous events, and the values are not necessarily meaningful beyond the 1123 
lifetime of that message.   Note that AllJoyn does have a TTL field that allows store-and-1124 
forward signals, but such support is not required in OCF 1.0.  We expect that in the future, 1125 
the TTL may be used to allow valid values in response to a RETRIEVE that is within the 1126 
TTL. 1127 

When an algorithmic mapping is used, AllJoyn data types shall be mapped to OCF property types 1128 
according to Section 7.2. 1129 
 1130 
If an AllJoyn operation fails, the translator shall send an appropriate OCF error response to the 1131 
OCF client.   If an AllJoyn error name is available and does not contain the 1132 
"org.openconnectivity.Error.Code" prefix, it shall construct an appropriate OCF error message (e.g., 1133 
diagnostic payload if using CoAP) from the AllJoyn error name and AllJoyn error message (if any), 1134 
using the form "<error name>: <error message>", with the <error name> taken from the AllJoyn 1135 
error name field and the <error message> taken from the AllJoyn error message, and the CoAP 1136 
error code set to an appropriate value (if CoAP is used).  If an AllJoyn error name is available and 1137 
contains the "org.openconnectivity.Error.Code" prefix, the OCF error message (e.g., diagnostic 1138 
payload if using CoAP) should be taken from the AllJoyn error message (if any), and the CoAP 1139 
error code (if CoAP is used) set to a value derived as follows; remove the  1140 
"org.openconnectivity.Error.Code" prefix, and if the resulting error name is of the form "<#>" where 1141 
<#> is an error code without a decimal (e.g., "404"), the CoAP error code shall be the error code 1142 
indicated by the “<#>”.  Example: "org.openconnectivity.Error.Code404" becomes "404", which 1143 
shall result in an error 4.04 for a CoAP transport. 1144 

7.1.1.1 Exposing an AllJoyn producer application as a Virtual OCF Server 1145 

Table 1 shows how OCF Device properties, as specified in Table 20 in the OCF 1.0 Core 1146 
Specification, shall be derived, typically from fields specified in the AllJoyn About Interface 1147 
Specification and AllJoyn Configuration Interface Specification. 1148 
 1149 
If the AllJoyn About or Config data field has a mapping rule defined (as in Table 1, Table 2, Table 1150 
3, and Table 4 below), the field name shall be translated based on that mapping rule; else if the 1151 
AllJoyn About or Config data field has a fully qualified name (with a <domain> prefix (such as 1152 
“com.example”, “org.alljoyn”), the field name shall be translated based on the rules specified in 1153 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 27 
  

Section 7.1.1 for mapping AllJoyn fields; else, the field shall not be translated as it may be incorrect 1154 
(error) or it has no valid mapping (such as daemonRealm and passCode). 1155 
 1156 

Table 1: oic.wk.d resource type definition 1157 
To OCF 
Property 
title 

OCF 
Propert
y name 

OCF Description OCF 
Mand
? 

From AJ Field name AJ Description AJ Mand? 

(Device) 
Name 

n Human friendly 
name 
For example, 
“Bob’s Thermostat” 

Y AppName 
(no exact equivalent 
exists) 
 

Application name 
assigned by the 
app manufacturer 
(developer or the 
OEM). 

Y  

Spec 
Version 

icv Spec version of the 
core specification this 
device is 
implemented to, The 
syntax is 
"core.major.minor”]  
 

Y (none) Translator should 
return its own value 

 

Device ID di Unique identifier for 
Device. This value 
shall be as defined in 
[OCF Security] for 
DeviceID. 

Y (none) Use as defined in 
the OCF Security 
Specification 

 

Protocol-
Independe
nt ID 

piid Unique identifier for 
OCF Device (UUID)  

Y org.openconnectivity.
piid if it exists, else  
“Peer GUID” (not in 
About, but exposed 
by protocol) if 
authenticated, else 
Hash(DeviceId,AppId
) where the Hash is 
done by 
concatenating the 
Device Id (not 
including any null 
terminator) and the 
AppId and using the 
algorithm in 
IETF RFC 4122 
section 4.3, with 
SHA-1. 
 
This means that the 
value of di may 
change if the 
resource is read both 
before and after 
authentication, in 
order to mitigate 
privacy concerns 
discussed in RFC 
6973. 

Peer GUID: The 
peer GUID is the 
only persistent 
identity for a peer. 
Peer GUIDs are 
used by the 
authentication 
mechanisms to 
uniquely and 
identify a remote 
application 
instance. The peer 
GUID for a remote 
peer is only 
available if the 
remote peer has 
been authenticated. 
 
DeviceId: Device 
identifier set by 
platform-specific 
means. 
 
AppId: A 128-bit 
globally unique 
identifier for the 
application. The 
AppId shall be a 
universally unique 
identifier as 
specified in 
IETF RFC 4122. 

Peer 
GUID: 
conditional
ly Y 
 
DeviceId: 
Y 
 
AppId: Y 

Data Model 
Version 

dmv Spec version(s) of the 
vertical specifications 
this device data 
model is implemented 
to. The syntax is a 
comma separated list 
of 
"<vertical>.major.min
or”]. <vertical> is the 
name of the vertical 
(i.e. sh for Smart 
Home)  

Y Comma separated list 
of the Version 
property values of 
each interface listed 
in the 
objectDescription 
argument of the 
Announce signal of 
About.  In addition to 
the mandatory values 
specified in the OCF 
Core specification, 
additional values are 

This specification 
assumes that the 
value of the 
Version property is 
the same as the 
value of the 
"org.gtk.GDBus.Sin
ce" annotation of 
the interface in the 
AllJoyn 
introspection XML, 
and therefore the 
value of the 

N, but 
required 
by IRB for 
all 
standard 
interfaces, 
and 
absence 
can be 
used to 
imply a 
constant 
(e.g., 0) 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 28 
  

formatted as 
"x.<interface 
name>.<Version 
property value>". 

Version property 
may be determined 
through 
introspection alone. 
 
Note that AllJoyn 
specifies that the 
default value is 1 if 
the 
"org.gtk.GDBus.Sin
ce" annotation is 
absent. 

Localized 
Description
s 

ld Detailed description 
of the Device, in one 
or more languages.  
This property is an 
array of objects 
where each object 
has a ‘language’ field 
(containing an RFC 
5646 language tag) 
and a ‘value’ field 
containing the device 
description in the 
indicated language. 

N Description Detailed 
description 
expressed in 
language tags as in 
RFC 5646. 

Y 

Software 
Version 

sv Version of the device 
software. 

N SoftwareVersion Software version of 
the app. 

Y 

Manufactur
er Name 

dmn Name of 
manufacturer of the 
Device, in one or 
more languages.  
This property is an 
array of objects 
where each object 
has a ‘language’ field 
(containing an RFC 
5646 language tag) 
and a ‘value’ field 
containing the 
manufacturer name in 
the indicated 
language. 

N Manufacturer The manufacturer's 
name of the app. 

Y 

Model 
Number 

dmno Model number as 
designated by 
manufacturer. 

N ModelNumber The app model 
number. 

Y 

 1158 
In addition, any additional vendor-defined fields in the AllJoyn About data shall be mapped to 1159 
vendor-defined properties in the OCF Device resource “/oic/d” (which implements the “oic.wk.d” 1160 
resource type), with a property name formed by prepending “x.” to the AllJoyn field name. 1161 
 1162 
Table 2 shows how OCF Device Configuration properties, as specified in Table 15 in the OCF 1.0 1163 
Core Specification, shall be derived: 1164 
 1165 

Table 2: oic.wk.con resource type definition 1166 
To OCF 
Property 
title 

OCF 
Property 
name 

OCF Description OCF 
Mand? 

From AJ Field name AJ Description AJ 
Mand? 

(Device) 
Name 

n Human friendly 
name 
For example, 
“Bob’s 
Thermostat” 

Y AppName 
(no exact equivalent 
exists) 
 

Application name 
assigned by the 
app manufacturer 
(developer or the 
OEM). 

Y  

Location loc Provides location 
information where 
available. 

N org.openconnectivity.loc 
(if it exists, else property 
shall be absent) 

 N 

http://tools.ietf.org/html/rfc5646


Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 29 
  

Location 
Name 

locn Human friendly 
name for location 
For example, 
“Living Room”. 

N org.openconnectivity.locn 
(if it exists, else property 
shall be absent) 

 N 

Currency c Indicates the 
currency that is 
used for any 
monetary 
transactions 

N org.openconnectivity.c (if 
it exists, else property 
shall be absent) 

 N 

Region r Free form text 
Indicating the 
current region in 
which the device 
is located 
geographically. 
The free form text 
shall not start with 
a quote ("). 

N org.openconnectivity.r (if 
it exists, else property 
shall be absent) 

 N 

Localized 
Names 

ln Human-friendly 
name of the 
Device, in one or 
more languages.  
This property is an 
array of objects 
where each object 
has a ‘language’ 
field (containing 
an RFC 5646 
language tag) and 
a ‘value’ field 
containing the 
device name in 
the indicated 
language.  If this 
property and the 
Device Name (n) 
property are both 
supported, the 
Device Name (n) 
value shall be 
included in this 
array. 

N AppName Application name 
assigned by the 
app manufacturer 
(developer or the 
OEM). 

Y 

Default 
Language 

dl The default 
language 
supported by the 
Device, specified 
as an RFC 5646 
language tag. By 
default, clients 
can treat any 
string property as 
being in this 
language unless 
the property 
specifies 
otherwise. 

N DefaultLanguage The default 
language 
supported by the 
device. Specified 
as an IETF 
language tag 
listed in RFC 
5646. 

Y 

 1167 
In addition, any additional vendor-defined fields in the AllJoyn Configuration data shall be mapped 1168 
to vendor-defined properties in the OCF Configuration resource (which implements the “oic.wk.con” 1169 
resource type and optionally the “oic.wk.con.p” resource type), with a property name formed by 1170 
prepending “x.” to the AllJoyn field name. 1171 
 1172 
Table 3 shows how OCF Platform properties, as specified in Table 21 in the OCF 1.0 Core 1173 
Specification, shall be derived, typically from fields specified in the AllJoyn About Interface 1174 
Specification and AllJoyn Configuration Interface Specification. 1175 
 1176 

http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5646


Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 30 
  

Table 3: oic.wk.p Resource Type definition 1177 
To OCF 
Property title 

OCF 
Property 
name 

OCF 
Description 

OCF 
Mand? 

From AJ Field name AJ 
Description 

AJ 
Mand? 

Platform ID pi Unique 
identifier for the 
physical 
platform 
(UIUID); this 
shall be a UUID 
in accordance 
with IETF RFC 
4122. It is 
recommended 
that the UUID 
be created 
using the 
random 
generation 
scheme 
(version 4 
UUID) specific 
in the RFC.   

Y DeviceId if it is a UUID, 
else generate a name-
based UUID from the 
DeviceId using the 
DeviceId value (not 
including any null 
termination) as the “name” 
to be used in the algorithm 
specified in 
IETF RFC 4122 section 
4.3, with SHA-1 as the 
hash algorithm, and 
8f0e4e90-79e5-11e6-bdf4-
0800200c9a66 as the 
name space ID. 

Name of the 
device set by 
platform-
specific means 
(such as Linux 
and Android). 

Y 

Manufacturer 
Name 

mnmn Name of 
manufacturer 
(not to exceed 
16 characters)  

Y Manufacturer 
(in DefaultLanguage, 
truncated to 16 
characters) 

The 
manufacturer's 
name of the 
app. 

Y 

Manufacturer 
Details Link 
(URL)  

mnml URL to 
manufacturer 
(not to exceed 
32 characters)  

N org.openconnectivity.mnml 
(if it exists, else property 
shall be absent) 

 N 

Model Number  mnmo Model number 
as designated 
by 
manufacturer  

N ModelNumber The app model 
number. 

Y 

Date of 
Manufacture 

mndt Manufacturing 
date of device  

N DateOfManufacture Date of 
manufacture 
using format 
YYYY-MM-DD 
(known as XML 
DateTime 
format). 

N 

Platform 
Version 

mnpv Version of 
platform – 
string (defined 
by 
manufacturer)  

N org.openconnectivity.mnpv 
(if it exists, else property 
shall be absent) 

 N 

OS Version mnos Version of 
platform 
resident OS – 
string (defined 
by 
manufacturer)  

N  org.openconnectivity.mnos 
(if it exists, else property 
shall be absent) 
 

 N 

Hardware 
Version 

mnhw Version of 
platform 
hardware  

N HardwareVersion Hardware 
version of the 
device on 
which the app 
is running. 

N 

Firmware 
version 

mnfv Version of 
device firmware  

N org.openconnectivity.mnfv 
(if it exists, else property 
shall be absent) 

 N 

Support URL mnsl URL that points 
to support 
information 
from 
manufacturer  

N SupportUrl Support URL 
(populated by 
the 
manufacturer) 

N 

SystemTime st Reference time 
for the device  

N org.openconnectivity.st (if 
it exists, else property 
shall be absent) 

 N 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 31 
  

Vendor ID vid Vendor defined 
string for the 
platform. The 
string is 
freeform and up 
to the vendor 
on what text to 
populate it.  
 

N DeviceId Name of the 
device set by 
platform-
specific means 
(such as Linux 
and Android). 

Y 

 1178 
Table 4 shows how OCF Platform Configuration properties, as specified in Table 16 in the OCF 1179 
1.0 Core Specification, shall be derived: 1180 
 1181 

Table 4: oic.wk.con.p Resource Type definition 1182 
To OCF 
Property title 

OCF 
Property 
name 

OCF 
Description 

OCF 
Mand? 

From AJ Field 
name 

AJ Description AJ 
Mand? 

Platform 
Names 

Mnpn Platform 
Identifier  

N DeviceName Name of the 
device set by 
platform-
specific means 
(such as Linux 
and Android). 

Device 
name 
assigned 
by the 
user. The 
device 
name 
appears 
on the UI 
as the 
friendly 
name of 
the 
device. 

 1183 
In addition, the “oic.wk.mnt” properties Factory_Reset (“fr”) and Reboot (“rb”) shall be mapped to 1184 
AllJoyn Configuration methods FactoryReset and Restart, respectively. 1185 

 Exposing OCF resources to AllJoyn consumer applications 1186 

Unless specified otherwise, each OCF resource shall be mapped to a separate AllJoyn object. 1187 
 1188 
Each OCF Server shall be exposed as a separate AllJoyn producer application, with its own About 1189 
data.   This allows platform-specific, device-specific, and resource-specific fields to all be 1190 
preserved across translation. However, this requires that AllJoyn Claiming of such producer 1191 
applications be solved in a way that does not require user interaction, but this is left as an 1192 
implementation issue. 1193 
 1194 
The AllJoyn producer application shall implement the “oic.d.virtual” AllJoyn interface.  This allows 1195 
translators to determine if a device is already being translated when multiple translators are 1196 
present.  The “oic.d.virtual” interface is defined as follows: 1197 
 1198 

<interface name="oic.d.virtual"/> 1199 
 1200 
The implementation may choose to implement this interface by the AllJoyn object at path “/oic/d”. 1201 
 1202 
The AllJoyn peer ID shall be the OCF device ID (“di”). 1203 
 1204 
Unless specified otherwise, the AllJoyn object path shall be the OCF URI path, where each “-” 1205 
(hyphen) in the OCF URI path is transformed to “_h”, each “.” (dot) in the OCF URI path is 1206 
transformed to “_d”, each “~” (tilde) in the OCF URI path is transformed to “_t”, and each “_” 1207 
(underscore) in the OCF URI path is transformed to “_u”. 1208 
 1209 
The AllJoyn About data shall be populated per Table 5 below. 1210 
 1211 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 32 
  

A translator implementation is encouraged to maintain a cache of OCF resources to handle 1212 
WhoImplements queries from the AllJoyn side, and emit an Announce Signal for each OCF Server.  1213 
Specifically, the translator could always Observe “/oic/res” changes and only Observe other 1214 
resources when there is a client with a session on a Virtual AllJoyn Device. 1215 
 1216 
There are multiple types of resources, which shall be handled as follows. 1217 

• If the Resource Type is in a well-defined set (defined in OCF ASA Mapping or section 1218 
7.1.2.1 below) of resource types where standard forms exist on both the AllJoyn and OCF 1219 
sides, the translator shall either: 1220 

a. follow the specification for translating that resource type specially, or 1221 
b. not translate the Resource Type. 1222 

• If the Resource Type is not in the well-defined set (but is not a Device Type), the translator 1223 
shall either: 1224 

a. not translate the Resource Type, or 1225 
b. algorithmically map the Resource Type as specified in section 7.2 to a 1226 

custom/vendor-defined AllJoyn interface by converting the OCF Resource Type 1227 
name to an AllJoyn Interface name. 1228 
 1229 

An OCF Resource Type or Device Type shall be converted to an AllJoyn interface name as follows: 1230 
1) Remove the “x.” prefix if present 1231 
2) For each occurrence of a hyphen (in order from left to right in the string): 1232 

a. If the hyphen is followed by a letter, replace both characters with a single upper-1233 
case version of that letter (e.g., convert “-a” to “A”). 1234 

b. Else, if the hyphen is followed by another hyphen followed by either a letter or a 1235 
hyphen, replace two hyphens with a single underscore (e.g., convert “--a” to “_a”, 1236 
“---” to “_-”). 1237 

c. Else, convert the hyphen to an underscore (i.e., convert “-” to “_”). 1238 
 1239 

Some examples are shown in the table below.  The first three are unusual OCF names 1240 
converted (perhaps back) to normal AllJoyn names.  The last three are normal OCF names 1241 
converted to unusual AllJoyn names.  (“xn--” is a normal domain name prefix for the Punycode-1242 
encoded form of an Internationalized Domain Name, and hence can appear in a normal vendor-1243 
specific OCF name.) 1244 
 1245 

From OCF name To AllJoyn name 
x.example.-widget example.Widget 
x.example.my----widget example.my__widget 
x.example.-my---widget example.My_Widget 
x.xn--p1ai.example xn_p1ai.example 
x.xn--90ae.example xn__90ae.example 
x.example.my-name-1 example.myName_1 

 1246 
An OCF Device Type is mapped to an AllJoyn interface with no members. 1247 
 1248 
Unless specified otherwise, each OCF Resource Type shall be mapped to an AllJoyn interface as 1249 
follows: 1250 

• Each OCF property is mapped to an AllJoyn property in that interface, where each “.” (dot) 1251 
in the OCF property is transformed to “_d”, and each “-” (hyphen) in the OCF property is 1252 
transformed to “_h”. 1253 

• The EmitsChangedSignal value for each AllJoyn property shall be set to “true” if the 1254 
resource supports NOTIFY, or “false” if it does not.   (The value is never set to “const” or 1255 
“invalidates” since those concepts cannot currently be expressed in OCF.) 1256 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 33 
  

• The “access” attribute for each AllJoyn property shall be “read” if the OCF property is read-1257 
only, or “readwrite” if the OCF property is read-write. 1258 

• If the resource supports DELETE, a Delete() method shall appear in the interface. 1259 
• If the resource supports CREATE, a Create() method shall appear in the interface, with 1260 

input arguments of each property of the resource to create.   (Such information is not 1261 
available algorithmically in OIC 1.1 but can be determined in OCF 1.0 via introspection.)  If 1262 
such information is not available, a CreateWithDefaultValues() method shall appear which 1263 
takes no input arguments.   In either case, the output argument shall be an OBJECT_PATH 1264 
containing the path of the created resource. 1265 

• If the resource supports UPDATE (i.e., the “oic.if.rw” or “oic.if,a” interface) then an AllJoyn 1266 
property set operation (i.e., an org.freedesktop.DBus.Properties.Set() method call) shall be 1267 
mapped to a Partial UPDATE (e.g., POST in CoAP) with the corresponding OCF property. 1268 

• If a Resource has a Resource Type “oic.r.alljoynobject”, then instead of separately 1269 
translating each of the Resources in the collection to its own AllJoyn object, all Resources 1270 
in the collection shall instead be translated to a single AllJoyn object whose object path is 1271 
the OCF URI path of the collection. 1272 

OCF property types shall be mapped to AllJoyn data types according to Section 7.2. 1273 
 1274 
If an OCF operation fails, the translator shall send an appropriate AllJoyn error response to the 1275 
AllJoyn consumer.  If an error message is present in the OCF response, and the error message 1276 
(e.g., diagnostic payload if using CoAP) fits the pattern "<error name>: <error message>" where 1277 
<error name> conforms to the AllJoyn error name syntax requirements, the AllJoyn error name 1278 
and AllJoyn error message shall be extracted from the error message in the OCF response.  1279 
Otherwise, the AllJoyn error name shall be "org.openconnectivity.Error.Code<#>" where <#> is the 1280 
error code (e.g., CoAP error code) in the OCF response without a decimal (e.g., "404") and the 1281 
AllJoyn error message is the error message in the OCF response.  1282 
 1283 

7.1.2.1 Exposing an OCF server as a Virtual AllJoyn Producer 1284 

The object description returned in the About interface shall be formed as specified in the AllJoyn 1285 
About Interface Specification, and Table 5 shows how AllJoyn About Interface fields shall be 1286 
derived, based on properties in “oic.wk.d”, “oic.wk.con”, “oic.wk.p”, and “oic.wk.con.p”. 1287 
 1288 

Table 5: AllJoyn About Data fields 1289 

To AJ Field name AJ Description 
AJ 
Mand? 

From OCF 
Property 
title 

OCF 
Property 
name 

OCF Description OCF 
Mand? 

AppId 

A 128-bit globally 
unique identifier 
for the 
application. The 
AppId shall be a 
universally unique 
identifier as 
specified in RFC 
4122. 

Y Device ID 
(no exact 
equivalent 
exists) 

di Unique identifier for OCF 
Device (UUID)  

Y 

DefaultLanguage 

The default 
language 
supported by the 
device. Specified 
as an IETF 
language tag 
listed in RFC 
5646. 

Y Default 
Language 

dl The default language 
supported by the Device, 
specified as an RFC 5646 
language tag. By default, 
clients can treat any string 
property as being in this 
language unless the 
property specifies 
otherwise.  
 

N 

http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5646


Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 34 
  

To AJ Field name AJ Description 
AJ 
Mand? 

From OCF 
Property 
title 

OCF 
Property 
name 

OCF Description OCF 
Mand? 

If absent, the translator 
shall return a constant, 
e.g., empty string 

DeviceName (per 
supported language) 

Name of the 
device set by 
platform-specific 
means (such as 
Linux and 
Android). 

N Platform 
Names 

mnpn Friendly name of the 
Platform.  This property is 
an array of objects where 
each object has a 
‘language’ field (containing 
an RFC 5646 language 
tag) and a ‘value’ field 
containing the platform 
friendly name in the 
indicated language. 
 
For example, 
[{“language”:”en”, 
 “value”:”Dave’s Laptop”}] 

N 

DeviceId 
Device identifier 
set by platform-
specific means. 

Y Platform ID pi Platform Identifier  Y 

AppName (per supported 
language) 

Application name 
assigned by the 
app manufacturer 
(developer or the 
OEM). 

Y Localized 
Names, if it 
exists, 
else 
(Device) 
Name  

ln 
or 
n 

Human-friendly name of 
the Device, in one or more 
languages.  This property 
is an array of objects 
where each object has a 
‘language’ field (containing 
an RFC 5646 language 
tag) and a ‘value’ field 
containing the device 
name in the indicated 
language.  If this property 
and the Device Name (n) 
property are both 
supported, the Device 
Name (n) value shall be 
included in this array. 

N (ln), 
Y (n) 

Manufacturer (per 
supported language) 

The 
manufacturer's 
name of the app. 

Y Manufacturer 
Name 

dmn Name of manufacturer of the 
Device, in one or more 
languages.  This property is 
an array of objects where 
each object has a ‘language’ 
field (containing an RFC 5646 
language tag) and a ‘value’ 
field containing the 
manufacturer name in the 
indicated language. 

N 

ModelNumber The app model 
number. 

Y Model 
Number 

dmno Model number as designated 
by manufacturer  

N 

SupportedLanguages List of supported 
languages. 

Y language 
fields of 
Localized 
Names 

ln If ln is supported, return 
the list of values of the 
language field of each 
array element, else return 
empty array 

N 

Description (per supported 
language) 

Detailed 
description 
expressed in 
language tags as 
in RFC 5646.. 

Y Localized 
Descriptions 

ld Detailed description of the 
Device, in one or more 
languages.  This property 
is an array of objects 
where each object has a 
‘language’ field (containing 
an RFC 5646 language 
tag) and a ‘value’ field 

N 

http://tools.ietf.org/html/rfc5646


Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 35 
  

To AJ Field name AJ Description 
AJ 
Mand? 

From OCF 
Property 
title 

OCF 
Property 
name 

OCF Description OCF 
Mand? 

containing the device 
description in the indicated 
language. 

DateOfManufacture 

Date of 
manufacture 
using format 
YYYY-MM-DD 
(known as XML 
DateTime format). 

N Date of 
Manufacture 

mndt Manufacturing date of device  N 

SoftwareVersion Software version 
of the app. 

Y Software 
Version 

sv  Software version of the 
device. 

N 

AJSoftwareVersion 

Current version of 
the AllJoyn SDK 
used by the 
application. 

Y (none)  Translator should return its 
own value 

 

HardwareVersion 

Hardware version 
of the device on 
which the app is 
running. 

N Hardware 
Version 

mnhw Version of platform hardware  N 

SupportUrl 
Support URL 
(populated by the 
manufacturer). 

N Support URL mnsl URL that points to support 
information from 
manufacturer  

N 

org.openconnectivity.mnml  

N Manufacturer 
Details Link 
(URL) 

mnml (if it 
exists, 
else field 
shall be 
absent) 

URL to manufacturer (not to 
exceed 32 characters) 

N 

org.openconnectivity.mnpv  

N Platform 
Version 

mnpv (if it 
exists, 
else field 
shall be 
absent) 

Version of platform – string 
(defined by manufacturer) 

N 

org.openconnectivity.mnos  

N OS Version mnos (if it 
exists, 
else field 
shall be 
absent) 

Version of platform resident 
OS – string (defined by 
manufacturer) 

N 

org.openconnectivity.mnfv  

N Firmware 
version 

mnfv (if it 
exists, 
else field 
shall be 
absent) 

Version of device firmware N 

org.openconnectivity.st  

N SystemTime st (if it 
exists, 
else field 
shall be 
absent) 

Reference time for the device N 

org.openconnectivity.piid  

N Protocol-
Independent 
ID 

piid A unique and immutable 
Device identifier. A Client can 
detect that a single Device 
supports multiple 
communication protocols if it 
discovers that the Device 
uses a single Protocol 
Independent ID value for all 
the protocols it supports. 

Y 

 1290 
The AllJoyn field “org.openconnectivity.piid” shall be announced but shall not be localized and its 1291 
D-Bus type signature shall be “s”. All other AllJoyn field names listed in Table 5 which have the 1292 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 36 
  

prefix “org.openconnectivity.” shall be neither announced nor localized and their D-Bus type 1293 
signature shall be “s”. 1294 
 1295 
In addition, any additional vendor-defined properties in the OCF Device resource “/oic/d” (which 1296 
implements the “oic.wk.d” resource type) and the OCF Platform resource “/oic/p” (which 1297 
implements the “oic.wk.p” resource type) shall be mapped to vendor-defined fields in the AllJoyn 1298 
About data, with a field name formed by removing the leading “x.” from the property name. 1299 
 1300 
Table 6 shows how AllJoyn Configuration Interface fields shall be derived, based on properties in 1301 
“oic.wk.con” and “oic.wk.con.p”. 1302 
 1303 

Table 6: AllJoyn Configuration Data fields 1304 

To AJ Field name AJ Description 
AJ 
Mand? 

From OCF 
Property title 

OCF 
Property 
name 

OCF Description OCF 
Mand? 

DefaultLanguage 
Default language 
supported by the 
device. 

N Default 
Language 

dl The default language 
supported by the Device, 
specified as an RFC 5646 
language tag. By default, 
clients can treat any string 
property as being in this 
language unless the property 
specifies otherwise. 

N 

DeviceName 

Device name 
assigned by the 
user. The device 
name appears 
on the UI as the 
friendly name of 
the device. 

N PlatformNames mnpn Friendly name of the 
Platform.  This property is 
an array of objects where 
each object has a 
‘language’ field (containing 
an RFC 5646 language 
tag) and a ‘value’ field 
containing the platform 
friendly name in the 
indicated language. 
 
For example, 
[{“language”:”en”, 
 “value”:”Dave’s Laptop”}] 

N 

org.openconnectivity.loc  

N Location 
 

loc (if it 
exists, 
else field 
shall be 
absent) 

Provides location 
information where 
available. 

N 

org.openconnectivity.locn  

N Location Name locn (if it 
exists, 
else field 
shall be 
absent) 

Human friendly name for 
location 
For example, “Living 
Room”. 

N 

org.openconnectivity.c  

N Currency c (if it 
exists, 
else field 
shall be 
absent) 

Indicates the currency that is 
used for any monetary 
transactions 
 

N 

org.openconnectivity.r  

N Region r (if it 
exists, 
else field 
shall be 
absent) 

Free form text Indicating 
the current region in which 
the device is located 
geographically. The free 
form text shall not start 
with a quote ("). 

N 

 1305 
The AllJoyn field “org.openconnectivity.loc” shall be neither announced nor localized and its D-1306 
Bus type signature shall be “ad”. All other AllJoyn field names listed in Table 5 which have the 1307 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 37 
  

prefix “org.openconnectivity.” shall be neither announced nor localized and their D-Bus type 1308 
signature shall be “s”. 1309 
 1310 
In addition, the Configuration methods FactoryReset and Restart shall be mapped to “oic.wk.mnt” 1311 
properties Factory_Reset (“fr”) and Reboot (“rb”), respectively, and any additional vendor-defined 1312 
properties in the OCF Configuration resource (which implements the “oic.wk.con” resource type 1313 
and optionally the “oic.wk.con.p” resource type) shall be mapped to vendor-defined fields the 1314 
AllJoyn Configuration data, with a field name formed by removing the leading “x.” from the property 1315 
name. 1316 
 1317 

7.2 On-the-Fly Translation from D-Bus and OCF payloads 1318 

The “dbus1” payload format is specified in the D-Bus Specification and AllJoyn adopted the D-Bus 1319 

protocol and made it distributed over the network. The modifications done by AllJoyn to the format are all 1320 

in the header part of the packet, not in the data payload itself, which remains compatible with “dbus1”. Other 1321 

variants of the protocol that have been proposed by the Linux community (“GVariant” and “kdbus” payloads) 1322 

contain slight incompatibilities and are not relevant for this discussion. 1323 

 Translation without aid of introspection 1324 

This section describes how translators shall translate messages between the two payload formats in the 1325 

absence of introspection metadata from the actual device. This situation arises in the following cases: 1326 

• Requests to OIC 1.1 devices 1327 

• Replies from OIC 1.1 devices 1328 

• Content not described by introspection, such as the inner payload of AllJoyn properties of type 1329 

“D-Bus VARIANT”. 1330 

Since introspection is not available, the translator cannot know the rich JSON sub-type, only the underlying 1331 

CBOR type and from that it can infer the JSON generic type, and hence translation is specified below in 1332 

terms of those generic types. 1333 

7.2.1.1 Booleans 1334 

Boolean conversion is trivial since both sides support this type. 1335 

D-Bus type JSON type 

“b” – BOOLEAN boolean (true or false) 

7.2.1.2 Numeric types 1336 

The translation of numeric types is lossy and that is unavoidable due to the limited expressiveness 1337 
of the JSON generic types. This can only be solved with introspection. 1338 

The translation of numeric types is direction-specific. 1339 

From D-Bus type To JSON type 

“y” - BYTE (unsigned 8-bit) number 

“n” - UINT16 (unsigned 16-bit) 

“u” - UINT32 (unsigned 32-bit) 

“t” - UINT64 (unsigned 64-bit)(1) 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 38 
  

From D-Bus type To JSON type 

“q” - INT16 (signed 16-bit) 

“”" - INT32 (signed 32-bit) 

”x” - INT64 (signed 64-bit)(1) 

“d” - DOUBLE (IEEE 754 double precision) 
 1340 

From JSON type To D-Bus type 

number  “d” - DOUBLE(2) 

 1341 

Notes and rationales: 1342 

1. D-Bus payloads of types “t” (UINT64) and “x” (INT64) can contain values that cannot be perfectly 1343 

represented in IEEE 754 double-precision floating point. The RFCs governing JSON do not forbid 1344 

such numbers but caution that many implementations may not be able to deal with them. 1345 

Currently, OCF transports its payload using CBOR instead of JSON, which can represent those 1346 

numbers with fidelity. However, it should be noted that the OCF 1.0 Core Specification does 1347 

not allow for integral numbers outside the range −253 ≤ 𝑥𝑥 ≤ 253. 1348 

2. To provide the most predictable result, all translations from OCF to AllJoyn produce values of 1349 

type “d” DOUBLE (IEEE 754 double precision). 1350 

7.2.1.3 Text strings 1351 

D-Bus type JSON type 

“s” – STRING string 
 1352 

Conversion between D-Bus and JSON strings is simple, as both require their content to be valid Unicode.  1353 

For example, an implementation can typically do a direct byte copy, as both protocols specify UTF-8 as 1354 

the encoding of the data, neither constrains the data to a given normalisation format nor specify whether 1355 

private-use characters or non-characters should be disallowed. 1356 

Since the length of D-Bus strings is always known, it is recommended translators not use CBOR 1357 

indeterminate text strings (first byte 0x7f). 1358 

7.2.1.4 Byte arrays 1359 

The translation of a byte array is direction-specific. 1360 

From D-Bus type To JSON type 
“ay” - ARRAY of BYTE (base64-encoded) string 

 1361 

The base64url encoding is specified in IETF RFC 4648 section 5. 1362 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 39 
  

7.2.1.5 D-Bus Variants 1363 

D-Bus type JSON type 
“v” – VARIANT see below 

 1364 

D-Bus has a type called VARIANT (“v”) that is a wrapper around any other D-Bus type. It’s a way for the 1365 

type system to perform type-erasure. JSON, on the other hand, is not type-safe, which means that all 1366 

JSON values are, technically, variants. The conversion for a D-Bus variant to JSON is performed by 1367 

entering that variant and encoding the type carried inside as per the rules in this document. 1368 

The algorithm must be recursive, as D-Bus variants are allowed to contain variants themselves. 1369 

7.2.1.6 D-Bus Object Paths and Signatures 1370 

The translation of D-Bus object paths and signatures is unidirectional (there is no mapping to them, 1371 
only from them).   In the reverse direction, Section 7.2.1.3 always converts to D-Bus STRING 1372 
rather than OBJECT_PATH or SIGNATURE since it is assumed that “s” is the most common string 1373 
type in use. 1374 

From D-Bus type To JSON type 
“o” - OBJECT_PATH string 

“g” – SIGNATURE 
 1375 

Both D-Bus object paths and D-Bus type signatures are US-ASCII strings with specific formation rules, 1376 

found in the D-Bus Specification. They are very seldom used and are not expected to be found in 1377 

resources subject to translation without the aid of introspection. 1378 

7.2.1.7 D-Bus Structures 1379 

The translation of the following types is direction-specific: 1380 

From D-Bus type To JSON type 

“r” – STRUCT array, length > 0 
 1381 

D-Bus structures can be interpreted as a fixed-length array containing a pre-determined list of types for 1382 

each member. This is how such a structure is mapped to JSON: as an array of heterogeneous content, 1383 

which are the exact members of the D-Bus structure, in the order in which they appear in the structure. 1384 

7.2.1.8 Arrays 1385 

The translation of the following types is bidirectional: 1386 

D-Bus type JSON type 

“ay” - ARRAY of BYTE (base64-encoded) string – see Section 7.2.1.4 

“ae” - ARRAY of DICT_ENTRY object – see Section 7.2.1.9 
 1387 

The translation of the following types is direction-specific: 1388 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 40 
  

From D-Bus type To JSON type 

“a” – ARRAY of anything else not specified above array 
 1389 

 1390 

From 
JSON type 

Condition To D-Bus type 

array length=0 “av” – ARRAY of VARIANT 

array length>0, all elements of 
same type 

“a” – ARRAY 

array length>0, elements of 
different types 

“r” – STRUCT 

 1391 

Aside from arrays of bytes and arrays of dictionary entries, which are mapped to JSON strings and objects 1392 

respectively, arrays in JSON cannot be constrained to a single type (i.e., heterogeneous arrays). For that 1393 
reason, strictly speaking all D-Bus arrays excepting arrays of bytes and arrays of dictionary entries must 1394 

first be converted to arrays of variant “av” and then that array can be converted to JSON.  1395 

Conversion of D-Bus arrays of variants uses the conversion of variants as specified above, which simply 1396 

eliminates the distinction between a variant containing a given value and that value outside a variant. In 1397 

other words, the elements of a D-Bus array are extracted and sent as elements of the JSON array, as per 1398 

the other rules of this document. 1399 

7.2.1.9 Dictionaries / Objects 1400 

D-Bus type JSON type 
“a{sv}” - dictionary of STRING to VARIANT object 

 1401 

The choice of “dictionary of STRING to VARIANT” is made because that is the most common type of 1402 

dictionary found in payloads and is an almost perfect superset of all possible dictionaries in D-Bus anyway. 1403 

Moreover, it can represent JSON Objects with fidelity, which is the representation that OCF uses in its data 1404 

models, which in turn means those D-Bus dictionaries will be able to carry with fidelity any OCF JSON 1405 

Object in current use. 1406 

D-Bus dictionaries that are not mapping string to variant are first converted to those constraints and then 1407 

encoded in CBOR. 1408 

7.2.1.10 Non-translatable types 1409 

D-Bus Type 
“h” – UNIX_FD (Unix file descriptor) 

 

JSON type 
null 

undefined (not officially valid JSON, but some 
implementations permit it) 

 

 1410 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 41 
  

The above types are not translatable, and the translator should drop the incoming message. None of the 1411 

types above are in current use by either AllJoyn, OIC 1.1, or future OCF 1.0 devices, so the inability to 1412 

translate them should not be a problem. 1413 

7.2.1.11 Examples 1414 

 1415 

Source D-Bus JSON Result 

BOOLEAN(FALSE) false 

BOOLEAN(TRUE) true 

VARIANT(BOOLEAN(FALSE)) false 

VARIANT(BOOLEAN(TRUE)) true 

BYTE(0) 0.0 

BYTE(255) 255.0 

INT16(0) 0.0 

INT16(-1) -1.0 

INT16(-32768) -32768.0 

UINT16(0) 0.0 

UINT16(65535) 65535.0 

INT32(0) 0.0 

INT32(-2147483648) -2147483648.0 

INT32(2147483647) 2147483647.0 

UINT32(0) 0.0 

UINT32(4294967295) 4294967295.0 

INT64(0) 0.0 

INT64(-1) -1.0 

UINT64(18446744073709551615) 18446744073709551615.0(1) 

DOUBLE(0.0) 0.0 

DOUBLE(0.5) 0.5 

STRING(“”) “” 

STRING(“Hello”) “Hello” 

ARRAY<BYTE>() “” 

ARRAY<BYTE>(0x48, 0x65, 0x6c, 0x6c, 0x6f) ”SGVsbG8” 

OBJECT_PATH(“/”) “/” 

SIGNATURE() “” 

SIGNATURE(“s”) “s” 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 42 
  

Source D-Bus JSON Result 

VARIANT(INT32(0)) 0 

VARIANT(VARIANT(INT32(0))) 0 

VARIANT(STRING(“Hello”)) “Hello” 
 1416 

 1417 

Source JSON D-Bus Result 

false BOOLEAN(false) 

true BOOLEAN(true) 

0 DOUBLE(0.0) 

-1 DOUBLE(-1.0) 

-2147483648 DOUBLE(-2147483648.0) 

2147483647 DOUBLE(2147483647.0) 

2147483648 DOUBLE(2147483648.0) 

-2147483649 DOUBLE(-2147483649.0) 

9223372036854775808(1) DOUBLE(9223372036854775808.0) 

0.0 DOUBLE(0.0) 

0.5 DOUBLE(0.5) 

0.0f DOUBLE(0.0) 

0.5f DOUBLE(0.5) 

“” STRING(“”) 

“Hello” STRING(“Hello”) 

[] ARRAY<VARIANT>() 

[1] ARRAY<DOUBLE>(DOUBLE(1.0)) 

[1, 2147483648, false, “Hello”] STRUCT<DOUBLE, DOUBLE, BOOLEAN, STRING>(DOUBLE(1.0), 
DOUBLE(2147483648.0), BOOLEAN(false), STRING(“Hello”)) 

{} map<STRING, VARIANT>() 

{1: 1} map<STRING, VARIANT>(“1” → VARIANT(DOUBLE(1.0))) 

{“1”: 1} map<STRING, VARIANT>(“1” → VARIANT(DOUBLE(1.0))) 

{“rep”:  
  { 
    “state”: false,  
    “power”: 1.0, 
    “name”: “My Light” 
  } 
} 

map<STRING, VARIANT>( 
    {STRING(“rep”), VARIANT(map<STRING, VARIANT>( 
        {STRING(“state”) → VARIANT(BOOLEAN(FALSE))}, 
        {STRING(“power”) → VARIANT(DOUBLE(1.0))}, 
        {STRING(“name”) → VARIANT(STRING(“My Light”))} 
    ))} 
) 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 43 
  

 1418 
Note: 1419 

1. This value cannot be represented with IEEE754 double-precision floating point without loss 1420 
of information. It is also outside the currently-allowed range of integrals in OCF. 1421 

 1422 

 Translation with aid of introspection 1423 

When introspection is available, the translator can use the extra metadata provided by the side offering the 1424 

service to expose a higher-quality reply to the other side. This chapter details modifications to the translation 1425 

described in the previous chapter when the metadata is found. 1426 

Introspection metadata can be used for both translating requests to services and replies from those services. 1427 

When used to translate requests, the introspection is “constraining”, since the translator must conform 1428 

exactly to what that service expects. When used to translate replies, the introspection is “relaxing”, but may 1429 

be used to inform the receiver what other possible values may be encountered in the future. 1430 

Note that OCF introspection uses JSON types, media attributes, and format attributes, not CBOR encoding. 1431 

The actual encoding of each JSON type is discussed in Section 12.3 of the OCF 1.0 Core Specification, 1432 

JSON format attribute values are as defined in JSON Schema Validation, and JSON media attribute 1433 

values are as defined in JSON Hyper-Schema. 1434 

7.2.2.1 Translation of the introspection itself 1435 

Note that both OCF 1.0 and AllJoyn require all services exposed to include introspection metadata, which 1436 

means the translator will need to translate the introspection information on-the-fly for each OCF resource 1437 

or AllJoyn producer it finds. The translator shall preserve as much of the original information as can be 1438 

represented in the translated format.  This includes both the information used in machine interactions and 1439 

the information used in user interactions, such as description and documentation text. 1440 

7.2.2.2 Variability of introspection data 1441 

Introspection data is not a constant and the translator may find, upon discovering further services, that the 1442 

D-Bus interface or OCF Resource Type it had previously encountered is different than previously seen. The 1443 

translator needs to take care about how the destination side will react to a change in introspection. 1444 

D-Bus interfaces used by AllJoyn services may be updated to newer versions, which means a given type 1445 

of service may be offered by two distinct versions of the same interface. Updates to standardised interfaces 1446 

must follow strict guidelines established by the AllSeen Interface Review Board, mapping each version to 1447 

a different OCF Resource Type should be possible without much difficulty. However, there’s no guarantee 1448 

that vendor-specific extensions follow those requirements.  Indeed, there’s nothing preventing two revisions 1449 

of a product to contain completely incompatible interfaces that have the same name and version number. 1450 

On the opposite direction, the rules are much laxer. Since OCF specifies optional properties to its Resource 1451 

Types, a simple monotonically-increasing version number like AllJoyn consumer applications expect is not 1452 

possible. 1453 

However, it should be noted that services created by the translator by “on-the-fly” translation will only be 1454 

accessed by generic client applications. Dedicated applications will only use “deep binding” translation. 1455 

7.2.2.3 Numeric types 1456 

For numeric values, all D-Bus and JSON numeric types are treated equally as source and may all be 1457 

translated into any of the other side’s types. When translating a request to a service, the translator need 1458 

only verify whether there would be loss of information when translating from source to destination. For 1459 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 44 
  

example, when translating the number 1.5 to either a JSON integer or to one of the D-Bus integral types, 1460 

there would be loss of information, in which case the translator should refuse the incoming message. 1461 

Similarly, the value 1,234,567 does not fit the range of a D-Bus byte, 16-bit signed or unsigned integer. 1462 

When translating the reply from the service, the translator shall use the following rules. 1463 

The following table indicates how to translate from a JSON type to the corresponding D-Bus type, where 1464 

the first matching row shall be used.   If the JSON schema does not indicate the minimum value of a JSON 1465 

integer, 0 is the default.  If the JSON schema does not indicate the maximum value of a JSON integer, 232 1466 

– 1 is the default.   The resulting AllJoyn introspection XML shall contain “org.alljoyn.Bus.Type.Min” and 1467 

“org.alljoyn.Bus.Type.Max” annotations whenever the minimum or maximum, respectively, of the JSON 1468 

value is different from the natural minimum or maximum of the D-Bus type. 1469 

From JSON type Condition To D-Bus Type 

integer 
 

minimum ≥ 0 AND maximum < 28  “y” (BYTE) 

minimum ≥ 0 AND maximum < 216  “q” (UINT16) 

minimum ≥ -215 AND maximum < 215  “n” (INT16) 

minimum ≥ 0 AND maximum < 232 “u” (UINT32) 

minimum ≥ -231 AND maximum < 231  “i" (INT32) 

minimum ≥ 0  ”t” (UINT64) 

  “x” (INT64) 

number   “d” (DOUBLE) 

string pattern = “^0|([1-9][0-9]{0,19})$”  “t” (UINT64) 

pattern = “^0|(-?[1-9][0-9]{0,18)}$”  “x” (INT64) 

 1470 

The following table indicates how to translate from a D-Bus type to the corresponding JSON type. 1471 

From D-Bus type To JSON type Note 
 “y” (BYTE) integer  

 
 

“minimum” and “maximum” in the 
JSON schema shall be set to the 
value of the 
“org.alljoyn.Bus.Type.Min” and 
“org.alljoyn.Bus.Type.Max” 
(respectively) annotations if 
present, or to the min and max 
values of the D-Bus type’s range if 
such annotations are absent. 

 “n” (UINT16) 

 “q” (INT16) 

 “u” (UINT32) 

 “i" (INT32) 

 “t” (UINT64) integer if org.alljoyn.Bus.Type.Max ≤ 253, else 
string with JSON pattern attribute “^0|([1-9][0-
9]{0,19})$”. 

IETF RFC 7159 section 6 explains 
that higher JSON integers are not 
interoperable. 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 45 
  

From D-Bus type To JSON type Note 
 “x” (INT64) integer (if org.alljoyn.Bus.Type.Min ≥ -253 AND 

org.alljoyn.Bus.Type.Max ≤ 253), else string 
with JSON pattern attribute “^0|(-?[1-9][0-
9]{0,18)}$”. 

IETF RFC 7159 section 6 explains 
that other JSON integers are not 
interoperable. 

 “d” (double) number  
 

 

 1472 

7.2.2.4 Text string and byte arrays 1473 

D-Bus Type JSON type JSON media attribute, 
binaryEncoding property 

“s” – STRING string (none) 

“ay” - ARRAY of BYTE string base64 

 1474 

There’s no difference in the translation of text strings and byte arrays compared to the previous section. 1475 

This section simply lists the JSON equivalent types for the generated OCF introspection. 1476 

In addition, the mapping of the following JSON Types is direction-specific: 1477 

From JSON 
type 

Condition To D-Bus Type 

string pattern = “^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-
fA-F0-9]{4}-[a-fA-F0-9]{12}$” 

“ay” – ARRAY of BYTE 

 1478 

JSON strings with any other format value (e.g., date-time, uri, etc.) or pattern value not shown in this table 1479 

above shall be treated the same as if the format and pattern attributes were absent, by simply mapping 1480 

the value to a D-Bus string. 1481 

7.2.2.5 D-Bus Variants 1482 

D-Bus Type JSON Type 

“v” – VARIANT see below 
 1483 

If the introspection of an AllJoyn producer indicates a value in a request should be a D-Bus VARIANT, the 1484 

translator should create such a variant and encode the incoming value as the variant’s payload as per the 1485 

rules in the rest of this document. 1486 

7.2.2.6 D-Bus Object Paths and Signatures 1487 

From D-Bus Type To JSON Type 

“o” – OBJECT_PATH string 

“g” – SIGNATURE 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 46 
  

 1488 

If the introspection of an AllJoyn producer indicates a value in a request should be a D-Bus Object Path or 1489 

D-Bus Signature, the translator should perform a validity check in the incoming CBOR Text String. If the 1490 

incoming data fails to pass this check, the message should be rejected. 1491 

7.2.2.7 D-Bus Structures 1492 

D-Bus structure members are described in the introspection XML with the 1493 
“org.alljoyn.Bus.Struct.StructureName.Field.fieldName.Type” annotation. The translator shall use 1494 
the AJSoftwareVersion field of the About data obtained from a bridged AllJoyn producer as follows.  1495 
When the version of AllJoyn implemented on the Bridged Device is v16.10.00 or greater and the 1496 
member annotations are present, the translator shall use a JSON object to represent a structure, 1497 
mapping each member to the entry with that name. The translator needs to be aware that the 1498 
incoming CBOR payload may have changed the order of the fields, when compared to the D-Bus 1499 
structure.  When the version of AllJoyn implemented on the Bridged Device is less than v16.10.00, 1500 
the translator shall follow the rule for translating D-Bus structures without the aid of introspection 1501 
data. 1502 

7.2.2.8 Arrays and Dictionaries 1503 

If the introspection of the AllJoyn interface indicates that the array is neither an ARRAY of BYTE (“ay”) nor 1504 

an ARRAY of VARIANT (“av”) or that the dictionary is not mapping STRING to VARIANT (“a{sv}”), the 1505 

translator shall apply the constraining or relaxing rules specified in other sections. 1506 

Similarly, if the OCF introspection indicates a homogeneous array type, the information about the array’s 1507 

element type should be used as the D-Bus array type instead of VARIANT (“v”).  1508 

7.2.2.9 Other JSON format attribute values 1509 

The JSON format attribute may include other custom attribute types. They are not known at this time, but 1510 

it is expected that those types be handled by their type and representation alone. 1511 

7.2.2.10 Examples 1512 

AllJoyn Source AllJoyn Introspection 
Notes 

Translated JSON 
Payload 

OCF Introspection Notes 

UINT32 (0)  0 JSON schema should indicate:  
“type”: “integer”, 
“minimum”: 0, 
“maximum”: 4294967295 

INT64 (0)  0 Since no Min/Max 
annotations exist in AllJoyn, 
JSON schema should indicate:  
“type”: “string”, 
“pattern”: “^0|(-?[1-9][0-
9]{0,18)}$” 

UINT64 (0)  “0” Since no Max annotation 
exists in AllJoyn, JSON 
schema should indicate:  
“type”: “string”, 
“pattern”: ^0|([1-9][0-
9]{0,19})$” 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 47 
  

AllJoyn Source AllJoyn Introspection 
Notes 

Translated JSON 
Payload 

OCF Introspection Notes 

STRING(“Hello”)  “Hello” JSON schema should indicate: 
“type”: “string” 

OBJECT_PATH(“/”)  “/” JSON schema should indicate: 
“type”: “string” 

SIGNATURE(“g”)  “g” JSON schema should indicate: 
“type”: “string” 

ARRAY<BYTE>(0x48, 
0x65, 0x6c, 0x6c, 
0x6f) 

 “SGVsbG8” JSON schema should indicate: 
“type”: “string”, 
“media binaryEncoding”: 
“base64” 

VARIANT(anything)  ? JSON schema should indicate: 
“type”: [  "boolean", "object", 
"array", "number", "string", 
"integer" ] 

ARRAY<INT32>()  [] JSON schema should indicate: 
“type”: “array”, 
"items": { "type": "integer" } 

ARRAY<INT64>()  [] JSON schema should indicate: 
"type": "array",  
"items": { "type": "string", 
"pattern": "^0|([1-9][0-
9]{0,18})$" } 

STRUCT< INT32, 
INT32>( 
    0, 1 
) 

AllJoyn introspection 
specifies the argument 
with the annotation: 
<struct 
name="Point"> 
  <field 
name="x" 
type="i"/> 
  <field 
name="y" 
type="i"/> 
</struct> 
 

{“x”: 0, “y”: 1} JSON schema should indicate: 
"type": "object", 
"properties": { "x": { "type": 
"integer" }, "y": { "type": 
"integer" } }  
 

 1513 

CBOR 
Payload 

OCF Introspection Notes Translated AllJoyn AllJoyn Introspection Notes 

0 "type": "integer" INT32(0)  



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 48 
  

CBOR 
Payload 

OCF Introspection Notes Translated AllJoyn AllJoyn Introspection Notes 

0 "type": "integer", 
"minimum": -240, 
"maximum": 240 

INT64(0) 
 

org.alljoyn.Bus.Type.Min = -240 

org.alljoyn.Bus.Type.Max = 240 

0 "type": "integer", 
"minimum": 0,  
"maximum": 248 

UINT64(0) 
 

org.alljoyn.Bus.Type.Max = 248 

0.0  “type”: “number” DOUBLE(0.0)  

[1] JSON schema indicates: 
"type": "array",  
"items": { "type": "integer", 
"minimum": 0, "maximum":  
246 } 

ARRAY<UINT64>(1) org.alljoyn.Bus.Type.Max = 246 

8 Device Type Definitions 1514 

The required Resource Types are listed in the table below. 1515 

Device Name 

 (informative) 

Device Type (“rt”) 

(Normative) 

Required 
Resource 
name 

Required Resource Type 

Bridge oic.d.bridge Secure Mode oic.r.securemode 

Virtual Device oic.d.virtual Device oic.wk.d 

9 Resource Type definitions 1516 

9.1 List of resource types 1517 

Table 7 Alphabetical list of resource types 1518 

Friendly Name (informative) Resource Type (rt) Section 

Secure Mode oic.r.securemode 9.2 

AllJoyn Object oic.r.alljoynobject 9.3 

 1519 

9.2 Secure Mode 1520 

9.2.1 Introduction 1521 

This resource describes a secure mode on/off feature (on/off). 1522 

A secureMode value of “true” means that the feature is on, and: 1523 

• any Bridged Server that cannot be communicated with securely shall not have a 1524 
corresponding Virtual OCF Server, and 1525 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 49 
  

• any Bridged Client that cannot be communicated with securely shall not have a 1526 
corresponding Virtual OCF Client.  1527 

A secureMode value of “false” means that the feature is off, and: 1528 

• any Bridged Server can have a corresponding Virtual OCF Server, and 1529 

• any Bridged Client can have a corresponding Virtual OCF Client.  1530 

9.2.2 Example URI Path 1531 

/example/SecureModeResURI 1532 

9.2.3 Resource Type 1533 

The resource type (rt) is defined as: oic.r.securemode. 1534 

9.2.4 RAML Definition 1535 

#%RAML 0.8 1536 

title: OCFSecureMode 1537 
version: v1.0.0-20170531 1538 

traits: 1539 
 - interface: 1540 
     queryParameters:  1541 

       if: 1542 
         enum: ["oic.if.rw", "oic.if.baseline"] 1543 

 1544 

/example/SecureModeResURI: 1545 

  description: | 1546 
    This resource describes a secure mode on/off feature (on/off). 1547 
    A secureMode value of “true” means that the feature is on, and any Bridged Server that cannot 1548 
be communicated with securely shall not have a corresponding Virtual OCF Server, and any Bridged 1549 
Client that cannot be communicated with securely shall not have a corresponding Virtual OCF Client. 1550 
    A secureMode value of “false” means that the feature is off, any Bridged Server can have a 1551 
corresponding Virtual OCF Server, and any Bridged Client can have a corresponding Virtual OCF 1552 
Client. 1553 
 1554 

  is: ['interface'] 1555 
 1556 

  get: 1557 

    description: | 1558 
      Retrieves the value of secureMode. 1559 

    responses: 1560 

      200: 1561 

        body: 1562 
          application/json: 1563 

            schema: | 1564 

              { 1565 
                "id": "https://www.openconnectivity.org/ocf-1566 
apis/bridging/schemas/oic.r.securemode.json#", 1567 
                "$schema": "http://json-schema.org/draft-04/schema#", 1568 
                "description" : "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights 1569 
reserved.", 1570 
                "title": "Secure Mode", 1571 
                "definitions": { 1572 
                  "oic.r.securemode": { 1573 
                    "type": "object", 1574 
                    "properties": { 1575 
                      "secureMode": { 1576 
                        "type": "boolean", 1577 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 50 
  

                        "description": "Status of the Secure Mode" 1578 
                      } 1579 
                    } 1580 
                  } 1581 
                }, 1582 
                "type": "object", 1583 
                "allOf": [ 1584 
                  {"$ref": "../../core/schemas/oic.core-schema.json#/definitions/oic.core"}, 1585 
                  {"$ref": "#/definitions/oic.r.securemode"} 1586 
                ], 1587 
                "required": [ "secureMode" ] 1588 
              } 1589 

            example: | 1590 

              { 1591 
                "rt":          ["oic.r.securemode"], 1592 
                "id":          "unique_example_id", 1593 
                "secureMode":  false 1594 
              } 1595 
 1596 

  post: 1597 

    description: | 1598 
      Updates the value of secureMode. 1599 

    body: 1600 
      application/json: 1601 

        schema: | 1602 

          { 1603 
            "id": "https://www.openconnectivity.org/ocf-1604 
apis/bridging/schemas/oic.r.securemode.json#", 1605 
            "$schema": "http://json-schema.org/draft-04/schema#", 1606 
            "description" : "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights 1607 
reserved.", 1608 
            "title": "Secure Mode", 1609 
            "definitions": { 1610 
              "oic.r.securemode": { 1611 
                "type": "object", 1612 
                "properties": { 1613 
                  "secureMode": { 1614 
                    "type": "boolean", 1615 
                    "description": "Status of the Secure Mode" 1616 
                  } 1617 
                } 1618 
              } 1619 
            }, 1620 
            "type": "object", 1621 
            "allOf": [ 1622 
              {"$ref": "../../core/schemas/oic.core-schema.json#/definitions/oic.core"}, 1623 
              {"$ref": "#/definitions/oic.r.securemode"} 1624 
            ], 1625 
            "required": [ "secureMode" ] 1626 
          } 1627 

        example: | 1628 

          { 1629 
            "id":          "unique_example_id", 1630 
            "secureMode":  true 1631 
          } 1632 

    responses: 1633 

      200: 1634 

        body: 1635 
          application/json: 1636 

            schema: | 1637 

              { 1638 
                "id": "https://www.openconnectivity.org/ocf-1639 
apis/bridging/schemas/oic.r.securemode.json#", 1640 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 51 
  

                "$schema": "http://json-schema.org/draft-04/schema#", 1641 
                "description" : "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights 1642 
reserved.", 1643 
                "title": "Secure Mode", 1644 
                "definitions": { 1645 
                  "oic.r.securemode": { 1646 
                    "type": "object", 1647 
                    "properties": { 1648 
                      "secureMode": { 1649 
                        "type": "boolean", 1650 
                        "description": "Status of the Secure Mode" 1651 
                      } 1652 
                    } 1653 
                  } 1654 
                }, 1655 
                "type": "object", 1656 
                "allOf": [ 1657 
                  {"$ref": "../../core/schemas/oic.core-schema.json#/definitions/oic.core"}, 1658 
                  {"$ref": "#/definitions/oic.r.securemode"} 1659 
                ], 1660 
                "required": [ "secureMode" ] 1661 
              } 1662 

            example: | 1663 

              { 1664 
                "id":          "unique_example_id", 1665 
                "secureMode":  true 1666 
              } 1667 
 1668 
 1669 

 Swagger2.0 Definition 1670 

{ 1671 
  "swagger": "2.0", 1672 
  "info": { 1673 
    "title": "OCFSecureMode", 1674 
    "version": "v1.0.0-20170531", 1675 
    "license": { 1676 
      "name": "copyright 2016-2017 Open Connectivity Foundation, Inc. All rights reserved.", 1677 
      "x-description": "Redistribution and use in source and binary forms, with or without 1678 
modification, are permitted provided that the following conditions are met:\n        1.  1679 
Redistributions of source code must retain the above copyright notice, this list of conditions and 1680 
the following disclaimer.\n        2.  Redistributions in binary form must reproduce the above 1681 
copyright notice, this list of conditions and the following disclaimer in the documentation and/or 1682 
other materials provided with the distribution.\n\n        THIS SOFTWARE IS PROVIDED BY THE Open 1683 
Connectivity Foundation, INC. \"AS IS\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 1684 
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE OR 1685 
WARRANTIES OF NON-INFRINGEMENT, ARE DISCLAIMED.\n        IN NO EVENT SHALL THE Open Connectivity 1686 
Foundation, INC. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 1687 
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 1688 
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)\n        HOWEVER CAUSED AND 1689 
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 1690 
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 1691 
OF SUCH DAMAGE.\n" 1692 
    } 1693 
  }, 1694 
  "schemes": ["http"], 1695 
  "consumes": ["application/json"], 1696 
  "produces": ["application/json"], 1697 
  "paths": { 1698 
    "/example/SecureModeResURI" : { 1699 
      "get": { 1700 
        "description": "This resource describes a secure mode on/off feature (on/off).\nA 1701 
secureMode value of 'true' means that the feature is on, and any Bridged Server that cannot be 1702 
communicated with securely shall not have a corresponding Virtual OCF Server, and any Bridged 1703 
Client that cannot be communicated with securely shall not have a corresponding Virtual OCF 1704 
Client.\nA secureMode value of 'false' means that the feature is off, any Bridged Server can have a 1705 
corresponding Virtual OCF Server, and any Bridged Client can have a corresponding Virtual OCF 1706 
Client.\nRetrieves the value of secureMode.\n", 1707 
        "parameters": [ 1708 
          {"$ref": "#/parameters/interface"} 1709 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 52 
  

        ], 1710 
        "responses": { 1711 
            "200": { 1712 
              "description" : "", 1713 
              "x-example": 1714 
                { 1715 
                  "rt":          ["oic.r.securemode"], 1716 
                  "id":          "unique_example_id", 1717 
                  "secureMode":  false 1718 
                } 1719 
                , 1720 
              "schema": { "$ref": "#/definitions/SecureMode" } 1721 
            } 1722 
        } 1723 
      }, 1724 
      "post": { 1725 
        "description": "Updates the value of secureMode.\n", 1726 
        "parameters": [ 1727 
          {"$ref": "#/parameters/interface"}, 1728 
          { 1729 
            "name": "body", 1730 
            "in": "body", 1731 
            "required": true, 1732 
            "schema": { "$ref": "#/definitions/SecureMode" }, 1733 
            "x-example": 1734 
              { 1735 
                "id":          "unique_example_id", 1736 
                "secureMode":  true 1737 
              } 1738 
          } 1739 
        ], 1740 
        "responses": { 1741 
            "200": { 1742 
              "description" : "", 1743 
              "x-example": 1744 
                { 1745 
                  "id":          "unique_example_id", 1746 
                  "secureMode":  true 1747 
                } 1748 
                , 1749 
              "schema": { "$ref": "#/definitions/SecureMode" } 1750 
            } 1751 
        } 1752 
      } 1753 
    } 1754 
  }, 1755 
  "parameters": { 1756 
    "interface" : { 1757 
      "in" : "query", 1758 
      "name" : "if", 1759 
      "type" : "string", 1760 
      "enum" : ["oic.if.rw", "oic.if.baseline"] 1761 
    } 1762 
  }, 1763 
  "definitions": { 1764 
    "SecureMode" :  1765 
            { 1766 
        "properties": { 1767 
          "id": { 1768 
            "description": "Instance ID of this specific resource", 1769 
            "maxLength": 64, 1770 
            "readOnly": true, 1771 
            "type": "string" 1772 
          }, 1773 
          "if": { 1774 
            "description": "The interface set supported by this resource", 1775 
            "items": { 1776 
              "enum": [ 1777 
                "oic.if.baseline", 1778 
                "oic.if.ll", 1779 
                "oic.if.b", 1780 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 53 
  

                "oic.if.lb", 1781 
                "oic.if.rw", 1782 
                "oic.if.r", 1783 
                "oic.if.a", 1784 
                "oic.if.s" 1785 
              ], 1786 
              "type": "string" 1787 
            }, 1788 
            "minItems": 1, 1789 
            "readOnly": true, 1790 
            "type": "array" 1791 
          }, 1792 
          "n": { 1793 
            "description": "Friendly name of the resource", 1794 
            "maxLength": 64, 1795 
            "readOnly": true, 1796 
            "type": "string" 1797 
          }, 1798 
          "rt": { 1799 
            "description": "Resource Type", 1800 
            "items": { 1801 
              "maxLength": 64, 1802 
              "type": "string" 1803 
            }, 1804 
            "minItems": 1, 1805 
            "readOnly": true, 1806 
            "type": "array" 1807 
          }, 1808 
          "secureMode": { 1809 
            "description": "Status of the Secure Mode", 1810 
            "type": "boolean" 1811 
          } 1812 
        }, 1813 
        "required": [ 1814 
          "secureMode" 1815 
        ], 1816 
        "type": "object" 1817 
      } 1818 
 1819 
  } 1820 
} 1821 
 1822 
 1823 

9.2.6 Property Definition 1824 

Property name Value type Mandatory Access mode Description 
secureMode boolean Yes Read Write Status of the Secure Mode 

9.2.7 CRUDN behaviour 1825 

Example Resource URI Create Read Update Delete Notify 
/example/SecureModeResURI  get post  get 

 1826 

9.3 AllJoyn Object 1827 

 Introduction 1828 

This resource is a collection of resources that were all derived from the same AllJoyn object. 1829 

 Example URI Path 1830 

/example/AllJoynObject/ 1831 

 Resource Type 1832 

The resource type (rt) is defined as: oic.r.alljoynobject. 1833 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 54 
  

 RAML Definition 1834 

#%RAML 0.8 1835 

title: OCFAllJoynObject 1836 
version: v1.0.0-20170531 1837 

traits: 1838 
- interface-ll: 1839 
     queryParameters:  1840 

       if: 1841 
         enum: ["oic.if.ll"] 1842 

 - interface-baseline: 1843 
     queryParameters:  1844 

       if: 1845 
         enum: ["oic.if.baseline"] 1846 

- interface-all: 1847 
     queryParameters:  1848 

       if: 1849 
         enum: ["oic.if.ll", "oic.if.baseline"] 1850 

 1851 

/example/AllJoynObject/?if=oic.if.baseline: 1852 

  description: | 1853 
    This resource is a collection of resources that were all derived from the same AllJoyn object. 1854 
 1855 

  is: ['interface-baseline'] 1856 

 1857 
  get: 1858 

    description: | 1859 
      Retrieves the current AllJoyn object information. 1860 

    responses: 1861 

      200: 1862 

        body: 1863 
          application/json: 1864 

            schema: | 1865 

              { 1866 
                "id": "https://www.openconnectivity.org/ocf-1867 
apis/bridging/schemas/oic.r.alljoynobject.json#", 1868 
                "$schema": "http://json-schema.org/draft-04/schema#", 1869 
                "description" : "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights 1870 
reserved.", 1871 
                "title": "AllJoyn Object", 1872 
                "definitions": { 1873 
                  "oic.r.alljoynobject": { 1874 
                    "type": "object", 1875 
                    "allOf": [ 1876 
                      { 1877 
                        "$ref": "../../core/schemas/oic.collection-1878 
schema.json#/definitions/oic.collection" 1879 
                      }, 1880 
                      { 1881 
                        "properties": { 1882 
                          "rt": { 1883 
                            "type": "array", 1884 
                            "minItems": 2, 1885 
                            "maxItems": 2, 1886 
                            "uniqueItems": true, 1887 
                            "items": { 1888 
                              "enum": ["oic.r.alljoynobject","oic.wk.col"] 1889 
                            } 1890 
                          } 1891 
                        } 1892 
                      } 1893 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 55 
  

                    ] 1894 
                  } 1895 
                }, 1896 
                "type": "object", 1897 
                "allOf": [ 1898 
                  {"$ref": "../../core/schemas/oic.core-schema.json#/definitions/oic.core"}, 1899 
                  {"$ref": "#/definitions/oic.r.alljoynobject"} 1900 
                ] 1901 
              } 1902 

            example: | 1903 

              { 1904 
                "rt":    ["oic.r.alljoynobject","oic.wk.col"], 1905 
                "id":    "unique_example_id", 1906 
                "links": [ 1907 
                  {"href": "/myRes1URI", "rt": ["x.example.widget.false"], "if": 1908 
["oic.if.r","oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 1909 
                  {"href": "/myRes2URI", "rt": ["x.example.widget.true"], "if": 1910 
["oic.if.r","oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 1911 
                  {"href": "/myRes3URI", "rt": ["x.example.widget.method1"], "if": 1912 
["oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 1913 
                  {"href": "/myRes4URI", "rt": ["x.example.widget.method2"], "if": 1914 
["oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]} 1915 
                ] 1916 
              } 1917 

/example/AllJoynObject/?if=oic.if.ll: 1918 

  description: | 1919 
    This resource is a collection of resources that were all derived from the same AllJoyn object. 1920 
 1921 

  is: ['interface-ll'] 1922 

 1923 
  get: 1924 

    description: | 1925 
      Retrieves the Links in the current AllJoyn object. 1926 

    responses: 1927 

      200: 1928 

        body: 1929 
          application/json: 1930 

            schema: | 1931 

              { 1932 
                "id": "https://www.openconnectivity.org/ocf-1933 
apis/bridging/schemas/oic.r.alljoynobject-ll#", 1934 
                "$schema": "http://json-schema.org/draft-04/schema#", 1935 
                "description" : "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights 1936 
reserved.", 1937 
                "title": "AllJoyn Object Links List Schema", 1938 
                "definitions": { 1939 
                  "oic.r.alljoynobject-ll": { 1940 
                    "allOf": [ 1941 
                      { 1942 
                        "$ref": "../../core/schemas/oic.collection.linkslist-1943 
schema.json#/definitions/oic.collection.alllinks" 1944 
                      } 1945 
                    ] 1946 
                  } 1947 
                }, 1948 
                "allOf": [ 1949 
                  {"$ref": "#/definitions/oic.r.alljoynobject-ll"} 1950 
                ] 1951 
              } 1952 

            example: | 1953 

              [ 1954 
                {"href": "/myRes1URI", "rt": ["x.example.widget.false"], "if": 1955 
["oic.if.r","oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 1956 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 56 
  

                {"href": "/myRes2URI", "rt": ["x.example.widget.true"], "if": 1957 
["oic.if.r","oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 1958 
                {"href": "/myRes3URI", "rt": ["x.example.widget.method1"], "if": 1959 
["oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 1960 
                {"href": "/myRes4URI", "rt": ["x.example.widget.method2"], "if": 1961 
["oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]} 1962 
              ] 1963 
 1964 
 1965 

 Swagger2.0 Definition 1966 

{ 1967 
  "swagger": "2.0", 1968 
  "info": { 1969 
    "title": "OCFAllJoynObject", 1970 
    "version": "v1.0.0-20170531", 1971 
    "license": { 1972 
      "name": "copyright 2016-2017 Open Connectivity Foundation, Inc. All rights reserved.", 1973 
      "x-description": "Redistribution and use in source and binary forms, with or without 1974 
modification, are permitted provided that the following conditions are met:\n        1.  1975 
Redistributions of source code must retain the above copyright notice, this list of conditions and 1976 
the following disclaimer.\n        2.  Redistributions in binary form must reproduce the above 1977 
copyright notice, this list of conditions and the following disclaimer in the documentation and/or 1978 
other materials provided with the distribution.\n\n        THIS SOFTWARE IS PROVIDED BY THE Open 1979 
Connectivity Foundation, INC. \"AS IS\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 1980 
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE OR 1981 
WARRANTIES OF NON-INFRINGEMENT, ARE DISCLAIMED.\n        IN NO EVENT SHALL THE Open Connectivity 1982 
Foundation, INC. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 1983 
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 1984 
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)\n        HOWEVER CAUSED AND 1985 
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 1986 
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 1987 
OF SUCH DAMAGE.\n" 1988 
    } 1989 
  }, 1990 
  "schemes": ["http"], 1991 
  "consumes": ["application/json"], 1992 
  "produces": ["application/json"], 1993 
  "paths": { 1994 
    "/example/AllJoynObject/?if=oic.if.ll" : { 1995 
      "get": { 1996 
        "description": "This resource is a collection of resources that were all derived from the 1997 
same AllJoyn object.\nRetrieves the Links in the current AllJoyn object.\n", 1998 
        "parameters": [ 1999 
          {"$ref": "#/parameters/interface-ll"} 2000 
        ], 2001 
        "responses": { 2002 
            "200": { 2003 
              "description" : "", 2004 
              "x-example": 2005 
                [ 2006 
                  {"href": "/myRes1URI", "rt": ["x.example.widget.false"], "if": 2007 
["oic.if.r","oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 2008 
                  {"href": "/myRes2URI", "rt": ["x.example.widget.true"], "if": 2009 
["oic.if.r","oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 2010 
                  {"href": "/myRes3URI", "rt": ["x.example.widget.method1"], "if": 2011 
["oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 2012 
                  {"href": "/myRes4URI", "rt": ["x.example.widget.method2"], "if": 2013 
["oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]} 2014 
                ] 2015 
                , 2016 
              "schema": { "$ref": "#/definitions/AllJoynObject-ll" } 2017 
            } 2018 
        } 2019 
      } 2020 
    }, 2021 
    "/example/AllJoynObject/?if=oic.if.baseline" : { 2022 
      "get": { 2023 
        "description": "This resource is a collection of resources that were all derived from the 2024 
same AllJoyn object.\nRetrieves the current AllJoyn object information.\n", 2025 
        "parameters": [ 2026 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 57 
  

          {"$ref": "#/parameters/interface-baseline"} 2027 
        ], 2028 
        "responses": { 2029 
            "200": { 2030 
              "description" : "", 2031 
              "x-example": 2032 
                { 2033 
                  "rt":    ["oic.r.alljoynobject","oic.wk.col"], 2034 
                  "id":    "unique_example_id", 2035 
                  "links": [ 2036 
                    {"href": "/myRes1URI", "rt": ["x.example.widget.false"], "if": 2037 
["oic.if.r","oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 2038 
                    {"href": "/myRes2URI", "rt": ["x.example.widget.true"], "if": 2039 
["oic.if.r","oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 2040 
                    {"href": "/myRes3URI", "rt": ["x.example.widget.method1"], "if": 2041 
["oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 2042 
                    {"href": "/myRes4URI", "rt": ["x.example.widget.method2"], "if": 2043 
["oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]} 2044 
                  ] 2045 
                } 2046 
                , 2047 
              "schema": { "$ref": "#/definitions/AllJoynObject" } 2048 
            } 2049 
        } 2050 
      } 2051 
    } 2052 
  }, 2053 
  "parameters": { 2054 
    "interface-ll" : { 2055 
      "in" : "query", 2056 
      "name" : "if", 2057 
      "type" : "string", 2058 
      "enum" : ["oic.if.ll"] 2059 
    }, 2060 
    "interface-baseline" : { 2061 
      "in" : "query", 2062 
      "name" : "if", 2063 
      "type" : "string", 2064 
      "enum" : ["oic.if.baseline"] 2065 
    }, 2066 
    "interface-all" : { 2067 
      "in" : "query", 2068 
      "name" : "if", 2069 
      "type" : "string", 2070 
      "enum" : ["oic.if.ll", "oic.if.baseline"] 2071 
    } 2072 
  }, 2073 
  "definitions": { 2074 
    "AllJoynObject-ll" :  2075 
            { 2076 
        "allOf": [ 2077 
          { 2078 
            "$ref": "../../core/schemas/oic.collection.linkslist-schema.json" 2079 
          } 2080 
        ] 2081 
      } 2082 
 2083 
    , 2084 
    "AllJoynObject" :  2085 
            { 2086 
        "allOf": [ 2087 
          { 2088 
            "$ref": "../../core/schemas/oic.collection-schema.json" 2089 
          }, 2090 
          { 2091 
            "properties": { 2092 
              "id": { 2093 
                "description": "Instance ID of this specific resource", 2094 
                "maxLength": 64, 2095 
                "readOnly": true, 2096 
                "type": "string" 2097 



Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved. 58 
  

              }, 2098 
              "if": { 2099 
                "description": "The interface set supported by this resource", 2100 
                "items": { 2101 
                  "enum": [ 2102 
                    "oic.if.baseline", 2103 
                    "oic.if.ll", 2104 
                    "oic.if.b", 2105 
                    "oic.if.lb", 2106 
                    "oic.if.rw", 2107 
                    "oic.if.r", 2108 
                    "oic.if.a", 2109 
                    "oic.if.s" 2110 
                  ], 2111 
                  "type": "string" 2112 
                }, 2113 
                "minItems": 1, 2114 
                "readOnly": true, 2115 
                "type": "array" 2116 
              }, 2117 
              "n": { 2118 
                "description": "Friendly name of the resource", 2119 
                "maxLength": 64, 2120 
                "readOnly": true, 2121 
                "type": "string" 2122 
              }, 2123 
              "rt": { 2124 
                "items": { 2125 
                  "enum": [ 2126 
                    "oic.r.alljoynobject", 2127 
                    "oic.wk.col" 2128 
                  ] 2129 
                }, 2130 
                "maxItems": 2, 2131 
                "minItems": 2, 2132 
                "type": "array", 2133 
                "uniqueItems": true 2134 
              } 2135 
            } 2136 
          } 2137 
        ], 2138 
        "type": "object" 2139 
      } 2140 
 2141 
  } 2142 
} 2143 
 2144 

 CRUDN behaviour 2145 

Example Resource URI Create Read Update Delete Notify 
/example/AllJoynObject/?if=oic.if.baseline    get post  get 
/example/AllJoynObject/?if=oic.if.ll   get   get 

 2146 


	1  Scope
	2 Normative references
	3 Terms, definitions, symbols and abbreviations
	3.1 Terms and definitions
	3.2 Symbols and abbreviations
	3.3 Conventions

	4 Document conventions and organization
	4.1 Notation
	4.2 Data types
	4.3 Document structure

	5 Operational Scenarios
	5.1 “Deep translation” vs. “on-the-fly”
	5.2 Use of introspection
	5.3 Stability and loss of data

	6 OCF Bridge Device
	6.1 Resource Discovery
	6.2 General Requirements
	6.3 Security
	6.3.1 Blocking communication of Bridged Devices with the OCF ecosystem


	7 AllJoyn Translation
	7.1 Requirements Specific to an AllJoyn Translator
	7.1.1 Exposing AllJoyn producer devices to OCF Clients
	7.1.1.1 Exposing an AllJoyn producer application as a Virtual OCF Server

	7.1.2 Exposing OCF resources to AllJoyn consumer applications
	7.1.2.1 Exposing an OCF server as a Virtual AllJoyn Producer


	7.2 On-the-Fly Translation from D-Bus and OCF payloads
	7.2.1 Translation without aid of introspection
	7.2.1.1 Booleans
	7.2.1.2 Numeric types
	7.2.1.3 Text strings
	7.2.1.4 Byte arrays
	7.2.1.5 D-Bus Variants
	7.2.1.6 D-Bus Object Paths and Signatures
	7.2.1.7 D-Bus Structures
	7.2.1.8 Arrays
	7.2.1.9 Dictionaries / Objects
	7.2.1.10 Non-translatable types
	7.2.1.11 Examples

	7.2.2 Translation with aid of introspection
	7.2.2.1 Translation of the introspection itself
	7.2.2.2 Variability of introspection data
	7.2.2.3 Numeric types
	7.2.2.4 Text string and byte arrays
	7.2.2.5 D-Bus Variants
	7.2.2.6 D-Bus Object Paths and Signatures
	7.2.2.7 D-Bus Structures
	7.2.2.8 Arrays and Dictionaries
	7.2.2.9 Other JSON format attribute values
	7.2.2.10 Examples



	8 Device Type Definitions
	9 Resource Type definitions
	9.1 List of resource types
	9.2 Secure Mode
	9.2.1 Introduction
	9.2.2 Example URI Path
	9.2.3 Resource Type
	9.2.4 RAML Definition
	9.2.5 Swagger2.0 Definition
	9.2.6 Property Definition
	9.2.7 CRUDN behaviour

	9.3 AllJoyn Object
	9.3.1 Introduction
	9.3.2 Example URI Path
	9.3.3 Resource Type
	9.3.4 RAML Definition
	9.3.5 Swagger2.0 Definition
	9.3.6 CRUDN behaviour



