

CONTACT admin@openconnectivity.org
Copyright Open Connectivity Foundation, Inc. © 2020
All Rights Reserved.

OCF Core Specification
VERSION 2.1.1 | February 2020

mailto:admin@openconnectivity.org

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

Legal Disclaimer 2
3

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY 4
KIND OF LICENSE IN ITS CONTENT, EITHETable-Annex A.1R EXPRESSLY OR IMPLIEDLY, 5
OR TO ANY INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE 6
AUTHORS OR DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN 7
IS PROVIDED ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY 8
APPLICABLE LAW, THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY 9
DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, 10
STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED 11
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN 12
CONNECTIVITY FOUNDATION, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF 13
NON-INFRINGEMENT, ACCURACY OR LACK OF VIRUSES. 14

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or other 15
countries. *Other names and brands may be claimed as the property of others. 16

Copyright © 2016-2020 Open Connectivity Foundation, Inc. All rights reserved. 17

Copying or other form of reproduction and/or distribution of these works are strictly prohibited. 18
19

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

CONTENTS 20

1 Scope .. 1 21

2 Normative references .. 1 22

3 Terms, definitions, and abbreviated terms ... 3 23

3.1 Terms and definitions.. 3 24

3.2 Abbreviated terms ... 7 25

4 Document conventions and organization .. 8 26

4.1 Conventions .. 8 27

4.2 Notation .. 9 28

4.3 Data types .. 9 29

4.4 Resource notation syntax .. 11 30

5 Architecture ... 11 31

5.1 Overview .. 11 32

5.2 Principle ... 12 33

5.3 Functional block diagram .. 13 34

5.4 Framework .. 14 35

6 Identification and addressing ... 15 36

6.1 Introduction ... 15 37

6.2 Identification ... 15 38

6.2.1 Device and Platform identification .. 15 39

6.2.2 Resource identification and addressing ... 15 40

6.3 Namespace: .. 16 41

6.4 Network addressing .. 17 42

7 Resource model .. 17 43

7.1 Introduction ... 17 44

7.2 Resource .. 18 45

7.3 Property .. 18 46

7.3.1 Introduction ... 18 47

7.3.2 Common Properties ... 19 48

7.4 Resource Type ... 21 49

7.4.1 Introduction ... 21 50

7.4.2 Resource Type Property .. 21 51

7.4.3 Resource Type definition ... 21 52

7.4.4 Multi-value "rt" Resource ... 23 53

7.5 Device Type .. 23 54

7.6 OCF Interface ... 24 55

7.6.1 Introduction ... 24 56

7.6.2 OCF Interface Property .. 24 57

7.6.3 OCF Interface methods .. 25 58

7.7 Resource representation ... 44 59

7.8 Structure ... 44 60

7.8.1 Introduction ... 44 61

7.8.2 Resource relationships (Links) ... 44 62

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

7.8.3 Collections... 49 63

7.8.4 Atomic Measurement ... 52 64

7.9 Query Parameters ... 54 65

7.9.1 Introduction ... 54 66

7.9.2 Use of multiple parameters within a query ... 54 67

7.9.3 Application to multi-value "rt" Resources ... 54 68

7.9.4 OCF Interface specific considerations for queries .. 54 69

8 CRUDN ... 55 70

8.1 Overview .. 55 71

8.2 CREATE ... 56 72

8.2.1 Overview ... 56 73

8.2.2 CREATE request ... 56 74

8.2.3 Processing by the Server ... 56 75

8.2.4 CREATE response ... 56 76

8.3 RETRIEVE .. 57 77

8.3.1 Overview ... 57 78

8.3.2 RETRIEVE request .. 57 79

8.3.3 Processing by the Server ... 57 80

8.3.4 RETRIEVE response ... 57 81

8.4 UPDATE ... 57 82

8.4.1 Overview ... 57 83

8.4.2 UPDATE request ... 58 84

8.4.3 Processing by the Server ... 58 85

8.4.4 UPDATE response ... 59 86

8.5 DELETE .. 59 87

8.5.1 Overview ... 59 88

8.5.2 DELETE request .. 59 89

8.5.3 Processing by the Server ... 59 90

8.5.4 DELETE response ... 59 91

8.6 NOTIFY .. 60 92

8.6.1 Overview ... 60 93

8.6.2 NOTIFICATION response .. 60 94

9 Network and connectivity ... 60 95

9.1 Introduction ... 60 96

9.2 Architecture .. 60 97

9.3 IPv6 network layer requirements ... 61 98

9.3.1 Introduction ... 61 99

9.3.2 IPv6 node requirements ... 62 100

10 OCF Endpoint .. 62 101

10.1 OCF Endpoint definition .. 62 102

10.2 OCF Endpoint information ... 63 103

10.2.1 Introduction ... 63 104

10.2.2 "ep" ... 63 105

10.2.3 "pri" ... 64 106

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

10.2.4 OCF Endpoint information in "eps" Parameter ... 64 107

10.3 OCF Endpoint discovery ... 65 108

10.3.1 Introduction ... 65 109

10.3.2 Implicit discovery ... 65 110

10.3.3 Explicit discovery with "/oic/res" response ... 65 111

11 Functional interactions .. 67 112

11.1 Introduction ... 67 113

11.2 Resource discovery .. 68 114

11.2.1 Introduction ... 68 115

11.2.2 Resource based discovery: mechanisms ... 68 116

11.2.3 Resource based discovery: Finding information ... 69 117

11.2.4 Resource discovery using "/oic/res" ... 75 118

11.2.5 Multicast discovery using "/oic/res" .. 77 119

11.3 Notification ... 77 120

11.3.1 Overview ... 77 121

11.3.2 Observe ... 77 122

11.4 Introspection ... 78 123

11.4.1 Overview ... 78 124

11.4.2 Usage of Introspection ... 82 125

11.5 Semantic Tags .. 83 126

11.5.1 Introduction ... 83 127

11.5.2 Semantic Tag definitions ... 83 128

12 Messaging ... 85 129

12.1 Introduction ... 85 130

12.2 Mapping of CRUDN to CoAP ... 85 131

12.2.1 Overview ... 85 132

12.2.2 URIs .. 85 133

12.2.3 CoAP method with request and response .. 86 134

12.2.4 Content-Format negotiation ... 87 135

12.2.5 OCF-Content-Format-Version information .. 88 136

12.2.6 Content-Format policy ... 89 137

12.2.7 CRUDN to CoAP response codes .. 89 138

12.2.8 CoAP block transfer ... 90 139

12.2.9 Generic requirements for CoAP multicast .. 90 140

12.3 Mapping of CRUDN to CoAP serialization over TCP ... 91 141

12.3.1 Overview ... 91 142

12.3.2 URIs .. 91 143

12.3.3 CoAP method with request and response .. 91 144

12.3.4 Content-Format negotiation ... 91 145

12.3.5 OCF-Content-Format-Version information .. 91 146

12.3.6 Content-Format policy ... 91 147

12.3.7 CRUDN to CoAP response codes .. 91 148

12.3.8 CoAP block transfer ... 91 149

12.3.9 Keep alive (connection health) ... 91 150

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

12.4 Payload Encoding in CBOR .. 91 151

13 Security ... 92 152

 (normative) Resource Type definitions ... 93 153

A.1 List of Resource Type definitions .. 93 154

A.2 Atomic Measurement links list representation ... 93 155

A.2.1 Introduction ... 93 156

A.2.2 Example URI ... 93 157

A.2.3 Resource type ... 93 158

A.2.4 OpenAPI 2.0 definition ... 93 159

A.2.5 Property definition ... 100 160

A.2.6 CRUDN behaviour ... 101 161

A.3 Collection.. 101 162

A.3.1 Introduction ... 101 163

A.3.2 Example URI ... 101 164

A.3.3 Resource type ... 101 165

A.3.4 OpenAPI 2.0 definition ... 101 166

A.3.5 Property definition ... 109 167

A.3.6 CRUDN behaviour ... 110 168

A.4 Device .. 110 169

A.4.1 Introduction ... 110 170

A.4.2 Well-known URI ... 110 171

A.4.3 Resource type ... 110 172

A.4.4 OpenAPI 2.0 definition ... 110 173

A.4.5 Property definition ... 113 174

A.4.6 CRUDN behaviour ... 114 175

A.5 Introspection Resource ... 115 176

A.5.1 Introduction ... 115 177

A.5.2 Well-known URI ... 115 178

A.5.3 Resource type ... 115 179

A.5.4 OpenAPI 2.0 definition ... 115 180

A.5.5 Property definition ... 117 181

A.5.6 CRUDN behaviour ... 117 182

A.6 Platform .. 118 183

A.6.1 Introduction ... 118 184

A.6.2 Well-known URI ... 118 185

A.6.3 Resource type ... 118 186

A.6.4 OpenAPI 2.0 definition ... 118 187

A.6.5 Property definition ... 121 188

A.6.6 CRUDN behaviour ... 121 189

A.7 Discoverable Resources ... 122 190

A.7.1 Introduction ... 122 191

A.7.2 Well-known URI ... 122 192

A.7.3 Resource type ... 122 193

A.7.4 OpenAPI 2.0 definition ... 122 194

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

A.7.5 Property definition ... 127 195

A.7.6 CRUDN behaviour ... 128 196

 (informative) OpenAPI 2.0 Schema Extension .. 129 197

B.1 OpenAPI 2.0 Schema Reference ... 129 198

B.2 OpenAPI 2.0 Introspection empty file .. 129 199

 (normative) Semantic Tag enumeration support ... 130 200

C.1 Introduction ... 130 201

C.2 "tag-pos-desc" supported enumeration .. 130 202

Bibliography .. 131 203

 204

 205

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

 206

Figures 207
 208

Figure 1 – Architecture - concepts .. 12 209

Figure 2 – Functional block diagram ... 13 210

Figure 3 – Communication layering model .. 14 211

Figure 4 – Example Resource ... 18 212

Figure 5 – CREATE operation ... 56 213

Figure 6 – RETRIEVE operation ... 57 214

Figure 7 – UPDATE operation ... 58 215

Figure 8 – DELETE operation ... 59 216

Figure 9 – High Level Network & Connectivity Architecture ... 61 217

Figure 10 – Resource based discovery: Finding information .. 69 218

Figure 11 – Observe Mechanism ... 77 219

Figure 12 – Example usage of oneOf JSON schema ... 81 220

Figure 13 – Interactions to check Introspection support and download the Introspection 221
Device Data. ... 82 222

Figure 14 – "tag-pos-rel" definition .. 84 223

Figure 15 – Content-Format Policy for backward compatible OCF Clients negotiating lower 224
OCF Content-Format-Version ... 89 225

Figure C.1 – Enumeration for "tag-pos-desc" Semantic Tag .. 130 226

Figure C.2 – Definition of "tag-pos-desc" Semantic Tag values ... 130 227

 228

Tables 229
 230

Table 1 – Additional OCF Types ... 10 231

Table 2 – Name Property Definition .. 20 232

Table 3 – Resource Identity Property Definition .. 20 233

Table 4 – Resource Type Common Property definition .. 21 234

Table 5 – Example foobar Resource Type ... 22 235

Table 6 – Example foobar Properties .. 22 236

Table 7 – Resource Interface Property definition ... 25 237

Table 8 – OCF standard OCF Interfaces ... 25 238

Table 9 – Batch OCF Interface Example ... 32 239

Table 10 – Link target attributes list .. 46 240

Table 11 – "bm" Property definition ... 46 241

Table 12 – Resource Types Property definition ... 49 242

Table 13 – Mandatory Resource Types Property definition .. 49 243

Table 14 – Common Properties for Collections (in addition to Common Properties defined 244
in 7.3.2) .. 51 245

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

Table 15 – Common Properties for Atomic Measurement (in addition to Common 246
Properties defined in 7.3.2) ... 52 247

Table 16 – Atomic Measurement Resource Type .. 53 248

Table 17 – Properties for Atomic Measurement (in addition to Common Properties defined 249
in 7.3.2) .. 53 250

Table 18 – Parameters of CRUDN messages .. 55 251

Table 19 – "ep" value for Transport Protocol Suite .. 64 252

Table 20 – List of Core Resources .. 67 253

Table 21 – Mandatory discovery Core Resources ... 70 254

Table 22 – "oic.wk.res" Resource Type definition .. 70 255

Table 23 – Protocol scheme registry ... 71 256

Table 24 – "oic.wk.d" Resource Type definition ... 72 257

Table 25 – "oic.wk.p" Resource Type definition ... 74 258

Table 26 – Introspection Resource .. 81 259

Table 27 – "oic.wk.introspection" Resource Type definition ... 81 260

Table 28 – "tag-pos-desc" Semantic Tag definition ... 83 261

Table 29 – "tag-pos-rel" Semantic Tag definition ... 84 262

Table 30 – "tag-func-desc" Semantic Tag definition .. 85 263

Table 31 – CoAP request and response .. 86 264

Table 32 – OCF Content-Formats ... 87 265

Table 33 – OCF-Content-Format-Version and OCF-Accept-Content-Format-Version Option 266
Numbers ... 88 267

Table 34 – OCF-Accept-Content-Format-Version and OCF-Content-Format-Version 268
Representation ... 88 269

Table 35 – Examples of OCF-Content-Format-Version and OCF-Accept-Content-Format-270
Version Representation .. 88 271

Table A.1 – Alphabetized list of Core Resources.. 93 272

Table A.2 – The Property definitions of the Resource with type "rt" = 273
"oic.wk.atomicmeasurement". ... 100 274

Table A.3 – The CRUDN operations of the Resource with type "rt" = 275
"oic.wk.atomicmeasurement". ... 101 276

Table A.4 – The Property definitions of the Resource with type "rt" = "oic.wk.col". 109 277

Table A.5 – The CRUDN operations of the Resource with type "rt" = "oic.wk.col". 110 278

Table A.6 – The Property definitions of the Resource with type "rt" = "oic.wk.d". 114 279

Table A.7 – The CRUDN operations of the Resource with type "rt" = "oic.wk.d". 114 280

Table A.8 – The Property definitions of the Resource with type "rt" = 281
"oic.wk.introspection". ... 117 282

Table A.9 – The CRUDN operations of the Resource with type "rt" = "oic.wk.introspection". 118 283

Table A.10 – The Property definitions of the Resource with type "rt" = "oic.wk.p". 121 284

Table A.11 – The CRUDN operations of the Resource with type "rt" = "oic.wk.p". 121 285

Table A.12 – The Property definitions of the Resource with type "rt" = "None". 127 286

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

Table A.13 – The CRUDN operations of the Resource with type "rt" = "None". 128 287

 288
 289

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 1

1 Scope 290

The OCF Core specifications are divided into a set of documents: 291

– Core specification (this document): The Core specification document specifies the Framework, 292
i.e., the OCF core architecture, interfaces, protocols and services to enable OCF profiles 293
implementation for Internet of Things (IoT) usages and ecosystems. This document is 294
mandatory for all Devices to implement. 295

– Core optional specification: The Core optional specification document specifies the Framework, 296
i.e., the OCF core architecture, interfaces, protocols and services to enable OCF profiles 297
implementation for Internet of Things (IoT) usages and ecosystems that can optionally be 298
implemented by any Device. 299

– Core extension specification(s): The Core extension specification(s) document(s) specifies 300
optional OCF Core functionality that are significant in scope (e.g., Wi-Fi easy setup, Cloud). 301

2 Normative references 302

The following documents, in whole or in part, are normatively referenced in this document and are 303
indispensable for its application. For dated references, only the edition cited applies. For undated 304
references, the latest edition of the referenced document (including any amendments) applies. 305

ISO 8601, Data elements and interchange formats – Information interchange –Representation of 306
dates and times, International Standards Organization, December 3, 2004 307

ISO/IEC DIS 20924, Information Technology – Internet of Things – Vocabulary, June 2018 308
https://www.iso.org/standard/69470.html 309

ISO/IEC 30118-2:2018, Information technology – Open Connectivity Foundation (OCF) 310
Specification – Part 2: Security specification 311
https://www.iso.org/standard/74239.html 312
Latest version available at: https://openconnectivity.org/specs/OCF_Security_Specification.pdf 313

IETF RFC 768, User Datagram Protocol, August 1980 314
https://www.rfc-editor.org/info/rfc768 315

IETF RFC 3339, Date and Time on the Internet: Timestamps, July 2002 316
https://www.rfc-editor.org/info/rfc3339 317

IETF RFC 3986, Uniform Resource Identifier (URI): General Syntax, January 2005. 318
https://www.rfc-editor.org/info/rfc3986 319

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005 320
https://www.rfc-editor.org/info/rfcfse4122 321

IETF RFC 4287, The Atom Syndication Format, December 2005, 322
https://www.rfc-editor.org/info/rfc4287 323

IETF RFC 4941, Privacy Extensions for Stateless Address Autoconfiguration in IPv6, September 324
2007 325
https://www.rfc-editor.org/info/rfc4941 326

IETF RFC 5646, Tags for Identifying Languages, September 2009 327
https://www.rfc-editor.org/info/rfc5646 328

IETF RFC 6347, Datagram Transport Layer Security Version 1.2, January 2012 329
https://www.rfc-editor.org/info/rfc6347 330

https://www.iso.org/standard/69470.html
https://www.iso.org/standard/74239.html
https://openconnectivity.org/specs/OCF_Security_Specification.pdf
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc4941
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc6347

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 2

IETF RFC 6434, IPv6 Node Requirements, December 2011 331
https://www.rfc-editor.org/info/rfc6434 332

IETF RFC 6573, The Item and Collection Link Relations, April 2012 333
https://www.rfc-editor.org/info/rfc6573 334

IETF RFC 6690, Constrained RESTful Environments (CoRE) Link Format, August 2012 335
https://www.rfc-editor.org/info/rfc6690 336

IETF RFC 7049, Concise Binary Object Representation (CBOR), October 2013 337
https://www.rfc-editor.org/info/rfc7049 338

IETF RFC 7084, Basic Requirements for IPv6 Customer Edge Routers, November 2013 339
https://www.rfc-editor.org/info/rfc7084 340

IETF RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format, March 2014 341
https://www.rfc-editor.org/info/rfc7159 342

IETF RFC 7252, The Constrained Application Protocol (CoAP), June 2014 343
https://www.rfc-editor.org/info/rfc7252 344

IETF RFC 7301, Transport Layer Security (TLS) Application-Layer Protocol Negotiation 345
Extension, July 2014 346
https://www.rfc-editor.org/info/rfc7301 347

IETF RFC 7346, IPv6 Multicast Address Scopes, August 2014 348
https://www.rfc-editor.org/info/rfc7346 349

IETF RFC 7595, Guidelines and Registration Procedures for URI Schemes, June 2015 350
https://www.rfc-editor.org/info/rfc7595 351

IETF RFC 7641, Observing Resources in the Constrained Application Protocol 352
(CoAP), September 2015 353
https://www.rfc-editor.org/info/rfc7641 354

IETF RFC 7721, Security and Privacy Considerations for IPv6 Address Generation Mechanisms, 355
March 20016 356
https://www.rfc-editor.org/info/rfc7721 357

IETF RFC 7959, Block-Wise Transfers in the Constrained Application Protocol (CoAP), August 358
2016 359
https://www.rfc-editor.org/info/rfc7959 360

IETF RFC 8075, Guidelines for Mapping Implementations: HTTP to the Constrained Application 361
Protocol (CoAP), February 2017 362
https://www.rfc-editor.org/info/rfc8075 363

IETF RFC 8288, Web Linking, October 2017 364
https://www.rfc-editor.org/info/rfc8288 365

IETF RFC 8323, CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets, 366
February 2018 367
https://www.rfc-editor.org/info/rfc8323 368

IANA ifType-MIB Definitions 369
https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib 370

https://www.rfc-editor.org/info/rfc6434
https://www.rfc-editor.org/info/rfc6573
https://www.rfc-editor.org/info/rfc6690
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7084
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7346
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7721
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc8075
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8323
https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 3

IANA IPv6 Multicast Address Space Registry 371
http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml 372

IANA Link Relations, October 2017 373
http://www.iana.org/assignments/link-relations/link-relations.xhtml 374

JSON Schema Validation, JSON Schema: interactive and non-interactive validation, January 2013 375
http://json-schema.org/draft-04/json-schema-validation.html 376

OpenAPI specification, fka Swagger RESTful API Documentation Specification, Version 2.0 377
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md 378

3 Terms, definitions, and abbreviated terms 379

3.1 Terms and definitions 380

For the purposes of this document, the terms and definitions given in the following apply. 381

ISO and IEC maintain terminological databases for use in standardization at the following 382
addresses: 383
– ISO Online browsing platform: available at https://www.iso.org/obp. 384

– IEC Electropedia: available at http://www.electropedia.org/. 385

3.1.1 386
Atomic Measurement 387
a design pattern that ensures that the Client (3.1.6) can only access the Properties (3.1.33) of 388
linked Resources (3.1.31) atomically, that is as a single group 389

3.1.2 390
Bridged Client 391
logical entity that accesses data via a Bridged Protocol (3.1.4) 392

Note 1 to entry: For example, an AllJoyn Consumer application is a Bridged Client (3.1.2) 393

3.1.3 394
Bridged Device 395
Bridged Client (3.1.2) or Bridged Server (3.1.5) 396

3.1.4 397
Bridged Protocol 398
another protocol (e.g., AllJoyn) that is being translated to or from OCF protocols 399

3.1.5 400
Bridged Server 401
logical entity that provides data via a Bridged Protocol (3.1.4) 402

Note 1 to entry: For example an AllJoyn Producer is a Bridged Server (3.1.5). 403

Note 2 to entry: More than one Bridged Server (3.1.5) can exist on the same physical platform. 404

3.1.6 405
Client 406
a logical entity that accesses a Resource (3.1.31) on a Server (3.1.36) 407

3.1.7 408
Collection 409
a Resource (3.1.31) that contains zero or more Links (3.1.21) 410

http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://json-schema.org/draft-04/json-schema-validation.html
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://www.iso.org/obp
http://www.electropedia.org/

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 4

3.1.8 411
Common Properties 412
Properties (3.1.33) specified for all Resources (3.1.31) 413

3.1.9 414
Composite Device 415
a Device (3.1.13) that is modelled as multiple Device Types (3.1.14); with each component Device 416
Type (3.1.14) being exposed as a Collection (3.1.7) 417

3.1.10 418
Configuration Source 419
a cloud or service network or a local read-only file which contains and provides configuration 420
related information to the Devices (3.1.13) 421

3.1.11 422
Core Resources 423
those Resources (3.1.31) that are defined in this document 424

3.1.12 425
Default OCF Interface 426
an OCF Interface (3.1.18) used to generate the response when an OCF Interface (3.1.18) is omitted 427
in a request 428

3.1.13 429
Device 430
a logical entity that assumes one or more roles, e.g., Client (3.1.6), Server (3.1.36) 431

Note 1 to entry: More than one Device (3.1.13) can exist on a Platform (3.1.30). 432

3.1.14 433
Device Type 434
a uniquely named definition indicating a minimum set of Resource Types (3.1.34) that a Device 435
(3.1.13) supports 436

Note 1 to entry: A Device Type (3.1.14) provides a hint about what the Device (3.1.13) is, such as a light or a fan, for 437
use during Resource (3.1.31) discovery. 438

3.1.15 439
Discoverable Resource 440
a Resource (3.1.31) that is listed in "/oic/res" 441

3.1.16 442
OCF Endpoint 443
entity participating in the OCF protocol, further identified as the source or destination of a request 444
and response messages for a given Transport Protocol Suite 445

Note 1 to entry: Example of a Transport Protocol Suite would be CoAP over UDP over IPv6. 446

3.1.17 447
Framework 448
a set of related functionalities and interactions defined in this document, which enable 449
interoperability across a wide range of networked devices, including IoT 450

3.1.18 451
OCF Interface 452
interface description in accordance with IETF RFC 6690 and as defined by OCF that provides a 453
view to and permissible responses from a Resource (3.1.31) 454

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 5

3.1.19 455
Introspection 456
mechanism to determine the capabilities of the hosted Resources (3.1.31) of a Device (3.1.13) 457

3.1.20 458
Introspection Device Data (IDD) 459
data that describes the payloads per implemented method of the Resources (3.1.31) that make up 460
the Device (3.1.13) 461

Note 1 to entry: See 11.4 for all requirements and exceptions. 462

3.1.21 463
Links 464
extends typed web links according to IETF RFC 8288 465

3.1.22 466
Non-Discoverable Resource 467
a Resource (3.1.31) that is not listed in "/oic/res" 468

Note 1 to entry: The Resource (3.1.31) can be reached by a Link (3.1.21) which is conveyed by another Resource 469
(3.1.31). For example a Resource (3.1.31) linked in a Collection (3.1.7) does not have to be listed in "/oic/res", since 470
traversing the Collection (3.1.7) would discover the Resource (3.1.31) implemented on the Device (3.1.13). 471

3.1.23 472
Notification 473
the mechanism to make a Client (3.1.6) aware of state changes in a Resource (3.1.31) 474

3.1.24 475
Observe 476
the act of monitoring a Resource (3.1.31) by sending a RETRIEVE operation which is cached by 477
the Server (3.1.36) hosting the Resource (3.1.31) and reprocessed on every change to that 478
Resource (3.1.31) 479

3.1.25 480
OpenAPI 2.0 481
Resource (3.1.31) and Intropection Device Data (3.1.20) definitions used in this document as 482
defined in the OpenAPI specification 483

3.1.26 484
Parameter 485
an element that provides metadata about a Resource (3.1.31) referenced by the target URI of a 486
Link (3.1.21) 487

3.1.27 488
Partial UPDATE 489
an UPDATE operation to a Resource (3.1.31) that includes a subset of the Properties (3.1.33) that 490
are visible via the OCF Interface (3.1.18) being applied for the Resource Type (3.1.34) 491

3.1.28 492
Permanent Immutable ID 493
an identity for a Device (3.1.13) that cannot be altered 494

3.1.29 495
Physical Device 496
the physical thing on which a Device(s) (3.1.13) is exposed 497

3.1.30 498
Platform 499
a Physical Device (3.1.29) containing one or more Devices (3.1.13) 500

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 6

3.1.31 501
Resource 502
represents an entity modelled and exposed by the Framework (3.1.17) 503

3.1.32 504
Resource Interface 505
a qualification of the permitted requests on a Resource (3.1.31) 506

3.1.33 507
Property 508
a significant aspect or Parameter (3.1.26) of a Resource (3.1.31), including metadata, that is 509
exposed through the Resource (3.1.31) 510

3.1.34 511
Resource Type 512
a uniquely named definition of a class of Properties (3.1.33) and the interactions that are supported 513
by that class 514

Note 1 to entry: Each Resource (3.1.31) has a Property (3.1.33) "rt" whose value is the unique name of the Resource 515
Type (3.1.34). 516

3.1.35 517
Secure OCF Endpoint 518
an OCF Endpoint (3.1.16) with a secure connection (e.g., CoAPS) 519

3.1.36 520
Semantic Tag 521
meta-information that provides additional contextual information with regard to the Resource 522
(3.1.31) that is the target of a Link (3.1.21) 523

3.1.37 524
Server 525
a Device (3.1.13) with the role of providing Resource (3.1.31) state information and facilitating 526
remote interaction with its Resources (3.1.31) 527

3.1.38 528
Unsecure OCF Endpoint 529
an OCF Endpoint () with an unsecure connection (e.g., CoAP) 530

3.1.39 531
Vertical Resource Type 532
a Resource Type (3.1.34) in a vertical domain specification 533

Note 1 to entry: An example of a Vertical Resource Type (3.1.39) would be "oic.r.switch.binary". 534

3.1.40 535
Virtual OCF Client 536
logical representation of a Bridged Client (3.1.2), which an Bridged Device (3.1.3) exposes to 537
Servers (3.1.36) 538

3.1.41 539
Virtual OCF Device (or VOD) 540
Virtual OCF Client (3.1.40) or Virtual OCF Server (3.1.42) 541

3.1.42 542
Virtual OCF Server 543
logical representation of a Bridged Server (3.1.5), which an Bridged Device (3.1.3) exposes to 544
Clients (3.1.6) 545

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 7

3.2 Abbreviated terms 546

3.2.1 547
ACL 548
Access Control List 549

Note 1 to entry: The details are defined in ISO/IEC 30118-2:2018. 550

3.2.2 551
BLE 552
Bluetooth Low Energy 553

3.2.3 554
CBOR 555
Concise Binary Object Representation 556

3.2.4 557
CoAP 558
Constrained Application Protocol 559

3.2.5 560
CoAPS 561
Secure Constrained Application Protocol 562

3.2.6 563
DTLS 564
Datagram Transport Layer Security 565

Note 1 to entry: The details are defined in IETF RFC 6347. 566

3.2.7 567
EXI 568
Efficient XML Interchange 569

3.2.8 570
IP 571
Internet Protocol 572

3.2.9 573
IRI 574
Internationalized Resource Identifiers 575

3.2.10 576
ISP 577
Internet Service Provider 578

3.2.11 579
JSON 580
JavaScript Object Notation 581

3.2.12 582
mDNS 583
Multicast Domain Name Service 584

3.2.13 585
MTU 586
Maximum Transmission Unit 587

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 8

3.2.14 588
NAT 589
Network Address Translation 590

3.2.15 591
OCF 592
Open Connectivity Foundation 593

the organization that created this document 594

3.2.16 595
REST 596
Representational State Transfer 597

3.2.17 598
RESTful 599
REST-compliant Web services 600

3.2.18 601
UDP 602
User Datagram Protocol 603

Note 1 to entry: The details are defined in IETF RFC 768. 604

3.2.19 605
URI 606
Uniform Resource Identifier 607

3.2.20 608
URN 609
Uniform Resource Name 610

3.2.21 611
UTC 612
Coordinated Universal Time 613

3.2.22 614
UUID 615
Universal Unique Identifier 616

3.2.23 617
XML 618
Extensible Markup Language 619

4 Document conventions and organization 620

4.1 Conventions 621

In this document a number of terms, conditions, mechanisms, sequences, parameters, events, 622
states, or similar terms are printed with the first letter of each word in uppercase and the rest 623
lowercase (e.g., Network Architecture). Any lowercase uses of these words have the normal 624
technical English meaning. 625

The messaging payload examples in this document contain OCF Vertical Device Types and 626
Resource Types, which are used for illustrative purposes only. 627

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 9

4.2 Notation 628

In this document, features are described as required, recommended, allowed or DEPRECATED as 629
follows: 630

Required (or shall or mandatory)(M). 631

– These basic features shall be implemented to comply with Core Architecture. The phrases "shall 632
not", and "PROHIBITED" indicate behaviour that is prohibited, i.e. that if performed means the 633
implementation is not in compliance. 634

Recommended (or should)(S). 635

– These features add functionality supported by Core Architecture and should be implemented. 636
Recommended features take advantage of the capabilities Core Architecture, usually without 637
imposing major increase of complexity. Notice that for compliance testing, if a recommended 638
feature is implemented, it shall meet the specified requirements to be in compliance with these 639
guidelines. Some recommended features could become requirements in the future. The phrase 640
"should not" indicates behaviour that is permitted but not recommended. 641

Allowed (may or allowed)(O). 642

– These features are neither required nor recommended by Core Architecture, but if the feature 643
is implemented, it shall meet the specified requirements to be in compliance with these 644
guidelines. 645

DEPRECATED. 646

– Although these features are still described in this document, they should not be implemented 647
except for backward compatibility. The occurrence of a deprecated feature during operation of 648
an implementation compliant with the current documenthas no effect on the implementation’s 649
operation and does not produce any error conditions. Backward compatibility may require that 650
a feature is implemented and functions as specified but it shall never be used by 651
implementations compliant with this document. 652

Conditionally allowed (CA). 653

– The definition or behaviour depends on a condition. If the specified condition is met, then the 654
definition or behaviour is allowed, otherwise it is not allowed. 655

Conditionally required (CR). 656

– The definition or behaviour depends on a condition. If the specified condition is met, then the 657
definition or behaviour is required. Otherwise the definition or behaviour is allowed as default 658
unless specifically defined as not allowed. 659

Strings that are to be taken literally are enclosed in "double quotes". 660

Words that are emphasized are printed in italic. 661

In all of the Property and Resource definition tables that are included throughout this document the 662
"Mandatory" column indicates that the item detailed is mandatory to implement; the mandating of 663
inclusion of the item in a Resource Payload associated with a CRUDN action is dependent on the 664
applicable schema for that action. 665

4.3 Data types 666

Resources are defined using data types derived from JSON values as defined in IETF RFC 7159. 667
However, a Resource can overload a JSON defined value to specify a particular subset of the 668
JSON value, using validation keywords defined in JSON Schema Validation. 669

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 10

Among other validation keywords, clause 7 in JSON Schema Validation defines a "format" keyword 670
with a number of format attributes such as "uri" and "date-time", and a "pattern" keyword with a 671
regular expression that can be used to validate a string. This clause defines patterns that are 672
available for use in describing OCF Resources. The pattern names can be used in documenttext 673
where JSON format names can occur. The actual JSON schemas shall use the JSON type and 674
pattern instead. 675

For all rows defined in Table 1, the JSON type is string. 676

Table 1 – Additional OCF Types 677

Pattern Name Pattern Description

"csv" <none> A comma separated list of values
encoded within a string. The value
type in the csv is described by the
Property where the csv is used. For
example a csv of integers.

NOTE csv is considered
deprecated and an array of strings
should be used instead for new
Resources.

"date" ^([0-9]{4})-(1[0-2]|0[1-9])-(3[0-1]|2[0-
9]|1[0-9]|0[1-9])$

The full-date format pattern
according to IETF RFC 3339

"duration" ^(P(?!$)([0-9]+Y)?([0-9]+M)?([0-
9]+W)?([0-9]+D)?((T(?=[0-
9]+[HMS])([0-9]+H)?([0-9]+M)?([0-
9]+S)?)?))$|^(P[0-9]+W)$|^(P[0-
9]{4})-(1[0-2]|0[1-9])-(3[0-1]|2[0-
9]|1[0-9]|0[1-9])T(2[0-3]|1[0-9]|0[1-
9]):([0-5][0-9]):([0-5][0-9])$|^(P[0-
9]{4})(1[0-2]|0[1-9])(3[0-1]|2[0-9]|1[0-
9]|0[1-9])T(2[0-3]|1[0-9]|0[1-9])([0-
5][0-9])([0-5][0-9])$

A string representing duration
formatted as defined in ISO 8601.
Allowable formats are:
P[n]Y[n]M[n]DT[n]H[n]M[n]S, P[n]W,
P[n]Y[n]-M[n]-DT[0-23]H[0-59]:M[0-
59]:S, and P[n]W, P[n]Y[n]M[n]DT[0-
23]H[0-59]M[0-59]S. P is mandatory,
all other elements are optional, time
elements must follow a T.

"int64" ^0|(-?[1-9][0-9]{0,18})$ A string instance is valid against this
attribute if it contains an integer in
the range [-(2**63), (2**63)-1]

NOTE IETF RFC 7159 clause 6
explains that JSON integers outside
the range [-(2**53)+1, (2**53)-1] are
not interoperable and so JSON
numbers cannot be used for 64-bit
numbers.

"language-tag" ^[A-Za-z]{1,8}(-[A-Za-z0-9]{1,8})*$ An IETF language tag formatted
according to IETF RFC 5646 clause
2.1.

"uint64" ^0|([1-9][0-9]{0,19})$ A string instance is valid against this
attribute if it contains an integer in
the range [0, (2**64)-1]

Also see note for "int64"

"uuid" ^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-
F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-
9]{12}$

A UUID string representation
formatted according to
IETF RFC 4122 clause 3.

 678

Strings shall be encoded as UTF-8 unless otherwise specified. 679

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 11

In a JSON schema, "maxLength" for a string indicates the maximum number of characters not 680
octets. However, "maxLength" shall also indicate the maximum number of octets. If no "maxLength" 681
is defined for a string, then the maximum length shall be 64 octets. 682

4.4 Resource notation syntax 683

When it is desired to describe the Property of a Resource Type or the "anchor" Parameter value in 684
an abbreviated notation, it can be described as follows: 685

– A value of the "rt" Property of the Resource Type or "anchor" Parameter value ":" Property name 686

– e.g., "oic.wk.d:di", which is the "di" Property of the Device Resource Type. 687

If Property name is a composite type (a type that is composed of several Properties), it can be 688
described in recursive way. The following expression describes this as a regular expression format: 689

– A value of the "rt" Property of the Resource Type or "anchor" Parameter value (":" Property 690
name)+ 691

– e.g., "oic.r.pstat:dos:s", which is the "s" Property of the "dos" Property of the "pstat" Resource 692
Type (see 13.8 of ISO/IEC 30118-2:2018). 693

If there is a Resource URI (i.e., The Resource instance for a specific Resource Type), it can be 694
used instead of using a value of "rt" Property of Resource Type or the “anchor" Parameter value 695
as follows: 696

– A Resource URI (":" Property name)+ 697

– e.g., "/oic/d:di", which is the "di" Property of the Device Resource Type instance. 698

– e.g. "/oic/sec/pstat:dos:s", which is the "s" Property of the "dos" Property of the "oic.r.pstat" 699
Resource Type instance. 700

In the auto-generated Annex's Property definition tables for Resource Types, the Property names 701
can be noted as belonging to the RETRIEVE schema or to the UPDATE schema by prefixing the 702
Property name with "RETRIEVE" or "UPDATE" followed with the ":" separator. This is to avoid 703
duplicate Property names appearing in the Property definition tables that are auto-generated. The 704
following are examples using this notation with the "locn" Property of the "oic.wk.con" Resource 705
Type: 706

– "RETRIEVE:locn" 707

– "UPDATE:locn" 708

5 Architecture 709

5.1 Overview 710

The architecture enables resource based interactions among IoT artefacts, i.e. physical devices or 711
applications. The architecture leverages existing industry standards and technologies and provides 712
solutions for establishing connections (either wireless or wired) and managing the flow of 713
information among Devices, regardless of their form factors, operating systems or service providers. 714

Specifically, the architecture provides: 715

– A communication and interoperability framework for multiple market segments (Consumer, 716
Enterprise, Industrial, Automotive, Health, etc.), OSs, platforms, modes of communication, 717
transports and use cases. 718

– A common and consistent model for describing the environment and enabling information and 719
semantic interoperability. 720

– Common communication protocols for discovery and connectivity. 721

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 12

– Common security and identification mechanisms. 722

– Opportunity for innovation and product differentiation. 723

– A scalable solution addressing different Device capabilities, applicable to smart devices as well 724
as the smallest connected things and wearable devices. 725

The architecture is based on the Resource Oriented Architecture design principles and described 726
in the 5.2 through 5.4 respectively. 5.2 presents the guiding principles for OCF operations. 5.3 727
defines the functional block diagram and Framework. 728

5.2 Principle 729

In the architecture, Entities in the physical world (e.g., temperature sensor, an electric light or a 730
home appliance) are represented as Resources. Interactions with an entity are achieved through 731
its Resource representations (see 7.6.3.9) using operations that adhere to Representational State 732
Transfer (REST) architectural style, i.e., RESTful interactions. 733

The architecture defines the overall structure of the Framework as an information system and the 734
interrelationships of the Entities that make up OCF. Entities are exposed as Resources, with their 735
unique identifiers (URIs) and support interfaces that enable RESTful operations on the Resources. 736
Every RESTful operation has an initiator of the operation (the Client) and a responder to the 737
operation (the Server). In the Framework, the notion of the Client and Server is realized through 738
roles. Any Device can act as a Client and initiate a RESTful operation on any Device acting as a 739
Server. Likewise, any Device that exposes Entities as Resources acts as a Server. Conformant to 740
the REST architectural style, each RESTful operation contains all the information necessary to 741
understand the context of the interaction and is driven using a small set of generic operations, i.e., 742
CREATE, RETRIEVE, UPDATE, DELETE and NOTIFY (CRUDN) defined in clause 8, which include 743
representations of Resources. 744

Figure 1 depicts the architecture. 745

OCF Device

Client

Protocol specific
Implementation of
CRUDN Operations

(e.g. CoAP, HTTP, XMPP)

OCF Device

Server

Protocol specific
implementation of

Server

Resource

OCF RESTful
Resource Model

Layer

Specific
Implementation of

Data Protocol/
Messaging

OCF Roles

Entity
(e.g. light bulb,

Heart rate
monitor)

Resource Mapping

OCF
Abstractions

COAP Request
E.g. GET /s/data

{ “bulb”: “on” }

 746

Figure 1 – Architecture - concepts 747

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 13

The architecture is organized conceptually into three major aspects that provide overall separation 748
of concern: Resource model, RESTful operations and abstractions. 749

– Resource model: The Resource model provides the abstractions and concepts required to 750
logically model, and logically operate on the application and its environment. The Core 751
Resource model is common and agnostic to any specific application domain such as smart 752
home, industrial or automotive. For example, the Resource model defines a Resource which 753
abstracts an entity and the representation of a Resource maps the entity’s state. Other 754
Resource model concepts can be used to model other aspects, for example behaviour. 755

– RESTful operations: The generic CRUDN operations are defined using the RESTful paradigm 756
to model the interactions with a Resource in a protocol and technology agnostic way. The 757
specific communication or messaging protocols are part of the protocol abstraction and 758
mapping of Resources to specific protocols is provided in 11.4. 759

– Abstraction: The abstractions in the Resource model and the RESTful operations are mapped 760
to concrete elements using abstraction primitives. An entity handler is used to map an entity to 761
a Resource and connectivity abstraction primitives are used to map logical RESTful operations 762
to data connectivity protocols or technologies. Entity handlers may also be used to map 763
Resources to Entities that are reached over protocols that are not natively supported by OCF. 764

5.3 Functional block diagram 765

The functional block diagram encompasses all the functionalities required for operation. These 766
functionalities are categorized as L2 connectivity, networking, transport, Framework, and 767
application profiles. The functional blocks are depicted in Figure 2. 768

 769

Figure 2 – Functional block diagram 770

– L2 connectivity: Provides the functionalities required for establishing physical and data link 771
layer connections (e.g., Wi-FiTM or Bluetooth® connection) to the network. 772

– Networking: Provides functionalities required for Devices to exchange data among themselves 773
over the network (e.g., Internet). 774

Security

Application(s)

OCF Data Models

Vertical Domain
Profiles

Smart
Home eHealth Industrial

Framework

ID &
Addressing

Resource
model CRUDN

Discovery Device
management Messaging

 L2 Connectivity Networking Transport

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 14

– Transport: Provides end-to-end flow transport with specific QoS constraints. Examples of a 775
transport protocol include TCP and UDP or new Transport protocols under development in the 776
IETF, e.g., Delay Tolerant Networking (DTN). 777

– Framework: Provides the core functionalities as defined in this document. The functional block 778
is the source of requests and responses that are the content of the communication between 779
two Devices. 780

– Vertical Domain profile: Provides market segment specific functionalities, e.g., functions for the 781
smart home market segment. 782

When two Devices communicate with each other, each functional block in a Device interacts with 783
its counterpart in the peer Device as shown in Figure 3. 784

Device 1 Device 2

Vertical Domain Vertical Domain

Framework

Transport

Networking

L2 Connectivity

Framework

Transport

Networking

L2 Connectivity

Profiles

 785

Figure 3 – Communication layering model 786

5.4 Framework 787

Framework consists of functions which provide core functionalities for operation. 788

– Identification and addressing. Defines the identifier and addressing capability. The Identification 789
and addressing function is defined in clause 6. 790

– Discovery. Defines the process for discovering available. 791

– Devices (OCF Endpoint Discovery in clause 10) and 792

– Resources (Resource discovery in 11.2). 793

– Resource model. Specifies the capability for representation of entities in terms of Resources 794
and defines mechanisms for manipulating the Resources. The Resource model function is 795
defined in clause 7. 796

– CRUDN. Provides a generic scheme for the interactions between a Client and Server as defined 797
in clause 8. 798

– Messaging. Provides specific message protocols for RESTful operation, i.e. CRUDN. For 799
example, CoAP is a primary messaging protocol. The messaging function is defined in 11.5. 800

– Security. Includes authentication, authorization, and access control mechanisms required for 801
secure access to Entities. The security function is defined in clause 13. 802

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 15

6 Identification and addressing 803

6.1 Introduction 804

Facilitating proper and efficient interactions between elements in the Framework, requires a means 805
to identify, name and address these elements. 806

The identifier unambiguously identifies an element in a context or domain. The context or domain 807
may be determined by the use or the application. The identifier is expected to be immutable over 808
the lifecycle of that element and is unambiguous within a context or domain. 809

The address is used to define a place, way or means of reaching or accessing the element in order 810
to interact with it. An address may be mutable based on the context. 811

The name is a handle that distinguishes the element from other elements in the Framework. The 812
name may be changed over the lifecycle of that element. 813

There may be methods or resolution schemes that allow determining any of these based on the 814
knowledge of one or more of others (e.g., determine name from address or address from name). 815

Each of these aspects may be defined separately for multiple contexts (e.g., a context could be a 816
layer in a stack). So an address may be a URL for addressing Resource and an IP address for 817
addressing at the connectivity layer. In some situations, both these addresses would be required. 818
For example, to do RETRIEVE (see 8.3) operation on a particular Resource representation, the 819
Client needs to know the address of the target Resource and the address of the Server through 820
which the Resource is exposed. 821

In a context or domain of use, a name or address could be used as identifier or vice versa. For 822
example, a URL could be used as an identifier for a Resource and designated as a URI. 823

The remainder of this clause discusses the identifier, address and naming from the point of view 824
of the Resource model and the interactions to be supported by the Resource model. Examples of 825
interactions are the RESTful interactions, i.e. CRUDN operation (clause 8) on a Resource. Also 826
the mapping of these to transport protocols, e.g., CoAP is described. 827

6.2 Identification 828

6.2.1 Device and Platform identification 829

This document defines three identifiers that are used for identification of the Device. All identifiers 830
are exposed via Resources that are also defined within this document (see clause 11.2). 831

The Permanent Immutable ID ("piid" Property of "/oic/d") is the immutable identity of the Device, 832
the persistent valid value of this property is typically only visible after the Device is on-boarded 833
(when not on-boarded the Device typically exposes a temporary value). This value does not change 834
across the life-cycle of the Device. 835

The Device ID ("di" Property of "/oic/d") is a mutable identity. The value changes each time the 836
Device is on-boarded. It reflects a specific on-boarded instance of the Device. 837

The Platform ID ("pi" Property of "/oic/p") is the immutable identity of the Platform on which the 838
Device is resident. When multiple logical Devices are exposed on a single Platform (for example, 839
on a Bridge) then the "pi" exposed by each Device should be the same. 840

6.2.2 Resource identification and addressing 841

A Resource may be identified using a URI and addressed by the same URI if the URI is a URL. In 842
some cases a Resource may need an identifier that is different from a URI; in this case, the 843
Resource may have a Property whose value is the identifier. When the URI is in the form of a URL, 844
then the URI may be used to address the Resource. 845

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 16

An OCF URI is based on the general form of a URI as defined in IETF RFC 3986 as follows: 846

<scheme>://<authority>/<path>?<query> 847

Specifically the OCF URI is specified in the following form: 848

ocf://<authority>/<path>?<query> 849

The following is a description of values that each component takes. 850

The scheme for the URI is "ocf". The "ocf" scheme represents the semantics, definitions and use 851
as defined in this document. If a URI has the portion preceding the "//" (double slash) omitted, then 852
the "ocf" scheme shall be assumed. 853

Each transport binding is responsible for specifying how an OCF URI is converted to a transport 854
protocol URI before sending over the network by the requestor. Similarly on the receiver side, each 855
transport binding is responsible for specifying how an OCF URI is converted from a transport 856
protocol URI before handing over to the Resource model layer on the receiver. 857

The authority of an OCF URI shall be the Device ID ("di") value, as defined in [OCF Security], of 858
the Server. 859

The path is a string that unambiguously identifies or references a Resource within the context of 860
the Server. In this version of the document, a path shall not include pct-encoded non-ASCII 861
characters or NUL characters. A path shall be preceded by a "/" (slash). The path may have "/" 862
(slash) separated segments for human readability reasons. In the OCF context, the "/" (slash) 863
separated segments are treated as a single string that directly references the Resources (i.e. a flat 864
structure) and not parsed as a hierarchy. On the Server, the path or some substring in the path 865
may be shortened by using hashing or some other scheme provided the resulting reference is 866
unique within the context of the host. 867

Once a path is generated, a Client accessing the Resource or recipient of the URI should use that 868
path as an opaque string and should not parse to infer a structure, organization or semantic. 869

A query string shall contain a list of "<name>=<value>" segments (aka name-value pair) each 870
separated by a "&" (ampersand). The query string will be mapped to the appropriate syntax of the 871
protocol used for messaging. (e.g., CoAP). 872

A URI may be either fully qualified or relative generation of URI. 873

A URI may be defined by the Client which is the creator of that Resource. Such a URI may be 874
relative or absolute (fully qualified). A relative URI shall be relative to the Device on which it is 875
hosted. Alternatively, a URI may be generated by the Server of that Resource automatically based 876
on a pre-defined convention or organization of the Resources, based on an OCF Interface, based 877
on some rules or with respect to different roots or bases. 878

The absolute path reference of a URI is to be treated as an opaque string and a Client should not 879
infer any explicit or implied structure in the URI – the URI is simply an address. It is also 880
recommended that Devices hosting a Resource treat the URI of each Resource as an opaque string 881
that addresses only that Resource. (e.g., URI's "/a" and "/a/b" are considered as distinct addresses 882
and Resource b cannot be construed as a child of Resource a). 883

6.3 Namespace: 884

The relative URI prefix "/oic/" is reserved as a namespace for URIs defined in OCF specifications 885
and shall not be used for URIs that are not defined in OCF specifications. The prefix "oic." used for 886
OCF Interfaces and Resource Types is reserved for OCF specification usage. 887

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 17

6.4 Network addressing 888

The following are the addresses used in this document: 889

IP address 890

– An IP address is used when the Device is using an IP configured interface. 891

– When a Device only has the identity information of its peer, a resolution mechanism is needed 892
to map the identifier to the corresponding address. 893

7 Resource model 894

7.1 Introduction 895

The Resource model defines concepts and mechanisms that provide consistency and core 896
interoperability between Devices in the OCF ecosystems. The Resource model concepts and 897
mechanisms are then mapped to the transport protocols to enable communication between the 898
Devices – each transport provides the communication protocol interoperability. The Resource 899
model, therefore, allows for interoperability to be defined independent of the transports. 900

In addition, the concepts in the Resource model support modelling of the primary artefacts and 901
their relationships to one and another and capture the semantic information required for 902
interoperability in a context. In this way, OCF goes beyond simple protocol interoperability to 903
capture the rich semantics required for true interoperability in Wearable and Internet of Things 904
ecosystems. 905

The primary concepts in the Resource model are: entity, Resources, Uniform Resource Identifiers 906
(URI), Resource Types, Properties, Representations, OCF Interfaces, Collections and Links. In 907
addition, the general mechanisms are CREATE, RETRIEVE, UPDATE, DELETE and NOTIFY. 908
These concepts and mechanisms may be composed in various ways to define the rich semantics 909
and interoperability needed for a diverse set of use cases that the Framework is applied to. 910

In the OCF Resource model Framework, an entity needs to be visible, interacted with or 911
manipulated, it is represented by an abstraction called a Resource. A Resource encapsulates and 912
represents the state of an entity. A Resource is identified, addressed and named using URIs. 913

Properties are "key=value" pairs and represent state of the Resource. A snapshot of these 914
Properties is the Representation of the Resource. A specific view of the Representation and the 915
mechanisms applicable in that view are specified as OCF Interfaces. Interactions with a Resource 916
are done as Requests and Responses containing Representations. 917

A Resource instance is derived from a Resource Type. The uni-directional relationship between 918
one Resource and another Resource is defined as a Link. A Resource that has Properties and 919
Links is a Collection. 920

A set of Properties can be used to define a state of a Resource. This state may be retrieved or 921
updated using appropriate Representations respectively in the response from and request to that 922
Resource. 923

A Resource (and Resource Type) could represent and be used to expose a capability. Interactions 924
with that Resource can be used to exercise or use that capability. Such capabilities can be used to 925
define processes like discovery, management, advertisement etc. For example: discovery of 926
Resources on a Device can be defined as the retrieval of a representation of a specific Resource 927
where a Property or Properties have values that describe or reference the Resources on the Device. 928

The information for Request or Response with the Representation may be communicated on the 929
wire by serializing using a transfer protocol or encapsulated in the payload of the transport protocol 930

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 18

– the specific method is determined by the normative mapping of the Request or Response to the 931
transport protocol. See 11.4 for transport protocols supported. 932

The OpenAPI 2.0 definitions (Annex A) used in this document are normative. This includes that all 933
defined JSON payloads shall comply with the indicated OpeAPI 2.0 definitions. Annex A contains 934
all of the OpenAPI 2.0 definitions for Resource Types defined in this document. 935

7.2 Resource 936

A Resource shall be defined by one or more Resource Type(s) – see Annex A for Resource Type. 937
A request to CREATE a Resource shall specify one or more Resource Types that define that 938
Resource. 939

A Resource is hosted in a Device. A Resource shall have a URI as defined in clause 6. The URI 940
may be assigned by the Authority at the creation of the Resource or may be pre-defined by the 941
definition of the Resource Type. An example Resource representation is depicted in Figure 4. 942

 943

Figure 4 – Example Resource 944

Core Resources are the Resources defined in this document to enable functional interactions as 945
defined in clause 10 (e.g., Discovery, Device management, etc). Among the Core Resources, 946
"/oic/res", "/oic/p", and "/oic/d" shall be supported on all Devices. Devices may support other Core 947
Resources depending on the functional interactions they support. 948

7.3 Property 949

7.3.1 Introduction 950

A Property describes an aspect that is exposed through a Resource including meta-information 951
related to that Resource. 952

A Property shall have a name i.e. Property Name and a value i.e. Property Value. The Property is 953
expressed as a key-value pair where key is the Property Name and value the Property Value like 954
<Property Name> = <Property Value>. For example if the "temperature" Property has a Property 955
Name "temp" and a Property Value "30F", then the Property is expressed as "temp=30F". The 956
specific format of the Property depends on the encoding scheme. For example, in JSON, Property 957
is represented as "key": value (e.g., "temp": 30). 958

In addition, the Property definition shall have a 959

– Value Type – the Value Type defines the values that a Property Value may take. The Value 960
Type may be a simple data type (e.g. string, Boolean) as defined in 4.3 or may be a complex 961
data type defined with a schema. The Value Type may define 962

– Value Rules define the rules for the set of values that the Property Value may take. Such 963
rules may define the range of values, the min-max, formulas, the set of enumerated values, 964
patterns, conditional values, and even dependencies on values of other Properties. The 965
rules may be used to validate the specific values in a Property Value and flag errors. 966

/my/resource/example

{
"rt": ["oic.r.foobar"],
"if": ["oic.if.a"],
"value": "foo value"
}

Properties

URI

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 19

– Mandatory – specifies if the Property is mandatory or not for a given Resource Type. 967

– Access modes – specifies whether the Property may be read, written or both. Updates are 968
equivalent to a write. "r" is used for read and "w" is used for write – both may be specified. 969
Write does not automatically imply read. 970

The definition of a Property may include the following additional information – these items are 971
informative: 972

– Property Title - a human-friendly name to designate the Property; usually not sent over the wire. 973

– Description – descriptive text defining the purpose and expected use of this Property. 974

In general, a Property is meaningful only within the Resource to which it is associated. However a 975
base set of Properties that may be supported by all Resources, known as Common Properties, 976
keep their semantics intact across Resources i.e. their "key=value" pair means the same in any 977
Resource. Detailed tables for all Common Properties are defined in 7.3.2. 978

7.3.2 Common Properties 979

7.3.2.1 Introduction 980

The Common Properties defined in this clause may be specified for all Resources. The following 981
Properties are defined as Common Properties: 982

– Resource Type 983

– Resource Interface 984

– Name 985

– Resource Identity. 986

The name of a Common Property shall be unique and shall not be used by other Properties. When 987
defining a new Resource Type, its non-common Properties shall not use the name of existing 988
Common Properties (e.g., "rt", "if", "n", "id"). When defining a new "Common Property", it should 989
be ensured that its name has not been used by any other Properties. The uniqueness of a new 990
Common Property name can be verified by checking all the Properties of all the existing OCF 991
defined Resource Types. However, this may become cumbersome as the number of Resource 992
Types grow. To prevent such name conflicts in the future, OCF may reserve a certain name space 993
for Common Property. Potential approaches are (1) a specific prefix (e.g. "oic") may be designated 994
and the name preceded by the prefix (e.g. "oic.psize") is only for Common Property; (2) the names 995
consisting of one or two letters are reserved for Common Property and all other Properties shall 996
have the name with the length larger than the 2 letters; (3) Common Properties may be nested 997
under specific object to distinguish themselves. 998

The ability to UPDATE a Common Property (that supports write as an access mode) is restricted 999
to the "oic.if.rw" (read-write) OCF Interface; thus a Common Property shall be updatable using the 1000
read-write OCF Interface if and only if the Property supports write access as defined by the Property 1001
definition and the associated schema for the read-write OCF Interface. 1002

The following Common Properties for all Resources are specified in 7.3.2.2 through 7.3.2.6 and 1003
summarized as follows: 1004

– Resource Type ("rt") – this Property is used to declare the Resource Type of that Resource. 1005
Since a Resource could be define by more than one Resource Type the Property Value of the 1006
Resource Type Property can be used to declare more than one Resource type (see clause 1007
7.4.4). See 7.3.2.3 for details. 1008

– OCF Interface ("if") – this Property declares the OCF Interfaces supported by the Resource. 1009
The Property Value of the OCF Interface Property can be multi-valued and lists all the OCF 1010
Interfaces supported. See 7.3.2.4 for details. 1011

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 20

– Name ("n") – the Property declares human-readable name assigned to the Resource. See 1012
7.3.2.5. 1013

– Resource Identity ("id"): its Property Value shall be a unique (across the scope of the host 1014
Server) instance identifier for a specific instance of the Resource. The encoding of this identifier 1015
is Device and implementation dependent. See 7.3.2.6 for details. 1016

7.3.2.2 Property Name and Property Value definitions 1017

The Property Name and Property Value as used in this document: 1018

– Property Name– the key in "key=value" pair. Property Name is case sensitive and its data type 1019
is "string". Property names shall contain only letters A to Z, a to z, digits 0 to 9, hyphen, and 1020
dot, and shall not begin with a digit. 1021

– Property Value – the value in "key=value" pair. Property Value is case sensitive when its data 1022
type is "string". 1023

7.3.2.3 Resource Type 1024

Resource Type Property is specified in 7.4. 1025

7.3.2.4 OCF Interface 1026

OCF Interface Property is specified in 7.6. 1027

7.3.2.5 Name 1028

A human friendly name for the Resource, i.e. a specific resource instance name (e.g., 1029
MyLivingRoomLight), The Name Property is as defined in Table 2 1030

Table 2 – Name Property Definition 1031

Property
title

Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Name "n" "string" N/A N/A R, W No Human understandable name for
the Resource.

 1032

The Name Property is read-write unless otherwise restricted by the Resource Type (i.e. the 1033
Resource Type does not support UPDATE or does not support UPDATE using read-write). 1034

7.3.2.6 Resource Identity 1035

The Resource Identity Property shall be a unique (across the scope of the host Server) instance 1036
identifier for a specific instance of the Resource. The encoding of this identifier is Device and 1037
implementation dependent as long as the uniqueness constraint is met, noting that an 1038
implementation may use a uuid as defined in 4.3. The Resource Identity Property is as defined in 1039
Table 3. 1040

Table 3 – Resource Identity Property Definition 1041

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Identity

"id" "string"
or uuid

Implementation
Dependent

N/A R No Unique identifier of the
Resource (over all
Resources in the
Device)

 1042

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 21

7.4 Resource Type 1043

7.4.1 Introduction 1044

Resource Type is a class or category of Resources and a Resource is an instance of one or more 1045
Resource Types. 1046

The Resource Types of a Resource is declared using the Resource Type Common Property as 1047
described in 7.3.2.3 or in a Link using the Resource Type Parameter. 1048

A Resource Type may either be pre-defined by OCF or in custom definitions by manufacturers, end 1049
users, or developers of Devices (vendor-defined Resource Types). Resource Types and their 1050
definition details may be communicated out of band (i.e. in documentation) or be defined explicitly 1051
using a meta-language which may be downloaded and used by APIs or applications. OCF has 1052
adopted OpenAPI 2.0 as the specification method for OCF’s RESTful interfaces and Resource 1053
definitions. 1054

Every Resource Type shall be identified with a Resource Type ID which shall be represented using 1055
the requirements and ABNF governing the Resource Type attribute in IETF RFC 6690 (clause 2 for 1056
ABNF and clause 3.1 for requirements) with the caveat that segments are separated by a "." 1057
(period). The entire string represents the Resource Type ID. When defining the ID each segment 1058
may represent any semantics that are appropriate to the Resource Type. For example, each 1059
segment could represent a namespace. Once the ID has been defined, the ID should be used 1060
opaquely and implementations should not infer any information from the individual segments. The 1061
string "oic", when used as the first segment in the definition of the Resource Type ID, is reserved 1062
for OCF-defined Resource Types. All OCF defined Resource Types are to be registered with the 1063
IANA Core Parameters registry as described also in IETF RFC 6690. 1064

7.4.2 Resource Type Property 1065

A Resource when instantiated or created shall have one or more Resource Types that are the 1066
template for that Resource. The Resource Types that the Resource conforms to shall be declared 1067
using the "rt" Common Property for the Resource as defined in Table 4. The Property Value for the 1068
"rt" Common Property shall be the list of Resource Type IDs for the Resource Types used as 1069
templates (i.e., "rt"=<list of Resource Type IDs>). 1070

Table 4 – Resource Type Common Property definition 1071

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Type

"rt" "array" Array of strings,
conveying
Resource Type
IDs

N/A R Yes The Property name rt
is as described in
IETF RFC 6690

 1072

Resource Types may be explicitly discovered or implicitly shared between the user (i.e. Client) and 1073
the host (i.e. Server) of the Resource. 1074

7.4.3 Resource Type definition 1075

Resource Type is specified as follows: 1076

– Pre-defined URI (optional) – a pre-defined URI may be specified for a specific Resource Type 1077
in an OCF specification. When a Resource Type has a pre-defined URI, all instances of that 1078
Resource Type shall use only the pre-defined URI. An instance of a different Resource Type 1079
shall not use the pre-defined URI. 1080

– Resource Type Title (optional) – a human friendly name to designate the Resource Type. 1081

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 22

– Resource Type ID – the value of "rt" Property which identifies the Resource Type, (e.g., 1082
"oic.wk.p"). 1083

– Resource Interfaces – list of the OCF Interfaces that may be supported by the Resource Type. 1084

– Properties – definition of all the Properties that apply to the Resource Type. The Resource Type 1085
definition shall define whether a property is mandatory, conditional mandatory, or optional. 1086

– Related Resource Types (optional) – the definition of other Resource Types that may be 1087
referenced as part of the Resource Type, applicable to Collections. 1088

– Mime Types (optional) – mime types supported by the Resource including serializations (e.g., 1089
application/cbor, application/json, application/xml). 1090

Table 5 and Table 6 provides an example description of an illustrative foobar Resource Type and 1091
its associated Properties. 1092

Table 5 – Example foobar Resource Type 1093

Pre-defined
URI

Resource
Type Title

Resource
Type ID ("rt"

value)

OCF
Interfaces

Description Related
Functional
Interaction

M/CR/O

none "foobar" "oic.r.foobar" "oic.if.a" Example
"foobar"
Resource

Actuation O

 1094

Table 6 – Example foobar Properties 1095

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Type

"rt" "array" N/A N/A R Yes Resource Type

OCF
Interface

"if" "array" N/A N/A R Yes OCF Interface

Foo value value "string" N/A N/A R Yes Foo value

 1096

For example, an instance of the foobar Resource Type. 1097

{ 1098
"rt": ["oic.r.foobar"], 1099
"if": ["oic.if.a"], 1100
"value": "foo value" 1101
} 1102

 1103

For example, a schema representation for the foobar Resource Type. 1104

{ 1105
 "$schema": "http://json-schema.org/draft-04/schema", 1106
 "type": "object", 1107
 "properties": { 1108
 "rt": { 1109
 "type": "array", 1110
 "items" : { 1111
 "type" : "string", 1112
 "maxLength": 64 1113
 }, 1114

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 23

 "minItems" : 1, 1115
 "readOnly": true, 1116
 "description": "Resource Type of the Resource" 1117
 }, 1118
 "if": { 1119
 "type": "array", 1120
 "items": { 1121
 "type" : "string", 1122
 "enum" : ["oic.if.baseline", "oic.if.ll", "oic.if.b", "oic.if.lb", "oic.if.rw", 1123
"oic.if.r", "oic.if.a", "oic.if.s"] 1124
 }, 1125
 "value": {"type": "string"} 1126
 }, 1127
 "required": ["rt", "if", "value"] 1128
} 1129

7.4.4 Multi-value "rt" Resource 1130

Multi-value "rt" Resource means a Resource with multiple Resource Types where none of the 1131
included Resource Types denote a well-known Resource Type (i.e. "oic.wk.<thing>"). Such a 1132
Resource is associated with multiple Resource Types and so has an "rt" Property Value of multiple 1133
Resource Type IDs (e.g. "rt": ["oic.r.switch.binary", "oic.r.light.brightness"]). The order of the 1134
Resource Type IDs in the "rt" Property Value is meaningless. For example, "rt": 1135
["oic.r.switch.binary", "oic.r.light.brightness"] and "rt": ["oic.r.light.brightness", "oic.r.switch.binary"] 1136
have the same meaning. 1137

Resource Types for multi-value "rt" Resources shall satisfy the following conditions: 1138

– Property Name – Property Names for each Resource Type shall be unique (within the scope of 1139
the multi-value "rt" Resource) with the exception of Common Properties, otherwise there will be 1140
conflicting Property semantics. If two Resource Types have a Property with the same Property 1141
"Name, a multi-value "rt" Resource shall not be composed of these Resource Types. 1142

A multi-value "rt" Resource satisfies all the requirements for each Resource Type and conforms to 1143
the OpenAPI 2.0 definitions for each component Resource Type. Thus the mandatory Properties 1144
of a multi-value "rt" Resource shall be the union of all the mandatory Properties of each Resource 1145
Type. For example, mandatory Properties of a Resource with "rt": ["oic.r.switch.binary", 1146
"oic.r.light.brightness"] are "value" and "brightness", where the former is mandatory for 1147
"oic.r.switch.binary" and the latter for "oic.r.light.brightness". 1148

The multi-value "rt" Resource Interface set shall be the union of the sets of OCF Interfaces from 1149
the component Resource Types. The Resource Representation in response to a CRUDN action on 1150
an OCF Interface shall be the union of the schemas that are defined for that OCF Interface. The 1151
Default OCF Interface for a multi-value "rt" Resource shall be the baseline OCF Interface 1152
("oic.if.baseline") as that is the only guaranteed common OCF Interface between the Resource 1153
Types. 1154

For clarity if each Resource Type supports the same set of OCF Interfaces, then the resultant multi-1155
value "rt" Resource has that same set of OCF Interfaces with a Default OCF Interface of baseline 1156
("oic.if.baseline"). 1157

See 7.9.3 for the handling of query parameters as applied to a multi-value "rt" Resource. 1158

7.5 Device Type 1159

A Device Type is a class of Device. Each Device Type defined will include a list of minimum 1160
Resource Types that a Device shall implement for that Device Type. A Device may expose 1161
additional standard and vendor defined Resource Types beyond the minimum list. The Device Type 1162
is used in Resource discovery as specified in 11.2.3. 1163

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 24

Like a Resource Type, a Device Type can be used in the Resource Type Common Property or in a 1164
Link using the Resource Type Parameter. 1165

A Device Type may either be pre-defined by an ecosystem that builds on this document, or in 1166
custom definitions by manufacturers, end users, or developers of Devices (vendor-defined Device 1167
Types). Device Types and their definition details may be communicated out of band (like in 1168
documentation). 1169

Every Device Type shall be identified with a Resource Type ID using the same syntax constraints 1170
as a Resource Type. 1171

7.6 OCF Interface 1172

7.6.1 Introduction 1173

An OCF Interface provides first a view into the Resource and then defines the requests and 1174
responses permissible on that view of the Resource. So this view provided by an OCF Interface 1175
defines the context for requests and responses on a Resource. Therefore, the same request to a 1176
Resource when targeted to different OCF Interfaces may result in different responses. 1177

An OCF Interface may be defined by either this document (a Core OCF Interface), manufacturers, 1178
end users or developers of Devices (a vendor-defined OCF Interface). 1179

The OCF Interface Property lists all the OCF Interfaces the Resource support. All Resources shall 1180
have at least one OCF Interface. The Default OCF Interface shall be defined by the Resource Type 1181
definition. The Default OCF Interface associated with all OCF-defined Resource Types shall be the 1182
supported OCF Interface listed first within the applicable enumeration in the definition of the 1183
Resource Type (see Annex A for the OCF-defined Resource Types defined in this document). The 1184
applicable enumeration is in the "parameters" enumeration referenced from the first "get" method 1185
in the first "path" in the OpenAPI 2.0 file ("post" method if no "get" exists) for the Resource Type. 1186
All Default OCF Interfaces specified in an OCF specification shall be mandatory. 1187

In addition to any defined OCF Interface in this document, all Resources shall support the baseline 1188
OCF Interface ("oic.if.baseline") as defined in 7.6.3.2. 1189

See 7.9.4 for the use of queries to enable selection of a specific OCF Interface in a request. 1190

An OCF Interface may accept more than one media type. An OCF Interface may respond with more 1191
than one media type. The accepted media types may be different from the response media types. 1192
The media types are specified with the appropriate header parameters in the transfer protocol. 1193
(NOTE: This feature has to be used judiciously and is allowed to optimize representations on the 1194
wire) Each OCF Interface shall have at least one media type. 1195

 1196

7.6.2 OCF Interface Property 1197

The OCF Interfaces supported by a Resource shall be declared using the OCF Interface Common 1198
Property (Table 7), e.g., ""if": ["oic.if.ll", "oic.if.baseline"]". The Property Value of an OCF Interface 1199
Property shall be a lower case string with segments separated by a "." (dot). The string "oic", when 1200
used as the first segment in the OCF Interface Property Value, is reserved for OCF-defined OCF 1201
Interfaces. The OCF Interface Property Value may also be a reference to an authority similar to 1202
IANA that may be used to find the definition of an OCF Interface. A Resource Type shall support 1203
one or more of the OCF Interfaces defined in 7.6.3. 1204

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 25

Table 7 – Resource Interface Property definition 1205

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

OCF
Interface

"if" "array" Array of strings,
conveying OCF
Interfaces

N/A R Yes Property to declare the
OCF Interfaces
supported by a
Resource.

 1206

7.6.3 OCF Interface methods 1207

7.6.3.1 Overview 1208

OCF Interface methods shall not violate the defined OpenAPI 2.0 definitions for the Resources as 1209
defined in Annex A. 1210

The defined OCF Interfaces are listed in Table 8: 1211

Table 8 – OCF standard OCF Interfaces 1212

OCF
Interface

Name Applicable Operations Description

baseline "oic.if.baseline" RETRIEVE, NOTIFY,
UPDATE1

The baseline OCF Interface defines a view into all
Properties of a Resource including the Common
Properties. This OCF Interface is used to operate on the
full Representation of a Resource.

links list "oic.if.ll" RETRIEVE,
NOTIFY

The links list OCF Interface provides a view into Links in
a Collection (Resource).
Since Links represent relationships to other Resources,
the links list OCF Interfaces may be used to discover
Resources with respect to a context. The discovery is
done by retrieving Links to these Resources. For
example: the Core Resource "/oic/res" uses this OCF
Interface to allow discovery of Resource hosted on a
Device.

batch "oic.if.b" RETRIEVE, NOTIFY,
UPDATE

The batch OCF Interface is used to interact with a
Collection of Resources at the same time. This also
removes the need for the Client to first discover the
Resources it is manipulating – the Server forwards the
requests and aggregates the responses

read-only "oic.if.r" RETRIEVE NOTIFY The read-only OCF Interface exposes the Properties of a
Resource that may be read. This OCF Interface does not
provide methods to update Properties, so can only be
used to read Property Values.

read-
write

"oic.if.rw" RETRIEVE, NOTIFY,
UPDATE

The read-write OCF Interface exposes only those
Properties that may be read from a Resource during a
RETRIEVE operation and only those Properties that may
be written to a Resource during and UPDATE operation.

actuator "oic.if.a" RETRIEVE, NOTIFY,
UPDATE

The actuator OCF Interface is used to read or write the
Properties of an actuator Resource.

sensor "oic.if.s" RETRIEVE, NOTIFY The sensor OCF Interface is used to read the Properties
of a sensor Resource.

create "oic.if.create" CREATE The create OCF Interface is used to create new
Resources in a Collection. Both the Resource and the
Link pointing to it are created in a single atomic
operation.

1 The use of UPDATE with the baseline OCF Interface is not recommended, see clause 7.6.3.2.3.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 26

 1213

7.6.3.2 Baseline OCF Interface 1214

7.6.3.2.1 Overview 1215

The Representation that is visible using the baseline OCF Interface includes all the Properties of 1216
the Resource including the Common Properties. The baseline OCF Interface shall be defined for 1217
all Resource Types. All Resources shall support the baseline OCF Interface. 1218

7.6.3.2.2 Use of RETRIEVE 1219

The baseline OCF Interface is used when a Client wants to retrieve all Properties of a Resource; 1220
that is the Server shall respond with a Resource representation that includes all of the implemented 1221
Properties of the Resource. When the Server is unable to send back the whole Resource 1222
representation, it shall reply with an error message. The Server shall not return a partial Resource 1223
representation. 1224

An example response to a RETRIEVE request using the baseline OCF Interface: 1225

{ 1226
"rt": ["oic.r.temperature"], 1227
"if": ["oic.if.a","oic.if.baseline"], 1228
"temperature": 20, 1229
"units": "C", 1230
"range": [0,100] 1231
} 1232

7.6.3.2.3 Use of UPDATE 1233

Support for the UPDATE operation using the baseline OCF Interface should not be provided by a 1234
Resource Type. Where a Resource Type needs to support the ability to be UPDATED this should 1235
only be supported using one of the other OCF Interfaces defined in Table 8 that supports the 1236
UPDATE operation. 1237

If a Resource Type is required to support UPDATE using the baseline OCF Interface, then all 1238
Properties of a Resource with the exception of Common Properties may be modified using an 1239
UPDATE operation only if the Resource Type defines support for UPDATE using baseline in the 1240
applicable OpenAPI 2.0 schema for the Resource Type. If the OCF Interfaces exposed by a 1241
Resource in addition to the baseline OCF Interface do not support the UPDATE operation, then 1242
UPDATE using the baseline OCF Interface shall not be supported. 1243

7.6.3.3 Links list OCF Interface 1244

7.6.3.3.1 Overview 1245

The Links list OCF Interface is used to provide a view into a Collection, Atomic Measurement, or 1246
"/oic.res" Resource. This view shall be an array of all Links for those Resources subject to any 1247
applied filtering being applied. The Links list OCF Interface name is "oic.if.ll". 1248

7.6.3.3.2 Use with RETRIEVE 1249

The RETRIEVE operation is supported with the Links list OCF Interface. A successful RETRIEVE 1250
operation shall return a status code indicating success (i.e. "Content") with a payload with the 1251
Resource representation as an array of Links. If there are no Links present in a Resource 1252
representation, then an empty array list shall be returned in response to a RETRIEVE operation 1253
request. 1254

An example of a RETRIEVE operation request using the Links list OCF Interface for a Collection is 1255
as illustrated: 1256

RETRIEVE /scenes/scene1?if=oic.if.ll 1257

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 27

The RETRIEVE operation response will be the array of Links to all Resources in the Collection as 1258
illustrated: 1259

Response: Content 1260
Payload: 1261
[1262
 { 1263
 "href": "/the/light/1", 1264
 "rt": ["oic.r.switch.binary"], 1265
 "if": ["oic.if.a", "oic.if.baseline"], 1266
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1267
 }, 1268
 { 1269
 "href": "/the/light/2", 1270
 "rt": ["oic.r.switch.binary"], 1271
 "if": ["oic.if.a", "oic.if.baseline"], 1272
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1273
 }, 1274
 { 1275
 "href": "/my/fan/1", 1276
 "rt": ["oic.r.switch.binary"], 1277
 "if": ["oic.if.a", "oic.if.baseline"], 1278
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1279
 }, 1280
 { 1281
 "href": "/his/fan/2", 1282
 "rt": ["oic.r.switch.binary"], 1283
 "if": ["oic.if.a", "oic.if.baseline"], 1284
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1285
 } 1286
] 1287
 1288

7.6.3.3.3 Use with NOTIFY 1289

The NOTIFY operation is supported with the Links list OCF Interface. A successful NOTIFY 1290
operation shall return a status code indicating success (i.e. "Content") with a payload with the 1291
Resource representation as an array of Links. If there are no Links present in a Resource 1292
representation, then an empty array list shall be returned in response to a NOTIFY operation 1293
request. Future events that change the Resource representation (e.g. UPDATE operation) shall 1294
return a status code indicating success (i.e. "Content") with a payload with the newly updated 1295
Resource representation as an array of Links. 1296

An example of a NOTIFY operation request using the Links list OCF Interface for a Collection is as 1297
illustrated: 1298

NOTIFY /scenes/scene1?if=oic.if.ll 1299

The NOTIFY operation response will be the array of Links to all Resources in the Collection as 1300
illustrated: 1301

Response: Content 1302
Payload: 1303
[1304
 { 1305
 "href": "/the/light/1", 1306
 "rt": ["oic.r.switch.binary"], 1307
 "if": ["oic.if.a", "oic.if.baseline"], 1308
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1309
 }, 1310
 { 1311
 "href": "/the/light/2", 1312
 "rt": ["oic.r.switch.binary"], 1313

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 28

 "if": ["oic.if.a", "oic.if.baseline"], 1314
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1315
 }, 1316
 { 1317
 "href": "/my/fan/1", 1318
 "rt": ["oic.r.switch.binary"], 1319
 "if": ["oic.if.a", "oic.if.baseline"], 1320
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1321
 }, 1322
 { 1323
 "href": "/his/fan/2", 1324
 "rt": ["oic.r.switch.binary"], 1325
 "if": ["oic.if.a", "oic.if.baseline"], 1326
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1327
 } 1328
] 1329
 1330

Later when the "/his/fan/2" Link is removed (e.g., UPDATE operation with the Link remove OCF 1331
Interface) the response to the NOTIFY operation request is as illustrated: 1332

Response: Content 1333
Payload: 1334
[1335
 { 1336
 "href": "/the/light/1", 1337
 "rt": ["oic.r.switch.binary"], 1338
 "if": ["oic.if.a", "oic.if.baseline"], 1339
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1340
 }, 1341
 { 1342
 "href": "/the/light/2", 1343
 "rt": ["oic.r.switch.binary"], 1344
 "if": ["oic.if.a", "oic.if.baseline"], 1345
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1346
 }, 1347
 { 1348
 "href": "/my/fan/1", 1349
 "rt": ["oic.r.switch.binary"], 1350
 "if": ["oic.if.a", "oic.if.baseline"], 1351
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1352
 } 1353
] 1354

If the result of removing a Link results in no Links being present, then an empty array list shall be 1355
sent in a notification. An example of a response with no Links being present is as illustrated: 1356

Response: Content 1357
Payload: 1358
[1359
] 1360

7.6.3.3.4 Use with CREATE, UPDATE, and DELETE 1361

The CREATE, UPDATE and DELETE operations are not allowed by the Links list OCF Interface. 1362
Attempts to perform CREATE, UPDATE or DELETE operations using the Links list OCF Interface 1363
shall return an appropriate error status code, for example "Method Not Allowed". 1364

7.6.3.4 Batch OCF Interface 1365

7.6.3.4.1 Overview 1366

The batch OCF Interface is used to interact with a Collection of Resources using a single/same 1367
Request. The batch OCF Interface can be used to RETRIEVE or UPDATE the Properties of the 1368
linked Resources with a single request. 1369

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 29

7.6.3.4.2 General requirements for realizations of the batch OCF Interface 1370

All realiation of the batch OCF Interface adhere to the following: 1371

– The batch OCF Interface name is "oic.if.b" 1372

– A Collection Resource has linked Resources that are represented as URIs. In the "href" 1373
Property of the batch payload the URI shall be fully qualified for remote Resources and a 1374
relative reference for local Resources. 1375

– The original request is modified to create new requests targeting each of the linked Resources 1376
in the Collection by substituting the URI in the original request with the URI of the linked 1377
Resource. The payload in the original request is replicated in the payload of the new requests. 1378

– The requests shall be forwarded assuming use of the Default OCF Interface of the linked 1379
Resources. 1380

– Requests shall only be forwarded to linked Resources that are identified by relation types "item" 1381
or "hosts" ("hosts" is the default relation type value should the "rel" Link Parameter not be 1382
present). Requests shall not be forwarded to linked Resources that do not contain the "item" or 1383
"hosts" relation type values. 1384

– Properties of the Collection Resource itself may be included in payloads using "oic.if.b" OCF 1385
Interface by exposing a single Link with the link relation "self" along with "item" within the 1386
Collection, and ensuring that Link resolution cannot become an infinite loop due to recursive 1387
references. For example, if the Default OCF Interface of the Collection is "oic.if.b", then the 1388
Server might recursively include its batch representation within its batch representation, in an 1389
endless loop. See 7.6.3.4.5 for an example of use of a Link containing "rel": ["self","item"] to 1390
include Properties of the Collection Resource, along with linked Resources, in "oic.if.b" 1391
payloads. 1392

– If the Default OCF Interface of a Collection Resource is exposed using the Link relation "self", 1393
and the Default OCF Interface contains Properties that expose any Links, those Properties shall 1394
not be included in a batch representation which includes the "self" Link. 1395

– Any request forwarded to a linked Resource that is a Collection (including a "self" Link reference) 1396
shall have the Default OCF Interface of the linked Collection Resource applied. 1397

– All the responses from the linked Resources shall be aggregated into a single Response to the 1398
Client. The Server may timeout the response to a time window, the Server may choose any 1399
appropriate window based on conditions. 1400

– If a linked Resource cannot process the request, an empty response, i.e. a JSON object with 1401
no content ("{}") as the representation for the "rep" Property, or error response should the linked 1402
Resource Type provide an error schema or diagnostic payload, shall be returned by the linked 1403
Resource. These empty or error responses for all linked Resources that exhibit an error shall 1404
be included in the aggregated response to the original Client request. See the example in 1405
7.6.3.4.5. 1406

– If any of the linked Resources returns an error response, the aggregated response sent to the 1407
Client shall also indicate an error (e.g. 4.xx in CoAP). If all of the linked Resources return 1408
successful responses, the aggregated response shall include the success response code. 1409

– The aggregated response shall be an array of objects representing the responses from each 1410
linked Resource. Each object in the response shall include at least two items: (1) the URI of 1411
the linked Resource (fully qualified for remote Resources, or a relative reference for local 1412
Resources) as "href": <URI> and (2) the individual response object or array of objects if the 1413
linked Resource is itself a Collection using "rep" as the key, e.g. "rep": { <representation of 1414
individual response> }. 1415

– The Client may choose to restrict the linked Resources to which the request is forwarded by 1416
including additional query parameters in the request. The Server should process any additional 1417

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 30

query parameters in a request that includes "oic.if.b" as selectors for linked Resources that are 1418
to be processed by the request. 1419

7.6.3.4.3 Observability of the batch OCF Interface 1420

When a Collection supports the ability to be observed using the batch OCF Interface the following 1421
apply: 1422

– If the Collection Resource is marked as Observable, linked Resources referenced in the 1423
Collection may be Observed using the batch OCF Interface. If the Collection Resource is not 1424
marked as Observable then the Collection cannot be Observed and Observe requests to the 1425
Collection shall be handled as defined for the case where request validation fails in clause 1426
11.3.2.4. The Observe mechanism shall work as defined in 11.3.2 with the Observe request 1427
forwarded to each of the linked Resources. All responses to the request shall be aggregated 1428
into a single response to the Client using the same representations and status codes as for 1429
RETRIEVE operations using the batch OCF Interface. 1430

– Should any one of the Observable linked Resources fail to honour the Observe request the 1431
response to the batch Observe request shall also indicate that the entire request was not 1432
honoured using the mechanism described in 11.3.2.4. 1433

– If any of the Observable Resources in a request to a Collection using the batch OCF Interface 1434
replies with an error or Observe Cancel, the Observations of all other linked Resources shall 1435
be cancelled and the error or Observe Cancel status shall be returned to the Observing Client. 1436

NOTE Behavior may be different for Links that do network requests vs. local Resources. 1437

– All notifications to the Client that initiated an Observe request using the batch OCF Interface 1438
shall use the batch representation for the Collection. This is the aggregation of any individual 1439
Observe notifications received by the Device hosting the Collection from the individual Observe 1440
requests that were forwarded to the linked Resources. 1441

– Linked Resources which are not marked Observable in the Links of a Collection shall not trigger 1442
Notifications, but may be included in the response to, and subsequent Notifications resulting 1443
from, an Observe request to the batch OCF Interface of a Collection. 1444

– Each notification shall contain the most current values for all of the Linked Resources that would 1445
be included if the original Observe request were processed again. The Server hosting the 1446
Collection may choose to RETRIEVE all of the linked Resources each time, or may choose to 1447
employ caching to avoid retrieving linked Resources on each Notification. 1448

– If a Linked Resource is Observable and has responded with a successful Observe response, 1449
the most recently reported value of that Resource is considered to be the most current value 1450
and may be reported in all subsequent Notifications. 1451

– Links in the Collection should be Observed by using the "oic.if.ll" OCF Interface. A notification 1452
shall be sent any time the contents of the "oic.if.ll" OCF Interface representation are changed; 1453
that is, if a Link is added, if a Link is removed, or if a Link is updated. Notifications on the 1454
"oic.if.ll" OCF Interface shall contain all of the Links in the "oic.if.ll" OCF Interface representation. 1455

– Other Properties of the Collection Resource, if present, may be Observed by using the OCF 1456
Interfaces defined in the definition for the Resource Type, including using the "oic.if.baseline" 1457
OCF Interface. 1458

7.6.3.4.4 UPDATE using the batch OCF Interface 1459

When a Collection supports the ability for the linked Resources to be the subject of the UPDATE 1460
operation using the batch OCF Interface the following apply: 1461

– A Client shall perform UPDATE operations using the batch OCF Interface by creating a payload 1462
that is similar to a RETRIEVE response payload from a batch OCF Interface request. The Server 1463
shall send a separate UPDATE request to each of the linked Resources according to each "href" 1464
Property and the corresponding value of the "rep" Property. 1465

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 31

– Items shall always contain a link-specific "href". 1466

– An UPDATE received by a Server with an empty "href" shall be rejected with a response 1467
indicating an appropriate error (e.g. bad request). 1468

– Each linked Resource shall follow the requirements for an UPDATE request may not be 1469
supported by the linked Resource. In such cases, writable Properties in the UPDATE operation 1470
as defined in clause 8.4. 1471

– The UPDATE response shall contain the updated values using the same payload schema as 1472
RETRIEVE operations if provided by the linked Resource, along with the appropriate status 1473
code. The aggregated response payload shall reflect the known state of the updated Properties 1474
after the batch update was completed. If no payload is provided by the updated Resource, then 1475
an empty response (i.e. "rep": {}) shall be provided for that Resource. 1476

– A Collection shall not support the use of the UPDATE operation to add, modify, or remove Links 1477
in an existing Collection using the "oic.if.baseline", "oic.if.rw" or "oic.if.a" OCF Interfaces. 1478

– A Collection shall not support the use of the UPDATE operation using the batch OCF Interface 1479
when the Collection contains Links that resolve to Resources that are not hosted on the Device 1480
that also hosts the Collection. If such a Collection receives an UPDATE operation, the operation 1481
shall be rejected with a response indicating an appropriate error (e.g. method not allowed). If 1482
the ability to UPDATE linked remote Resources is desired, the use of the optional scene feature 1483
(see clause 11.6 in [1]) to effect the UPDATE could be utilizied. 1484

7.6.3.4.5 Examples: Batch OCF Interface 1485

Note that the examples provided in Table 9 are illustrative and do not include all mandatory schema 1486
elements in all cases. It is assumed that the Default OCF Interface for the Resource Type 1487
"x.org.example.rt.room" is specified in its Resource Type definition file as "oic.if.rw", which exposes 1488
the Properties "x.org.example.colour" and "x.org.example.size". 1489

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 32

Table 9 – Batch OCF Interface Example 1490

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 33

Resources /a/room/1
{
 "rt": "x.org.example.rt.room"],
 "if": ["oic.if.rw","oic.if.baseline","oic.if.b","oic.if.ll"],
 "x.org.example.colour": "blue",
 "x.org.example.dimension": "15bx15wx10h",
 "links": [
 {"href": "/a/room/1", "rel": ["self", "item"], "rt":
["x.org.example.rt.room"], "if":
["oic.if.rw","oic.if.baseline","oic.if.b","oic.if.ll"],"p": {"bm": 2} },
 {"href": "/the/light/1", "rel": ["item"], "rt": ["oic.r.switch.binary"],
"if": ["oic.if.a","oic.if.baseline"], "ins": "11111", "p": {"bm": 2} },
 {"href": "/the/light/2", "rel": ["item"], "rt": ["oic.r.switch.binary"],
"if": ["oic.if.a" ,"oic.if.baseline"], "ins": "22222", "p": {"bm": 2} },
 {"href": "/my/fan/1", "rel": ["item"], "rt": ["oic.r.switch.binary"],
"if": ["oic.if.a", "oic.if.baseline"], "ins": "33333", "p": {"bm": 2} },
 {"href": "/his/fan/2", "rel": ["item"], "rt": ["oic.r.switch.binary"],
"if": ["oic.if.a", "oic.if.baseline"], "ins": "44444", "p": {"bm": 2} },
 {"href": "/the/switches/1", "rel": ["item"], "rt": ["oic.wk.col"],
"if":["oic.if.ll", "oic.if.b", "oic.if.baseline"], "ins": "55555", "p": {"bm":
2} }
]
}

/the/light/1
{
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "value": false
}

/the/light/2
{
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "value": true
}

/my/fan/1
{
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "value": true
}

/his/fan/2
{
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "value": false
}
/the/switches/1
{
 "rt": ["oic.wk.col"],
 "if":["oic.if.ll", "oic.if.b", "oic.if.baseline"],
"links": [
 {
 "href": "/switch-1a",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a","oic.if.baseline"],
 "p": {"bm": 2}
 }

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 34

 {
 "href": "/switch-1b",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a","oic.if.baseline"],
 "p": {"bm": 2 }
 }
]
}

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 35

Use of batch,
successful
response

Request: GET /a/room/1?if=oic.if.b
Becomes the following individual request messages issued by the Device in the Client role

GET /a/room/1 (NOTE: uses the Default OCF Interface as specified for the
Collection Resource, in this example oic.if.rw)
GET /the/light/1 (NOTE: Uses the Default OCF Interface as specified for this
Resource)
GET /the/light/2 (NOTE: Uses the Default OCF Interface as specified for this
Resource)
GET /my/fan/1 (NOTE: Uses the Default OCF Interface as specified for this
Resource)
GET /his/fan/2 (NOTE: Uses the Default OCF Interface as specified for this
Resource)
GET /the/switches/1 (NOTE: Uses the Default OCF Interface for the Collection
that is within the Collection)
Response:
[
 {
 "href": "/a/room/1",
 "rep": {"x.org.example.colour": "blue","x.org.example.dimension":
"15bx15wx10h"}
 },
 {
 "href": "/the/light/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/light/2",
 "rep": {"value": true}
 },
 {
 "href": "/my/fan/1",
 "rep": {"value": true}
 },
 {
 "href": "/his/fan/2",
 "rep": {"value": false}
 },
 {
 "href": "/the/switches/1",
 "rep": [
 {
 "href": "/switch-1a",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a","oic.if.baseline"],
 "p": {"bm": 2},
 "eps":[
 {"ep": "coaps://[2001:db8:a::b1d4]:55555"}
]
 },
 {
 "href": "/switch-1b",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a","oic.if.baseline"],
 "p": {"bm": 2 },
 "eps":[
 {"ep": "coaps://[2001:db8:a::b1d4]:55555"}
]
 }]
 }
]

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 36

Use of batch,
error

response

Should any of the RETRIEVE requests in the previous example fail then the response includes an empty
payload for that Resource instance and an error code is sent. The following example assumes errors from
"/my/fan/1" and "/the/switches/1"

Error Response:

[
 {
 "href": "/a/room/1",
 "rep": {"x.org.example.colour": "blue","x.org.example.dimension":
"15bx15wx10h"}
 },
 {
 "href": "/the/light/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/light/2",
 "rep": {"value": true}
 },
 {
 "href": "/my/fan/1",
 "rep": {}
 },
 {
 "href": "/his/fan/2",
 "rep": {"value": false}
 },
 {
 "href": "/the/switches/1",
 "rep": {}
 }
]

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 37

Use of batch

(UPDATE has
POST

semantics)

UPDATE /a/room/1?if=oic.if.b
[
 {
 "href": "",
 "rep": {
 "value": false
 }
 }
]

Since the "href" value in the UPDATE request is empty, the request is forwarded to all Resources in the
Collection and becomes:

UPDATE /a/room/1 { "value": false }
UPDATE /the/light/1 { "value": false }
UPDATE /the/light/2 { "value": false }
UPDATE /my/fan/1 { "value": false }
UPDATE /his/fan/2 { "value": false }
UPDATE /the/switches/1 { "value": false }

Response:

[
 {
 "href": "/the/light/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/light/2",
 "rep": {"value": false}
 },
 {
 "href": "/my/fan/1",
 "rep": {"value": false}
 },
 {
 "href": "/his/fan/2",
 "rep": {"value": false}
 },
 {
 "href": "/the/switches/1",
 "rep":
 {
 }
 }
]

Since /a/room/1 does not have a "value" Property exposed by its Default OCF Interface, the UPDATE
request will be silently ignored and it will not be included in the UPDATE response.
Since the UPDATE request with the links list OCF Interface is not allowed, an empty payload for the
"/the/switches/1" is included in the UPDATE response and an error code is sent.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 38

Use of batch
(UPDATE has

POST
semantics)

UPDATE /a/room/1?if=oic.if.b
[
 {
 "href": "/the/light/1",
 "rep": {
 "value": false
 }
 },
 {
 "href": "/the/light/2",
 "rep": {
 "value": true
 }
 },
 {
 "href": "/a/room/1",
 "rep": {
 "x.org.example.colour": "red"
 }
 }
]

This turns /the/light/1 off, turns /the/light/2 on, and sets the colour of /a/room/1 to "red".

The response will be same as response for GET /a/room/1?if=oic.if.b with the updated Property values as
shown.

[
 {
 "href": "/a/room/1",
 "rep":{"x.org.example.colour": "red",
 "x.org.example.dimension": "15bx15wx10h"}
 },
 {
 "href": "/the/light/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/light/2",
 "rep": {"value": true}
 }
]

Example use of additional query parameters to select items by matching Link Parameters.

Turn on light 1 based on the "ins" Link Parameters value of "11111"

UPDATE /a/room/1?if=oic.if.b&ins=11111
[
 {
 "href": "",
 "rep": {
 "value": false
 }
 }
]

Similar to the earlier example, "href": "" applies the UPDATE request to all of the Resources in the
Collection. Since the additional query parameter ins=11111 selects only links that have a matching "ins"
value, only one link is selected. The payload is applied to the target Resource of that link, /the/light/1.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 39

Retrieving the item using the same query parameter:

RETRIEVE /a/room/1?if=oic.if.b&ins=11111

Response payload:

[
 {
 "href": "/the/light/1",
 "rep": {
 "value": false
 }
 }
]

 1491

7.6.3.5 Actuator OCF Interface 1492

The actuator OCF Interface is the OCF Interface for viewing Resources that may be actuated i.e. 1493
changes some value within or the state of the entity abstracted by the Resource: 1494

– The actuator OCF Interface name shall be "oic.if.a" 1495

– The actuator OCF Interface shall expose in the Resource Representation all mandatory 1496
Properties as defined by the applicable OpenAPI 2.0 schema; the actuator OCF Interface may 1497
also expose in the Resource Representation optional Properties as defined by the applicable 1498
OpenAPI 2.0 schema that are implemented by the target Device. 1499

For example, a "Heater" Resource (for illustration only): 1500

/a/act/heater 1501
{ 1502
 "rt": ["x.com.acme.gas"], 1503
 "if": ["oic.if.baseline", "oic.if.r", "oic.if.a", "oic.if.s"], 1504
 "x.com.acme.settemp": 10, 1505
 "x.com.acme.currenttemp" : 7 1506
} 1507

The actuator OCF Interface with respect to "Heater" Resource (for illustration only): 1508
 1509
a) Retrieving values of an actuator. 1510

Request: RETRIEVE /a/act/heater?if="oic.if.a" 1511
 1512
Response: Content 1513
Payload: 1514
{ 1515
 "x.com.acme.settemp": 10, 1516
 "x.com.acme.currenttemp" : 7 1517
} 1518

b) Correct use of actuator OCF Interface. 1519

 1520
Request: UPDATE /a/act/heater?if="oic.if.a" 1521
{ 1522
 "x.com.acme.settemp": 20 1523
} 1524
Response: Changed 1525
Payload: 1526
{ 1527
 "x.com.acme.settemp": 20 1528
} 1529

c) Incorrect use of actuator OCF Interface. 1530

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 40

 1531
Request: UPDATE /a/act/heater?if="oic.if.a" 1532
{ 1533
 "if": ["oic.if.s"] this is visible through baseline OCF Interface 1534
} 1535
Response:Bad Request 1536
Payload: 1537
{ 1538
} 1539

– A RETRIEVE request using this OCF Interface shall return the Representation for this Resource 1540
subject to any query and filter parameters that may also exist. 1541

– An UPDATE request using this OCF Interface shall provide a payload or body that contains the 1542
Properties that will be updated on the target Resource. 1543

7.6.3.6 Sensor OCF Interface 1544

The sensor OCF Interface is the OCF Interface for retrieving measured, sensed or capability 1545
specific information from a Resource that senses: 1546

– The sensor OCF Interface name shall be "oic.if.s". 1547

– The sensor OCF Interface shall expose in the Resource Representation all mandatory 1548
Properties as defined by the applicable OpenAPI 2.0 schema; the sensor OCF Interface may 1549
also expose in the Resource Representation optional Properties as defined by the applicable 1550
OpenAPI 2.0 schema that are implemented by the target Device. 1551

– A RETRIEVE request using this OCF Interface shall return this representation for the Resource 1552
subject to any query and filter parameters that may also exist. 1553

NOTE: The example here is with respect to retrieving values of a sensor 1554

 1555
Request: RETRIEVE /a/act/heater?if="oic.if.s" 1556
 1557
Response: Content 1558
Payload: 1559
{ 1560
 "x.com.acme.currenttemp": 7 1561
} 1562
 1563

Incorrect use of the sensor. 1564

Request: UPDATE /a/act/heater?if="oic.if.s" UPDATE is not allowed 1565
{ 1566
 "x.com.acme.settemp": 20 this is possible through actuator OCF Interface 1567
} 1568
Response: Bad Request 1569
Payload: 1570
{ 1571
} 1572
 1573

Another incorrect use of the sensor. 1574

Request: UPDATE /a/act/heater?if="oic.if.s" UPDATE is not allowed 1575
{ 1576
 "x.com.acme.currenttemp": 15 this is not possible to be updated 1577
} 1578
Response: Bad Request 1579
Payload: 1580
{ 1581
} 1582

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 41

7.6.3.7 Read-only OCF Interface 1583

The read-only OCF Interface exposes only the Properties that may be read. This includes 1584
Properties that may be read-only, read-write but not Properties that are write-only or set-only. The 1585
applicable operations that can be applied to a Resource are only RETRIEVE and NOTIFY. An 1586
attempt by a Client to apply a method other than RETRIEVE or NOTIFY to a Resource shall be 1587
rejected with an error response code. 1588

The read-only OCF Interface with respect to "Heater" Resource (for illustration only): 1589

Request: RETRIEVE /a/act/heater?if="oic.if.r" 1590
Response: Content 1591
Payload: 1592
{ 1593
 "x.com.acme.settemp": 10, 1594
 "x.com.acme.currenttemp" : 7 1595
} 1596

7.6.3.8 Read-write OCF Interface 1597

The read-write OCF Interface is a generic OCF Interface to support reading and setting Properties 1598
in a Resource. The applicable methods that can be applied to a Resource are only RETRIEVE, 1599
NOTIFY, and UPDATE. For the RETRIEVE and NOTIFY operations, the behaviour is the same as 1600
for the "oic.if.r" OCF Interface defined in 7.6.3.7. For the UPDATE operation, read-only Properties 1601
(i.e. Properties tagged with "readOnly=true" in the OpenAPI 2.0 definition) shall not be in the 1602
UPDATE payload. An attempt by a Client to apply a method other than RETRIEVE, NOTIFY, or 1603
UPDATE to a Resource shall be rejected with an error response code. 1604

For example, a "Grinder" Resource (for illustration only): 1605

/a/mygrinder 1606
{ 1607
 "rt": ["oic.r.grinder"], 1608
 "if": ["oic.if.rw", "oic.if.baseline"], 1609
 "coarseness": 10, 1610
 "remaining": 50 1611
} 1612

 1613

The read-write OCF Interface with respect to “Grinder" Resource (for illustration only): 1614

a) Retrieving the value with read-write OCF Interface 1615

 1616
Request: RETRIEVE /a/mygrinder?if="oic.if.rw" 1617
 1618
Response: Content 1619
Payload: 1620
{ 1621
 "coarseness": 10, 1622
 "remaining": 50 1623
} 1624
 1625

b) Updating the value with read-write OCF Interface 1626

 1627
Request: UPDATE /a/mygrinder?if="oic.if.rw" 1628
{ 1629
 "coarseness": 20 1630
} 1631
 1632
Response: Changed 1633
Payload: 1634

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 42

{ 1635
 "coarseness": 20 1636
} 1637

7.6.3.9 Create OCF Interface 1638

7.6.3.9.1 Overview 1639

The create OCF Interface is used to create Resource instances in a Collection. An instance of a 1640
Resource and the Link pointing to the Resource are created together, atomically, according to a 1641
Client-supplied representation. The create OCF Interface name is "oic.if.create". A Collection which 1642
exposes the "oic.if.create" OCF Interface shall expose the "rts" Property (see clause 7.8.2.8) with 1643
all Resource Types that can be hosted with the Collection. If a Client attempts to create a Resource 1644
Type which is not supported by the Collection, the Server shall return an appropriate error status 1645
code, for example "Bad Request". Successful CREATE operations shall return a success code, i.e. 1646
"Created". The IDD for all allowed Resource Types that may be created shall adhere to 1647
Introspection for dynamic Resources (see clause 11.4). 1648

7.6.3.9.2 Data format for CREATE 1649

The data format for the create OCF Interface is similar to the data format for the batch OCF 1650
Interface. The create OCF Interface format consists of a set of Link Parameters and a "rep" 1651
Parameter which contains a representation for the created Resource. 1652

The representation supplied for the Link pointing to the newly created Resource shall contain at 1653
least the "rt" and "if" Link Parameters. 1654

The Link Parameter "p" should be included in representations supplied for all created Resources. 1655
If the "Discoverable" bit is set, then the supplied Link representation shall be exposed in "/oic/res" 1656
of the Device on which the Resource is being created. The Link Parameters representation in the 1657
"/oic/res" Resource does not have to mirror the Link Parameters in the Collection of the created 1658
Resource (e.g., "ins" Parameter). 1659

Creating a discoverable Resource is the only way to add a Link to "/oic/res". 1660

If the "p" Parameter is not included, the Server shall create the Resource using the default settings 1661
of not discoverable, and not observable. 1662

The representation supplied for a created Resource in the value of the "rep" Parameter shall 1663
contain all mandatory Properties required by the Resource Type to be created excluding the 1664
Common Properties "rt" and "if" as they are already included in the create payload. 1665

Note that the "rt" and "if" Property Values are created from the supplied Link Parameters of the 1666
Resource creation payload. 1667

If the supplied representation does not contain all of the required Properties and Link Parameters, 1668
the Server shall return an appropriate error status code, for example "Bad Request". 1669

An example of the create OCF Interface payload is as illustrated: 1670

{ 1671
 "rt": ["oic.r.temperature"], 1672
 "if": ["oic.if.a","oic.if.baseline"], 1673
 "p": {"bm":3}, 1674
 "rep": { 1675
 "temperature": 20 1676
 } 1677
} 1678

The representation returned when a Resource is successfully created shall contain the "href", "if", 1679
and "rt" Link Parameters and all other Link Parameters that were included in the CREATE operation. 1680

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 43

In addition, the "rep" Link Parameter shall include all Resource Properties as well as the "rt" and 1681
"if" Link Parameters supplied in the CREATE operation. The Server may include additional Link 1682
Parameters and Properties in the created Resource as required by the application-specific 1683
Resource Type. The Server shall assign an "ins" value to each created Link and shall include the 1684
"ins" Parameter in the representation of each created Link as illustrated in the Collection that the 1685
Link of the created Resource was created within: 1686

{ 1687
 "href": "/3755f3ac", 1688
 "rt": ["oic.r.temperature"], 1689
 "if": ["oic.if.a","oic.if.baseline"], 1690
 "ins": 39724818, 1691
 "p": {"bm":3}, 1692
 "rep": { 1693
 "rt": ["oic.r.temperature"], 1694
 "if": ["oic.if.a","oic.if.baseline"], 1695
 "temperature": 20 1696
 } 1697
} 1698

The Link Parameters representation in the "/oic/res" Resource, if the created Resource is 1699
discoverable, may not mirror exactly all the Link Parameters added in the Collection; except it shall 1700
expose at a minimum the mandatory Properties of the Link (i.e., "rt", "if", and "href") of the created 1701
Resource. 1702

7.6.3.9.3 Use with CREATE 1703

The CREATE operation shall be sent to the URI of the Collection in which the Resource is to be 1704
created. The query string "?if=oic.if.create" shall be included in all CREATE operations. 1705

The Server shall generate a URI for the created Resource and include the URI in the "href" 1706
Parameter of the created Link. 1707

When a Server successfully completes a CREATE operation using the "oic.if.create" OCF Interface 1708
addressing a Collection, the Server shall automatically modify the ACL Resource to provide initial 1709
authorizations for accessing for the newly created Resource according to ISO/IEC 30118-2:2018. 1710

An example performing a CREATE operation is as illustrated: 1711

CREATE /scenes/scene1?if=oic.if.create 1712
{ 1713
 "rt": ["oic.r.temperature"], 1714
 "if": ["oic.if.a","oic.if.baseline"], 1715
 "p": {"bm":3}, 1716
 "rep": { 1717
 "temperature": 20 1718
 } 1719
} 1720
Response: Created 1721
Payload: 1722
{ 1723
 "href": "/3755f3ac", 1724
 "ins": 39724818, 1725
 "rt": ["oic.r.temperature"], 1726
 "if": ["oic.if.a","oic.if.baseline"], 1727
 "p": {"bm":3}, 1728
 "rep": { 1729
 "rt": ["oic.r.temperature"], 1730
 "if": ["oic.if.a","oic.if.baseline"], 1731
 "temperature": 20 1732
 } 1733
} 1734

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 44

7.6.3.9.4 Use with UPDATE and DELETE 1735

The UPDATE and DELETE operations are not allowed by the create OCF Interface. Attempts to 1736
perform UPDATE or DELETE operations using the create OCF Interface shall return an appropriate 1737
error status code, for example "Method Not Allowed", unless the UPDATE and CREATE operations 1738
map to the same transport binding method (e.g., CoAP with the POST method). In that situation 1739
where the UPDATE and CREATE operations map to the same transport binding method, this shall 1740
be processed as a CREATE operation according to clause 7.6.3.9.3. 1741

7.7 Resource representation 1742

Resource representation captures the state of a Resource at a particular time. The Resource 1743
representation is exchanged in the request and response interactions with a Resource. A Resource 1744
representation may be used to retrieve or update the state of a Resource. 1745

The Resource representation shall not be manipulated by the data connectivity protocols and 1746
technologies (e.g., CoAP, UDP/IP or BLE). 1747

7.8 Structure 1748

7.8.1 Introduction 1749

In many scenarios and contexts, the Resources may have either an implicit or explicit structure 1750
between them. This may be achieved through the use of Collection (7.8.3) and Atomic 1751
Measurement (7.8.4) Resources. 1752

7.8.2 Resource relationships (Links) 1753

7.8.2.1 Introduction 1754

Resource relationships are expressed as Links. A Link is a hyperlink, which defines a typed 1755
connection between two Resources. Hyperlinks, or web links, have the following components as 1756
defined in IETF RFC 8288: 1757

– Link context (URI reference) as defined in 7.8.2.2 1758

– Link relation type as defined in 7.8.2.3 1759

– Link target (URI reference) as defined in 7.8.2.4 1760

– Link target attributes as defined in 7.8.2.5 1761

The Link context is the Resource with which the Link is associated. A Link is viewed as a statement 1762
of the form "(Link context) has a (Link relation type) to a Resource at (Link target), which has (Link 1763
target attributes)" as per IETF RFC 8288 clause 2. 1764

To paraphrase, the Link target is related to the Link context according to the Link relation type. 1765
Additionally, the Link target attributes make semantic statements about the Link target, to identify 1766
the content type, physical location, etc. 1767

Links conform to the definitions in IETF RFC 8288, with an example JSON serialization with 1768
associated Link Parameters as illustrated: 1769

{ 1770
 "anchor": "/some/ocf/resource", // Link context, optional 1771
 "rel": ["hosts"], // Link relation Type, optional 1772
 "href": "/some/other/ocf/resource", // Link target, required 1773
 "p": {"bm": 3}, // Link target attributes, optional 1774
 "if": ["oic.if.baseline"], // Link target attributes, required 1775
 "rt": ["oic.r.sensor"] // Link target attributes, required 1776
} 1777

 1778

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 45

Additional items in the Link may be made mandatory based on the use of the Links in different 1779
contexts (e.g. in Collections, in discovery, in bridging etc.). The OpenAPI 2.0 file for the Link 1780
payload is detailed in Annex A. 1781

Another example of a Link is as illustrated: 1782

{"href": "/switch", "rt": ["oic.r.switch.binary"], "if": ["oic.if.a", 1783
"oic.if.baseline"], "p": {"bm": 3}, "rel": "item"} 1784

7.8.2.2 Link context 1785

The Link context is defined in the Link using the "anchor" Parameter. If the Link doesn't contain an 1786
"anchor" Parameter, the Link context shall be the Resource from which the Link was retrieved. 1787

7.8.2.3 Link relation type 1788

The Link relation type conveys the semantics of the Link. The Link relation type is defined in the 1789
Link using the "rel" Parameter. If the Link doesn't contain a "rel" Parameter, the Link relation type 1790
shall be assumed to have the default value "hosts", which means that the Resource at the Link 1791
target is "hosted" by the Resource at the Link context. The set of Link relation types to be used to 1792
describe various relationships between Resources are as listed: 1793

– "hosts" 1794

– The Link target points to a Resource that is hosted at the Link context. This Link relation 1795
type indicates that the Resource is allowed to be included in the batch representations of 1796
the Link target. This Link relation type is defined by IETF RFC 6690. 1797

– "self" 1798

– The Link refers to the Link context, which allows a Link to describe the Resource at the Link 1799
context, which is to say that the Link can describe the Collection or Atomic Measurement 1800
Resource that the Link is retrieved from. The Link target points to the Link context, and the 1801
Link target attributes describe the Link context. This Link relation type is defined by 1802
IETF RFC 4287. 1803

– "item" 1804

– The Link target points to a Resource that is a member of the Collection or Atomic 1805
Measurement at the Link context, which might not specifically be hosted by the Collection 1806
or Atomic Measurement Resource, and is allowed to be contained in batch representations 1807
of the Collection or Atomic Measurement. An example is using "rel": "item" to declare that 1808
the Properties of the Collection or Atomic Measurement Resource itself should be included 1809
in a batch representation of the Collection or Atomic Measurement. This Link relation type 1810
is defined by IETF RFC 6573. 1811

All of these Link relation types are registered in the IANA Registry for Link relations types defined 1812
in IANA Link Relations. Other Link relation types may be included in Links, provided that they 1813
conform to the requirements in IETF RFC 8288. Other Link relation types may be defined for 1814
features contained in other specifications and may not be included in what is defined in this clause. 1815
The presence of Link relation types not defined in this document does not affect the processing of 1816
Link relation types defined in this document. 1817

When there is more than one Link relation type value in a Link, all of the values apply to describe 1818
the relationship between the Link context and the Link target. A Link with multiple Link relation type 1819
values is equivalent to a set of Links having the same Link context and Link target, each having 1820
one of the Link relation values. 1821

7.8.2.4 Link target 1822

The Link target is a URI reference to a Resource using the "href" Parameter. 1823

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 46

7.8.2.5 Parameters for Link target attributes 1824

7.8.2.5.1 Introduction 1825

Link target attributes are specialisations of Link Parameters. Table 10 lists all the Link target 1826
attributes defined in this document. 1827

Table 10 – Link target attributes list 1828

Parameter
title

Parameter
name

Mandatory Description

Device ID "di" No Defined in clause 7.8.2.5.5

OCF Endpoint
information

"eps" No Defined in clause 7.8.2.5.6

OCF Interface "if" Yes Defined in clause 7.6

Link instance "ins" No Defined in clause 7.8.2.5.2

Policy "p" No Defined in clause 7.8.2.5.3

Resource Type "rt" Yes Defined in clause 7.4

Media type "type" No Defined in clause 7.8.2.5.4

Position
description
Semantic Tag

"tag-pos-desc" No Defined in clause 11.5.2.1.2

Relative
position
Semantic Tag

"tag-pos-pos" No Defined in clause 11.5.2.1.3

Function
description
Semantic Tag

"tag-func-desc" No Defined in clause 11.5.2.2.2

Note: Other Link target attributes may to defined for features in other specifications and may not be included in this table. 1829

7.8.2.5.2 "ins" or Link instance Parameter 1830

The "ins" Parameter identifies a particular Link instance in a list of Links. The "ins" Parameter may 1831
be used to modify or delete a specific Link in a list of Links. The value of the "ins" Parameter is set 1832
at instantiation of the Link by the OCF Device (Server) that is hosting the list of Links – once it has 1833
been set, the "ins" Parameter shall not be modified for as long as the Link is a member of that list. 1834

7.8.2.5.3 "p" or policy Parameter 1835

The policy Parameter defines various rules for correctly accessing a Resource referenced by a 1836
target URI. The policy rules are configured by a set of key-value pairs. 1837

The policy Parameter "p" is defined by: 1838

– "bm" key: The "bm" key corresponds to an integer value that is interpreted as an 8-bit bitmask. 1839
Each bit in the bitmask corresponds to a specific policy rule. The rules are specified for "bm" in 1840
Table 11: 1841

Table 11 – "bm" Property definition 1842

Bit Position Policy rule Comment

Bit 0 (the LSB) discoverable The discoverable rule defines whether the Link is to be
included in the Resource discovery message via "/oic/res".
If the Link is to be included in the Resource discovery
message, then "p" shall include the "bm" key and set the
discoverable bit to value 1.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 47

If the Link is NOT to be included in the Resource discovery
message, then "p" shall either include the "bm" key and set
the discoverable bit to value 0 or omit the "bm" key entirely.

Bit 1 (2nd LSB) observable The Observable rule defines whether the Resource
referenced by the target URI supports the NOTIFY operation.
With the self-link, i.e. the Link with "rel" value of "self",
"/oic/res" can have a Link with the target URI of "/oic/res" and
indicate itself Observable. The "self" is defined by
IETF RFC 4287 and registered in the IANA Registry for "rel"
value defined at IANA Link Relations.
If the Resource supports the NOTIFY operation, then "p" shall
include the "bm" key and set the Observable bit to value 1.
If the Resource does NOT support the NOTIFY operation,
then "p" shall either include the "bm" key and set the
Observable bit to value 0 or omit the "bm" key entirely.

Bits 2-7 -- Reserved for future use. All reserved bits in "bm" shall be set
to value 0.

 1843

NOTE If all the bits in "bm" are defined to value 0, then the "bm" key may be omitted entirely from "p" as an efficiency 1844
measure. However, if any bit is set to value 1, then "bm" shall be included in "p" and all the bits shall be defined 1845
appropriately. 1846

– In a payload sent in response to a request that includes an OCF-Accept-Content-Format-1847
Version option the "eps" Parameter shall provide the information for an encrypted connection. 1848

– Note that access to the Resource is controlled by the ACL for the Resource. A successful 1849
encrypted connection does not ensure that the requested action will succeed. See 1850
ISO/IEC 30118-2:2018 clause 12 for more information. 1851

This shows the policy Parameter for a Resource that is discoverable but not Observable. 1852

"p": {"bm": 1} 1853

This shows a self-link, i.e. the "/oic/res" Link in itself that is discoverable and Observable. 1854

{ 1855
 "href": "/oic/res", 1856
 "rel": "self", 1857
 "rt": ["oic.wk.res"], 1858
 "if": ["oic.if.ll", "oic.if.baseline"], 1859
 "p": {"bm": 3} 1860
} 1861

7.8.2.5.4 "type" or media type Parameter 1862

The "type" Parameter may be used to specify the various media types that are supported by a 1863
specific target Resource. The default type of "application/vnd.ocf+cbor" shall be used when the 1864
"type" element is omitted. Once a Client discovers this information for each Resource, it may use 1865
one of the available representations in the appropriate header field of the Request or Response. 1866

7.8.2.5.5 "di" or Device ID Parameter 1867

The "di" Parameter specifies the Device ID of the Device that hosts the target Resource defined in 1868
the in the "href" Parameter. 1869

The Device ID may be used to qualify a relative reference used in the "href" or to lookup OCF 1870
Endpoint information for the relative reference. 1871

7.8.2.5.6 "eps" Parameter 1872

The "eps" Parameter indicates the OCF Endpoint information of the target Resource. 1873

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 48

"eps" shall have as its value an array of items and each item represents OCF Endpoint information 1874
with "ep" and "pri" as specified in 10.2. "ep" is mandatory but "pri" is optional. 1875

This is an example of "eps" with multiple OCF Endpoints. 1876

"eps": [1877
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 1878
 {"ep": "coaps://[fe80::b1d6]:1122"}, 1879
 {"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri": 3} 1880
] 1881

When "eps" is present in a link, the OCF Endpoint information in "eps" can be used to access the 1882
target Resource referred by the "href" Parameter. 1883

Note that the type of OCF Endpoint – Secure or Unsecure – that a Resource exposes merely 1884
determines the connection type(s) guaranteed to be available for sending requests to the Resource. 1885
For example, if a Resource only exposes a single CoAP "ep", it does not guarantee that the 1886
Resource cannot also be accessed via a Secure OCF Endpoint (e.g. via a CoAPS "ep" from another 1887
Resource’s "eps information). Nor does exposing a given type of OCF Endpoint ensure that access 1888
to the Resource will be granted using the "ep" information. Whether requests to the Resource are 1889
granted or denied by the Access Control layer is separate from the "eps" information, and is 1890
determined by the configuration of the /acl2 Resource (see ISO/IEC 30118-2:2018 clause 13.5.3 1891
for details). 1892

When present, max-age information (e.g. Max-Age option for CoAP defined in IETF RFC 7252) 1893
determines the maximum time "eps" values may be cached before they are considered stale. 1894

7.8.2.6 Formatting 1895

When formatting in JSON, the list of Links shall be an array. 1896

7.8.2.7 List of Links in a Collection 1897

A Resource that exposes one or more Properties that are defined to be an array of Links where 1898
each Link can be discretely accessed is a Collection. The Property Name "links" is recommended 1899
for such an array of Links. 1900

This is an example of a Resource with a list of Links. 1901

/Room1 1902
{ 1903
 "rt": ["oic.wk.col"], 1904
 "if": ["oic.if.ll", "oic.if.baseline"], 1905
 "color": "blue", 1906
 "links": 1907
 [1908
 { 1909
 "href": "/switch", 1910
 "rt": ["oic.r.switch.binary"], 1911
 "if": ["oic.if.a", "oic.if.baseline"], 1912
 "p": {"bm": 3} 1913
 }, 1914
 { 1915
 "href": "/brightness", 1916
 "rt": ["oic.r.light.brightness"], 1917
 "if": ["oic.if.a", "oic.if.baseline"], 1918
 "p": {"bm": 3} 1919
 } 1920
] 1921
} 1922

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 49

7.8.2.8 Properties describing an array of Links 1923

If a Resource Type that defines an array of Links (e.g. Collections, Atomic Measurements) has 1924
restrictions on the "rt" values that can be within the array of Links, the Resource Type will define 1925
the "rts" Property. The "rts" Property as defined in Table 12 will include all "rt" values allowed for 1926
all Links in the array. If the Resource Type does not define the "rts" Property or the "rts" Property 1927
is an empty array, then any "rt" value is permitted in the array of Links. 1928

For all instances of a Resource Type that defines the "rts" Property, the "rt" Link Parameter in 1929
every Link in the array of Links shall be one of the "rt" values that is included in the "rts" 1930
Property. 1931

Table 12 – Resource Types Property definition 1932

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Types

"rts" "array" Array of strings,
conveying
Resource Type
IDs

N/A R No An array of Resource
Types that are
supported within an
array of Links exposed
by a Resource.

 1933

If a Resource Type that defines an array of Links has "rt" values which are required to be in the 1934
array, the Resource Type will define the "rts-m" Property, as defined in Table 13, which will contain 1935
all of the "rt" vaues that are required to be in the array of Links. If "rts-m" is defined, and "rts" is 1936
defined and is not an empty array, then the "rt" values present in "rts-m" will be part of the values 1937
present in "rts". Moreover, if the "rts-m" Property is defined, it shall be mandated (i.e. included in 1938
the "required" field of a JSON definition) in the Resource definition and Introspection Device Data 1939
(see 11.4). 1940

For all instances of a Resource Type that defines the "rts-m" Property, there shall be at least one 1941
Link in the array of Links corresponding to each one of the "rt" values in the "rts-m" Property; for 1942
all such Links the "rt" Link Parameter shall contain at least one of the "rt" values in the "rts-m" 1943
Property. 1944

Table 13 – Mandatory Resource Types Property definition 1945

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Mandatory
Resource
Types

"rts-m" "array" Array of strings,
conveying
Resource Type
IDs

N/A R No An array of Resource
Types that are
mandatory to be
exposed within an
array of Links exposed
by a Resource.

 1946

7.8.3 Collections 1947

7.8.3.1 Overview 1948

A Resource that contains one or more references (specified as Links) to other Resources is a 1949
Collection. These references may be related to each other or just be a list; the Collection provides 1950
a means to refer to this set of references with a single handle (i.e. the URI). A simple Resource is 1951
kept distinct from a Collection. Any Resource may be turned into a Collection by binding Resource 1952
references as Links. Collections may be used for creating, defining or specifying hierarchies, 1953
indexes, groups, and so on. 1954

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 50

A Collection shall have at least one Resource Type and at least one OCF Interface bound at all 1955
times during its lifetime. During creation time of a Collection the Resource Type and OCF Interfaces 1956
are specified. The initial defined Resource Types and OCF Interfaces may be updated during its 1957
life time. These initial values may be overridden using mechanism used for overriding in the case 1958
of a Resource. Additional Resource Types and OCF Interfaces may be bound to the Collection at 1959
creation or later during the lifecycle of the Collection. 1960

A Collection shall define a Property that is an array with zero or more Links. The target URIs in the 1961
Links may reference another Collection or another Resource. The referenced Collection or 1962
Resource may reside on the same Device as the Collection that includes that Link (called a local 1963
reference) or may reside on another Device (called a remote reference). The context URI of the 1964
Links in the array shall (implicitly) be the Collection that contains that Property. The (implicit) 1965
context URI may be overridden with explicit specification of the "anchor" Parameter in the Link 1966
where the value of "anchor" is the new base of the Link. 1967

A Resource may be referenced in more than one Collection, therefore, a unique parent-child 1968
relationship is not guaranteed. There is no pre-defined relationship between a Collection and the 1969
Resource referenced in the Collection, i.e., the application may use Collections to represent a 1970
relationship but none is automatically implied or defined. The lifecycles of the Collection and the 1971
referenced Resource are also independent of one another. 1972

In the following example a Property "links" represents the list of Links in a Collection. The "links" 1973
Property has, as its value, an array of items and each item is a Link. 1974

/my/house This is IRI/URI of the Resource 1975
{ 1976
 "rt": ["my.r.house"], This and the next 3 lines are the Properties of the 1977
Resource. 1978
 "color": "blue", 1979
 "n": "myhouse", 1980
 "links": [1981
 { This and the next 4 lines are the Parameters of a Link 1982
 "href": "/door", 1983
 "rt": ["oic.r.door"], 1984
 "if": ["oic.if.a", "oic.if.baseline"] 1985
 }, 1986
 1987
 { 1988
 "href": "/door/lock.status", 1989
 "rt": ["oic.r.lock"], 1990
 "if": ["oic.if.a", "oic.if.baseline"] 1991
 }, 1992
 1993
 { 1994
 "href": "/light", 1995
 "rt": ["oic.r.light"], 1996
 "if": ["oic.if.s", "oic.if.baseline"] 1997
 }, 1998
 1999
 { 2000
 "href": "/binarySwitch", 2001
 "rt": ["oic.r.switch.binary"], 2002
 "if": ["oic.if.a", "oic.if.baseline"] 2003
 } 2004
 2005
] 2006
} 2007

A Collection may be: 2008

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 51

– A pre-defined Collection where the Collection has been defined a priori and the Collection is 2009
static over its lifetime. Such Collections may be used to model, for example, an appliance that 2010
is composed of other Devices or fixed set of Resources representing fixed functions. 2011

– A Device local Collection where the Collection is used only on the Device that hosts the 2012
Collection. Such Collections may be used as a short-hand on a Client for referring to many 2013
Servers as one. 2014

– A centralized Collection where the Collection is hosted on a Device but other Devices may 2015
access or update the Collection. 2016

– A hosted Collection where the Collection is centralized but is managed by an authorized agent 2017
or party. 2018

7.8.3.2 Collection Properties 2019

A Collection shall define a Property that is an array of Links (the Property Name "links" is 2020
recommended). In addition, other Properties may be defined for the Collection by the Resource 2021
Type. The mandatory and recommended Common Properties for a Collection are shown in Table 14. 2022
This list of Common Properties is in addition to those defined for Resources in 7.3.2. 2023

Table 14 – Common Properties for Collections (in addition to Common Properties defined 2024
in 7.3.2) 2025

Property Description Property Name Value Type Mandatory

Links The array of Links in
the Collection

Per Resource Type
definition

json
Array of Links

Yes

Resource Types The list of allowed
Resource Types for
Links in the
Collection.
If this Property is not
defined or is null
string then any
Resource Type is
permitted

As defined in
Table 12

As defined in
Table 12

No

Mandatory
Resource Types

The list of Resource
Types for Links that
are mandatory in the
Collection.

As defined in
Table 13

As defined in
Table 13

No

 2026

7.8.3.3 Default Resource Type 2027

A default Resource Type, "oic.wk.col", is available for Collections. This Resource Type shall be 2028
used only when another type has not been defined on the Collection or when no Resource Type 2029
has been specified at the creation of the Collection. 2030

The default Resource Type provides support for the Common Properties including an array of Links 2031
with the Property Name "links". 2032

7.8.3.4 Default OCF Interface 2033

All instances of a Collection shall support the links list ("oic.if.ll") OCF Interface in addition to the 2034
baseline ("oic.if.baseline") OCF Interface. An instance of a Collection may optionally support 2035
additional OCF Interfaces that are defined within this document. The Default OCF Interface for a 2036
Collection shall be links list ("oic.if.ll") unless otherwise specified by the Resource Type definition. 2037

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 52

7.8.4 Atomic Measurement 2038

7.8.4.1 Overview 2039

Certain use cases require that the Properties of multiple Resources are only accessible as a group 2040
and individual access to those Properties of each Resource by a Client is prohibited. The Atomic 2041
Measurement Resource Type is defined to meet this requirement. This is accomplished through 2042
the use of the Batch OCF Interface. 2043

7.8.4.2 Atomic Measurement Properties 2044

An Atomic Measurement shall define a Property that is an array of Links (the Property Name "links" 2045
is recommended). In addition, other Properties may be defined for the Atomic Measurement by the 2046
Resource Type. The mandatory and recommended Common Properties for an Atomic 2047
Measurement are shown in Table 15. This list of Common Properties is in addition to those defined 2048
for Resources in 7.3.2. 2049

Table 15 – Common Properties for Atomic Measurement (in addition to Common Properties 2050
defined in 7.3.2) 2051

Property Description Property Name Value Type Mandatory

Links The array of Links in
the Atomic
Measurement

Per Resource Type
definition

json
Array of Links

Yes

Resource Types The list of allowed
Resource Types for
Links in the Atomic
Measurement.
If this Property is not
defined or is null
string then any
Resource Type is
permitted

As defined in
Table 12

As defined in
Table 12

No

Mandatory
Resource Types

The list of Resource
Types for Links that
are mandatory in the
Atomic
Measurement.

As defined in
Table 13

As defined in
Table 13

No

 2052

7.8.4.3 Normative behaviour 2053

The normative behaviour of an Atomic Measurement is as follows: 2054

– The behaviour of the Batch OCF Interface ("oic.if.b") on the Atomic Measurement is defined as 2055
follows: 2056

– Only RETRIEVE and NOTIFY operations are supported, for Batch OCF Interface, on Atomic 2057
Measurement; the behavior of the RETRIEVE and NOTIFY operations shall be the same as 2058
specified in 7.6.3.4, with exceptions as provided for in 7.8.4.3. 2059

– The UPDATE operation is not allowed, for Batch OCF Interface, on Atomic Measurement; if 2060
an UPDATE operation is received, it shall result in a method not allowed error code. 2061

– An error response shall not include any representation of a linked Resource (i.e. empty 2062
response for all linked Resources). 2063

– Any linked Resource within an Atomic Measurement (i.e. the target Resource of a Link in an 2064
Atomic Measurement) is subject to the following conditions: 2065

– Linked Resources within an Atomic Measurement and the Atomic Measurement itself shall 2066
exist on a single Server. 2067

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 53

– CRUDN operations shall not be allowed on linked Resources and shall result in a forbidden 2068
error code. 2069

– Linked Resources shall not expose the "oic.if.ll" OCF Interface. Since CRUDN operations 2070
are not allowed on linked Resources, the "oic.if.ll" OCF Interface would never be accessible. 2071

– Links to linked Resources in an Atomic Measurement shall only be accessible through the 2072
"oic.if.ll" or the "oic.if.baseline" OCF Interfaces of an Atomic Measurement. 2073

– The linked Resources shall not be listed in "/oic/res". 2074

– A linked Resource in an Atomic Measurement shall have defined one of "oic.if.a", "oic.if.s", 2075
"oic.if.r", or "oic.if.rw" as its Default OCF Interface. 2076

– Not all linked Resources in an Atomic Measurement are required to be Observable. If an Atomic 2077
Measurement is being Observed using the "oic.if.b" OCF Interface, notification responses shall 2078
not be generated when the linked Resources which are not marked Observable are updated or 2079
change state. 2080

– All linked Resources in an Atomic Measurement shall be included in every RETRIEVE and 2081
Observe response when using the "oic.if.b" OCF Interface. 2082

– An Atomic Measurement shall support the "oic.if.b" and the "oic.if.ll" OCF Interfaces. 2083

– Filtering of linked Resources in an Atomic Measurement is not allowed. Query parameters that 2084
select one or more individual linked Resources in a request to an Atomic Measurement shall 2085
result in a "forbidden" error code. 2086

– If the "rel" Link Parameter is included in a Link contained in an Atomic Measurement, it shall 2087
have either the "hosts" or the "item" value. 2088

– The Default OCF Interface of an Atomic Measurement is "oic.if.b". 2089

7.8.4.4 Security considerations 2090

Access rights to an Atomic Measurement Resource Type is as specified in clause 12.2.7.2 (ACL 2091
considerations for batch request to the Atomic Measurement Resource Type) of ISO/IEC 30118-2092
2:2018). 2093

7.8.4.5 Default Resource Type 2094

The Resource Type is defined as "oic.wk.atomicmeasurement" as defined in Table 16. 2095

Table 16 – Atomic Measurement Resource Type 2096

Pre-
defined

URI

Resource
Type Title

Resource Type
ID ("rt" value)

OCF Interfaces Description Related
Functional
Interaction

M/CR/O

none Atomic
Measurement

"oic.wk.atomicme
asurement"

"oic.if.ll"
"oic.if.baseline"
"oic.if.b"

A specialisation of
the Collection pattern
to ensure atomic
RETRIEVAL of its
referred Resources

RETRIEVE,
NOTIFY

O

 2097

The Properties for Atomic Measurement are as defined in Table 17. 2098

Table 17 – Properties for Atomic Measurement (in addition to Common Properties defined 2099
in 7.3.2) 2100

Property Description Property name Value Type Mandatory

Links The set of links that
point to the linked
Resources

Per Resource Type
definition

json
Array of Links

Yes

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 54

 2101

7.9 Query Parameters 2102

7.9.1 Introduction 2103

Properties and Parameters (including those that are part of a Link) may be used in the query part 2104
of a URI (see 6.2.2) as one criterion for selection of a particular Resource. This is done by declaring 2105
the Property (i.e. <Property Name> = <desired Property Value>) as one of the segments of the 2106
query. Only ASCII strings are permitted in query filters, and NULL characters are disallowed in 2107
query filters. This means that only Property Values with ASCII characters may be matched in a 2108
query filter. 2109

The Resource is selected when all the declared Properties or Link Parameters in the query match 2110
the corresponding Properties or Link Parameters in the target. 2111

7.9.2 Use of multiple parameters within a query 2112

When a query contains multiple separate query parameters these are delimited by an "&" as 2113
described in 6.2.2. 2114

A Client may apply multiple separate query parameters, for 2115
example "?ins=11111&rt=oic.r.switch.binary". If such queries are supported by the Server this shall 2116
be accomplished by matching "all of" the different query parameter types ("rt", "ins", "if", etc) 2117
against the target of the query. In the example, this resolves to an instance of oic.r.switch.binary 2118
that also has an "ins" populated as "11111". There is no significance applied to the order of the 2119
query parameters. 2120

A Client may select more than one Resource Type using repeated query parameters, for example 2121
"?rt=oic.r.switch.binary&rt=oic.r.ramptime". If such queries are supported by the Server this shall 2122
be accomplished by matching "any of" the repeated query parameters against the target of the 2123
query. In the example, any instances of "oic.r.switch.binary" and/or "oic.r.ramptime" that may exist 2124
are selected. 2125

A Client may combine both multiple repeated parameters and multiple separate parameters in a 2126
single query, for example "?if=oic.if.b&ins=11111&rt=oic.r.switch.binary&rt=oic.r.ramptime". If 2127
such queries are supported by the Server this shall be accomplished by matching "any of" the 2128
repeated query parameters and then matching "all of" the different query parameter types. In the 2129
example any instances of "oic.r.switch.binary" and/or "oic.r.ramptime" that also have an "ins" of 2130
"11111" that may exist are selected in a batch response. 2131

NOTE The parameters within a query string are represented within the actual messaging protocol as defined in clause 2132
11.5. 2133

7.9.3 Application to multi-value "rt" Resources 2134

An "rt" query for a multi-value "rt" Resource with the Default OCF Interface of "oic.if.a", "oic.if.s", 2135
"oic.if.r", "oic.if.rw" or "oic.if.baseline" is an extension of a generic "rt" query. When a Server 2136
receives a RETRIEVE request for a multi-value "rt" Resource with an "rt" query, (i.e. GET 2137
/ResExample?rt=oic.r.foo), the Server should respond only when the query value is an item of the 2138
"rt" Property Value of the target Resource and should send back only the Properties associated 2139
with the query value(s). For example, upon receiving GET /ResExample?rt=oic.r.switch.binary 2140
targeting a Resource with "rt": ["oic.r.switch.binary", "oic.r.light.brightness"], the Server responds 2141
with only the Properties of oic.r.switch.binary. 2142

7.9.4 OCF Interface specific considerations for queries 2143

7.9.4.1 OCF Interface selection 2144

When an OCF Interface is to be selected for a request, it shall be specified as a query parameter 2145
in the URI of the Resource in the request message. If no query parameter is specified, then the 2146

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 55

Default OCF Interface shall be used. If the selected OCF Interface is not one of the permitted OCF 2147
Interfaces on the Resource then selecting that OCF Interface is an error and the Server shall 2148
respond with an error response code. 2149

For example, the baseline OCF Interface may be selected by adding "if=oic.if.baseline" to the list 2150
of query parameters in the URI of the target Resource. For example: "GET 2151
/oic/res?if=oic.if.baseline". 2152

7.9.4.2 Batch OCF Interface 2153

See 7.6.3.4 for details on the batch OCF Interface itself. Query parameters may be used with the 2154
batch OCF Interface in order to select particular Resources in a Collection for retrieval or update; 2155
these parameters are used to select items in the Collection by matching Link Parameter Values. 2156

When Link selection query parameters are used with RETRIEVE operations applied using the batch 2157
OCF Interface, only the Resources in the Collection with matching Link Parameters should be 2158
returned. 2159

When Link selection query parameters are used with UPDATE operations applied using the batch 2160
OCF Interface, only the Resources having matching Link Parameters should be updated. 2161

See 7.6.3.4.5 for examples of RETRIEVE and UPDATE operations that use Link selection query 2162
parameters. 2163

8 CRUDN 2164

8.1 Overview 2165

CREATE, RETRIEVE, UPDATE, DELETE, and NOTIFY (CRUDN) are operations defined for 2166
manipulating Resources. These operations are performed by a Client on the Resources contained 2167
in n Server. 2168

On reception of a valid CRUDN operation a Server hosting the Resource that is the target of the 2169
request shall generate a response depending on the OCF Interface included in the request; or 2170
based on the Default OCF Interface for the Resource Type if no OCF Interface is included. 2171

CRUDN operations utilize a set of parameters that are carried in the messages and are defined in 2172
Table 18. A Device shall use CBOR as the default payload (content) encoding scheme for Resource 2173
representations included in CRUDN operations and operation responses; a Device may negotiate 2174
a different payload encoding scheme (e.g, see in 12.2.4 for CoAP messaging). Clauses 8.2 through 2175
8.6 respectively specify the CRUDN operations and use of the parameters. The type definitions for 2176
these terms will be mapped in the clause 11.5 for each protocol. 2177

Table 18 – Parameters of CRUDN messages 2178

Applicability Name Denotation Definition

All messages

fr From The URI of the message originator.

to To The URI of the recipient of the message.

ri Request Identifier The identifier that uniquely identifies the message in the
originator and the recipient.

cn Content Information specific to the operation.

Requests
op Operation Specific operation requested to be performed by the

Server.

obs Observe Indicator for an Observe request.

Responses rs Response Code Indicator of the result of the request; whether it was
accepted and what the conclusion of the operation was.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 56

The values of the response code for CRUDN operations
shall conform to those as defined in clause 5.9 and 12.1.2
in IETF RFC 7252.

obs Observe Indicator for an Observe response.

8.2 CREATE 2179

8.2.1 Overview 2180

The CREATE operation is used to request the creation of new Resources on the Server. The 2181
CREATE operation is initiated by the Client and consists of three steps, as depicted in Figure 5. 2182

 2183

Figure 5 – CREATE operation 2184

8.2.2 CREATE request 2185

The CREATE request message is transmitted by the Client to the Server to create a new Resource 2186
by the Server. The CREATE request message will carry the following parameters: 2187

– fr: Unique identifier of the Client 2188

– to: URI of the target Resource responsible for creation of the new Resource. 2189

– ri: Identifier of the CREATE request. 2190

– cn: Information of the Resource to be created by the Server. 2191

– cn will include the URI and Resource Type Property of the Resource to be created. 2192

– cn may include additional Properties of the Resource to be created. 2193

– op: CREATE 2194

8.2.3 Processing by the Server 2195

Following the receipt of a CREATE request, the Server may validate if the Client has the 2196
appropriate rights for creating the requested Resource. If the validation is successful, the Server 2197
creates the requested Resource. The Server caches the value of ri parameter in the CREATE 2198
request for inclusion in the CREATE response message. 2199

8.2.4 CREATE response 2200

The Server shall transmit a CREATE response message in response to a CREATE request 2201
message from a Client. The CREATE response message will include the following parameters: 2202

– fr: Unique identifier of the Server 2203

– to: Unique identifier of the Client 2204

– ri: Identifier included in the CREATE request 2205

– cn: Information of the Resource as created by the Server. 2206

– cn will include the URI of the created Resource. 2207

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 57

– cn will include the Resource representation of the created Resource. 2208

– rs: The result of the CREATE operation. 2209

8.3 RETRIEVE 2210

8.3.1 Overview 2211

The RETRIEVE operation is used to request the current state or representation of a Resource. The 2212
RETRIEVE operation is initiated by the Client and consists of three steps, as depicted in Figure 6. 2213

 2214

Figure 6 – RETRIEVE operation 2215

8.3.2 RETRIEVE request 2216

RETRIEVE request message is transmitted by the Client to the Server to request the representation 2217
of a Resource from a Server. The RETRIEVE request message will carry the following parameters: 2218

– fr: Unique identifier of the Client. 2219

– to: URI of the Resource the Client is targeting. 2220

– ri: Identifier of the RETRIEVE request. 2221

– op: RETRIEVE. 2222

8.3.3 Processing by the Server 2223

Following the receipt of a RETRIEVE request, the Server may validate if the Client has the 2224
appropriate rights for retrieving the requested data and the Properties are readable. The Server 2225
caches the value of ri parameter in the RETRIEVE request for use in the response 2226

8.3.4 RETRIEVE response 2227

The Server shall transmit a RETRIEVE response message in response to a RETRIEVE request 2228
message from a Client. The RETRIEVE response message will include the following parameters: 2229

– fr: Unique identifier of the Server. 2230

– to: Unique identifier of the Client. 2231

– ri: Identifier included in the RETRIEVE request. 2232

– cn: Information of the Resource as requested by the Client. 2233

– cn should include the URI of the Resource targeted in the RETRIEVE request. 2234

– rs: The result of the RETRIEVE operation. 2235

8.4 UPDATE 2236

8.4.1 Overview 2237

The UPDATE operation is either a Partial UPDATE or a complete replacement of the information 2238
in a Resource in conjunction with the OCF Interface that is also applied to the operation. The 2239
UPDATE operation is initiated by the Client and consists of three steps, as depicted in Figure 7. 2240

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 58

 2241

Figure 7 – UPDATE operation 2242

8.4.2 UPDATE request 2243

The UPDATE request message is transmitted by the Client to the Server to request the update of 2244
information of a Resource on the Server. The UPDATE request message will carry the following 2245
parameters: 2246

– fr: Unique identifier of the Client. 2247

– to: URI of the Resource targeted for the information update. 2248

– ri: Identifier of the UPDATE request. 2249

– op: UPDATE. 2250

– cn: Information, including Properties, of the Resource to be updated at the target Resource. 2251

8.4.3 Processing by the Server 2252

8.4.3.1 Overview 2253

Following the receipt of an UPDATE request, the Server may validate if the Client has the 2254
appropriate rights for updating the requested data. If the validation is successful the Server updates 2255
the target Resource information according to the information carried in cn parameter of the 2256
UPDATE request message. The Server caches the value of ri parameter in the UPDATE request 2257
for use in the response. 2258

An UPDATE request that includes Properties that are read-only shall be rejected by the Server with 2259
an rs indicating a bad request. 2260

An UPDATE request shall be applied only to the Properties in the target Resource visible via the 2261
applied OCF Interface that support the operation. An UPDATE of non-existent Properties is ignored. 2262

An UPDATE request shall be applied to the Properties in the target Resource even if those Property 2263
Values are the same as the values currently exposed by the target Resource. 2264

8.4.3.2 Resource monitoring by the Server 2265

The Server shall monitor the state the Resource identified in the Observe request from the Client. 2266
Anytime there is a change in the state of the Observed Resource or an UPDATE operation applied 2267
to the Resource, the Server sends another RETRIEVE response with the Observe indication. The 2268
mechanism does not allow the Client to specify any bounds or limits which trigger a notification, 2269
the decision is left entirely to the Server. 2270

8.4.3.3 Additional RETRIEVE responses with Observe indication 2271

The Server shall transmit updated RETRIEVE response messages following Observed changes in 2272
the state of the Resources requested by the Client. The RETRIEVE response message shall include 2273
the parameters listed in 11.3.2.4. 2274

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 59

8.4.4 UPDATE response 2275

The UPDATE response message will include the following parameters: 2276

– fr: Unique identifier of the Server. 2277

– to: Unique identifier of the Client. 2278

– ri: Identifier included in the UPDATE request. 2279

– rs: The result of the UPDATE request. 2280

The UPDATE response message may also include the following parameters: 2281

– cn: The Resource representation following processing of the UPDATE request. 2282

8.5 DELETE 2283

8.5.1 Overview 2284

The DELETE operation is used to request the removal of a Resource. The DELETE operation is 2285
initiated by the Client and consists of three steps, as depicted in Figure 8. 2286

 2287

Figure 8 – DELETE operation 2288

8.5.2 DELETE request 2289

DELETE request message is transmitted by the Client to the Server to delete a Resource on the 2290
Server. The DELETE request message will carry the following parameters: 2291

– fr: Unique identifier of the Client. 2292

– to: URI of the target Resource which is the target of deletion. 2293

– ri: Identifier of the DELETE request. 2294

– op: DELETE. 2295

8.5.3 Processing by the Server 2296

Following the receipt of a DELETE request, the Server may validate if the Client has the appropriate 2297
rights for deleting the identified Resource, and whether the identified Resource exists. If the 2298
validation is successful, the Server removes the requested Resource and deletes all the associated 2299
information. The Server caches the value of ri parameter in the DELETE request for use in the 2300
response. 2301

8.5.4 DELETE response 2302

The Server shall transmit a DELETE response message in response to a DELETE request message 2303
from a Client. The DELETE response message will include the following parameters: 2304

– fr: Unique identifier of the Server. 2305

– to: Unique identifier of the Client. 2306

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 60

– ri: Identifier included in the DELETE request. 2307

– rs: The result of the DELETE operation. 2308

8.6 NOTIFY 2309

8.6.1 Overview 2310

The NOTIFY operation is used to request asynchronous notification of state changes. Complete 2311
description of the NOTIFY operation is provided in 11.3. The NOTIFY operation uses the 2312
NOTIFICATION response message which is defined here. 2313

8.6.2 NOTIFICATION response 2314

The NOTIFICATION response message is sent by a Server to notify the URLs identified by the 2315
Client of a state change. The NOTIFICATION response message carries the following parameters: 2316

– fr: Unique identifier of the Server. 2317

– to: URI of the Resource target of the NOTIFICATION message. 2318

– ri: Identifier included in the CREATE request. 2319

– op: NOTIFY. 2320

– cn: The updated state of the Resource. 2321

9 Network and connectivity 2322

9.1 Introduction 2323

The Internet of Things is comprised of a wide range of applications which sense and actuate the 2324
physical world with a broad spectrum of device and network capabilities: from battery powered 2325
nodes transmitting 100 bytes per day and able to last 10 years on a coin cell battery, to mains 2326
powered nodes able to maintain Megabit video streams. It is estimated that many 10s of billions of 2327
IoT devices will be deployed over the coming years. 2328

It is desirable that the connectivity options be adapted to the IP layer. To that end, IETF has 2329
completed considerable work to adapt Bluetooth®, Wi-Fi, 802.15.4, LPWAN, etc. to IPv6. These 2330
adaptations, plus the larger address space and improved address management capabilities, make 2331
IPv6 the clear choice for the OCF network layer technology. 2332

9.2 Architecture 2333

While the aging IPv4 centric network has evolved to support complex topologies, its deployment 2334
was primarily provisioned by a single Internet Service Provider (ISP) as a single network. More 2335
complex network topologies, often seen in residential home, are mostly introduced through the 2336
acquisition of additional home network devices, which rely on technologies like private Network 2337
Address Translation (NAT). These technologies require expert assistance to set up correctly and 2338
should be avoided in a home network as they most often result in breakage of constructs like 2339
routing, naming and discovery services. 2340

The multi-segment ecosystem OCF addresses will not only cause a proliferation of new devices 2341
and associated routers, but also new services introducing additional edge routers. All these new 2342
requirements require advance architectural constructs to address complex network topologies like 2343
the one shown in Figure 9. 2344

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 61

 2345

Figure 9 – High Level Network & Connectivity Architecture 2346

In terms of IETF RFC 6434, IPv6 nodes assume either a router or host role. Nodes may further 2347
implement various specializations of those roles: 2348

– A Router may implement Customer Edge Router capabilities as defined in IETF RFC 7084. 2349

– Nodes limited in processing power, memory, non-volatile storage or transmission capacity 2350
requires special IP adaptation layers (6LoWPAN) and/or dedicated routing protocols (RPL). 2351
Examples include devices transmitting over low power physical layer like IEEE 802.14.5, ITU 2352
G9959, Bluetooth Low Energy, DECT Ultra Low Energy, and Near Field Communication (NFC). 2353

– A node may translate and route messaging between IPv6 and non-IPv6 networks. 2354

9.3 IPv6 network layer requirements 2355

9.3.1 Introduction 2356

Projections indicate that many 10s of billions of new IoT endpoints and related services will be 2357
brought online in the next few years. These endpoint’s capabilities will span from battery powered 2358
nodes with limited compute, storage, and bandwidth to more richly resourced devices operating 2359
over Ethernet and WiFi links. 2360

Internet Protocol version 4 (IPv4), deployed some 30 years ago, has matured to support a wide 2361
variety of applications such as Web browsing, email, voice, video, and critical system monitoring 2362
and control. However, the capabilities of IPv4 are at the point of exhaustion, not the least of which 2363
is that available address space has been consumed. 2364

Sensor Network
(6LowPan)

/
Subnets

IPv6 Local Network

IPv4-only or Legacy
(Zigbee, …)

Border
Router

Gateway
(iotivity+
plugins)

IPv6 + IPv4

Internet
Core

IPv6 Sensor Network

Non-IPv6 Network

IPv6 Local
Network

User
Interface

Monitoring

Intrusion
detection

Private
VPN Service

Internet
Services

SP CE
Router

Private
Proxy

Smart
Grid)

SP CE
Router

Smart Grid
(Energy segment)

Power Grid

Legend:

OCF
OCF aware
OCF plugged-in
Infrastructure

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 62

The IETF long ago saw the need for a successor to IPv4, thus the development of IPv6. OCF 2365
recommends IPv6 at the network layer. Amongst the reasons for IPv6 recommendations are: 2366

– Larger address space. Side-effect: greatly reduce the need for NATs. 2367

– More flexible addressing architecture. Multiple addresses and types per interface: Link-local, 2368
ULA, GUA, variously scoped Multicast addresses, etc. Better ability to support multi-homed 2369
networks, better re-numbering capability, etc. 2370

– More capable auto configuration capabilities: DHCPv6, SLAAC, Router Discovery, etc. 2371

– Technologies enabling IP connectivity on constrained nodes are based upon IPv6. 2372

– All major consumer operating systems (IoS, Android, Windows, Linux) are already IPv6 enabled. 2373

– Major Service Providers around the globe are deploying IPv6. 2374

9.3.2 IPv6 node requirements 2375

9.3.2.1 Introduction 2376

In order to ensure network layer services interoperability from node to node, mandating a common 2377
network layer across all nodes is vital. The protocol should enable the network to be: secure, 2378
manageable, and scalable and to include constrained and self-organizing meshed nodes. OCF 2379
mandates IPv6 as the common network layer protocol to ensure interoperability across all Devices. 2380
More capable Devices may also include additional protocols creating multiple-stack Devices. The 2381
remainder of this clause will focus on interoperability requirements for IPv6 hosts, IPv6 constrained 2382
hosts and IPv6 routers. The various protocol translation permutations included in multi-stack 2383
gateway devices may be addresses in subsequent addendums of this document. 2384

9.3.2.2 IP Layer 2385

An IPv6 node shall support IPv6 and it shall conform to the requirements as specified in 2386
IETF RFC 6434. 2387

10 OCF Endpoint 2388

10.1 OCF Endpoint definition 2389

The specific definition of an OCF Endpoint depends on the Transport Protocol Suite being used. 2390
For the example of CoAP over UDP over IPv6, the OCF Endpoint is identified by an IPv6 address 2391
and UDP port number. 2392

Each Device shall associate with at least one OCF Endpoint with which it can exchange request 2393
and response messages. When a message is sent to an OCF Endpoint, it shall be delivered to the 2394
Device which is associated with the OCF Endpoint. When a request message is delivered to an 2395
OCF Endpoint, path component is enough to locate the target Resource. 2396

A Device can be associated with multiple OCF Endpoints. For example, n Device can have several 2397
IP addresses or port numbers or support both CoAP and HTTP transfer protocol. Different 2398
Resources in n Device may be accessed with the same OCF Endpoint or need different ones. Some 2399
Resources may use one OCF Endpoint and others a different one. It depends on an implementation. 2400

On the other hand, an OCF Endpoint can be shared among multiple Devices, only when there is a 2401
way to clearly designate the target Resource with request URI. For example, when multiple CoAP 2402
servers use uniquely different URI paths for all their hosted Resources, and the CoAP 2403
implementation demultiplexes by path, they can share the same CoAP OCF Endpoint. However, 2404
this is not possible in this version of the document, because a pre-determined URI (e.g. "/oic/d") is 2405
mandatory for some mandatory Resources (e.g. "oic.wk.d"). 2406

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 63

10.2 OCF Endpoint information 2407

10.2.1 Introduction 2408

OCF Endpoint is represented by OCF Endpoint information which consists of two items of key-2409
value pair, "ep" and "pri". 2410

10.2.2 "ep" 2411

"ep" represents Transport Protocol Suite and OCF Endpoint Locator specified as follows: 2412

– Transport Protocol Suite - a combination of protocols (e.g. CoAP + UDP + IPv6) with which 2413
request and response messages can be exchanged for RESTful transaction (i.e. CRUDN). A 2414
Transport Protocol Suite shall be indicated by a URI scheme name. All scheme names 2415
supported by this documentare IANA registered, these are listed in Table 19. A vendor may 2416
also make use of a non-IANA registered scheme name for their own use (e.g. 2417
"com.example.foo"), this shall follow the syntax for such scheme names defined by 2418
IETF RFC 7595. The behaviour of a vendor-defined scheme name is undefined by this 2419
document. All OCF defined Resource Types when exposing OCF Endpoint Information in an 2420
"eps" (see 10.2.4) shall include at least one "ep" with a Transport Protocol Suite as defined in 2421
Table 19. 2422

– OCF Endpoint Locator – an address (e.g. IPv6 address + Port number) or an indirect identifier 2423
(e.g., DNS name) resolvable to an IP address, through which a message can be sent to the 2424
OCF Endpoint and in turn associated Device. The OCF Endpoint Locator for "coap" and "coaps" 2425
shall be specified as "IP address: port number". The OCF Endpoint Locator for "coap+tcp" or 2426
"coaps+tcp" shall be specified as "IP address: port number" or "DNS name: port number" or 2427
"DNS name" such that the DNS name shall be resolved to a valid IP address for the target 2428
Resource with a name resolution service (i.e., DNS). For the 3rd case, when the port number 2429
is omitted, the default port "5683" (and "5684") shall be assumed for "coap+tcp" (and for 2430
"coaps+tcp") scheme respectively as defined in IETF RFC 8323.Temporary addresses should 2431
not be used because OCF Endpoint Locators are for the purpose of accepting incoming 2432
sessions, whereas temporary addresses are for initiating outgoing sessions (IETF RFC 4941). 2433
Moreover, its inclusion in "/oic/res" can cause a privacy concern (IETF RFC 7721). 2434

"ep" shall have as its value a URI (as specified in IETF RFC 3986) with the scheme component 2435
indicating Transport Protocol Suite and the authority component indicating the OCF Endpoint 2436
Locator. 2437

An "ep" example for "coap" and "coaps" is as illustrated: 2438

"ep": "coap://[fe80::b1d6]:1111"

An "ep" example for "coap+tcp" and "coaps+tcp" is as illustrated: 2439

"ep": "coap+tcp://[2001:db8:a::123]:2222"
"ep": "coap+tcp://foo.bar.com:2222"
"ep": "coap+tcp://foo.bar.com"

The current list of "ep" with corresponding Transport Protocol Suite is shown in Table 19: 2440

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 64

Table 19 – "ep" value for Transport Protocol Suite 2441

Transport Protocol
Suite

scheme OCF Endpoint
Locator

"ep" Value example

coap+udp+ip "coap" IP address + port
number

"coap://[fe80::b1d6]:1111"

coaps + udp + ip "coaps" IP address + port
number

"coaps://[fe80::b1d6]:1122"

coap + tcp + ip "coap+tcp" IP address + port
number
DNS name: port
number
DNS name

"coap+tcp://[2001:db8:a::123]:2222"
"coap+tcp://foo.bar.com:2222"
"coap+tcp://foo.bar.com"

coaps + tcp + ip "coaps+tcp" IP address + port
number
DNS name: port
number
DNS name

"coaps+tcp://[2001:db8:a::123]:2233"
"coaps+tcp://[2001:db8:a::123]:2233"
"coaps+tcp://foo.bar.com:2233"

 2442

10.2.3 "pri" 2443

When there are multiple OCF Endpoints, "pri" indicates the priority among them. 2444

"pri" shall be represented as a positive integer (e.g. "pri": 1) and the lower the value, the higher the 2445
priority. 2446

The default "pri" value is 1, i.e. when "pri" is not present, it shall be equivalent to "pri": 1. 2447

10.2.4 OCF Endpoint information in "eps" Parameter 2448

To carry OCF Endpoint information, a new Link Parameter "eps" is defined in 7.8.2.5.6. "eps" has 2449
an array of items as its value and each item represents OCF Endpoint information with two key-2450
value pairs, "ep" and "pri", of which "ep" is mandatory and "pri" is optional. 2451

OCF Endpoint Information in an "eps" Parameter is valid for the target Resource of the Link, i.e., 2452
the Resource referred by "href" Parameter. OCF Endpoint information in an "eps" Parameter may 2453
be used to access other Resources on the Device, but such access is not guaranteed. 2454

A Client may resolve the "ep" value to an IP address for the target Resource, i.e., the address to 2455
access the Device which hosts the target Resource. A valid (transfer protocol) URI for the target 2456
Resource can be constructed with the scheme, host and port components from the "ep" value and 2457
the "path" component from the "href" value. 2458

Links with an "eps": 2459

{ 2460
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9 ", 2461
 "href": "/myLightSwitch", 2462
 "rt": ["oic.r.switch.binary"], 2463
 "if": ["oic.if.a", "oic.if.baseline"], 2464
 "p": {"bm": 3}, 2465
 "eps": [2466
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 2467
 {"ep": "coaps://[fe80::b1d6]:1122"} 2468
] 2469
} 2470
 2471

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 65

{ 2472
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 2473
 "href": "/myTemperature", 2474
 "rt": ["oic.r.temperature"], 2475
 "if": ["oic.if.a", "oic.if.baseline"], 2476
 "p": {"bm": 3}, 2477
 "eps": [2478
 {"ep": "coap+tcp://foo.bar.com", "pri": 2}, 2479
 {"ep": "coaps+tcp://foo.bar.com:1122"} 2480
] 2481
} 2482

In the previous example, "anchor" represents the hosting Device, "href", target Resource and "eps" 2483
the two OCF Endpoints for the target Resource. The (fully-qualified) URIs for the target Resource 2484
are as illustrated: 2485

coap://[fe80::b1d6]:1111/myLightSwitch 2486
coaps://[fe80::b1d6]:1122/myLightSwitch 2487
coap+tcp://foo.bar.com:5683/myTemperature 2488

coaps+tcp://foo.bar.com:1122/myTemperatureIf the target Resource of a Link requires a secure 2489
connection (e.g. CoAPS), "eps" Parameter shall be used to indicate the necessary information (e.g. 2490
port number) in OCF 1.0 payload. For optional backward compatibility with OIC 1.1, the "sec" and 2491
"port" shall only be used in OIC 1.1 payload. 2492

10.3 OCF Endpoint discovery 2493

10.3.1 Introduction 2494

 OCF Endpoint discovery is defined as the process for a Client to acquire the OCF Endpoint 2495
information for Device or Resource. 2496

10.3.2 Implicit discovery 2497

If a Device is the source of a CoAP message (e.g. "/oic/res" response), the source IP address and 2498
port number may be combined to form the OCF Endpoint Locator for the Device. Along with a 2499
"coap" scheme and default "pri" value, OCF Endpoint information for the Device may be constructed. 2500

In other words, a "/oic/res" response message with CoAP may implicitly carry the OCF Endpoint 2501
information of the responding Device and in turn all the hosted Resources, which may be accessed 2502
with the same transfer protocol of CoAP. In the absence of an "eps" Parameter, a Client shall be 2503
able to utilize implicit discovery to access the target Resource. 2504

10.3.3 Explicit discovery with "/oic/res" response 2505

OCF Endpoint information may be explicitly indicated with the "eps" Parameter of the Links in 2506
"/oic/res". 2507

As in 10.3.2, an "/oic/res" response may implicitly indicate the OCF Endpoint information for some 2508
Resources hosted by the responding Device. However implicit discovery, i.e., inference of OCF 2509
Endpoint information from CoAP response message, may not work for some Resources on the 2510
same Device. For example, some Resources may allow only secure access via CoAPS which 2511
requires the "eps" Parameter to indicate the port number. Moreover "/oic/res" may expose a target 2512
Resource which belongs to another Device. 2513

When the OCF Endpoint for a target Resource of a Link cannot be implicitly inferred, the "eps" 2514
Parameter shall be included to provide explicit OCF Endpoint information with which a Client can 2515
access the target Resource. In the presence of the "eps" Parameter, a Client shall be able to utilize 2516
it to access the target Resource. For "coap" and "coaps", a Client may use the IP address in the 2517
"ep" value in the "eps" Parameter to access the target Resource. For "coap+tcp" and "coaps+tcp", 2518
a Client may use the IP address in the "eps" Parameter or resolve the DNS name in the "eps" 2519
Parameter to acquire a valid IP address for the target Resource. If "eps" Parameter omits the port 2520

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 66

number, then the default port "5683" (and "5684") shall be assumed for "coap+tcp" (and 2521
"coaps+tcp") scheme as defined in IETF RFC 8323.To access the target Resource of a Link, a 2522
Client may use the "eps" Parameter in the Link, if it is present and fall back on implicit discovery if 2523
not. 2524

This is an example of an "/oic/res" response from a Device having the "eps" Parameter in Links. 2525

 2526
[2527
 { 2528
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2529
 "href": "/oic/res", 2530
 "rel": "self", 2531
 "rt": ["oic.wk.res"], 2532
 "if": ["oic.if.ll", "oic.if.baseline"], 2533
 "p": {"bm": 3}, 2534
 "eps": [2535
 {"ep": "coap://[2001:db8:a::b1d4]:55555"}, 2536
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2537
] 2538
 }, 2539
 { 2540
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2541
 "href": "/oic/d", 2542
 "rt": ["oic.wk.d"], 2543
 "if": ["oic.if.r", "oic.if.baseline"], 2544
 "p": {"bm": 3}, 2545
 "eps": [2546
 {"ep": "coap://[2001:db8:a::b1d4]:55555"}, 2547
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2548
] 2549
 }, 2550
 { 2551
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2552
 "href": "/oic/p", 2553
 "rt": ["oic.wk.p"], 2554
 "if": ["oic.if.r", "oic.if.baseline"], 2555
 "p": {"bm": 3}, 2556
 "eps": [2557
 {"ep": "coap://[2001:db8:a::b1d4]:55555"}, 2558
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2559
] 2560
 }, 2561
 { 2562
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2563
 "href": "/oic/sec/doxm", 2564
 "rt": ["oic.r.doxm"], 2565
 "if": ["oic.if.baseline"], 2566
 "p": {"bm": 1}, 2567
 "eps": [2568
 {"ep": "coap://[2001:db8:a::b1d4]:55555"}, 2569
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2570
] 2571
 }, 2572
 { 2573
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2574
 "href": "/oic/sec/pstat", 2575
 "rt": ["oic.r.pstat"], 2576
 "if": ["oic.if.baseline"], 2577
 "p": {"bm": 1}, 2578
 "eps": [2579
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2580

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 67

] 2581
 }, 2582
 { 2583
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2584
 "href": "/oic/sec/cred", 2585
 "rt": ["oic.r.cred"], 2586
 "if": ["oic.if.baseline"], 2587
 "p": {"bm": 1}, 2588
 "eps": [2589
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2590
] 2591
 }, 2592
 { 2593
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2594
 "href": "/oic/sec/acl2", 2595
 "rt": ["oic.r.acl2"], 2596
 "if": ["oic.if.baseline"], 2597
 "p": {"bm": 1}, 2598
 "eps": [2599
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2600
] 2601
 }, 2602
 { 2603
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2604
 "href": "/myIntrospection", 2605
 "rt": ["oic.wk.introspection"], 2606
 "if": ["oic.if.r", "oic.if.baseline"], 2607
 "p": {"bm": 3}, 2608
 "eps": [2609
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2610
] 2611
 }, 2612
 { 2613
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 2614
 "href": "/myLight", 2615
 "rt": ["oic.r.switch.binary"], 2616
 "if": ["oic.if.a", "oic.if.baseline"], 2617
 "p": {"bm": 3}, 2618
 "eps": [2619
 {"ep": "coaps://[2001:db8:a::b1d4]:22222"} 2620
] 2621
 } 2622
] 2623
 2624

The exact format of the "/oic/res" response and a way for a Client to acquire a "/oic/res" response 2625
message is specified in Annex A and 11.2.4 respectively. 2626

11 Functional interactions 2627

11.1 Introduction 2628

The functional interactions between a Client and a Server are described in 11.1 through 11.4 2629
respectively. The functional interactions use CRUDN messages (clause 8) and include Discovery, 2630
Notification, and Device management. These functions require support of core defined Resources 2631
as defined in Table 20. 2632

Table 20 – List of Core Resources 2633

Pre-defined URI Resource Name Resource Type Related Functional
Interaction

Mandatory

"/oic/res" Default "oic.wk.res" Discovery Yes

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 68

"/oic/p" Platform "oic.wk.p" Discovery Yes

"/oic/d" Device "oic.wk.d" Discovery Yes

Implementation
defined

Introspection "oic.wk.introspection" Introspection Yes

 2634

11.2 Resource discovery 2635

11.2.1 Introduction 2636

Discovery is a function which enables OCF Endpoint discovery as well as Resource based 2637
discovery. OCF Endpoint discovery is described in detail in clause 10. This clause mainly describes 2638
the Resource based discovery. 2639

11.2.2 Resource based discovery: mechanisms 2640

11.2.2.1 Overview 2641

As part of discovery, a Client may find appropriate information about other OCF peers. This 2642
information could be instances of Resources, Resource Types or any other information represented 2643
in the Resource model that an OCF peer would want another OCF peer to discover. 2644

At the minimum, Resource based discovery uses the following: 2645

– A Resource to enable discovery shall be defined. The representation of that Resource shall 2646
contain the information that can be discovered. 2647

– The Resource to enable discovery shall be specified and commonly known a-priori. A Device 2648
for hosting the Resource to enable discovery shall be identified. 2649

– A mechanism and process to publish the information that needs to be discovered with the 2650
Resource to enable discovery. 2651

– A mechanism and process to access and obtain the information from the Resource to enable 2652
discovery. A query may be used in the request to limit the returned information. 2653

– A scope for the publication. 2654

– A scope for the access. 2655

– A policy for visibility of the information. 2656

Depending on the choice of the base aspects, the Framework defines three Resource based 2657
discovery mechanisms: 2658

– Direct discovery, where the Resources are published locally at the Device hosting the 2659
Resources and are discovered through peer inquiry. 2660

– Indirect discovery, where Resources are published at a third party assisting with the discovery 2661
and peers publish and perform discovery against the Resource to enable discovery on the 2662
assisting 3rd party. 2663

– Advertisement discovery, where the Resource to enable discovery is hosted local to the initiator 2664
of the discovery inquiry but remote to the Devices that are publishing discovery information. 2665

A Device shall support direct discovery. 2666

11.2.2.2 Direct discovery 2667

In direct discovery, 2668

– The Device that is providing the information shall host the Resource to enable discovery. 2669

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 69

– The Device publishes the information available for discovery with the local Resource to enable 2670
discovery (i.e. local scope). 2671

– Clients interested in discovering information about this Device shall issue RETRIEVE requests 2672
directly to the Resource. The request may be made as a unicast or multicast. The request may 2673
be generic or may be qualified or limited by using appropriate queries in the request. 2674

– The Server Device that receives the request shall send a response with the discovered 2675
information directly back to the requesting Client Device. 2676

– The information that is included in the request is determined by the policies set for the Resource 2677
to be discovered locally on the responding Device. 2678

11.2.3 Resource based discovery: Finding information 2679

The discovery process (Figure 10) is initiated as a RETRIEVE request to the Resource to enable 2680
discovery. The request may be sent to a single Device (as in a Unicast) or to multiple Devices (as 2681
in Multicast). The specific mechanisms used to do Unicast or Multicast are determined by the 2682
support in the data connectivity layer. The response to the request has the information to be 2683
discovered based on the policies for that information. The policies can determine which information 2684
is shared, when and to which requesting agent. The information that can be discovered can be 2685
Resources, types, configuration and many other standards or custom aspects depending on the 2686
request to appropriate Resource and the form of request. Optionally the requester may narrow the 2687
information to be returned in the request using query parameters in the URI query. 2688

 2689

Figure 10 – Resource based discovery: Finding information 2690

 2691

Discovery Resources 2692

The following Core Resources shall be implemented on all Devices to support discovery: 2693

– "/oic/res" for discovery of Resources. 2694

– "/oic/p" for discovery of Platform. 2695

– "/oic/d" for discovery of Device information. 2696

Devices shall expose each of "/oic/res", "/oic/d", and "/oic/p" via an unsecured OCF Endpoint. 2697
Further details for these mandatory Core Resources are described in Table 21. 2698

Platform Resource 2699

The OCF recognizes that more than one instance of Device may be hosted on a single Platform. 2700
Clients need a way to discover and access the information on the Platform. The Core Resource, 2701
"/oic/p" exposes Platform specific Properties. All instances of Device on the same Platform shall 2702
have the same values of any Properties exposed (i.e. a Device may choose to expose optional 2703

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 70

Properties within "/oic/p" but when exposed the value of that Property should be the same as the 2704
value of that Property on all other Devices on that Platform). 2705

Device Resource 2706

The Device Resource shall have the pre-defined URI "/oic/d", the Device Resource shall expose 2707
the Properties pertaining to a Device as defined in Table 24. The Device Resource shall have a 2708
default Resource Type that helps in bootstrapping the interactions with the Device (the default type 2709
is described in Table 21).The Device Resource may have one or more Resource Type(s) that are 2710
specific to the Device in addition to the default Resource Type or if present overriding the default 2711
Resource Type. The base Resource Type "oic.wk.d" defines the Properties that shall be exposed 2712
by all Devices. The Device specific Resource Type(s) exposed are dependent on the class of 2713
Device (e.g. air conditioner, smoke alarm, etc. Since all the Resource Types of "/oic/d" are not 2714
known a priori, the Resource Type(s) of "/oic/d" are determined by discovery through the Core 2715
Resource "/oic/res". 2716

Table 21 – Mandatory discovery Core Resources 2717

Pre-defined
URI

Resource
Type Title

Resource
Type ID

("rt" value)

OCF Interfaces Description Related
Functional
Interaction

"/oic/res" Default "oic.wk.res"

"oic.if.ll",
"oic.if.b",
"oic.if.baseline"

The Resource through which the
corresponding Server is
discovered and introspected for
available Resources.
"/oic/res" shall expose the
Resources that are discoverable
on a Device. When a Server
receives a RETRIEVE request
targeting "/oic/res" (e.g., "GET
/oic/res"), it shall respond with the
links list of all the Discoverable
Resources of itself. The "/oic/d"
and "/oic/p" are Discoverable
Resources, hence their links are
included in "/oic/res" response.
The Properties exposed by
"/oic/res" are listed in Table 22.

Discovery

"/oic/p" Platform "oic.wk.p" "oic.if.r" The Discoverable Resource
through which Platform specific
information is discovered.
The Properties exposed by
"/oic/p" are listed in Table 25

Discovery

"/oic/d" Device "oic.wk.d"
and/or one or
more Device
Specific
Resource Type
ID(s)

"oic.if.r" The discoverable via "/oic/res"
Resource which exposes
Properties specific to the Device
instance.
The Properties exposed by
"/oic/d" are listed in Table 24.

Discovery

Table 22 defines "oic.wk.res" Resource Type. 2718

Table 22 – "oic.wk.res" Resource Type definition 2719

Property
title

Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Name "n" string N/A N/A R No Human-friendly name
defined by the vendor

Links "links" array See
7.8.2

N/A R Yes The array of Links
describes the URI,

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 71

supported Resource
Types and OCF
Interfaces, and access
policy.

 2720

A Device shall support CoAP based discovery as the baseline discovery mechanism (see 11.2.5). 2721

The "/oic/res" shall list all Resources that are indicated as discoverable (see 11.2). Also the 2722
following architecture Resource Types shall be listed: 2723

– Introspection Resource indicated with an "rt" value of "oic.wk.introspection". 2724

– "/oic/p" indicated with an "rt" value of "oic.wk.p". 2725

– "/oic/d" indicated with an "rt" value of "oic.wk.d" 2726

– "/oic/sec/doxm" indicated with an "rt" value of "oic.r.doxm" as defined in ISO/IEC 30118-2:2018. 2727

– "/oic/sec/pstat" indicated with an "rt" value of "oic.r.pstat" as defined in ISO/IEC 30118-2:2018. 2728

– "/oic/sec/acl2" indicated with an "rt" value of "oic.r.acl2" as defined in ISO/IEC 30118-2:2018. 2729

– "/oic/sec/cred" indicated with an "rt" value of "oic.r.cred" as defined in ISO/IEC 30118-2:2018. 2730

Conditionally required: 2731

– "/oic/res" with an "rt" value of "oic.wk.res" as self-reference, on the condition that "oic/res" has 2732
to signal that it is Observable by a Client. 2733

– if the Device supports batch retrieval of "/oic/res" then "oic.if.b" shall be included in the "if" 2734
Property of "/oic/res". 2735

– if the Device supports batch retrieval there shall be a self-reference that includes an "if" Link 2736
Parameter containing "oic.if.b"; the self-reference shall expose a secure OCF Endpoint. 2737

The Introspection Resource is only applicable for Devices that host Vertical Resource Types (e.g. 2738
"oic.r.switch.binary") or vendor-defined Resource Types. Devices that only host Resources 2739
required to onboard the Device as a Client do not have to implement the Introspection Resource. 2740

Table 23 provides an OCF registry for protocol schemes. 2741

Table 23 – Protocol scheme registry 2742

SI Number Protocol

1 "coap"

2 "coaps"

3 "http"

4 "https"

5 "coap+tcp"

6 "coaps+tcp"

 2743

NOTE The discovery of an OCF Endpoint used by a specific protocol is out of scope. The mechanism used by a Client 2744
to form requests in a different messaging protocol other than discovery is out of scope. 2745

The following applies to the use of "/oic/d": 2746

– A vertical may choose to extend the list of Properties defined by the Resource Type "oic.wk.d". 2747
In that case, the vertical shall assign a new Device Type specific Resource Type ID. The 2748
mandatory Properties defined in Table 24 shall always be present. 2749

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 72

– A Device may choose to expose a separate, Discoverable Resource with its Resource Type ID 2750
set to a Device Type. In this case the Resource is equivalent to an instance of "oic.wk.d" and 2751
adheres to the definition thereof. As such the Resource shall at a minimum expose the 2752
mandatory Properties of "oic.wk.d". In the case where the Resource tagged in this manner is 2753
defined to be an instance of a Collection in accordance with 7.8.3 then the Resources that are 2754
part of that Collection shall at a minimum include the Resource Types mandated for the Device 2755
Type. 2756

Table 24 "oic.wk.d" Resource Type definition defines the base Resource Type for the "/oic/d" 2757
Resource. 2758

Table 24 – "oic.wk.d" Resource Type definition 2759

Property
title

Property
name

Value
type

Valu
e

rule

Uni
t

Acces
s

mode

Mandator
y

Description

(Device)
Name

"n" "string: N/A N/A R Yes Human friendly name defined by
the vendor. In the presence of "n"
Property of "/oic/con", both have
the same Property Value. When "n"
Property Value of "/oic/con" is
modified, it shall be reflected to "n"
Property Value of "/oic/d".

Spec
Version

"icv" "string
"

N/A N/A R Yes The specification version of this
document that a Device is
implemented to. The syntax shall
be "ocf.<major>.<minor>.<sub-
version>" where <major>, <minor,
and <sub-version> are the major,
minor and sub-version numbers of
this document respectively. The
specification version number (i.e.,
<major>.<minor>.<sub-version>)
shall be obtained from the title page
of this document (e.g. "2.0.5"). An
example of the string value for this
Property is "ocf.2.0.5".

Device ID "di" "uuid" N/A N/A R Yes Unique identifier for Device. This
value shall be the same value (i.e.
mirror) as the "doxm.deviceuuid"
Property as defined in
ISO/IEC 30118-2:2018. Handling
privacy-sensitivity for the "di"
Property, refer to clause 13.16 in
ISO/IEC 30118-2:2018.

Data Model
Version

"dmv" "csv" N/A N/A R Yes Spec version of the Resource
specification to which this Device
data model is implemented; if
implemented against a Vertical
specific Device specification(s),
then the Spec version of the vertical
specification this Device model is
implemented to. The syntax is a
comma separated list of
<res>.<major>.<minor>.<sub-
version> or
<vertical>.<major>.<minor>.<sub-
version>. <res> is the string
"ocf.res" and <vertical> is the name
of the vertical defined in the
Vertical specific Resource
specification. The <major>,
<minor>, and <sub-version> are the

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 73

major, minor and sub-version
numbers of the specification
respectively. One entry in the csv
string shall be the applicable
version of the Resource Type
Specification for the Device (e.g.
"ocf.res.1.0.0"). If applicable,
additional entry(-ies) in the csv
shall be the vertical(s) being
realized (e.g. "ocf.sh.1.0.0"). This
value may be extended by the
vendor. The syntax for extending
this value, as a comma separated
entry, by the vendor shall be by
adding
x.<Domain_Name>.<vendor_string>
. For example, "ocf.res.1.0.0,
ocf.sh.1.0.0, x.com.example.string",
The order of the values in the
comma separated string can be in
any order (i.e. no prescribed order).
This Property shall not exceed 256
octets.

Permanent
Immutable
ID

"piid" "uuid" N/A N/A R Yes A unique and immutable Device
identifier. A Client can detect that a
single Device supports multiple
communication protocols if it
discovers that the Device uses a
single Permanent Immutable ID
value for all the protocols it
supports. Handling privacy-
sensitivity for the "piid" Property,
refer to clause 13.16 in
ISO/IEC 30118-2:2018.

Localized
Descriptions

"ld" "array" N/A N/A R No Detailed description of the Device,
in one or more languages. This
Property is an array of objects
where each object has a "language"
field (containing an IETF RFC 5646
language tag) and a "value" field
containing the Device description in
the indicated language.

Software
Version

"sv" "string
"

N/A N/A R No Version of the Device software.

Manufacture
r Name

"dmn" "array" N/A N/A R No Name of manufacturer of the
Device, in one or more languages.
This Property is an array of objects
where each object has a "language"
field (containing an IETF RFC 5646
language tag) and a "value" field
containing the manufacturer name
in the indicated language.

Model
Number

"dmno" "string
"

N/A N/A R No Model number as designated by
manufacturer.

Ecosystem
Name

"econame" “string
”

enum N/A R No This is the name of ecosystem that
a Bridged Device belongs to. If a
Device has "oic.d.virtual" as one of
Resource Type values ("rt") the
Device shall contain this Property,
otherwise this Property shall not be
included.
This Property has enumeration
values: ["BLE", "oneM2M", "UPlus",
"Zigbee", "Z-Wave"].

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 74

Version of
Ecosystem

"ecoversion
"

“string
”

N/A N/A R No This is the version of ecosystem
that a Bridged Device belongs to. If
a Device has "oic.d.virtual" as one
of its Resource Type values ("rt")
the Device should contain this
Property, otherwise this Property
shall not be included.

Table 25 defines "oic.wk.p" Resource Type. 2760

Table 25 – "oic.wk.p" Resource Type definition 2761

Property title Property
name

Value type Value
rule

Unit Access
mode

Mandatory Description

Platform ID "pi" "uuid" N/A N/A R Yes Unique identifier for the
physical Platform
(UUID); this shall be a
UUID in accordance
with IETF RFC 4122. It
is recommended that
the UUID be created
using the random
generation scheme
(version 4 UUID)
specific in the RFC.
Handling privacy-
sensitivity for the "pi"
Property, refer to clause
13.16 in ISO/IEC 30118-
2:2018.

Manufacturer
Name

"mnmn" "string" N/A N/A R Yes Name of manufacturer.

Manufacturer
Details Link

"mnml" "uri" N/A N/A R No Reference to
manufacturer,
represented as a URI.

Model
Number

"mnmo" "string" N/A N/A R No Model number as
designated by
manufacturer.

Date of
Manufacture

"mndt" "date" N/A Time R No Manufacturing date of
Platform.

Serial
number

"mnsel "string" N/A s R No Serial number of the
Platform, may be unique
for each Platform of the
same model number.

Platform
Version

"mnpv" "string" N/A N/A R No Version of Platform –
string (defined by
manufacturer).

OS Version "mnos" "string" N/A N/A R No Version of Platform
resident OS – string
(defined by
manufacturer).

Hardware
Version

"mnhw" "string" N/A N/A R No Version of Platform
hardware.

Firmware
version

"mnfv" "string" N/A N/A R No Version of Platform
firmware.

Support link "mnsl" "uri" N/A N/A R No URI that points to
support information from
manufacturer.

SystemTime "st" "date-time" N/A N/A R No Reference time for the
Platform.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 75

Vendor ID "vid" "string" N/A N/A R No Vendor defined string
for the Platform. The
string is freeform and up
to the vendor on what
text to populate it.

Network
Connectivity
Type

"mnnct" "array" array
of
integer

 R No An array of integer
where each integer
indicates the network
connectivity type based
on IANAIfType value as
defined by IANA ifType-
MIB Definitions, e.g.,
[71, 259] which
represents Wi-Fi and
Zigbee.

11.2.4 Resource discovery using "/oic/res" 2762

11.2.4.1 General Requirements 2763

Discovery using "/oic/res" is the default discovery mechanism that shall be supported by all Devices. 2764
General requirements for use of this mechanism are as follows: 2765

– Every Device updates its local "/oic/res" with the Resources that are discoverable (see 7.3.2.2). 2766
Every time a new Resource is instantiated on the Device and if that Resource is discoverable 2767
by a remote Device then that Resource is published with the "/oic/res" Resource that is local to 2768
the Device (as the instantiated Resource). 2769

After performing discovery using "/oic/res", Clients may discover additional details about the Device 2770
by performing discovery using "/oic/p", "/oic/d", etc. If a Client already knows about the Device it 2771
may discover using other Resources without going through the discovery of "/oic/res" 2772

11.2.4.2 Discovery using "oic.if.ll" (Default OCF Interfgace for "/oic/res") 2773

If a Client does not explicitly include an OCF Interface as a query parameter in the request to 2774
"/oic/res" then the OCF Interface is taken to be "oic.if.ll" as that is the Default OCF Interface for 2775
"/oic/res". The requirements in this clause are thus applied. The requirements in this clause also 2776
apply if an OCF Interface of "oic.if.ll" is explicitly requested by inclusion as a query parameter in 2777
the RETRIEVE operation. 2778

– A Device wanting to discover Resources or Resource Types on one or more remote Devices 2779
makes a RETRIEVE request to the "/oic/res" on the remote Devices. This request may be sent 2780
multicast (default) or unicast if only a specific host is to be probed. The RETRIEVE request may 2781
optionally be restricted using appropriate clauses in the query portion of the request. Queries 2782
may select based on Resource Types, OCF Interfaces, or Properties. 2783

– The query applies to the representation of the Resources. "/oic/res" is the only Resource whose 2784
representation has "rt". So "/oic/res" is the only Resource that can be used for Multicast 2785
discovery at the transport protocol layer. 2786

– The Device receiving the RETRIEVE request responds with a list of Resources, the Resource 2787
Type of each of the Resources and the OCF Interfaces that each Resource supports. 2788
Additionally, information on the policies active on the Resource can also be sent. The policy 2789
supported includes Observability and discoverability. 2790

– The receiving Device may do a deeper discovery based on the Resources returned in the 2791
request to "/oic/res". 2792

The information that is returned on discovery against "/oic/res" is at the minimum: 2793

– The URI (relative or fully qualified URL) of the Resource. 2794

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 76

– The Resource Type(s) of each Resource. More than one Resource Type may be returned if the 2795
Resource enables more than one type. To access Resources of multiple types, the specific 2796
Resource Type that is targeted shall be specified in the request. 2797

– The OCF Interfaces supported by that Resource. Multiple OCF Interfaces may be returned. To 2798
access a specific OCF Interface that OCF Interface shall be specified in the request. If the OCF 2799
Interface is not specified, then the Default OCF Interface is assumed. 2800

For Clients that do include the OCF-Accept-Content-Format-Version option, an "/oic/res" response 2801
includes an array of Links to conform to IETF RFC 6690. Each Link shall use an "eps" Parameter 2802
to provide the information for an encrypted connection and carry "anchor" of the value OCF URI 2803
where the authority component of <deviceID> indicates the Device hosting the target Resource. 2804

The OpenAPI 2.0 file for discovery using "/oic/res" is described in Annex A. Also refer to clause 10 2805
(OCF Endpoint discovery) for details of Multicast discovery using "/oic/res" on a CoAP transport. 2806

An example Device might return the following to Clients that request with the Content Format of 2807
"application/vnd.ocf+cbor" in Accept Option: 2808

[2809
 { 2810
 "href": "/oic/res", 2811
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989/oic/res", 2812
 "rel": "self", 2813
 "rt": ["oic.wk.res"], 2814
 "if": ["oic.if.ll", "oic.if.baseline"], 2815
 "p": {"bm": 3}, 2816
 "eps": [{"ep": "coap://[fe80::b1d6]:44444"}] 2817
 }, 2818
 { 2819
 "href": "/oic/p", 2820
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989, 2821
 "rt": ["oic.wk.p"], 2822
 "if": ["oic.if.r", "oic.if.baseline"], 2823
 "p": {"bm": 3}, 2824
 "eps": [{"ep": "coap://[fe80::b1d6]:44444"}, 2825
 {"ep": "coaps://[fe80::b1d6]:11111"} 2826
] 2827
 }, 2828
 { 2829
 "href": "/oic/d", 2830
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989, 2831
 "rt": ["oic.wk.d"], 2832
 "if": ["oic.if.r", "oic.if.baseline"], 2833
 "p": {"bm": 3}, 2834
 "eps": [{"ep": "coap://[fe80::b1d6]:44444"}, 2835
 {"ep": "coaps://[fe80::b1d6]:11111"} 2836
] 2837
 }, 2838
 { 2839
 "href": "/myLightSwitch", 2840
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989, 2841
 "rt": ["oic.r.switch.binary"], 2842
 "if": ["oic.if.a", "oic.if.baseline"], 2843
 "p": {"bm": 3}, 2844
 "eps": [{"ep": "coap://[fe80::b1d6]:44444"}, 2845
 {"ep": "coaps://[fe80::b1d6]:11111"} 2846
] 2847
 } 2848
] 2849

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 77

11.2.5 Multicast discovery using "/oic/res" 2850

Generic requirements for use of CoAP multicast are provided in clause 12.2.9. Devices shall 2851
support use of CoAP multicast to allow retrieving the "/oic/res" Resource from an unsecured OCF 2852
Endpoint on the Device. Clients may support use of CoAP multicast to retrieve the "/oic/res" 2853
Resource from other Devices. The CoAP multicast retrieval of "/oic/res" supports filtering Links 2854
based on the "rt" Property in the Links: 2855

– If the discovery request is intended for a specific Resource Type including as part of a multi-2856
value Resource Type, the query parameter "rt" shall be included in the request (see 6.2.2) with 2857
its value set to the desired Resource Type. Only Devices hosting the Resource Type shall 2858
respond to the discovery request. 2859

– When the "rt" query parameter is omitted, all Devices shall respond to the discovery request. 2860

11.3 Notification 2861

11.3.1 Overview 2862

A Server shall support NOTIFY operation to enable a Client to request and be notified of desired 2863
states of one or more Resources in an asynchronous manner. 11.3.2 specifies the Observe 2864
mechanism in which updates are delivered to the requester. 2865

11.3.2 Observe 2866

11.3.2.1 Overview 2867

In the Observe mechanism the Client utilizes the RETRIEVE operation to require the Server for 2868
updates in case of Resource state changes. The Observe mechanism consists of five steps which 2869
are depicted in Figure 11. 2870

NOTE the Observe mechanism can only be used for a resource with a Property of Observable (see 7.3.2.2). 2871

 2872

 2873

 2874

Figure 11 – Observe Mechanism 2875

11.3.2.2 RETRIEVE request with Observe indication 2876

The Client transmits a RETRIEVE request message to the Server to request updates for the 2877
Resource on the Server if there is a state change. The RETRIEVE request message carries the 2878
following parameters: 2879

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 78

– fr: Unique identifier of the Client. 2880

– to: Resource that the Client is requesting to Observe. 2881

– ri: Identifier of the RETRIEVE operation. 2882

– op: RETRIEVE. 2883

– obs: Indication for Observe operation. 2884

11.3.2.3 Processing by the Server 2885

Following the receipt of the RETRIEVE request, the Server may validate if the Client has the 2886
appropriate rights for the requested operation and the Properties are readable and Observable. If 2887
the validation is successful, the Server caches the information related to the Observe request. The 2888
Server caches the value of the ri parameter from the RETRIEVE request for use in the initial 2889
response and future responses in case of a change of state. 2890

11.3.2.4 RETRIEVE response with Observe indication 2891

The Server shall transmit a RETRIEVE response message in response to a RETRIEVE request 2892
message from a Client. If validation succeeded, the response includes an Observe indication. If 2893
not, the Observe indication is omitted from the response which signals to the requesting Client that 2894
registration for notification was not allowed. 2895

The RETRIEVE response message shall include the following parameters: 2896

– fr: Unique identifier of the Server. 2897

– to: Unique identifier of the Client. 2898

– ri: Identifier included in the RETRIEVE operation. 2899

– cn: Information Resource representation as requested by the Client. 2900

– rs: The result of the RETRIEVE operation. 2901

– obs: Indication that the response is made to an Observe operation. 2902

11.3.2.5 Resource monitoring by the Server 2903

The Server shall monitor the state the Resource identified in the Observe request from the Client. 2904
Anytime there is a change in the state of the Observed Resource, the Server sends another 2905
RETRIEVE response with the Observe indication. The mechanism does not allow the client to 2906
specify any bounds or limits which trigger a notification, the decision is left entirely to the server. 2907

11.3.2.6 Additional RETRIEVE responses with Observe indication 2908

The Server shall transmit updated RETRIEVE response messages following Observed changes in 2909
the state of the Resources indicated by the Client. The RETRIEVE response message shall include 2910
the parameters listed in 11.3.2.4. 2911

11.3.2.7 Cancelling Observe 2912

The Client can explicitly cancel Observe by sending a RETRIEVE request without the Observe 2913
indication field to the same Resource on the Server which it was Observing. For certain protocol 2914
mappings, the Client may also be able to cancel an Observe by ceasing to respond to the 2915
RETRIEVE responses. 2916

11.4 Introspection 2917

11.4.1 Overview 2918

Introspection is a mechanism to announce the capabilities of Resources hosted on the Device. 2919

The intended usage of the Introspection Device Data (IDD) is to enable dynamic Clients e.g. Clients 2920
that can use the IDD) to generate dynamically a UI or dynamically create translations of the hosted 2921

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 79

Resources to another eco-system. Other usages of Introspection is that the information can be 2922
used to generate Client code. The IDD is designed to augment the existing data already on the 2923
wire. This means that existing mechanisms need to be used to get a full overview of what is 2924
implemented in the Device. For example, the IDD does not convey information about Observability, 2925
since that is already conveyed with the "p" Property on the Links in "/oic/res" (see 7.8.2.5.3). 2926

The IDD is recommended to be conveyed as static data. Meaning that the data does not change 2927
during the uptime of a Device. However, when the IDD is not static, the Introspection Resource 2928
shall be Observable and the url Property Value of "oic.wk.introspection" Resource shall change to 2929
indicate that the IDD is changed. 2930

The IDD describes the Resources that make up the Device. For the complete list of included 2931
Resources see Table 20. The IDD is described as a OpenAPI 2.0 in JSON format file. The text in 2932
the following bulleted list contains OpenAPI 2.0 terms, such as paths, methods etc. The OpenAPI 2933
2.0 file shall contain the description of the Resources: 2934

– The IDD will use the HTTP syntax, e.g., define the CRUDN operation as HTTP methods and 2935
use the HTTP status codes. 2936

– The IDD does not have to define all the status codes that indicate an error situation. 2937

– The IDD does not have to define a schema when the status code indicates that there is no 2938
payload (see HTTP status code 204 as an example). 2939

– The paths (URLs) of the Resources in the IDD shall be without the OCF Endpoint description, 2940
e.g. it shall not be a fully-qualified URL but only the relative path from the OCF Endpoint, aka 2941
the "href". The relative path may include a query parameter (e.g. "?if=oic.if.ll"), in such cases 2942
the text following (and including) the "?" delimiter shall be removed before equating to the "href" 2943
that is conveyed by "/oic/res". 2944

– The following Resources shall be excluded in the IDD: 2945

– Resource with Resource Type: "oic.wk.res" unless 3rd party defined or optional Properties 2946
are implemented. 2947

– Resource with Resource Type: "oic.wk.introspection". 2948

– Resources explicitly identified within other specifications working in conjuction with this 2949
document (e.g. Resources that handle Wi-Fi Easy Setup, see [2]). 2950

– The following Resources shall be included in the IDD when optional or 3rd party defined 2951
Properties are implemented: 2952

– Resources with type: "oic.wk.p" and "oic.wk.d" (e.g. discovery related Resources). 2953

– Security Virtual Resources from ISO/IEC 30118-2:2018. 2954

– When the Device does not expose instances of Vertical Resource Types, and does not have 2955
any 3rd party defined Resources (see 7.8.4.4), and does not need to include Resources in the 2956
IDD due to other clauses in this clause, then the IDD shall be an empty OpenAPI 2.0 file. An 2957
example of an empty OpenAPI 2.0 file can be found in found in Annex B.2. 2958

– All other Resources that are individually addressable by a Client (i.e. the "href" can be resolved 2959
and at least one operation is supported with a success path response) shall be listed in the IDD. 2960

– Per Resource the IDD shall include: 2961

– All implemented methods 2962

– For an OCF defined Resource Type, only the methods that are listed in the OpenAPI 2.0 2963
definition are allowed to exist in the IDD. For an OCF defined Resource Type, methods 2964
not listed in the OpenAPI 2.0 definition shall not exist in the IDD. The supported methods 2965
contained in the IDD shall comply with the listed OCF Interfaces. For example, if the 2966
POST method is listed in the IDD, then an OCF Interface that allows UPDATE will be 2967
listed in the IDD. 2968

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 80

– Per supported method: 2969

– Implemented query parameters per method. 2970

– This includes the supported OCF Interfaces ("if") as enum values. 2971

– Schemas of the payload for the request and response bodies of the method. 2972

– Where the schema provides the representation of a batch request or response ("oic.if.b") 2973
the schema shall contain the representations for all Resource Types that may be 2974
included within the batch representation. The representations shall be provided within 2975
the IDD itself. 2976

– The schema data shall be conveyed by the OpenAPI 2.0 schema. 2977

– The OpenAPI 2.0 schema object shall comply with: 2978

– The schemas shall be fully resolved, e.g. no references shall exist outside the 2979
OpenAPI 2.0 file. 2980

– The schemas shall list which OCF Interfaces are supported on the method. 2981

– The schemas shall list if a Property is optional or required. 2982

– The schemas shall include all Property validation keywords. Where an enum is 2983
defined the enum shall contain the values supported by the Device. When vendor 2984
defined extensions exist to the enum (defined in accordance to 7.8.4.4) these shall 2985
be included in the enum. 2986

– The schemas shall indicate if an Property is read only or read-write. 2987

– By means of the readOnly schema tag belonging to the Property. 2988

– Default value of readOnly is false as defined by OpenAPI 2.0. 2989

– The default value of the "rt" Property shall be used to indicate the supported 2990
Resource Types. 2991

– oneOf and anyOf constructs are allowed to be used as part of a OpenAPI 2.0 schema 2992
object. The OpenAPI 2.0 schema with oneOf and anyOf constructs can be found in 2993
Annex B.1. 2994

– For Atomic Measurements (see clause 7.8.4), the following apply: 2995

– The "rts" Property Value in the IDD shall include only the Resource Types the instance 2996
contains and not the theoretical maximal set allowed by the schema definition. 2997

– The Resources that are part of an Atomic Measurement, excluding the Atomic Measurement 2998
Resource itself, shall not be added to their own individual path in the IDD, as they are not 2999
individually addressable; however, the schemas for the composed Resource Types shall be 3000
provided in the IDD as part of the batch response definition along with the "href" for the 3001
Resource. 3002

Dynamic Resources (e.g. Resources that can be created on a request by a Client) shall have a 3003
URL definition which contains a URL identifier (e.g. using the {} syntax). A URL with {} identifies 3004
that the Resource definition applies to the whole group of Resources that may be created. The 3005
actual path may contain the Collection node that links to the Resource. 3006

Example of a URL with identifiers: 3007

/SceneListResURI/{SceneCollectionResURI}/{SceneMemberResURI}: 3008

When different Resource Types are allowed to be created in a Collection, then the different 3009
schemas for the CREATE method shall define all possible Resource Types that may be created. 3010
The schema construct oneOf allows the definition of a schema with selectable Resources. The 3011
oneOf construct allows the integration of all schemas and that only one existing sub schema shall 3012
be used to indicate the definition of the Resource that may be created. 3013

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 81

Example usage of oneOf JSON schema construct is shown in Figure 12: 3014

{ 3015
 "oneOf": [3016
 { <<subschema 1 definition>> }, 3017
 { << sub schema 2 definition >> } 3018
… 3019
] 3020
} 3021

Figure 12 – Example usage of oneOf JSON schema 3022

A Client using the IDD of a Device should check the version of the supported IDD of the Device. 3023
The OpenAPI 2.0 version is indicated in each file with the tag "swagger". Example of the 2.0 3024
supported version of the tag is: "swagger": "2.0". Later versions of this document may reference 3025
newer versions of the OpenAPI specification, for example 3.0. 3026

A Device shall support one Resource with a Resource Type of "oic.wk.introspection" as defined in 3027
Table 26. The Resource with a Resource Type of "oic.wk.introspection" shall be included in the 3028
Resource "/oic/res". 3029

An empty IDD file, e.g. no URLs are exposed, shall still have the mandatory OpenAPI 2.0 fields. 3030
See OpenAPI specification. An example of an empty OpenAPI 2.0 file can be found in found in 3031
Annex B.2. 3032

Table 26 – Introspection Resource 3033

Pre-defined
URI

Resource
Type Title

Resource Type ID
("rt" value)

OCF
Interfaces

Description Related
Functional
Interaction

none Introspection "oic.wk.introspection"

"oic.if.r" The Resource that
announces the URL of
the Introspection file.

Introspection

 3034

Table 27 defines "oic.wk.introspection" Resource Type. 3035

Table 27 – "oic.wk.introspection" Resource Type definition 3036

Property
title

Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

urlInfo "urlInfo" "array" N/A N/A R Yes array of objects

url "url" "string" "uri" N/A R Yes URL to the hosted payload

protocol "protocol" "string" "enum" N/A R Yes Protocol definition to retrieve
the Introspection Device
Data from the url.

content-
type

"content-
type"

"string" "enum" N/A R No content type of the url.

version "version" "integer" "enum" N/A R No Version of the Introspection
protocol, indicates which
rules are applied on the
Introspection Device Data
regarding the content of the
OpenAPI 2.0 file.
Current value is 1.

 3037

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 82

11.4.2 Usage of Introspection 3038

The Introspection Device Data is retrieved in the following steps and as depicted in Figure 13: 3039

– Check if the Introspection Resource is supported and retrieve the URL of the Resource. 3040

– Retrieve the contents of the Introspection Resource 3041

– Download the Introspection Device Data from the URL specified the Introspection Resource. 3042

– Usage of the Introspection Device Data by the Client 3043

 3044

 3045

Figure 13 – Interactions to check Introspection support and download the Introspection 3046
Device Data. 3047

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 83

11.5 Semantic Tags 3048

11.5.1 Introduction 3049

Semantic Tags are meta-information associated with a specific Resource instance that are 3050
represented as both Link Parameters and Resource Properties that provide a mechanism whereby 3051
the Resource be annotated with additional contextual metadata that helps describe the Resource. 3052

When a Semantic Tag is defined for a Resource, it shall be present as a Link Parameter in all Links 3053
that are present that target the Resource, including Links in "/oic/res" if the Resource is a 3054
Discoverable Resource. The Semantic Tag is further treated as a Common Property associated 3055
with the Resource and so shall be returned as part of the "baseline" response for the Resource if 3056
a Semantic Tag has been populated. 3057

11.5.2 Semantic Tag definitions 3058

11.5.2.1 Relative and descriptive position Semantic Tags 3059

11.5.2.1.1 Introduction 3060

Consider where there may be multiple instances of the same Resource Type exposed by a Device; 3061
or a case where there may be potentially ambiguity with regard to the physical attribute that a 3062
Resource is representing. In such a case the ability to annotate the Links to the Resource with 3063
information pertaining to the relative position of the Resource within the Physical Device becomes 3064
useful. 3065

11.5.2.1.2 "tag-pos-desc" or position description Semantic Tag 3066

The "tag-pos-desc" Semantic Tag as defined in Table 28 describes the position of the Resource as 3067
a descriptive position. If the tag is not exposed it conveys the same meaning as if the tag is exposed 3068
with a value of "unknown". The value for the "tag-pos-desc" Semantic Tag if exposed, shall be a 3069
string containing a value from the enumeration detailed in Annex C. The population of the Semantic 3070
Tag is defined by the Device vendor and shall not be mutable by a Client. 3071

Table 28 – "tag-pos-desc" Semantic Tag definition 3072

Link Parameter
name

Type Contents Value example

"tag-pos-desc" enum See Annex C "tag-pos-desc": "topleft"

 3073

11.5.2.1.3 "tag-pos-rel" or relative position Semantic Tag 3074

The "tag-pos-rel" Semantic Tag describes the position of the Resource as a relative position in 3D 3075
space against a known point defined by the Device vendor. The known point is defined using [x,y,z] 3076
form as [0.0,0.0,0.0]. The position itself is then represented by the x-, y-, and z- plane relative 3077
position from this known point using a bounded box of size +1.0/-1.0 in each plane. 3078

Figure 14 illustrates the definition of "tag-pos-rel". 3079

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 84

[1.0,1.0,1.0]

[-1.0,-1.0,1.0] [1.0,-1.0,1.0]

[1.0,-1.0,-1.0]

[1.0,1.0,-1.0]

[-1.0,1.0,1.0]

[-1.0,1.0,-1.0]

x-Plane

y-Plane

z-Plane 3080

Figure 14 – "tag-pos-rel" definition 3081

The "tag-pos-rel" Semantic Tag value is defined by the Device vendor and shall not be mutable by 3082
a Client. This is detailed in Table 29. 3083

Table 29 – "tag-pos-rel" Semantic Tag definition 3084

Link Parameter
name

Type Contents Value example

"tag-pos-rel" array Three element array of numbers defining
the position relative to a known [0,0,0]
point within the context of an abstract box
[-1,-1,-1],[1,1,1].

"tag-pos-rel": [0.5,0.5,0.5]

 3085

11.5.2.2 Functional behaviour Semantic Tags 3086

11.5.2.2.1 Introduction 3087

Consider, for example, the case of a Device that supports two target temperatures simultaneously 3088
for different modes of operation, for example a temperature for heating and a separate temperature 3089
for cooling. 3090

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 85

There is then an ambiguity with respect to the target mode of the specific temperature Resource; 3091
it isn't explicit which instance of temperature is associated with which Device function. In such a 3092
case the ability to annotate the Links to the Resource with information pertaining to the function of 3093
the Resource within the Physical Device becomes useful. 3094

11.5.2.2.2 "tag-func-desc" or function description Semantic Tag 3095

The "tag-func-desc" Semantic Tag describes the function of the Resource, if exposed it shall be 3096
populated with a value from the currently supported set of standardized enumeration values defined 3097
by the Device ecosystem specifications. If the tag is not exposed it conveys the same meaning as 3098
if the tag is exposed with a value of "unknown". The value for the "tag-func-desc" Semantic Tag, if 3099
exposed, is defined by the Device vendor and shall not be mutable by a Client. 3100

This "tag-func-desc" Semantic Tag is detailed in Table 30. 3101

Table 30 – "tag-func-desc" Semantic Tag definition 3102

Link Parameter
name

Type Contents Value example

"tag-func-rel" enum Defined by Device ecosystem "tag-func-desc": "cool"

 3103

12 Messaging 3104

12.1 Introduction 3105

This clause specifies the protocol messaging mapping to the CRUDN messaging operations (clause 3106
8) for each messaging protocol specified (e.g., CoAP.). Mapping to additional protocols is expected 3107
in later version of this document. All the Property information from the Resource model shall be 3108
carried within the message payload. This payload shall be generated in the Resource model layer 3109
and shall be encapsulated in the data connectivity layer. The message header shall only be used 3110
to describe the message payload (e.g., verb, mime-type, message payload format), in addition to 3111
the mandatory header fields defined in a messaging protocol (e.g., CoAP) specification. If the 3112
message header does not support this, then this information shall also be carried in the message 3113
payload. Resource model information shall not be included in the message header structure unless 3114
the message header field is mandatory in the messaging protocol specification. 3115

When a Resource is specified with a RESTful description language like OpenAPI 2.0 then the HTTP 3116
syntax definitions are used in the description (e.g., HTTP syntax for the CRUDN operations, status 3117
codes, etc). The HTTP syntax will be mapped to the actual used web transfer protocol (e.g., CoAP). 3118

12.2 Mapping of CRUDN to CoAP 3119

12.2.1 Overview 3120

A Device implementing CoAP shall conform to IETF RFC 7252 for the methods specified in clause 3121
12.2.3. A Device implementing CoAP shall conform to IETF RFC 7641 to implement the CoAP 3122
Observe option. Support for CoAP block transfer when the payload is larger than the MTU is defined 3123
in 12.2.8. 3124

12.2.2 URIs 3125

An OCF: URI is mapped to a coap: URI by replacing the scheme name "ocf" with "coap" if unsecure 3126
or "coaps" if secure before sending over the network by the requestor. Similarly on the receiver 3127
side, the scheme name is replaced with "ocf". 3128

Any query string that is present within the URI is encoded as one or more URI-Query Options as 3129
defined in IETF RFC 7252 clause 6.4. 3130

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 86

12.2.3 CoAP method with request and response 3131

12.2.3.1 Overview 3132

Every request has a CoAP method that realizes the request. The primary methods and their 3133
meanings are shown in Table 31, which provides the mapping of GET/POST/DELETE methods to 3134
CREATE, RETRIEVE, UPDATE, and DELETE operations. The associated text provides the generic 3135
behaviours when using these methods, however Resource OCF Interfaces may modify these 3136
generic semantics. The HTTP codes in the RESTful descriptions will be translated as described in 3137
IETF RFC 8075 clause 7 Response Code Mapping. CoAP methods not listed in Table 31 are not 3138
supported. 3139

Table 31 – CoAP request and response 3140

Method for CRUDN (mandatory) Request data (mandatory) Response data

GET for RETRIEVE - Method code: GET (0.01).
- Request URI: an existing URI for
the Resource to be retrieved

- Response code: success (2.xx) or
error (4.xx or 5.xx).
- Payload: Resource representation
of the target Resource (when
successful).

POST for CREATE - Method code: POST (0.02).
- Request URI: an existing URI for
the Resource responsible for the
creation.
- Payload: Resource presentation of
the Resource to be created.

- Response code: success (2.xx) or
error (4.xx or 5.xx).
- Payload: the URI of the newly
created Resource (when successful).

POST for UPDATE - Method code: POST (0.02).
- Request URI: an existing URI for
the Resource to be updated.
- Payload: representation of the
Resource to be updated.

- Response Code: success (2.xx) or
error (4.xx or 5.xx).

DELETE for DELETE - Method code: DELETE (0.04).
- Request URI: an existing URI for
the Resource to be deleted.

- Response code: success (2.xx) or
error (4.xx or 5.xx).

 3141

 3142

12.2.3.2 CREATE with POST 3143

POST shall be used only in situations where the request URI is valid, that is it is the URI of an 3144
existing Resource on the Server that is processing the request. If no such Resource is present, the 3145
Server shall respond with an error response code of 4.xx. The use of POST for CREATE shall use 3146
an existing request URI which identifies the Resource on the Server responsible for creation. The 3147
URI of the created Resource is determined by the Server and provided to the Client in the response. 3148

A Client shall include the representation of the new Resource in the request payload. The new 3149
resource representation in the payload shall have all the necessary Properties to create a valid 3150
Resource instance, i.e. the created Resource should be able to properly respond to the valid 3151
Request with mandatory OCF Interface (e.g., "GET with ?if=oic.if.baseline"). 3152

Upon receiving the POST request, the Server shall either: 3153

– Create the new Resource with a new URI, respond with the new URI for the newly created 3154
Resource and a success response code (2.xx); or 3155

– respond with an error response code (4.xx or 5.xx). 3156

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 87

12.2.3.3 RETRIEVE with GET 3157

GET shall be used for the RETRIEVE operation. The GET method retrieves the representation of 3158
the target Resource identified by the request URI. 3159

Upon receiving the GET request, the Server shall either: 3160

– Send back the response with the representation of the target Resource with a success response 3161
code (2.xx); or 3162

– respond with an error response code (4.xx or 5.xx) or ignore it (e.g. non-applicable multicast 3163
GET). 3164

GET is a safe method and is idempotent. 3165

12.2.3.4 UPDATE with POST 3166

POST shall be used only in situations where the request URI is valid, that is it is the URI of an 3167
existing Resource on the Server that is processing the request. If no such Resource is present, the 3168
Server shall respond with an error response code of 4.xx. A client shall use POST to UPDATE 3169
Property values of an existing Resource. 3170

Upon receiving the request, the Server shall either: 3171

– Apply the request to the Resource identified by the request URI in accordance with the applied 3172
OCF Interface (i.e. POST for non-existent Properties is ignored) and send back a response with 3173
a success response code (2.xx); or 3174

– respond with an error response code (4.xx or 5.xx). Note that if the representation in the payload 3175
is incompatible with the target Resource for POST using the applied OCF Interface (i.e. the 3176
overwrite semantic cannot be honored because of read-only Property in the payload), then the 3177
error response code 4.xx shall be returned. 3178

12.2.3.5 DELETE with DELETE 3179

DELETE shall be used for DELETE operation. The DELETE method requests that the Resource 3180
identified by the request URI be deleted. 3181

Upon receiving the DELETE request, the Server shall either: 3182

– Delete the target Resource and send back a response with a success response code (2.xx); or 3183

– respond with an error response code (4.xx or 5.xx). 3184

DELETE is unsafe but idempotent (unless URIs are recycled for new instances). 3185

12.2.4 Content-Format negotiation 3186

The Framework mandates support of CBOR, however it allows for negotiation of the payload body 3187
if more than one Content-Format (e.g. CBOR and JSON) is supported by an implementation. In this 3188
case the Accept Option defined in clause 5.10.4 of IETF RFC 7252 shall be used to indicate which 3189
Content–Format (e.g. JSON) is requested by the Client. 3190

The Content-Formats supported are shown in Table 32. 3191

Table 32 – OCF Content-Formats 3192

Media Type ID

"application/vnd.ocf+cbor" 10000

 3193

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 88

Clients shall include a Content-Format Option in every message that contains a payload. Servers 3194
shall include a Content-Format Option for all success (2.xx) responses with a payload body. Per 3195
IETF RFC 7252 clause 5.5.1, Servers shall include a Content-Format Option for all error (4.xx or 3196
5.xx) responses with a payload body unless they include a Diagnostic Payload; error responses 3197
with a Diagnostic Payload do not include a Content-Format Option. The Content-Format Option 3198
shall use the ID column numeric value from Table 32. An OCF vertical may mandate a specific 3199
Content-Format Option. 3200

Clients shall also include an Accept Option in every request message. The Accept Option shall 3201
indicate the required Content-Format as defined in Table 32 for response messages. The Server 3202
shall return the required Content-Format if available. If the required Content-Format cannot be 3203
returned, then the Server shall respond with an appropriate error message. 3204

12.2.5 OCF-Content-Format-Version information 3205

Servers and Clients shall include the OCF-Content-Format-Version Option in both request and 3206
response messages with a payload. Clients shall include the OCF-Accept-Content-Format-Version 3207
Option in request messages. The OCF-Content-Format-Version Option and OCF-Accept-Content-3208
Format-Version Option are specified as Option Numbers in the CoAP header as shown in Table 33. 3209

Table 33 – OCF-Content-Format-Version and OCF-Accept-Content-Format-Version Option 3210
Numbers 3211

CoAP Option Number Name Format Length
(bytes)

2049 OCF-Accept-Content-
Format-Version

uint 2

2053 OCF-Content-Format-
Version

uint 2

 3212

The value of both the OCF-Accept-Content-Format-Version Option and the OCF-Content-Format-3213
Version Option is a two-byte unsigned integer that is used to define the major, minor and sub 3214
versions. The major and minor versions are represented by 5 bits and the sub version is 3215
represented by 6 bits as shown in Table 34. 3216

Table 34 – OCF-Accept-Content-Format-Version and OCF-Content-Format-Version 3217
Representation 3218

 Major Version Minor Version Sub Version

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 3219

Table 35 illustrates several examples: 3220

Table 35 – Examples of OCF-Content-Format-Version and OCF-Accept-Content-Format-3221
Version Representation 3222

OCF version Binary representation Integer value

"1.0.0" "0000 1000 0000 0000" 2048

"1.1.0" "0000 1000 0100 0000" 2112

 3223

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 89

The OCF-Accept-Content-Format-Version Option and OCF-Content-Format-Version Option for this 3224
version of the document shall be "1.0.0" (i.e. "0b0000 1000 0000 0000"). 3225

12.2.6 Content-Format policy 3226

All Devices shall support the current Content-Format Option, "application/vnd.ocf+cbor", and OCF-3227
Content-Format-Version "1.0.0". 3228

For backward compatibility with previous OCF-Content-Format-Version Options: 3229

– All Client Devices shall support OCF-Content-Format-Version Option set to "1.0.0" and higher. 3230

– All Client Devices shall support OCF-Accept-Content-Format-Version Option set to "1.0.0" and 3231
higher. 3232

– A Client shall send a discovery request message with its Accept Option set to 3233
"application/vnd.ocf+cbor", and its OCF-Accept-Content-Format-Version Option matching its 3234
highest supported version. 3235

– A Server shall respond to a Client's discovery request that is higher than its OCF-Content-3236
Format-Version by responding with its Content-Format Option set to "application/vnd.ocf+cbor", 3237
and OCF-Content-Format-Version matching its highest supported version. The response 3238
representation shall be encoded with the OCF-Content-Format-Version matching the Server's 3239
highest supported version. 3240

– A Server may support previous Content-Formats and OCF-Content-Format-Versions to support 3241
backward compatibility with previous versions. 3242

– For a Server that supports multiple OCF-Content-Format-Version Options, the Server should 3243
attempt to respond with an OCF-Content-Format-Version that matches the OCF-Accept-3244
Content-Format-Version of the request. 3245

To maintain compatibility between Devices implemented to different versions of this document, 3246
Devices should follow the policy as described in Figure 15. 3247

The OCF Clients in Figure 15 support sending Content-Format Option set to 3248
"application/vnd.ocf+cbor", Accept Option set to "application/vnd.ocf+cbor", OCF-Content-Format-3249
Version Option set to "1.0.0", and OCF-Accept-Content-Format-Version Option set to "1.0.0" 3250
(representing OCF 1.0 and later Clients). The OCF Servers in Figure 15 support sending Content-3251
Format Option set to "application/vnd.ocf+cbor" and OCF-Content-Format-Version Option set to 3252
"1.0.0" (representing OCF 1.0 and later Servers). 3253

 3254

 3255

Figure 15 – Content-Format Policy for backward compatible OCF Clients negotiating lower 3256
OCF Content-Format-Version 3257

12.2.7 CRUDN to CoAP response codes 3258

The mapping of CRUDN operations response codes to CoAP response codes are identical to the 3259
response codes defined in IETF RFC 7252. 3260

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 90

12.2.8 CoAP block transfer 3261

Basic CoAP messages work well for the small payloads typical of light-weight, constrained IoT 3262
devices. However scenarios can be envisioned in which an application needs to transfer larger 3263
payloads. 3264

CoAP block-wise transfer as defined in IETF RFC 7959 shall be used by all Servers which generate 3265
a content payload that would exceed the size of a CoAP datagram as the result of handling any 3266
defined CRUDN operation. 3267

Similarly, CoAP block-wise transfer as defined in IETF RFC 7959 shall be supported by all Clients. 3268
The use of block-wise transfer is applied to both the reception of payloads as well as transmission 3269
of payloads that would exceed the size of a CoAP datagram. 3270

All blocks that are sent using this mechanism for a single instance of a transfer shall all have the 3271
same reliability setting (i.e. all confirmable or all non-confirmable). 3272

A Client may support both the block1 (as descriptive) and block2 (as control) options as described 3273
by IETF RFC 7959. A Server may support both the block1 (as control) and block2 (as descriptive) 3274
options as described by IETF RFC 7959. 3275

12.2.9 Generic requirements for CoAP multicast 3276

A Client may use CoAP multicast to retrieve a target Resource with a fixed local path from multiple 3277
other Devices. This clause provides generic requirements for this mechanism. 3278

– Devices shall join the All OCF Nodes multicast groups (as defined in [IANA IPv6 Multicast 3279
Address Space Registry]) with scopes 2, 3, and 5 (i.e., ff02::158, ff03::158 and ff05::158) and 3280
shall listen on the port 5683. For compliance to IETF RFC 7252 a Device may additionally join 3281
the All CoAP Nodes multicast groups. 3282

– Clients intending to discover Resources shall join the multicast groups as defined in the first 3283
bullet. 3284

– Clients shall send multicast requests to the All OCF Nodes multicast group address with scope 3285
2 ("ff02::158") at port "5683". The requested URI shall be the fixed local path of the target 3286
Resource optionally followed by query parameters. For compliance to IETF RFC 7252 a Client 3287
may additionally send to the All CoAP Nodes multicast groups. 3288

– To discover Devices on a low-rate wireless personal area network (LR-WPAN) [see 3289
IETF RFC 7346], Clients should send additional discovery requests (GET request) to the All 3290
OCF Nodes multicast group address with REALM_LOCAL scope 3 ("ff03::158") at port "5683". 3291
The set of replying Devices then can be used to distinguish if the Device is SITE_LOCAL or 3292
REALM_LOCAL to the Client discovering the Devices. Such request shall use the IPv6 hop limit 3293
with a value of 255. If the Client sends discovery requests to All OCF Nodes, then for 3294
compliance to IETF RFC 7252 a Client may additionally send to the All CoAP Nodes multicast 3295
groups with the same REALM_LOCAL scope with the IPv6 hop limit value of 255. 3296

– Clients should send discovery requests (GET request) to the All OCF Nodes multicast group 3297
address with SITE_LOCAL scope 5 ("ff05::158") at port "5683". Such request shall use the IPv6 3298
hop limit with a value of 255. If the Client sends discovery requests to All OCF Nodes, then for 3299
compliance to IETF RFC 7252 a Client may additionally send to the All CoAP Nodes multicast 3300
groups with the same SITE_LOCAL scope with the IPv6 hop limit value of 255. 3301

– The multicast request shall be permitted by matching the request to an ACE which permits 3302
unauthenticated access to the target Resource as described in ISO/IEC 30118-2:2018. 3303

– Handling of multicast requests shall be as described in clause 8 of IETF RFC 7252 and clause 3304
4.1 in IETF RFC 6690. 3305

– Devices which receive the request shall respond, subject to query parameter processing 3306
specific to the requested Resource. 3307

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 91

12.3 Mapping of CRUDN to CoAP serialization over TCP 3308

12.3.1 Overview 3309

In environments where TCP is already available, CoAP can take advantage of it to provide reliability. 3310
Also in some environments UDP traffic is blocked, so deployments may use TCP. For example, 3311
consider a cloud application acting as a Client and the Server is located at the user’s home. A 3312
Server which already support CoAP as a messaging protocol could easily support CoAP 3313
serialization over TCP rather than utilizing another messaging protocol. A Device implementing 3314
CoAP Serialization over TCP shall conform to IETF RFC 8323. 3315

12.3.2 URIs 3316

When UDP is blocked, Clients are dependent on pre-configured details of the Device to determine 3317
if the Device supports CoAP serialization over TCP. When UDP is not-blocked, a Device which 3318
supports CoAP serialization over TCP shall populate the "eps" Parameter in the "/oic/res" response, 3319
as defined in 10.2, with the URI scheme(s) as defined in clause 8.1 or 8.2 of IETF RFC 8323. For 3320
the "coaps+tcp" URI scheme, as defined in clause 8.2 of IETF RFC 8323, IETF RFC 7301 shall be 3321
used. In addition, the URIs used for CoAP serialization over TCP shall conform to 12.2.2 by 3322
substituting the scheme names with the scheme names defined in clauses 8.1 and 8.2 of 3323
IETF RFC 8323 respectively. 3324

12.3.3 CoAP method with request and response 3325

The CoAP methods used for CoAP serialization over TCP shall conform to 12.2.3. 3326

12.3.4 Content-Format negotiation 3327

The Content Format negotiation used for CoAP serialization over TCP shall conform to 12.2.4. 3328

12.3.5 OCF-Content-Format-Version information 3329

The OCF Content Format Version information used for CoAP serialization over TCP shall conform 3330
to 12.2.5. 3331

12.3.6 Content-Format policy 3332

The Content Format policy used for CoAP serialization over TCP shall conform to 12.2.6. 3333

12.3.7 CRUDN to CoAP response codes 3334

The CRUDN to CoAP response codes for CoAP serialization over TCP shall conform to 12.2.7. 3335

12.3.8 CoAP block transfer 3336

The CoAP block transfer for CoAP serialization over TCP shall conform to clause 6 of 3337
IETF RFC 8323. 3338

12.3.9 Keep alive (connection health) 3339

The Device that initiated the CoAP over TCP connection shall send a Ping message as described 3340
in clause 5.4 in IETF RFC 8323. The Device to which the connection was made may send a Ping 3341
message. The recipient of any Ping message shall send a Pong message as described in clause 3342
5.4 in IETF RFC 8323. 3343

Both sides of an established CoAP over TCP connection may send subsequent Ping (and 3344
corresponding Pong) messages. 3345

12.4 Payload Encoding in CBOR 3346

OCF implementations shall perform the conversion to CBOR from JSON defined schemas and to 3347
JSON from CBOR in accordance with IETF RFC 7049 clause 4 unless otherwise specified in this 3348
clause. 3349

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 92

Properties defined as a JSON integer shall be encoded in CBOR as an integer (CBOR major types 3350
0 and 1). Properties defined as a JSON number shall be encoded as an integer, single- or double-3351
precision floating point (CBOR major type 7, sub-types 26 and 27); the choice is implementation 3352
dependent. Half-precision floating point (CBOR major 7, sub-type 25) shall not be used. Integer 3353
numbers shall be within the closed interval [-2^53, 2^53]. Properties defined as a JSON number 3354
should be encoded as integers whenever possible; if this is not possible Properties defined as a 3355
JSON number should use single-precision if the loss of precision does not affect the quality of 3356
service, otherwise the Property shall use double-precision. 3357

On receipt of a CBOR payload, an implementation shall be able to interpret CBOR integer values 3358
in any position. If a Property defined as a JSON integer is received encoded other than as an 3359
integer, the implementation may reject this encoding using a final response as appropriate for the 3360
underlying transport (e.g. 4.00 for CoAP) and thus optimise for the integer case. If a Property is 3361
defined as a JSON number an implementation shall accept integers, single- and double-precision 3362
floating point. 3363

13 Security 3364

The details for handling security and privacy are specified in ISO/IEC 30118-2:2018. 3365

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 93

 3366

(normative) 3367

 3368

Resource Type definitions 3369

A.1 List of Resource Type definitions 3370

All the clauses in Annex A describe the Resource Types with a RESTful API definition language. 3371
The Resource Type definitions presented in Annex A are formatted for readability, and so may 3372
appear to have extra line breaks. Table A.1 contains the list of defined Core Common Resources 3373
in this document. 3374

Table A.1 – Alphabetized list of Core Resources 3375

Friendly Name (informative) Resource Type (rt) Clause

Atomic Measurement "oic.wk.atomicmeasurement" A.2

Collections "oic.wk.col" A.3

Device "oic.wk.d" A.4

Discoverable Resource "oic.wk.res" A.7

Introspection "oic.wk.introspection" A.5

Platform "oic.wk.p" A.6

A.2 Atomic Measurement links list representation 3376

A.2.1 Introduction 3377

The oic.if.baseline OCF Interface exposes a representation of the links and 3378
the Common Properties of the Atomic Measurement Resource. 3379
 3380

A.2.2 Example URI 3381

/AtomicMeasurementResURI 3382

A.2.3 Resource type 3383

The Resource Type is defined as: "oic.wk.atomicmeasurement". 3384

A.2.4 OpenAPI 2.0 definition 3385

{ 3386
 "swagger": "2.0", 3387
 "info": { 3388
 "title": "Atomic Measurement links list representation", 3389
 "version": "2019-03-04", 3390
 "license": { 3391
 "name": "OCF Data Model License", 3392
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 3393
 "x-copyright": "Copyright 2018-2019 Open Connectivity Foundation, Inc. All rights reserved." 3394
 }, 3395
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 3396
 }, 3397
 "schemes": ["http"], 3398
 "consumes": ["application/json"], 3399
 "produces": ["application/json"], 3400
 "paths": { 3401
 "/AtomicMeasurementResURI?if=oic.if.ll": { 3402
 "get": { 3403
 "description": "The oic.if.ll OCF Interface exposes a representation 3404
of the Links", 3405

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 94

 "parameters": [3406
 { 3407
 "$ref": "#/parameters/interface-all" 3408
 } 3409
], 3410
 "responses": { 3411
 "200": { 3412
 "description": "", 3413
 "x-example": [{ 3414
 "href": "/temperature", 3415
 "rt": ["oic.r.temperature"], 3416
 "if": ["oic.if.s", "oic.if.baseline"] 3417
 }, 3418
 { 3419
 "href": "/bodylocation", 3420
 "rt": ["oic.r.body.location.temperature"], 3421
 "if": ["oic.if.s", "oic.if.baseline"] 3422
 }, 3423
 { 3424
 "href": "/timestamp", 3425
 "rt": ["oic.r.time.stamp"], 3426
 "if": ["oic.if.s", "oic.if.baseline"] 3427
 }], 3428
 "schema": { 3429
 "$ref": "#/definitions/links" 3430
 } 3431
 } 3432
 } 3433
 } 3434
 }, 3435
 "/AtomicMeasurementResURI?if=oic.if.b": { 3436
 "get": { 3437
 "description": "The oic.if.b OCF Interface returns data items 3438
retrieved from Resources pointed to by the Links.\n", 3439
 "parameters": [3440
 { 3441
 "$ref": "#/parameters/interface-all" 3442
 } 3443
], 3444
 "responses": { 3445
 "200": { 3446
 "description": "Normal response, no errors, all 3447
Properties are returned correctly\n", 3448
 "x-example": [{ 3449
 "href": "/temperature", 3450
 "rep": { 3451
 "temperature": 38, 3452
 "units": "C", 3453
 "range": [25, 45] 3454
 } 3455
 }, 3456
 { 3457
 "href": "/bodylocation", 3458
 "rep": { 3459
 "bloc": "ear" 3460
 } 3461
 }, 3462
 { 3463
 "href": "/timestamp", 3464
 "rep": { 3465
 "timestamp": "2007-04-05T14:30+09:00" 3466
 } 3467
 }], 3468
 "schema": { 3469
 "$ref": "#/definitions/batch-retrieve" 3470
 } 3471
 } 3472
 } 3473
 } 3474
 }, 3475
 "/AtomicMeasurementResURI?if=oic.if.baseline": { 3476

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 95

 "get": { 3477
 "description": "The oic.if.baseline OCF Interface exposes a 3478
representation of the links and\nthe Common Properties of the Atomic Measurement Resource.\n", 3479
 "parameters": [3480
 { 3481
 "$ref": "#/parameters/interface-all" 3482
 } 3483
], 3484
 "responses": { 3485
 "200": { 3486
 "description": "", 3487
 "x-example": { 3488
 "rt": ["oic.wk.atomicmeasurement"], 3489
 "if": ["oic.if.b", "oic.if.ll",3490
 "oic.if.baseline"], 3491
 "rts": ["oic.r.temperature", 3492
"oic.r.body.location.temperature", "oic.r.time.stamp"], 3493
 "rts-m": ["oic.r.temperature", 3494
"oic.r.body.location.temperature", "oic.r.time.stamp"], 3495
 "links": [{ 3496
 "href": "/temperature", 3497
 "rt": ["oic.r.temperature"], 3498
 "if": ["oic.if.s", "oic.if.baseline"] 3499
 }, 3500
 { 3501
 "href": "/bodylocation", 3502
 "rt": 3503
["oic.r.body.location.temperature"], 3504
 "if": ["oic.if.s", "oic.if.baseline"] 3505
 }, 3506
 { 3507
 "href": "/timestamp", 3508
 "rt": ["oic.r.time.stamp"], 3509
 "if": ["oic.if.s", "oic.if.baseline"] 3510
 }] 3511
 }, 3512
 "schema": { 3513
 "$ref": "#/definitions/baseline" 3514
 } 3515
 } 3516
 } 3517
 } 3518
 } 3519
 }, 3520
 "parameters": { 3521
 "interface-all": { 3522
 "in": "query", 3523
 "name": "if", 3524
 "type": "string", 3525
 "enum": ["oic.if.b", "oic.if.ll", "oic.if.baseline"] 3526
 } 3527
 }, 3528
 "definitions": { 3529
 "links": { 3530
 "type": "array", 3531
 "items": { 3532
 "$ref": "#/definitions/oic.oic-link" 3533
 } 3534
 }, 3535
 "batch-retrieve": { 3536
 "title": "Collection Batch Retrieve Format (auto merged)", 3537
 "minItems": 1, 3538
 "items": { 3539
 "additionalProperties": true, 3540
 "properties": { 3541
 "href": { 3542
 "$ref": 3543
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3544
schema.json#/definitions/href" 3545
 }, 3546
 "rep": { 3547

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 96

 "oneOf": [{ 3548
 "description": "The response payload from a 3549
single Resource", 3550
 "type": "object" 3551
 }, 3552
 { 3553
 "description": " The response payload from a 3554
Collection (batch) Resource", 3555
 "items": { 3556
 "properties": { 3557
 "anchor": { 3558
 "$ref": 3559
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3560
schema.json#/definitions/anchor" 3561
 }, 3562
 "di": { 3563
 "$ref": 3564
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3565
schema.json#/definitions/di" 3566
 }, 3567
 "eps": { 3568
 "$ref": 3569
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3570
schema.json#/definitions/eps" 3571
 }, 3572
 "href": { 3573
 "$ref": 3574
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3575
schema.json#/definitions/href" 3576
 }, 3577
 "if": { 3578
 "description": "The OCF 3579
Interface set supported by this Resource", 3580
 "items": { 3581
 "enum": [3582
 3583
 "oic.if.baseline", 3584
 "oic.if.ll", 3585
 "oic.if.b", 3586
 "oic.if.rw", 3587
 "oic.if.r", 3588
 "oic.if.a", 3589
 "oic.if.s"], 3590
 "type": 3591
"string" 3592
 }, 3593
 "minItems": 1, 3594
 "uniqueItems": true, 3595
 "type": "array" 3596
 }, 3597
 "ins": { 3598
 "$ref": 3599
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3600
schema.json#/definitions/ins" 3601
 }, 3602
 "p": { 3603
 "$ref": 3604
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3605
schema.json#/definitions/p" 3606
 }, 3607
 "rel": { 3608
 "description": "The relation of the target URI 3609
referenced by the Link to the context URI", 3610
 "oneOf": [3611
 { 3612
 "$ref": 3613
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3614
schema.json#/definitions/rel_array" 3615
 }, 3616
 { 3617
 "$ref": 3618

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 97

"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3619
schema.json#/definitions/rel_string" 3620
 } 3621
] 3622
 }, 3623
 "rt": { 3624
 "description": 3625
"Resource Type of the Resource", 3626
 "items": { 3627
 "maxLength": 3628
64, 3629
 "type": 3630
"string" 3631
 }, 3632
 "minItems": 1, 3633
 "uniqueItems": true, 3634
 "type": "array" 3635
 }, 3636
 "title": { 3637
 "$ref": 3638
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3639
schema.json#/definitions/title" 3640
 }, 3641
 "type": { 3642
 "$ref": 3643
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3644
schema.json#/definitions/type" 3645
 } 3646
 }, 3647
 "required": [3648
 "href", 3649
 "rt", 3650
 "if" 3651
], 3652
 "type": "object" 3653
 }, 3654
 "type": "array" 3655
 }] 3656
 } 3657
 }, 3658
 "required": [3659
 "href", 3660
 "rep" 3661
], 3662
 "type": "object" 3663
 }, 3664
 "type": "array" 3665
 }, 3666
 "baseline": { 3667
 "properties": { 3668
 "links": { 3669
 "description": "A set of simple or individual Links.", 3670
 "items": { 3671
 "$ref": "#/definitions/oic.oic-link" 3672
 }, 3673
 "type": "array" 3674
 }, 3675
 "n": { "$ref" : 3676
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-3677
schema.json#/definitions/n"}, 3678
 "id": { "$ref" : 3679
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-3680
schema.json#/definitions/id"}, 3681
 "rt": { 3682
 "description": "Resource Type of this Resource", 3683
 "items": { 3684
 "enum": ["oic.wk.atomicmeasurement"], 3685
 "type": "string", 3686
 "maxLength": 64 3687
 }, 3688
 "minItems": 1, 3689

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 98

 "readOnly": true, 3690
 "uniqueItems": true, 3691
 "type": "array" 3692
 }, 3693
 "rts": { 3694
 "description": "An array of Resource Types that are supported 3695
within an array of Links exposed by the Resource", 3696
 "items": { 3697
 "maxLength": 64, 3698
 "type": "string" 3699
 }, 3700
 "minItems": 1, 3701
 "readOnly": true, 3702
 "uniqueItems": true, 3703
 "type": "array" 3704
 }, 3705
 "rts-m": { 3706
 "description": "An array of Resource Types that are mandatory 3707
to be exposed within an array of Links exposed by the Resource", 3708
 "items": { 3709
 "maxLength": 64, 3710
 "type": "string" 3711
 }, 3712
 "minItems": 1, 3713
 "readOnly": true, 3714
 "uniqueItems": true, 3715
 "type": "array" 3716
 }, 3717
 "if": { 3718
 "description": "The OCF Interface set supported by this 3719
Resource", 3720
 "items": { 3721
 "enum": ["oic.if.b", "oic.if.ll", "oic.if.baseline"], 3722
 "type": "string" 3723
 }, 3724
 "minItems": 3, 3725
 "readOnly": true, 3726
 "uniqueItems": true, 3727
 "type": "array" 3728
 } 3729
 }, 3730
 "type": "object", 3731
 "required": [3732
 "rt", 3733
 "if", 3734
 "links" 3735
] 3736
 }, 3737
 "oic.oic-link": { 3738
 "properties": { 3739
 "anchor": { 3740
 "$ref": 3741
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3742
schema.json#/definitions/anchor" 3743
 }, 3744
 "di": { 3745
 "$ref": 3746
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3747
schema.json#/definitions/di" 3748
 }, 3749
 "eps": { 3750
 "$ref": 3751
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3752
schema.json#/definitions/eps" 3753
 }, 3754
 "href": { 3755
 "$ref": 3756
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3757
schema.json#/definitions/href" 3758
 }, 3759
 "if": { 3760

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 99

 "description": "The OCF Interface set supported by this 3761
Resource", 3762
 "items": { 3763
 "enum": [3764
 "oic.if.baseline", 3765
 "oic.if.ll", 3766
 "oic.if.b", 3767
 "oic.if.rw", 3768
 "oic.if.r", 3769
 "oic.if.a", 3770
 "oic.if.s"], 3771
 "type": "string" 3772
 }, 3773
 "minItems": 1, 3774
 "uniqueItems": true, 3775
 "type": "array" 3776
 }, 3777
 "ins": { 3778
 "$ref": 3779
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3780
schema.json#/definitions/ins" 3781
 }, 3782
 "p": { 3783
 "$ref": 3784
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3785
schema.json#/definitions/p" 3786
 }, 3787
 "rel": { 3788
 "description": "The relation of the target URI referenced by the Link to the context URI", 3789
 "oneOf": [3790
 { 3791
 "$ref": 3792
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3793
schema.json#/definitions/rel_array" 3794
 }, 3795
 { 3796
 "$ref": 3797
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3798
schema.json#/definitions/rel_string" 3799
 } 3800
] 3801
 }, 3802
 "rt": { 3803
 "description": "Resource Type of the Resource", 3804
 "items": { 3805
 "maxLength": 64, 3806
 "type": "string" 3807
 }, 3808
 "minItems": 1, 3809
 "uniqueItems": true, 3810
 "type": "array" 3811
 }, 3812
 "title": { 3813
 "$ref": 3814
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3815
schema.json#/definitions/title" 3816
 }, 3817
 "type": { 3818
 "$ref": 3819
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3820
schema.json#/definitions/type" 3821
 } 3822
 }, 3823
 "required": [3824
 "href", 3825
 "rt", 3826
 "if" 3827
], 3828
 "type": "object" 3829
 } 3830
 } 3831

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 100

} 3832
 3833

A.2.5 Property definition 3834

Table A.2 defines the Properties that are part of the "oic.wk.atomicmeasurement" Resource Type. 3835

Table A.2 – The Property definitions of the Resource with type "rt" = 3836
"oic.wk.atomicmeasurement". 3837

Property name Value type Mandatory Access mode Description

href multiple types: see
schema

Yes Read Write

rep multiple types: see
schema

Yes Read Write

links array: see schema Yes Read Write A set of simple or
individual Links.

n multiple types: see
schema

No Read Write

id multiple types: see
schema

No Read Write

rt array: see schema Yes Read Only Resource Type of
this Resource

rts array: see schema No Read Only An array of
Resource Types that
are supported within
an array of Links
exposed by the
Resource

rts-m array: see schema No Read Only An array of
Resource Types that
are mandatory to be
exposed within an
array of Links
exposed by the
Resource

if array: see schema Yes Read Only The OCF Interface
set supported by this
Resource

anchor multiple types: see
schema

No Read Write

di multiple types: see
schema

No Read Write

eps multiple types: see
schema

No Read Write

href multiple types: see
schema

Yes Read Write

if array: see schema Yes Read Write The OCF Interface
set supported by this
Resource

ins multiple types: see
schema

No Read Write

p multiple types: see
schema

No Read Write

rel multiple types: see
schema

No Read Write The relation of the
target URI
referenced by the

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 101

Link to the context
URI

rt array: see schema Yes Read Write Resource Type of
the Resource

title multiple types: see
schema

No Read Write

type multiple types: see
schema

No Read Write

A.2.6 CRUDN behaviour 3838

Table A.3 defines the CRUDN operations that are supported on the "oic.wk.atomicmeasurement" 3839
Resource Type. 3840

Table A.3 – The CRUDN operations of the Resource with type "rt" = 3841
"oic.wk.atomicmeasurement". 3842

Create Read Update Delete Notify

 get observe

A.3 Collection 3843

A.3.1 Introduction 3844

Collection Resource Type contains Properties and Links. 3845
The oic.if.baseline OCF Interface exposes a representation of 3846
the Links and the Properties of the Collection Resource itself 3847
 3848

A.3.2 Example URI 3849

/CollectionResURI 3850

A.3.3 Resource type 3851

The Resource Type is defined as: "oic.wk.col". 3852

A.3.4 OpenAPI 2.0 definition 3853

{ 3854
 "swagger": "2.0", 3855
 "info": { 3856
 "title": "Collection", 3857
 "version": "2019-03-04", 3858
 "license": { 3859
 "name": "OCF Data Model License", 3860
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 3861
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 3862
 }, 3863
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 3864
 }, 3865
 "schemes": [3866
 "http" 3867
], 3868
 "consumes": [3869
 "application/json" 3870
], 3871
 "produces": [3872
 "application/json" 3873
], 3874
 "paths": { 3875
 "/CollectionResURI?if=oic.if.ll" : { 3876
 "get": { 3877
 "description": "Collection Resource Type contains Properties and Links.\nThe oic.if.ll OCF 3878

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 102

Interface exposes a representation of the Links\n", 3879
 "parameters": [3880
 { 3881
 "$ref": "#/parameters/interface-all" 3882
 } 3883
], 3884
 "responses": { 3885
 "200": { 3886
 "description" : "", 3887
 "x-example": [3888
 { 3889
 "href": "/switch", 3890
 "rt": ["oic.r.switch.binary"], 3891
 "if": ["oic.if.a", "oic.if.baseline"], 3892
 "eps": [3893
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 3894
 {"ep": "coaps://[fe80::b1d6]:1122"}, 3895
 {"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri": 3} 3896
] 3897
 }, 3898
 { 3899
 "href": "/airFlow", 3900
 "rt": ["oic.r.airflow"], 3901
 "if": ["oic.if.a", "oic.if.baseline"], 3902
 "eps": [3903
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 3904
 {"ep": "coaps://[fe80::b1d6]:1122"}, 3905
 {"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri": 3} 3906
] 3907
 } 3908
], 3909
 "schema": { 3910
 "$ref": "#/definitions/slinks" 3911
 } 3912
 } 3913
 } 3914
 } 3915
 }, 3916
 "/CollectionResURI?if=oic.if.baseline" : { 3917
 "get": { 3918
 "description": "Collection Resource Type contains Properties and Links.\nThe oic.if.baseline 3919
OCF Interface exposes a representation of\nthe Links and the Properties of the Collection Resource 3920
itself\n", 3921
 "parameters": [3922
 { 3923
 "$ref": "#/parameters/interface-all" 3924
 } 3925
], 3926
 "responses": { 3927
 "200": { 3928
 "description" : "", 3929
 "x-example": { 3930
 "rt": ["oic.wk.col"], 3931
 "if": ["oic.if.ll", "oic.if.b", "oic.if.baseline"], 3932
 "rts": ["oic.r.switch.binary", "oic.r.airflow"], 3933
 "rts-m": ["oic.r.switch.binary"], 3934
 "links": [3935
 { 3936
 "href": "/switch", 3937
 "rt": ["oic.r.switch.binary"], 3938
 "if": ["oic.if.a", "oic.if.baseline"], 3939
 "eps": [3940
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 3941
 {"ep": "coaps://[fe80::b1d6]:1122"}, 3942
 {"ep": "coaps+tcp://[2001:db8:a::123]:2222", "pri": 3} 3943
] 3944
 }, 3945
 { 3946
 "href": "/airFlow", 3947
 "rt": ["oic.r.airflow"], 3948
 "if": ["oic.if.a", "oic.if.baseline"], 3949

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 103

 "eps": [3950
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 3951
 {"ep": "coaps://[fe80::b1d6]:1122"}, 3952
 {"ep": "coaps+tcp://[2001:db8:a::123]:2222", "pri": 3} 3953
] 3954
 } 3955
] 3956
 }, 3957
 "schema": { 3958
 "$ref": "#/definitions/sbaseline" 3959
 } 3960
 } 3961
 } 3962
 }, 3963
 "post": { 3964
 "description": "Update on Baseline OCF Interface\n", 3965
 "parameters": [3966
 { 3967
 "$ref": "#/parameters/interface-update" 3968
 }, 3969
 { 3970
 "name": "body", 3971
 "in": "body", 3972
 "required": true, 3973
 "schema": { 3974
 "$ref": "#/definitions/sbaseline-update" 3975
 } 3976
 } 3977
], 3978
 "responses": { 3979
 "200": { 3980
 "description" : "", 3981
 "schema": { 3982
 "$ref": "#/definitions/sbaseline" 3983
 } 3984
 } 3985
 } 3986
 } 3987
 }, 3988
 "/CollectionResURI?if=oic.if.b" : { 3989
 "get": { 3990
 "description": "Collection Resource Type contains Properties and Links.\nThe oic.if.b OCF 3991
Interfacce exposes a composite representation of the\nResources pointed to by the Links\n", 3992
 "parameters": [3993
 { 3994
 "$ref": "#/parameters/interface-all" 3995
 } 3996
], 3997
 "responses": { 3998
 "200": { 3999
 "description" : "All targets returned OK status", 4000
 "x-example": [4001
 { 4002
 "href": "/switch", 4003
 "rep": { 4004
 "value": true 4005
 } 4006
 }, 4007
 { 4008
 "href": "/airFlow", 4009
 "rep": { 4010
 "direction": "floor", 4011
 "speed": 3 4012
 } 4013
 } 4014
], 4015
 "schema": { 4016
 "$ref": "#/definitions/sbatch-retrieve" 4017
 } 4018
 }, 4019
 "404": { 4020

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 104

 "description" : "One or more targets did not return an OK status, return a 4021
representation containing returned Properties from the targets that returned OK", 4022
 "x-example": [4023
 { 4024
 "href": "/switch", 4025
 "rep": { 4026
 "value": true 4027
 } 4028
 } 4029
], 4030
 "schema": { 4031
 "$ref": "#/definitions/sbatch-retrieve" 4032
 } 4033
 } 4034
 } 4035
 }, 4036
 "post": { 4037
 "description": "Update on Batch OCF Interface\n", 4038
 "parameters": [4039
 { 4040
 "$ref": "#/parameters/interface-update" 4041
 }, 4042
 { 4043
 "name": "body", 4044
 "in": "body", 4045
 "required": true, 4046
 "schema": { 4047
 "$ref": "#/definitions/sbatch-update" 4048
 }, 4049
 "x-example": [4050
 { 4051
 "href": "/switch", 4052
 "rep": { 4053
 "value": true 4054
 } 4055
 }, 4056
 { 4057
 "href": "/airFlow", 4058
 "rep": { 4059
 "direction": "floor", 4060
 "speed": 3 4061
 } 4062
 } 4063
] 4064
 } 4065
], 4066
 "responses": { 4067
 "200": { 4068
 "description" : "All targets returned OK status, return a representation of the current 4069
state of all targets", 4070
 "x-example": [4071
 { 4072
 "href": "/switch", 4073
 "rep": { 4074
 "value": true 4075
 } 4076
 }, 4077
 { 4078
 "href": "/airFlow", 4079
 "rep": { 4080
 "direction": "demist", 4081
 "speed": 5 4082
 } 4083
 } 4084
], 4085
 "schema": { 4086
 "$ref": "#/definitions/sbatch-retrieve" 4087
 } 4088
 }, 4089
 "403": { 4090
 "description" : "One or more targets did not return OK status; return a retrieve 4091

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 105

representation of the current state of all targets in the batch", 4092
 "x-example": [4093
 { 4094
 "href": "/switch", 4095
 "rep": { 4096
 "value": true 4097
 } 4098
 }, 4099
 { 4100
 "href": "/airFlow", 4101
 "rep": { 4102
 "direction": "floor", 4103
 "speed": 3 4104
 } 4105
 } 4106
], 4107
 "schema": { 4108
 "$ref": "#/definitions/sbatch-retrieve" 4109
 } 4110
 } 4111
 } 4112
 } 4113
 } 4114
 }, 4115
 "parameters": { 4116
 "interface-all" : { 4117
 "in" : "query", 4118
 "name" : "if", 4119
 "type" : "string", 4120
 "enum" : ["oic.if.ll", "oic.if.b", "oic.if.baseline"] 4121
 }, 4122
 "interface-update" : { 4123
 "in" : "query", 4124
 "name" : "if", 4125
 "type" : "string", 4126
 "enum" : ["oic.if.b", "oic.if.baseline"] 4127
 } 4128
 }, 4129
 "definitions": { 4130
 "sbaseline" : { 4131
 "properties": { 4132
 "links" : { 4133
 "description": "A set of simple or individual Links.", 4134
 "items": { 4135
 "$ref": "#/definitions/oic.oic-link" 4136
 }, 4137
 "type": "array" 4138
 }, 4139
 "n": { 4140
 "$ref" : 4141
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4142
schema.json#/definitions/n" 4143
 }, 4144
 "id": { 4145
 "$ref" : 4146
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4147
schema.json#/definitions/id" 4148
 }, 4149
 "rt": { 4150
 "$ref": "#/definitions/oic.core.rt-col" 4151
 }, 4152
 "rts": { 4153
 "$ref": "#/definitions/oic.core.rt" 4154
 }, 4155
 "rts-m": { 4156
 "$ref": "#/definitions/oic.core.rt" 4157
 }, 4158
 "if": { 4159
 "description": "The OCF Interfaces supported by this Resource", 4160
 "items": { 4161
 "enum": [4162

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 106

 "oic.if.ll", 4163
 "oic.if.baseline", 4164
 "oic.if.b" 4165
], 4166
 "type": "string", 4167
 "maxLength": 64 4168
 }, 4169
 "minItems": 2, 4170
 "uniqueItems": true, 4171
 "readOnly": true, 4172
 "type": "array" 4173
 } 4174
 }, 4175
 "additionalProperties": true, 4176
 "type" : "object", 4177
 "required": [4178
 "rt", 4179
 "if", 4180
 "links" 4181
] 4182
 }, 4183
 "sbaseline-update": { 4184
 "additionalProperties": true 4185
 }, 4186
 "oic.core.rt-col": { 4187
 "description": "Resource Type of the Resource", 4188
 "items": { 4189
 "enum": ["oic.wk.col"], 4190
 "type": "string", 4191
 "maxLength": 64 4192
 }, 4193
 "minItems": 1, 4194
 "uniqueItems": true, 4195
 "readOnly": true, 4196
 "type": "array" 4197
 }, 4198
 "oic.core.rt": { 4199
 "description": "Resource Type or set of Resource Types", 4200
 "items": { 4201
 "type": "string", 4202
 "maxLength": 64 4203
 }, 4204
 "minItems": 1, 4205
 "uniqueItems": true, 4206
 "readOnly": true, 4207
 "type": "array" 4208
 }, 4209
 "sbatch-retrieve" : { 4210
 "minItems" : 1, 4211
 "items" : { 4212
 "additionalProperties": true, 4213
 "properties": { 4214
 "href": { 4215
 "$ref": 4216
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4217
schema.json#/definitions/href" 4218
 }, 4219
 "rep": { 4220
 "oneOf": [4221
 { 4222
 "description": "The response payload from a single Resource", 4223
 "type": "object" 4224
 }, 4225
 { 4226
 "description": " The response payload from a Collection (batch) Resource", 4227
 "items": { 4228
 "$ref": "#/definitions/oic.oic-link" 4229
 }, 4230
 "type": "array" 4231
 } 4232
] 4233

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 107

 } 4234
 }, 4235
 "required": [4236
 "href", 4237
 "rep" 4238
], 4239
 "type": "object" 4240
 }, 4241
 "type" : "array" 4242
 }, 4243
 "sbatch-update" : { 4244
 "title" : "Collection Batch Update Format", 4245
 "minItems" : 1, 4246
 "items" : { 4247
 "$ref": "#/definitions/sbatch-update.item" 4248
 }, 4249
 "type" : "array" 4250
 }, 4251
 "sbatch-update.item" : { 4252
 "additionalProperties": true, 4253
 "description": "Array of Resource representations to apply to the batch Collection, using href 4254
to indicate which Resource(s) in the batch to update. If the href Property is empty, effectively 4255
making the URI reference to the Collection itself, the representation is to be applied to all 4256
Resources in the batch", 4257
 "properties": { 4258
 "href": { 4259
 "$ref": 4260
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4261
schema.json#/definitions/href" 4262
 }, 4263
 "rep": { 4264
 "oneOf": [4265
 { 4266
 "description": "The payload for a single Resource", 4267
 "type": "object" 4268
 }, 4269
 { 4270
 "description": " The payload for a Collection (batch) Resource", 4271
 "items": { 4272
 "$ref": "#/definitions/oic.oic-link" 4273
 }, 4274
 "type": "array" 4275
 } 4276
] 4277
 } 4278
 }, 4279
 "required": [4280
 "href", 4281
 "rep" 4282
], 4283
 "type": "object" 4284
 }, 4285
 "slinks" : { 4286
 "type" : "array", 4287
 "items" : { 4288
 "$ref": "#/definitions/oic.oic-link" 4289
 } 4290
 }, 4291
 "oic.oic-link": { 4292
 "properties": { 4293
 "if": { 4294
 "description": "The OCF Interfaces supported by the Linked target", 4295
 "items": { 4296
 "enum": [4297
 "oic.if.baseline", 4298
 "oic.if.ll", 4299
 "oic.if.b", 4300
 "oic.if.rw", 4301
 "oic.if.r", 4302
 "oic.if.a", 4303
 "oic.if.s" 4304

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 108

], 4305
 "type": "string", 4306
 "maxLength": 64 4307
 }, 4308
 "minItems": 1, 4309
 "uniqueItems": true, 4310
 "readOnly": true, 4311
 "type": "array" 4312
 }, 4313
 "rt": { 4314
 "$ref": "#/definitions/oic.core.rt" 4315
 }, 4316
 "anchor": { 4317
 "$ref": 4318
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4319
schema.json#/definitions/anchor" 4320
 }, 4321
 "di": { 4322
 "$ref": 4323
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4324
schema.json#/definitions/di" 4325
 }, 4326
 "eps": { 4327
 "$ref": 4328
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4329
schema.json#/definitions/eps" 4330
 }, 4331
 "href": { 4332
 "$ref": 4333
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4334
schema.json#/definitions/href" 4335
 }, 4336
 "ins": { 4337
 "$ref": 4338
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4339
schema.json#/definitions/ins" 4340
 }, 4341
 "p": { 4342
 "$ref": 4343
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4344
schema.json#/definitions/p" 4345
 }, 4346
 "rel": { 4347
 "$ref": 4348
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4349
schema.json#/definitions/rel_array" 4350
 }, 4351
 "title": { 4352
 "$ref": 4353
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4354
schema.json#/definitions/title" 4355
 }, 4356
 "type": { 4357
 "$ref": 4358
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4359
schema.json#/definitions/type" 4360
 }, 4361
 "tag-pos-desc": { 4362
 "$ref": 4363
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4364
schema.json#/definitions/tag-pos-desc" 4365
 }, 4366
 "tag-pos-rel": { 4367
 "$ref": 4368
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4369
schema.json#/definitions/tag-pos-rel" 4370
 }, 4371
 "tag-func-desc": { 4372
 "$ref": 4373
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4374
schema.json#/definitions/tag-func-desc" 4375

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 109

 } 4376
 }, 4377
 "required": [4378
 "href", 4379
 "rt", 4380
 "if" 4381
], 4382
 "type": "object" 4383
 } 4384
 } 4385
} 4386
 4387

A.3.5 Property definition 4388

Table A.4 defines the Properties that are part of the "oic.wk.col" Resource Type. 4389

Table A.4 – The Property definitions of the Resource with type "rt" = "oic.wk.col". 4390

Property name Value type Mandatory Access mode Description

links array: see schema Yes Read Write A set of simple or
individual Links.

n multiple types: see
schema

No Read Write

id multiple types: see
schema

No Read Write

rt multiple types: see
schema

Yes Read Write

rts multiple types: see
schema

No Read Write

rts-m multiple types: see
schema

No Read Write

if array: see schema Yes Read Only The OCF Interfaces
supported by this
Resource

href multiple types: see
schema

Yes Read Write

rep multiple types: see
schema

Yes Read Write

href multiple types: see
schema

Yes Read Write

rep multiple types: see
schema

Yes Read Write

if array: see schema Yes Read Only The OCF Interfaces
supported by the
Linked target

rt multiple types: see
schema

Yes Read Write

anchor multiple types: see
schema

No Read Write

di multiple types: see
schema

No Read Write

eps multiple types: see
schema

No Read Write

href multiple types: see
schema

Yes Read Write

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 110

ins multiple types: see
schema

No Read Write

p multiple types: see
schema

No Read Write

rel multiple types: see
schema

No Read Write

title multiple types: see
schema

No Read Write

type multiple types: see
schema

No Read Write

tag-pos-desc multiple types: see
schema

No Read Write

tag-pos-rel multiple types: see
schema

No Read Write

tag-func-desc multiple types: see
schema

No Read Write

A.3.6 CRUDN behaviour 4391

Table A.5 defines the CRUDN operations that are supported on the "oic.wk.col" Resource Type. 4392

Table A.5 – The CRUDN operations of the Resource with type "rt" = "oic.wk.col". 4393

Create Read Update Delete Notify

 get post observe

A.4 Device 4394

A.4.1 Introduction 4395

Known Resource that is hosted by every Server. 4396
Allows for logical Device specific information to be discovered. 4397
 4398

A.4.2 Well-known URI 4399

/oic/d 4400

A.4.3 Resource type 4401

The Resource Type is defined as: "oic.wk.d". 4402

A.4.4 OpenAPI 2.0 definition 4403

{ 4404
 "swagger": "2.0", 4405
 "info": { 4406
 "title": "Device", 4407
 "version": "2019-03-13", 4408
 "license": { 4409
 "name": "OCF Data Model License", 4410
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 4411
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 4412
 }, 4413
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 4414
 }, 4415
 "schemes": [4416
 "http" 4417
], 4418
 "consumes": [4419
 "application/json" 4420
], 4421

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 111

 "produces": [4422
 "application/json" 4423
], 4424
 "paths": { 4425
 "/oic/d" : { 4426
 "get": { 4427
 "description": "Known Resource that is hosted by every Server.\nAllows for logical Device 4428
specific information to be discovered.\n", 4429
 "parameters": [4430
 { 4431
 "$ref": "#/parameters/interface" 4432
 } 4433
], 4434
 "responses": { 4435
 "200": { 4436
 "description": "", 4437
 "x-example": 4438
 { 4439
 "n": "Device 1", 4440
 "rt": ["oic.wk.d"], 4441
 "di": "54919CA5-4101-4AE4-595B-353C51AA983C", 4442
 "icv": "ocf.2.0.2", 4443
 "dmv": "ocf.res.1.0.0, ocf.sh.1.0.0", 4444
 "piid": "6F0AAC04-2BB0-468D-B57C-16570A26AE48" 4445
 }, 4446
 "schema": { 4447
 "$ref": "#/definitions/Device" 4448
 } 4449
 } 4450
 } 4451
 } 4452
 } 4453
 }, 4454
 "parameters": { 4455
 "interface" : { 4456
 "in": "query", 4457
 "name": "if", 4458
 "type": "string", 4459
 "enum": ["oic.if.r", "oic.if.baseline"] 4460
 } 4461
 }, 4462
 "definitions": { 4463
 "Device": { 4464
 "properties": { 4465
 "rt": { 4466
 "description": "Resource Type of the Resource", 4467
 "items": { 4468
 "type": "string", 4469
 "maxLength": 64 4470
 }, 4471
 "minItems": 1, 4472
 "readOnly": true, 4473
 "uniqueItems": true, 4474
 "type": "array" 4475
 }, 4476
 "ld": { 4477
 "description": "Localized Descriptions.", 4478
 "items": { 4479
 "properties": { 4480
 "language": { 4481
 "allOf": [4482
 { 4483
 "$ref" : "http://openconnectivityfoundation.github.io/core/schemas/oic.types-4484
schema.json#/definitions/language-tag" 4485
 }, 4486
 { 4487
 "description": "An RFC 5646 language tag.", 4488
 "readOnly": true 4489
 } 4490
] 4491
 }, 4492

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 112

 "value": { 4493
 "description": "Device description in the indicated language.", 4494
 "maxLength": 64, 4495
 "readOnly": true, 4496
 "type": "string" 4497
 } 4498
 }, 4499
 "type": "object" 4500
 }, 4501
 "minItems": 1, 4502
 "readOnly": true, 4503
 "type": "array" 4504
 }, 4505
 "piid": { 4506
 "allOf": [4507
 { 4508
 "$ref" : "http://openconnectivityfoundation.github.io/core/schemas/oic.types-4509
schema.json#/definitions/uuid" 4510
 }, 4511
 { 4512
 "description": "Protocol independent unique identifier for the Device that is 4513
immutable.", 4514
 "readOnly": true 4515
 } 4516
] 4517
 }, 4518
 "di": { 4519
 "allOf": [4520
 { 4521
 "$ref" : "http://openconnectivityfoundation.github.io/core/schemas/oic.types-4522
schema.json#/definitions/uuid" 4523
 }, 4524
 { 4525
 "description": "Unique identifier for the Device", 4526
 "readOnly": true 4527
 } 4528
] 4529
 }, 4530
 "dmno": { 4531
 "description": "Model number as designated by manufacturer.", 4532
 "maxLength": 64, 4533
 "readOnly": true, 4534
 "type": "string" 4535
 }, 4536
 "sv": { 4537
 "description": "Software version.", 4538
 "maxLength": 64, 4539
 "readOnly": true, 4540
 "type": "string" 4541
 }, 4542
 "dmn": { 4543
 "description": "Manufacturer Name.", 4544
 "items": { 4545
 "properties": { 4546
 "language": { 4547
 "allOf": [4548
 { 4549
 "$ref" : "http://openconnectivityfoundation.github.io/core/schemas/oic.types-4550
schema.json#/definitions/language-tag" 4551
 }, 4552
 { 4553
 "description": "An RFC 5646 language tag.", 4554
 "readOnly": true 4555
 } 4556
] 4557
 }, 4558
 "value": { 4559
 "description": "Manufacturer name in the indicated language.", 4560
 "maxLength": 64, 4561
 "readOnly": true, 4562
 "type": "string" 4563

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 113

 } 4564
 }, 4565
 "type": "object" 4566
 }, 4567
 "minItems": 1, 4568
 "readOnly": true, 4569
 "type": "array" 4570
 }, 4571
 "icv": { 4572
 "description": "The version of the Device", 4573
 "maxLength": 64, 4574
 "readOnly": true, 4575
 "type": "string" 4576
 }, 4577
 "dmv": { 4578
 "description": "Specification versions of the Resource and Device Specifications to which 4579
this device data model is implemented", 4580
 "maxLength": 256, 4581
 "readOnly": true, 4582
 "type": "string" 4583
 }, 4584
 "n": { 4585
 "$ref" : 4586
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4587
schema.json#/definitions/n" 4588
 }, 4589
 "id": { 4590
 "$ref" : 4591
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4592
schema.json#/definitions/id" 4593
 }, 4594
 "if": { 4595
 "description": "The OCF Interfacces supported by this Resource", 4596
 "items": { 4597
 "enum": [4598
 "oic.if.r", 4599
 "oic.if.baseline" 4600
], 4601
 "type": "string", 4602
 "maxLength": 64 4603
 }, 4604
 "minItems": 2, 4605
 "uniqueItems": true, 4606
 "readOnly": true, 4607
 "type": "array" 4608
 }, 4609
 "econame" : { 4610
 "description": "Ecosystem Name of the Bridged Device which is exposed by this VOD.", 4611
 "type": "string", 4612
 "enum": ["BLE", "oneM2M", "UPlus", "Zigbee", "Z-Wave"], 4613
 "readOnly": true 4614
 }, 4615
 "ecoversion" : { 4616
 "description": "Version of ecosystem that a Bridged Device belongs to. Typical version 4617
string format is like n.n (e.g. 5.0).", 4618
 "type": "string", 4619
 "maxLength": 64, 4620
 "readOnly": true 4621
 } 4622
 }, 4623
 "type": "object", 4624
 "required": ["n", "di", "icv", "dmv", "piid"] 4625
 } 4626
 } 4627
} 4628
 4629

A.4.5 Property definition 4630

Table A.6 defines the Properties that are part of the "oic.wk.d" Resource Type. 4631

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 114

Table A.6 – The Property definitions of the Resource with type "rt" = "oic.wk.d". 4632

Property name Value type Mandatory Access mode Description

rt array: see schema No Read Only Resource Type of
the Resource

ld array: see schema No Read Only Localized
Descriptions.

piid multiple types: see
schema

Yes Read Write

di multiple types: see
schema

Yes Read Write

dmno string No Read Only Model number as
designated by
manufacturer.

sv string No Read Only Software version.

dmn array: see schema No Read Only Manufacturer Name.

icv string Yes Read Only The version of the
Device

dmv string Yes Read Only Specification
versions of the
Resource and
Device
Specifications to
which this device
data model is
implemented

n multiple types: see
schema

Yes Read Write

id multiple types: see
schema

No Read Write

if array: see schema No Read Only The OCF Interfacces
supported by this
Resource

econame string No Read Only Ecosystem Name of
the Bridged Device
which is exposed by
this VOD.

ecoversion string No Read Only Version of
ecosystem that a
Bridged Device
belongs to. Typical
version string format
is like n.n (e.g. 5.0).

A.4.6 CRUDN behaviour 4633

Table A.7 defines the CRUDN operations that are supported on the "oic.wk.d" Resource Type. 4634

Table A.7 – The CRUDN operations of the Resource with type "rt" = "oic.wk.d". 4635

Create Read Update Delete Notify

 get observe

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 115

A.5 Introspection Resource 4636

A.5.1 Introduction 4637

This Resource provides the means to get the Introspection Device Data (IDD) specifying all the 4638
OCF Endpoints of the Device. 4639
The url hosted by this Resource is either a local or an external url. 4640
 4641

A.5.2 Well-known URI 4642

/IntrospectionResURI 4643

A.5.3 Resource type 4644

The Resource Type is defined as: "oic.wk.introspection". 4645

A.5.4 OpenAPI 2.0 definition 4646

{ 4647
 "swagger": "2.0", 4648
 "info": { 4649
 "title": "Introspection Resource", 4650
 "version": "2019-03-04", 4651
 "license": { 4652
 "name": "OCF Data Model License", 4653
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 4654
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 4655
 }, 4656
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 4657
 }, 4658
 "schemes": [4659
 "http" 4660
], 4661
 "consumes": [4662
 "application/json" 4663
], 4664
 "produces": [4665
 "application/json" 4666
], 4667
 "paths": { 4668
 "/IntrospectionResURI": { 4669
 "get": { 4670
 "description": "This Resource provides the means to get the Introspection Device Data (IDD) 4671
specifying all the OCF Endpoints of the Device.\nThe url hosted by this Resource is either a local 4672
or an external url.\n", 4673
 "parameters": [4674
 { 4675
 "$ref": "#/parameters/interface" 4676
 } 4677
], 4678
 "responses": { 4679
 "200": { 4680
 "description": "", 4681
 "x-example": { 4682
 "rt": ["oic.wk.introspection"], 4683
 "urlInfo": [4684
 { 4685
 "content-type": "application/cbor", 4686
 "protocol": "coap", 4687
 "url": "coap://[fe80::1]:1234/IntrospectionExampleURI" 4688
 } 4689
] 4690
 }, 4691
 "schema": { 4692
 "$ref": "#/definitions/oic.wk.introspectionInfo" 4693
 } 4694
 } 4695
 } 4696

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 116

 } 4697
 } 4698
 }, 4699
 "parameters": { 4700
 "interface": { 4701
 "in": "query", 4702
 "name": "if", 4703
 "type": "string", 4704
 "enum": ["oic.if.r", "oic.if.baseline"] 4705
 } 4706
 }, 4707
 "definitions": { 4708
 "oic.wk.introspectionInfo": { 4709
 "properties": { 4710
 "rt": { 4711
 "description": "Resource Type of the Resource", 4712
 "items": { 4713
 "enum": ["oic.wk.introspection"], 4714
 "type": "string", 4715
 "maxLength": 64 4716
 }, 4717
 "minItems": 1, 4718
 "readOnly": true, 4719
 "uniqueItems": true, 4720
 "type": "array" 4721
 }, 4722
 "n": { 4723
 "$ref": 4724
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4725
schema.json#/definitions/n" 4726
 }, 4727
 "urlInfo": { 4728
 "description": "Information on the location of the Introspection Device Data (IDD).", 4729
 "items": { 4730
 "properties": { 4731
 "content-type": { 4732
 "default": "application/cbor", 4733
 "description": "content-type of the Introspection Device Data", 4734
 "enum": [4735
 "application/json", 4736
 "application/cbor" 4737
], 4738
 "type": "string" 4739
 }, 4740
 "protocol": { 4741
 "description": "Identifier for the protocol to be used to obtain the Introspection 4742
Device Data", 4743
 "enum": [4744
 "coap", 4745
 "coaps", 4746
 "http", 4747
 "https", 4748
 "coap+tcp", 4749
 "coaps+tcp" 4750
], 4751
 "type": "string" 4752
 }, 4753
 "url": { 4754
 "description": "The URL of the Introspection Device Data.", 4755
 "format": "uri", 4756
 "type": "string" 4757
 }, 4758
 "version": { 4759
 "default": 1, 4760
 "description": "The version of the Introspection Device Data that can be 4761
downloaded", 4762
 "enum": [4763
 1 4764
], 4765
 "type": "integer" 4766
 } 4767

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 117

 }, 4768
 "required": [4769
 "url", 4770
 "protocol" 4771
], 4772
 "type": "object" 4773
 }, 4774
 "minItems": 1, 4775
 "readOnly": true, 4776
 "type": "array" 4777
 }, 4778
 "id": { 4779
 "$ref": 4780
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4781
schema.json#/definitions/id" 4782
 }, 4783
 "if": { 4784
 "description": "The OCF Interfaces supported by this Resource", 4785
 "items": { 4786
 "enum": [4787
 "oic.if.r", 4788
 "oic.if.baseline" 4789
], 4790
 "type": "string", 4791
 "maxLength": 64 4792
 }, 4793
 "minItems": 2, 4794
 "readOnly": true, 4795
 "uniqueItems": true, 4796
 "type": "array" 4797
 } 4798
 }, 4799
 "type" : "object", 4800
 "required": ["urlInfo"] 4801
 } 4802
 } 4803
} 4804
 4805

A.5.5 Property definition 4806

Table A.8 defines the Properties that are part of the "oic.wk.introspection" Resource Type. 4807

Table A.8 – The Property definitions of the Resource with type "rt" = 4808
"oic.wk.introspection". 4809

Property name Value type Mandatory Access mode Description

rt array: see schema No Read Only Resource Type of
the Resource

n multiple types: see
schema

No Read Write

urlInfo array: see schema Yes Read Only Information on the
location of the
Introspection Device
Data (IDD).

id multiple types: see
schema

No Read Write

if array: see schema No Read Only The OCF Interfaces
supported by this
Resource

A.5.6 CRUDN behaviour 4810

Table A.9 defines the CRUDN operations that are supported on the "oic.wk.introspection" Resource 4811
Type. 4812

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 118

Table A.9 – The CRUDN operations of the Resource with type "rt" = "oic.wk.introspection". 4813

Create Read Update Delete Notify

 get observe

A.6 Platform 4814

A.6.1 Introduction 4815

Known Resource that is defines the Platform on which an Server is hosted. 4816
Allows for Platform specific information to be discovered. 4817
 4818

A.6.2 Well-known URI 4819

/oic/p 4820

A.6.3 Resource type 4821

The Resource Type is defined as: "oic.wk.p". 4822

A.6.4 OpenAPI 2.0 definition 4823

{ 4824
 "swagger": "2.0", 4825
 "info": { 4826
 "title": "Platform", 4827
 "version": "2019-03-04", 4828
 "license": { 4829
 "name": "OCF Data Model License", 4830
 "url": 4831
"https://github.com/openconnectivityfoundation/core/blob/e28a9e0a92e17042ba3e83661e4c0fbce8bdc4ba/LI4832
CENSE.md", 4833
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 4834
 }, 4835
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 4836
 }, 4837
 "schemes": ["http"], 4838
 "consumes": ["application/json"], 4839
 "produces": ["application/json"], 4840
 "paths": { 4841
 "/oic/p" : { 4842
 "get": { 4843
 "description": "Known Resource that is defines the Platform on which an Server is 4844
hosted.\nAllows for Platform specific information to be discovered.\n", 4845
 "parameters": [4846
 {"$ref": "#/parameters/interface"} 4847
], 4848
 "responses": { 4849
 "200": { 4850
 "description" : "", 4851
 "x-example": { 4852
 "pi": "54919CA5-4101-4AE4-595B-353C51AA983C", 4853
 "rt": ["oic.wk.p"], 4854
 "mnmn": "Acme, Inc" 4855
 }, 4856
 "schema": { "$ref": "#/definitions/Platform" } 4857
 } 4858
 } 4859
 } 4860
 } 4861
 }, 4862
 "parameters": { 4863
 "interface" : { 4864
 "in" : "query", 4865
 "name" : "if", 4866
 "type" : "string", 4867
 "enum" : ["oic.if.r", "oic.if.baseline"] 4868

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 119

 } 4869
 }, 4870
 "definitions": { 4871
 "Platform" : { 4872
 "properties": { 4873
 "rt" : { 4874
 "description": "Resource Type of the Resource", 4875
 "items": { 4876
 "enum": ["oic.wk.p"], 4877
 "type": "string", 4878
 "maxLength": 64 4879
 }, 4880
 "minItems": 1, 4881
 "uniqueItems": true, 4882
 "readOnly": true, 4883
 "type": "array" 4884
 }, 4885
 "pi" : { 4886
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-4887
9]{12}$", 4888
 "type": "string", 4889
 "description": "Platform Identifier", 4890
 "readOnly": true 4891
 }, 4892
 "mnfv" : { 4893
 "description": "Manufacturer's firmware version", 4894
 "maxLength": 64, 4895
 "readOnly": true, 4896
 "type": "string" 4897
 }, 4898
 "vid" : { 4899
 "description": "Manufacturer's defined information for the Platform. The content is 4900
freeform, with population rules up to the manufacturer", 4901
 "maxLength": 64, 4902
 "readOnly": true, 4903
 "type": "string" 4904
 }, 4905
 "mnmn" : { 4906
 "description": "Manufacturer name", 4907
 "maxLength": 64, 4908
 "readOnly": true, 4909
 "type": "string" 4910
 }, 4911
 "mnmo" : { 4912
 "description": "Model number as designated by the manufacturer", 4913
 "maxLength": 64, 4914
 "readOnly": true, 4915
 "type": "string" 4916
 }, 4917
 "mnhw" : { 4918
 "description": "Platform Hardware Version", 4919
 "maxLength": 64, 4920
 "readOnly": true, 4921
 "type": "string" 4922
 }, 4923
 "mnos" : { 4924
 "description": "Platform Resident OS Version", 4925
 "maxLength": 64, 4926
 "readOnly": true, 4927
 "type": "string" 4928
 }, 4929
 "mndt" : { 4930
 "pattern": "^([0-9]{4})-(1[0-2]|0[1-9])-(3[0-1]|2[0-9]|1[0-9]|0[1-9])$", 4931
 "type": "string", 4932
 "description": "Manufacturing Date.", 4933
 "readOnly": true 4934
 }, 4935
 "id" : { 4936
 "$ref": 4937
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4938
schema.json#/definitions/id" 4939

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 120

 }, 4940
 "mnsl" : { 4941
 "description": "Manufacturer's Support Information URL", 4942
 "format": "uri", 4943
 "maxLength": 256, 4944
 "readOnly": true, 4945
 "type": "string" 4946
 }, 4947
 "mnpv" : { 4948
 "description": "Platform Version", 4949
 "maxLength": 64, 4950
 "readOnly": true, 4951
 "type": "string" 4952
 }, 4953
 "st" : { 4954
 "description": "The date-time format pattern according to IETF RFC 3339.", 4955
 "format": "date-time", 4956
 "readOnly": true, 4957
 "type": "string" 4958
 }, 4959
 "n" : { 4960
 "$ref": 4961
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4962
schema.json#/definitions/n" 4963
 }, 4964
 "mnml" : { 4965
 "description": "Manufacturer's URL", 4966
 "format": "uri", 4967
 "maxLength": 256, 4968
 "readOnly": true, 4969
 "type": "string" 4970
 }, 4971
 "mnsel" : { 4972
 "description": "Serial number as designated by the manufacturer", 4973
 "maxLength": 64, 4974
 "readOnly": true, 4975
 "type": "string" 4976
 }, 4977
 "if" : { 4978
 "description": "The OCF Interfaces supported by this Resource", 4979
 "items": { 4980
 "enum": [4981
 "oic.if.r", 4982
 "oic.if.baseline" 4983
], 4984
 "type": "string", 4985
 "maxLength": 64 4986
 }, 4987
 "minItems": 2, 4988
 "readOnly": true, 4989
 "uniqueItems": true, 4990
 "type": "array" 4991
 }, 4992
 "mnnct" : { 4993
 "description": "An array of integers and each integer indicates the network connectivity 4994
type based on IANAIfType value as defined by: https://www.iana.org/assignments/ianaiftype-4995
mib/ianaiftype-mib, e.g., [71, 259] which represents Wi-Fi and Zigbee.", 4996
 "items": { 4997
 "type": "integer", 4998
 "minimum": 1, 4999
 "description": "The network connectivity type based on IANAIfType value as defined by: 5000
https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib." 5001
 }, 5002
 "minItems": 1, 5003
 "readOnly": true, 5004
 "type": "array" 5005
 } 5006
 }, 5007
 "type" : "object", 5008
 "required": ["pi", "mnmn"] 5009
 } 5010

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 121

 } 5011
} 5012
 5013

A.6.5 Property definition 5014

Table A.10 defines the Properties that are part of the "oic.wk.p" Resource Type. 5015

Table A.10 – The Property definitions of the Resource with type "rt" = "oic.wk.p". 5016

Property
name

Value type Mandatory Access mode Description

rt array: see
schema

No Read Only Resource Type of the Resource

pi string Yes Read Only Platform Identifier

mnfv string No Read Only Manufacturer's firmware version

vid string No Read Only Manufacturer's defined information for the
Platform. The content is freeform, with
population rules up to the manufacturer

mnmn string Yes Read Only Manufacturer name

mnmo string No Read Only Model number as designated by the
manufacturer

mnhw string No Read Only Platform Hardware Version

mnos string No Read Only Platform Resident OS Version

mndt string No Read Only Manufacturing Date.

id multiple types:
see schema

No Read Write

mnsl string No Read Only Manufacturer's Support Information URL

mnpv string No Read Only Platform Version

st string No Read Only The date-time format pattern according to
IETF RFC 3339.

n multiple types:
see schema

No Read Write

mnml string No Read Only Manufacturer's URL

mnsel string No Read Only Serial number as designated by the
manufacturer

if array: see
schema

No Read Only The OCF Interfaces supported by this
Resource

mnnct array: see
schema

No Read Only An array of integers and each integer
indicates the network connectivity type
based on IANAIfType value as defined by:
https://www.iana.org/assignments/ianaiftype-
mib/ianaiftype-mib, e.g., [71, 259] which
represents Wi-Fi and Zigbee.

A.6.6 CRUDN behaviour 5017

Table A.11 defines the CRUDN operations that are supported on the "oic.wk.p" Resource Type. 5018

Table A.11 – The CRUDN operations of the Resource with type "rt" = "oic.wk.p". 5019

Create Read Update Delete Notify

 get observe

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 122

A.7 Discoverable Resources 5020

A.7.1 Introduction 5021

Baseline representation of /oic/res; list of discoverable Resources 5022
 5023

A.7.2 Well-known URI 5024

/oic/res 5025

A.7.3 Resource type 5026

The Resource Type is defined as: "oic.wk.res". 5027

A.7.4 OpenAPI 2.0 definition 5028

{ 5029
 "swagger": "2.0", 5030
 "info": { 5031
 "title": "Discoverable Resources", 5032
 "version": "2019-04-22", 5033
 "license": { 5034
 "name": "OCF Data Model License", 5035
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 5036
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 5037
 }, 5038
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 5039
 }, 5040
 "schemes": [5041
 "http" 5042
], 5043
 "consumes": [5044
 "application/json" 5045
], 5046
 "produces": [5047
 "application/json" 5048
], 5049
 "paths": { 5050
 "/oic/res?if=oic.if.ll": { 5051
 "get": { 5052
 "description": "Links list representation of /oic/res; list of discoverable Resources\n", 5053
 "parameters": [5054
 { 5055
 "$ref": "#/parameters/interface-all" 5056
 } 5057
], 5058
 "responses": { 5059
 "200": { 5060
 "description" : "", 5061
 "x-example": [5062
 { 5063
 "href": "/oic/res", 5064
 "rt": ["oic.wk.res"], 5065
 "if": ["oic.if.ll", "oic.if.b", "oic.if.baseline"], 5066
 "rel": ["self"], 5067
 "p": {"bm": 3}, 5068
 "eps": [5069
 {"ep": "coaps://[fe80::b1d6]:1122"}] 5070
 }, 5071
 { 5072
 "href": "/humidity", 5073
 "rt": ["oic.r.humidity"], 5074
 "if": ["oic.if.s", "oic.if.baseline"], 5075
 "p": {"bm": 3}, 5076
 "eps": [5077
 {"ep": "coaps://[fe80::b1d6]:1111", "pri": 2}, 5078
 {"ep": "coaps://[fe80::b1d6]:1122"}, 5079
 {"ep": "coaps+tcp://[2001:db8:a::123]:2222", "pri": 3} 5080
] 5081

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 123

 }, 5082
 { 5083
 "href": "/temperature", 5084
 "rt": ["oic.r.temperature"], 5085
 "if": ["oic.if.s", "oic.if.baseline"], 5086
 "p": {"bm": 3}, 5087
 "eps": [5088
 {"ep": "coaps://[[2001:db8:a::123]:2222"} 5089
] 5090
 } 5091
], 5092
 "schema": { 5093
 "$ref": "#/definitions/slinklist" 5094
 } 5095
 } 5096
 } 5097
 } 5098
 }, 5099
 "/oic/res?if=oic.if.b" : { 5100
 "get": { 5101
 "description": "Batch representation of /oic/res; list of discoverable Resources\n", 5102
 "parameters": [5103
 {"$ref": "#/parameters/interface-all"} 5104
], 5105
 "responses": { 5106
 "200": { 5107
 "description" : "", 5108
 "x-example": [5109
 { 5110
 "href": "/humidity", 5111
 "rep":{ 5112
 "rt": ["oic.r.humidity"], 5113
 "humidity": 40, 5114
 "desiredHumidity": 40 5115
 } 5116
 }, 5117
 { 5118
 "href": "/temperature", 5119
 "rep":{ 5120
 "rt": ["oic.r.temperature"], 5121
 "temperature": 20.0, 5122
 "units": "C" 5123
 } 5124
 } 5125
], 5126
 "schema": { "$ref": "#/definitions/sbatch" } 5127
 } 5128
 } 5129
 } 5130
 }, 5131
 "/oic/res?if=oic.if.baseline": { 5132
 "get": { 5133
 "description": "Baseline representation of /oic/res; list of discoverable Resources\n", 5134
 "parameters": [5135
 { 5136
 "$ref": "#/parameters/interface-all" 5137
 } 5138
], 5139
 "responses": { 5140
 "200": { 5141
 "description": "", 5142
 "x-example": [5143
 { 5144
 "rt": ["oic.wk.res"], 5145
 "if": ["oic.if.ll", "oic.if.b", "oic.if.baseline"], 5146
 "links": [5147
 { 5148
 "href": "/humidity", 5149
 "rt": ["oic.r.humidity"], 5150
 "if": ["oic.if.s", "oic.if.baseline"], 5151
 "p": {"bm": 3}, 5152

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 124

 "eps": [5153
 {"ep": "coaps://[fe80::b1d6]:1111", "pri": 2}, 5154
 {"ep": "coaps://[fe80::b1d6]:1122"}, 5155
 {"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri": 3} 5156
] 5157
 }, 5158
 { 5159
 "href": "/temperature", 5160
 "rt": ["oic.r.temperature"], 5161
 "if": ["oic.if.s", "oic.if.baseline"], 5162
 "p": {"bm": 3}, 5163
 "eps": [5164
 {"ep": "coaps://[[2001:db8:a::123]:2222"} 5165
] 5166
 } 5167
] 5168
 } 5169
], 5170
 "schema": { 5171
 "$ref": "#/definitions/sbaseline" 5172
 } 5173
 } 5174
 } 5175
 } 5176
 } 5177
 }, 5178
 "parameters": { 5179
 "interface-all": { 5180
 "in": "query", 5181
 "name": "if", 5182
 "type": "string", 5183
 "enum": ["oic.if.ll", "oic.if.b", "oic.if.baseline"] 5184
 } 5185
 }, 5186
 "definitions": { 5187
 "oic.oic-link": { 5188
 "type": "object", 5189
 "properties": { 5190
 "anchor": { 5191
 "$ref": 5192
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5193
schema.json#/definitions/anchor" 5194
 }, 5195
 "di": { 5196
 "$ref": 5197
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5198
schema.json#/definitions/di" 5199
 }, 5200
 "eps": { 5201
 "$ref": 5202
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5203
schema.json#/definitions/eps" 5204
 }, 5205
 "href": { 5206
 "$ref": 5207
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5208
schema.json#/definitions/href" 5209
 }, 5210
 "if": { 5211
 "description": "The OCF Interfaces supported by the Linked Resource", 5212
 "items": { 5213
 "enum": [5214
 "oic.if.baseline", 5215
 "oic.if.ll", 5216
 "oic.if.b", 5217
 "oic.if.rw", 5218
 "oic.if.r", 5219
 "oic.if.a", 5220
 "oic.if.s" 5221
], 5222
 "type": "string", 5223

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 125

 "maxLength": 64 5224
 }, 5225
 "minItems": 1, 5226
 "uniqueItems": true, 5227
 "type": "array" 5228
 }, 5229
 "ins": { 5230
 "$ref": 5231
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5232
schema.json#/definitions/ins" 5233
 }, 5234
 "p": { 5235
 "$ref": 5236
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5237
schema.json#/definitions/p" 5238
 }, 5239
 "rel": { 5240
 "description": "The relation of the target URI referenced by the Link to the context URI", 5241
 "oneOf": [5242
 { 5243
 "$ref": 5244
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5245
schema.json#/definitions/rel_array" 5246
 }, 5247
 { 5248
 "$ref": 5249
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5250
schema.json#/definitions/rel_string" 5251
 } 5252
] 5253
 }, 5254
 "rt": { 5255
 "description": "Resource Type of the Linked Resource", 5256
 "items": { 5257
 "maxLength": 64, 5258
 "type": "string" 5259
 }, 5260
 "minItems": 1, 5261
 "uniqueItems": true, 5262
 "type": "array" 5263
 }, 5264
 "title": { 5265
 "$ref": 5266
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5267
schema.json#/definitions/title" 5268
 }, 5269
 "type": { 5270
 "$ref": 5271
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5272
schema.json#/definitions/type" 5273
 }, 5274
 "tag-pos-desc": { 5275
 "$ref": 5276
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5277
schema.json#/definitions/tag-pos-desc" 5278
 }, 5279
 "tag-pos-rel": { 5280
 "$ref": 5281
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5282
schema.json#/definitions/tag-pos-rel" 5283
 }, 5284
 "tag-func-desc": { 5285
 "$ref": 5286
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5287
schema.json#/definitions/tag-func-desc" 5288
 } 5289
 }, 5290
 "required": [5291
 "href", 5292
 "rt", 5293
 "if" 5294

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 126

] 5295
 }, 5296
 "slinklist": { 5297
 "type" : "array", 5298
 "readOnly": true, 5299
 "items": { 5300
 "$ref": "#/definitions/oic.oic-link" 5301
 } 5302
 }, 5303
 "sbaseline": { 5304
 "type": "array", 5305
 "minItems": 1, 5306
 "maxItems": 1, 5307
 "items": { 5308
 "type": "object", 5309
 "properties": { 5310
 "n": { 5311
 "$ref": 5312
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-5313
schema.json#/definitions/n" 5314
 }, 5315
 "id": { 5316
 "$ref": 5317
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-5318
schema.json#/definitions/id" 5319
 }, 5320
 "rt": { 5321
 "description": "Resource Type of this Resource", 5322
 "items": { 5323
 "enum": ["oic.wk.res"], 5324
 "type": "string", 5325
 "maxLength": 64 5326
 }, 5327
 "minItems": 1, 5328
 "readOnly": true, 5329
 "uniqueItems": true, 5330
 "type": "array" 5331
 }, 5332
 "if": { 5333
 "description": "The OCF Interfaces supported by this Resource", 5334
 "items": { 5335
 "enum": [5336
 "oic.if.ll", 5337
 "oic.if.b", 5338
 "oic.if.baseline" 5339
], 5340
 "type": "string", 5341
 "maxLength": 64 5342
 }, 5343
 "minItems": 2, 5344
 "readOnly": true, 5345
 "uniqueItems": true, 5346
 "type": "array" 5347
 }, 5348
 "links": { 5349
 "type": "array", 5350
 "items": { 5351
 "$ref": "#/definitions/oic.oic-link" 5352
 } 5353
 } 5354
 }, 5355
 "required": [5356
 "rt", 5357
 "if", 5358
 "links" 5359
] 5360
 } 5361
 }, 5362
 "sbatch" : { 5363
 "type" : "array", 5364
 "minItems" : 1, 5365

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 127

 "items" : { 5366
 "type": "object", 5367
 "additionalProperties": true, 5368
 "properties": { 5369
 "href": { 5370
 "$ref": 5371
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5372
schema.json#/definitions/href" 5373
 }, 5374
 "rep": { 5375
 "oneOf": [5376
 { 5377
 "description": "The response payload from a single Resource", 5378
 "type": "object" 5379
 }, 5380
 { 5381
 "description": " The response payload from a Collection (batch) Resource", 5382
 "items": { 5383
 "$ref": "#/definitions/oic.oic-link" 5384
 }, 5385
 "type": "array" 5386
 } 5387
] 5388
 } 5389
 }, 5390
 "required": [5391
 "href", 5392
 "rep" 5393
] 5394
 } 5395
 } 5396
 } 5397
} 5398
 5399

A.7.5 Property definition 5400

Table A.12 defines the Properties that are part of the "None" Resource Type. 5401

Table A.12 – The Property definitions of the Resource with type "rt" = "None". 5402

Property name Value type Mandatory Access mode Description

anchor multiple types: see
schema

No Read Write

di multiple types: see
schema

No Read Write

eps multiple types: see
schema

No Read Write

href multiple types: see
schema

Yes Read Write

if array: see schema Yes Read Write The OCF Interfaces
supported by the
Linked Resource

ins multiple types: see
schema

No Read Write

p multiple types: see
schema

No Read Write

rel multiple types: see
schema

No Read Write The relation of the
target URI
referenced by the
Link to the context
URI

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 128

rt array: see schema Yes Read Write Resource Type of
the Linked Resource

title multiple types: see
schema

No Read Write

type multiple types: see
schema

No Read Write

tag-pos-desc multiple types: see
schema

No Read Write

tag-pos-rel multiple types: see
schema

No Read Write

tag-func-desc multiple types: see
schema

No Read Write

n multiple types: see
schema

No Read Write

id multiple types: see
schema

No Read Write

rt array: see schema Yes Read Only Resource Type of
this Resource

if array: see schema Yes Read Only The OCF Interfaces
supported by this
Resource

links array: see schema Yes Read Write

href multiple types: see
schema

Yes Read Write

rep multiple types: see
schema

Yes Read Write

A.7.6 CRUDN behaviour 5403

Table A.13 defines the CRUDN operations that are supported on the "None" Resource Type. 5404

Table A.13 – The CRUDN operations of the Resource with type "rt" = "None". 5405

Create Read Update Delete Notify

 get observe

 5406
 5407

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 129

 5408

(informative) 5409

 5410

OpenAPI 2.0 Schema Extension 5411

B.1 OpenAPI 2.0 Schema Reference 5412

OpenAPI 2.0 does not support allOf and anyOf JSON schema valiation constructs; this document 5413
has extended the underlying OpenAPI 2.0 schema to enable these, all OpenAPI 2.0 files are valid 5414
against the extended schema. Reference the following location for a copy of the extended schema: 5415

– https://github.com/openconnectivityfoundation/OCFswagger2.0-schema 5416

B.2 OpenAPI 2.0 Introspection empty file 5417

Reference the following location for a copy of an empty OpenAPI 2.0 file: 5418

– https://github.com/openconnectivityfoundation/DeviceBuilder/blob/master/introspection-5419
examples/introspection-empty.txt 5420

https://github.com/openconnectivityfoundation/OCFswagger2.0-schema
https://github.com/openconnectivityfoundation/DeviceBuilder/blob/master/introspection-examples/introspection-empty.txt
https://github.com/openconnectivityfoundation/DeviceBuilder/blob/master/introspection-examples/introspection-empty.txt

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 130

 5421

(normative) 5422

 5423

Semantic Tag enumeration support 5424

C.1 Introduction 5425

This Annex defines the enumerations that are applicable to defined Semantic Tags. 5426

C.2 "tag-pos-desc" supported enumeration 5427

Figure C.1 defines the enumeration from which a value populated within an instance of the "tag-5428
pos-desc" Semantic Tag is taken. 5429

"pos-descriptions": {
"enum":
["unknown","top","bottom","left","right","centre","topleft","bottomleft","centreleft"
,"centreright","bottomright","topright","topcentre","bottomcentre"]
}

Figure C.1 – Enumeration for "tag-pos-desc" Semantic Tag 5430

 5431

Figure C.2 provides an illustrative representation of the definition of the values that can be 5432
represented within an instance of "tag-pos-desc". 5433

topleft topcentre topright

centreleft centre centreright

bottomrightbottomcentrebottomleft

bottom

top

left right

 5434

Figure C.2 – Definition of "tag-pos-desc" Semantic Tag values 5435

 5436

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 131

Bibliography 5437

[1] OCF Core - Optional, Information technology – Open Connectivity Foundation (OCF) 5438
Specification – Part X: Core - Optional specification 5439
Latest version available at: 5440
https://openconnectivity.org/specs/OCF_Core_Optional_Specification.pdf 5441

[2] OCF Easy Wi-Fi Setup, Information technology – Open Connectivity Foundation (OCF) 5442
Specification – Part 7: Wi-Fi Easy Setup specification 5443
Latest version available at: https://openconnectivity.org/specs/OCF_Wi-5444
Fi_Easy_Setup_Specification.pdf 5445

 5446

	1 Scope
	2 Normative references
	3 Terms, definitions, and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms

	4 Document conventions and organization
	4.1 Conventions
	4.2 Notation
	4.3 Data types
	4.4 Resource notation syntax

	5 Architecture
	5.1 Overview
	5.2 Principle
	5.3 Functional block diagram
	5.4 Framework

	6 Identification and addressing
	6.1 Introduction
	6.2 Identification
	6.2.1 Device and Platform identification
	6.2.2 Resource identification and addressing

	6.3 Namespace:
	6.4 Network addressing

	7 Resource model
	7.1 Introduction
	7.2 Resource
	7.3 Property
	7.3.1 Introduction
	7.3.2 Common Properties
	7.3.2.1 Introduction
	7.3.2.2 Property Name and Property Value definitions
	7.3.2.3 Resource Type
	7.3.2.4 OCF Interface
	7.3.2.5 Name
	7.3.2.6 Resource Identity

	7.4 Resource Type
	7.4.1 Introduction
	7.4.2 Resource Type Property
	7.4.3 Resource Type definition
	7.4.4 Multi-value "rt" Resource

	7.5 Device Type
	7.6 OCF Interface
	7.6.1 Introduction
	7.6.2 OCF Interface Property
	7.6.3 OCF Interface methods
	7.6.3.1 Overview
	7.6.3.2 Baseline OCF Interface
	7.6.3.2.1 Overview
	7.6.3.2.2 Use of RETRIEVE
	7.6.3.2.3 Use of UPDATE

	7.6.3.3 Links list OCF Interface
	7.6.3.3.1 Overview
	7.6.3.3.2 Use with RETRIEVE
	7.6.3.3.3 Use with NOTIFY
	7.6.3.3.4 Use with CREATE, UPDATE, and DELETE

	7.6.3.4 Batch OCF Interface
	7.6.3.4.1 Overview
	7.6.3.4.2 General requirements for realizations of the batch OCF Interface
	7.6.3.4.3 Observability of the batch OCF Interface
	7.6.3.4.4 UPDATE using the batch OCF Interface
	7.6.3.4.5 Examples: Batch OCF Interface

	7.6.3.5 Actuator OCF Interface
	7.6.3.6 Sensor OCF Interface
	7.6.3.7 Read-only OCF Interface
	7.6.3.8 Read-write OCF Interface
	7.6.3.9 Create OCF Interface
	7.6.3.9.1 Overview
	7.6.3.9.2 Data format for CREATE
	7.6.3.9.3 Use with CREATE
	7.6.3.9.4 Use with UPDATE and DELETE

	7.7 Resource representation
	7.8 Structure
	7.8.1 Introduction
	7.8.2 Resource relationships (Links)
	7.8.2.1 Introduction
	7.8.2.2 Link context
	7.8.2.3 Link relation type
	7.8.2.4 Link target
	7.8.2.5 Parameters for Link target attributes
	7.8.2.5.1 Introduction
	7.8.2.5.2 "ins" or Link instance Parameter
	7.8.2.5.3 "p" or policy Parameter
	7.8.2.5.4 "type" or media type Parameter
	7.8.2.5.5 "di" or Device ID Parameter
	7.8.2.5.6 "eps" Parameter

	7.8.2.6 Formatting
	7.8.2.7 List of Links in a Collection
	7.8.2.8 Properties describing an array of Links

	7.8.3 Collections
	7.8.3.1 Overview
	7.8.3.2 Collection Properties
	7.8.3.3 Default Resource Type
	7.8.3.4 Default OCF Interface

	7.8.4 Atomic Measurement
	7.8.4.1 Overview
	7.8.4.2 Atomic Measurement Properties
	7.8.4.3 Normative behaviour
	7.8.4.4 Security considerations
	7.8.4.5 Default Resource Type

	7.9 Query Parameters
	7.9.1 Introduction
	7.9.2 Use of multiple parameters within a query
	7.9.3 Application to multi-value "rt" Resources
	7.9.4 OCF Interface specific considerations for queries
	7.9.4.1 OCF Interface selection
	7.9.4.2 Batch OCF Interface

	8 CRUDN
	8.1 Overview
	8.2 CREATE
	8.2.1 Overview
	8.2.2 CREATE request
	8.2.3 Processing by the Server
	8.2.4 CREATE response

	8.3 RETRIEVE
	8.3.1 Overview
	8.3.2 RETRIEVE request
	8.3.3 Processing by the Server
	8.3.4 RETRIEVE response

	8.4 UPDATE
	8.4.1 Overview
	8.4.2 UPDATE request
	8.4.3 Processing by the Server
	8.4.3.1 Overview
	8.4.3.2 Resource monitoring by the Server
	8.4.3.3 Additional RETRIEVE responses with Observe indication

	8.4.4 UPDATE response

	8.5 DELETE
	8.5.1 Overview
	8.5.2 DELETE request
	8.5.3 Processing by the Server
	8.5.4 DELETE response

	8.6 NOTIFY
	8.6.1 Overview
	8.6.2 NOTIFICATION response

	9 Network and connectivity
	9.1 Introduction
	9.2 Architecture
	9.3 IPv6 network layer requirements
	9.3.1 Introduction
	9.3.2 IPv6 node requirements
	9.3.2.1 Introduction
	9.3.2.2 IP Layer

	10 OCF Endpoint
	10.1 OCF Endpoint definition
	10.2 OCF Endpoint information
	10.2.1 Introduction
	10.2.2 "ep"
	10.2.3 "pri"
	10.2.4 OCF Endpoint information in "eps" Parameter

	10.3 OCF Endpoint discovery
	10.3.1 Introduction
	10.3.2 Implicit discovery
	10.3.3 Explicit discovery with "/oic/res" response

	11 Functional interactions
	11.1 Introduction
	11.2 Resource discovery
	11.2.1 Introduction
	11.2.2 Resource based discovery: mechanisms
	11.2.2.1 Overview
	11.2.2.2 Direct discovery

	11.2.3 Resource based discovery: Finding information
	11.2.4 Resource discovery using "/oic/res"
	11.2.4.1 General Requirements
	11.2.4.2 Discovery using "oic.if.ll" (Default OCF Interfgace for "/oic/res")

	11.2.5 Multicast discovery using "/oic/res"

	11.3 Notification
	11.3.1 Overview
	11.3.2 Observe
	11.3.2.1 Overview
	11.3.2.2 RETRIEVE request with Observe indication
	11.3.2.3 Processing by the Server
	11.3.2.4 RETRIEVE response with Observe indication
	11.3.2.5 Resource monitoring by the Server
	11.3.2.6 Additional RETRIEVE responses with Observe indication
	11.3.2.7 Cancelling Observe

	11.4 Introspection
	11.4.1 Overview
	11.4.2 Usage of Introspection

	11.5 Semantic Tags
	11.5.1 Introduction
	11.5.2 Semantic Tag definitions
	11.5.2.1 Relative and descriptive position Semantic Tags
	11.5.2.1.1 Introduction
	11.5.2.1.2 "tag-pos-desc" or position description Semantic Tag
	11.5.2.1.3 "tag-pos-rel" or relative position Semantic Tag

	11.5.2.2 Functional behaviour Semantic Tags
	11.5.2.2.1 Introduction
	11.5.2.2.2 "tag-func-desc" or function description Semantic Tag

	12 Messaging
	12.1 Introduction
	12.2 Mapping of CRUDN to CoAP
	12.2.1 Overview
	12.2.2 URIs
	12.2.3 CoAP method with request and response
	12.2.3.1 Overview
	12.2.3.2 CREATE with POST
	12.2.3.3 RETRIEVE with GET
	12.2.3.4 UPDATE with POST
	12.2.3.5 DELETE with DELETE

	12.2.4 Content-Format negotiation
	12.2.5 OCF-Content-Format-Version information
	12.2.6 Content-Format policy
	12.2.7 CRUDN to CoAP response codes
	12.2.8 CoAP block transfer
	12.2.9 Generic requirements for CoAP multicast

	12.3 Mapping of CRUDN to CoAP serialization over TCP
	12.3.1 Overview
	12.3.2 URIs
	12.3.3 CoAP method with request and response
	12.3.4 Content-Format negotiation
	12.3.5 OCF-Content-Format-Version information
	12.3.6 Content-Format policy
	12.3.7 CRUDN to CoAP response codes
	12.3.8 CoAP block transfer
	12.3.9 Keep alive (connection health)

	12.4 Payload Encoding in CBOR

	13 Security
	Annex A (normative) Resource Type definitions
	A.1 List of Resource Type definitions
	A.2 Atomic Measurement links list representation
	A.2.1 Introduction
	A.2.2 Example URI
	A.2.3 Resource type
	A.2.4 OpenAPI 2.0 definition
	A.2.5 Property definition
	A.2.6 CRUDN behaviour

	A.3 Collection
	A.3.1 Introduction
	A.3.2 Example URI
	A.3.3 Resource type
	A.3.4 OpenAPI 2.0 definition
	A.3.5 Property definition
	A.3.6 CRUDN behaviour

	A.4 Device
	A.4.1 Introduction
	A.4.2 Well-known URI
	A.4.3 Resource type
	A.4.4 OpenAPI 2.0 definition
	A.4.5 Property definition
	A.4.6 CRUDN behaviour

	A.5 Introspection Resource
	A.5.1 Introduction
	A.5.2 Well-known URI
	A.5.3 Resource type
	A.5.4 OpenAPI 2.0 definition
	A.5.5 Property definition
	A.5.6 CRUDN behaviour

	A.6 Platform
	A.6.1 Introduction
	A.6.2 Well-known URI
	A.6.3 Resource type
	A.6.4 OpenAPI 2.0 definition
	A.6.5 Property definition
	A.6.6 CRUDN behaviour

	A.7 Discoverable Resources
	A.7.1 Introduction
	A.7.2 Well-known URI
	A.7.3 Resource type
	A.7.4 OpenAPI 2.0 definition
	A.7.5 Property definition
	A.7.6 CRUDN behaviour
	Annex B (informative) OpenAPI 2.0 Schema Extension

	B.1 OpenAPI 2.0 Schema Reference
	B.2 OpenAPI 2.0 Introspection empty file
	Annex C (normative) Semantic Tag enumeration support

	C.1 Introduction
	C.2 "tag-pos-desc" supported enumeration

	Bibliography

