Legal Disclaimer

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY KIND OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN CONNECTIVITY FOUNDATION, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF NON-INFRINGEMENT, ACCURACY OR LACK OF VIRUSES.

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or other countries. *Other names and brands may be claimed as the property of others.

Copyright © 2016-2022 Open Connectivity Foundation, Inc. All rights reserved.

Copying or other form of reproduction and/or distribution of these works are strictly prohibited
CONTENTS

Introduction... xii
1 Scope.. 1
2 Normative references .. 1
3 Terms, definitions, symbols and abbreviated terms.. 1
 3.1 Terms and definitions.. 1
 3.2 Symbols and abbreviated terms .. 2
4 Document conventions and organization.. 2
 4.1 Conventions .. 2
 4.2 Notation .. 3
5 Theory of operation ... 3
 5.1 Interworking approach .. 3
 5.2 General ... 3
 5.2.1 Value assignment.. 4
 5.2.2 Property naming .. 4
 5.2.3 Range .. 4
 5.2.4 Arrays .. 4
 5.2.5 Default mapping .. 4
 5.2.6 Conditional mapping .. 4
 5.2.7 Method invocation .. 4
6 EnOcean translation .. 4
 6.1 Operational scenarios .. 4
 6.1.1 Use case for enocean bridging .. 5
 6.2 Requirements specific to enocean bridging function .. 5
 6.2.1 Introduction ... 5
 6.2.2 Exposing enocean devices to OCF clients ... 6
 6.2.3 Protocol translation between enocean and OCF .. 12
7 Device type mapping ... 13
 7.1 Introduction ... 13
 7.2 EnOcean equipment profiles to OCF device types and OCF resource types 13
 7.3 Telegram parameters.. 14
 7.3.1 Push button ... 14
 7.3.2 Rocker 1st action.. 14
 7.3.3 Key card .. 15
 7.3.4 Alert signals .. 15
 7.3.5 Open/closed ... 15
 7.3.6 Temperature ... 15
 7.3.7 Barometer ... 15
 7.3.8 Illumination ... 15
 7.3.9 Humidity .. 15
 7.3.10 PIR/occupancy ... 15
 7.4 Indirect parameters through enocean equipment profile .. 15
 7.4.1 Introduction ... 15

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved
8 Detailed mapping APIs ... 16
 8.1 Introduction .. 16
 8.2 Barometric sensor EEP A5-05-01 .. 16
 8.2.1 Derived model ... 16
 8.2.2 Property definition .. 16
 8.2.3 Derived model definition .. 16
 8.3 Key card switch, EEP F6-04-01 .. 17
 8.3.1 Derived model ... 17
 8.3.2 Property definition .. 17
 8.3.3 Derived model definition .. 17
 8.4 Key card switch, EEP F6-04-02 .. 18
 8.4.1 Derived model ... 18
 8.4.2 Property definition .. 18
 8.4.3 Derived model definition .. 18
 8.5 Light sensor EEP A5-06-01 ... 19
 8.5.1 Derived model ... 19
 8.5.2 Property definition .. 19
 8.5.3 Derived model definition .. 19
 8.6 Light sensor EEP A5-06-02 ... 20
 8.6.1 Derived model ... 20
 8.6.2 Property definition .. 20
 8.6.3 Derived model definition .. 20
 8.7 Light sensor EEP A5-06-03 ... 21
 8.7.1 Derived model ... 21
 8.7.2 Property definition .. 21
 8.7.3 Derived model definition .. 21
 8.8 Light sensor EEP A5-06-04 ... 22
 8.8.1 Derived model ... 22
 8.8.2 Property definition .. 22
 8.8.3 Derived model definition .. 22
 8.9 Light Sensor EEP A5-06-05 ... 23
 8.9.1 Derived model ... 23
 8.9.2 Property definition .. 23
 8.9.3 Derived model definition .. 23
 8.10 Light, temperature and occupancy sensor EEP A5-08-01 23
 8.10.1 Derived model ... 23
 8.10.2 Property definition .. 24
 8.10.3 Derived model definition .. 24
 8.11 Light, temperature and occupancy sensor EEP A5-08-02 25
 8.11.1 Derived model ... 25
 8.11.2 Property definition .. 25
 8.11.3 Derived model definition .. 26
 8.12 Light, temperature and occupancy sensor EEP A5-08-03 27
8.12.1 Derived model ... 27
8.12.2 Property definition ... 27
8.12.3 Derived model definition ... 27
8.13 Liquid leakage detector (water) EEP F6-05-01 28
8.13.1 Derived model ... 28
8.13.2 Property definition ... 28
8.13.3 Derived model definition ... 29
8.14 Occupancy sensor EEP A5-07-01 29
8.14.1 Derived model .. 29
8.14.2 Property definition .. 29
8.14.3 Derived model definition ... 30
8.15 Occupancy sensor EEP A5-07-02 30
8.15.1 Derived model .. 30
8.15.2 Property definition .. 30
8.15.3 Derived model definition ... 30
8.16 Occupancy sensor EEP A5-07-03 31
8.16.1 Derived model .. 31
8.16.2 Property definition .. 31
8.16.3 Derived model definition ... 31
8.17 Push button, EEP F6-01-01 .. 32
8.17.1 Derived model .. 32
8.17.2 Property definition .. 32
8.17.3 Derived model definition ... 32
8.18 Rocker switch, 2 rocker EEP F6-02-01 33
8.18.1 Derived model .. 33
8.18.2 Property definition .. 33
8.18.3 Derived model definition ... 33
8.19 Rocker switch, 2 rocker EEP F6-02-02 34
8.19.1 Derived model .. 34
8.19.2 Property definition .. 34
8.19.3 Derived model definition ... 35
8.20 Rocker switch, 2 rocker EEP F6-02-03 35
8.20.1 Derived model .. 35
8.20.2 Property definition .. 35
8.20.3 Derived model definition ... 36
8.21 Rocker switch, 2 rocker EEP F6-02-04 36
8.21.1 Derived model .. 36
8.21.2 Property definition .. 37
8.21.3 Derived model definition ... 37
8.22 Rocker switch, 4 rocker EEP F6-03-01 38
8.22.1 Derived model .. 38
8.22.2 Property definition .. 38
8.22.3 Derived model definition ... 39
8.23 Rocker switch, 4 rocker EEP F6-03-02 40
8.23.1 Derived model .. 40
8.23.2 Property definition ... 40
8.23.3 Derived model definition ... 40
8.24 Single input contact EEP D5-00-01 ... 41
 8.24.1 Derived model ... 41
 8.24.2 Property definition .. 41
 8.24.3 Derived model definition ... 42
8.25 Smoke detector EEP F6-05-02 .. 42
 8.25.1 Derived model ... 42
 8.25.2 Property definition .. 42
 8.25.3 Derived model definition ... 43
8.26 Temperature and humidity sensor EEP A5-04-01 .. 43
 8.26.1 Derived model ... 43
 8.26.2 Property definition .. 43
 8.26.3 Derived model definition ... 44
8.27 Temperature and humidity sensor EEP A5-04-02 .. 44
 8.27.1 Derived model ... 44
 8.27.2 Property definition .. 44
 8.27.3 Derived model definition ... 45
8.28 Temperature and humidity sensor EEP A5-04-03 .. 46
 8.28.1 Derived model ... 46
 8.28.2 Property definition .. 46
 8.28.3 Derived model definition ... 46
8.29 Temperature sensor EEP A5-02-01 ... 47
 8.29.1 Derived model ... 47
 8.29.2 Property definition .. 47
 8.29.3 Derived model definition ... 47
8.30 Temperature sensor EEP A5-02-02 ... 48
 8.30.1 Derived model ... 48
 8.30.2 Property definition .. 48
 8.30.3 Derived model definition ... 48
8.31 Temperature sensor EEP A5-02-03 ... 49
 8.31.1 Derived model ... 49
 8.31.2 Property definition .. 49
 8.31.3 Derived model definition ... 49
8.32 Temperature sensor EEP A5-02-04 ... 50
 8.32.1 Derived model ... 50
 8.32.2 Property definition .. 50
 8.32.3 Derived model definition ... 50
8.33 Temperature sensor EEP A5-02-05 ... 50
 8.33.1 Derived model ... 50
 8.33.2 Property definition .. 50
 8.33.3 Derived model definition ... 51
8.34 Temperature sensor EEP A5-02-06 ... 51
 8.34.1 Derived model ... 51
 8.34.2 Property definition .. 51
8.34.3 Derived model definition ... 52
8.35 Temperature sensor EEP A5-02-07 ... 52
 8.35.1 Derived model ... 52
 8.35.2 Property definition ... 52
 8.35.3 Derived model definition .. 53
8.36 Temperature sensor EEP A5-02-08 ... 53
 8.36.1 Derived model ... 53
 8.36.2 Property definition ... 53
 8.36.3 Derived model definition .. 54
8.37 Temperature sensor EEP A5-02-09 ... 54
 8.37.1 Derived model ... 54
 8.37.2 Property definition ... 54
 8.37.3 Derived model definition .. 55
8.38 Temperature sensor EEP A5-02-0A ... 55
 8.38.1 Derived model ... 55
 8.38.2 Property definition ... 55
 8.38.3 Derived model definition .. 56
8.39 Temperature sensor EEP A5-02-0B ... 56
 8.39.1 Derived model ... 56
 8.39.2 Property definition ... 56
 8.39.3 Derived model definition .. 57
8.40 Temperature sensor EEP A5-02-10 ... 57
 8.40.1 Derived model ... 57
 8.40.2 Property definition ... 57
 8.40.3 Derived model definition .. 58
8.41 Temperature sensor EEP A5-02-11 ... 58
 8.41.1 Derived model ... 58
 8.41.2 Property definition ... 58
 8.41.3 Derived model definition .. 59
8.42 Temperature sensor EEP A5-02-12 ... 59
 8.42.1 Derived model ... 59
 8.42.2 Property definition ... 59
 8.42.3 Derived model definition .. 60
8.43 Temperature sensor EEP A5-02-13 ... 60
 8.43.1 Derived model ... 60
 8.43.2 Property definition ... 60
 8.43.3 Derived model definition .. 61
8.44 Temperature sensor EEP A5-02-14 ... 61
 8.44.1 Derived model ... 61
 8.44.2 Property definition ... 61
 8.44.3 Derived model definition .. 62
8.45 Temperature sensor EEP A5-02-15 ... 62
 8.45.1 Derived model ... 62
 8.45.2 Property definition ... 62
 8.45.3 Derived model definition .. 63
Figures

Figure 1 – OCF EnOcean Bridge Platform and Components .. 5
Figure 2 – Case for EnOcean Bridging .. 5
Tables

Table 1 - Translation Rule between EnOcean Devices and OCF Data Models..........................6
Table 2 - EnOcean to OCF Mapping Example ...6
Table 3 – “oic.wk.p” Resource Type definition ...8
Table 4 – “oic.wk.d” Resource Type definition ...9
Table 5 – “oic.wk.con” Resource Type definition ..11
Table 6 - EnOcean Behaviour translated to OCF ..12
Table 7 - OCF Actions translated to EnOcean ...13
Table 8 - EnOcean to OCF Mapping Table ...13
Table 9 – The Property mapping for “A5_05_01”. ..16
Table 10 – The Properties of “A5_05_01”. ...16
Table 11 – The Property mapping for “F6_04_01” ..17
Table 12 – The Properties of “F6_04_01” ..17
Table 13 – The Property mapping for “F6_04_02” ..18
Table 14 – The Properties of “F6_04_02” ..18
Table 15 – The Property mapping for “A5_06_01” ..19
Table 16 – The Properties of “A5_06_01”. ...19
Table 17 – The Property mapping for “A5_06_02”. ...20
Table 18 – The Properties of “A5_06_02”. ...20
Table 19 – The Property mapping for “A5_06_03”. ...21
Table 20 – The Properties of “A5_06_03”. ...21
Table 21 – The Property mapping for “A5_06_04”. ...22
Table 22 – The Properties of “A5_06_04”. ...22
Table 23 – The Property mapping for “A5_06_05”. ...23
Table 24 – The Properties of “A5_06_05”. ...23
Table 25 – The Property mapping for “A5_08_01”. ...24
Table 26 – The Properties of “A5_08_01”. ...24
Table 27 – The Property mapping for “A5_08_02”. ...25
Table 28 – The Properties of “A5_08_02”. ...25
Table 29 – The Property mapping for “A5_08_03”. ...27
Table 30 – The Properties of “A5_08_03”. ...27
Table 31 – The Property mapping for “F6_05_01” ..28
Table 32 – The Properties of “F6_05_01” ...28
Table 33 – The Property mapping for “A5_07_01”. ...29
Table 34 – The Properties of “A5_07_01”. ...29
Table 35 – The Property mapping for “A5_07_02”. ...30
Table 36 – The Properties of “A5_07_02”. ...30
Table 37 – The Property mapping for “A5_07_03”. ...31
Table 38 – The Properties of “A5_07_03”. ...31
Table 39 – The Property mapping for "F6_01_01"	.. 32
Table 40 – The Properties of "F6_01_01"	.. 32
Table 41 – The Property mapping for "F6_02_01"	.. 33
Table 42 – The Properties of "F6_02_01"	.. 33
Table 43 – The Property mapping for "F6_02_02"	.. 34
Table 44 – The Properties of "F6_02_02"	.. 35
Table 45 – The Property mapping for "F6_02_03"	.. 35
Table 46 – The Properties of "F6_02_03"	.. 36
Table 47 – The Property mapping for "F6_02_04"	.. 37
Table 48 – The Properties of "F6_02_04"	.. 37
Table 49 – The Property mapping for "F6_03_01"	.. 38
Table 50 – The Properties of "F6_03_01"	.. 39
Table 51 – The Property mapping for "F6_03_02"	.. 40
Table 52 – The Properties of "F6_03_02"	.. 40
Table 53 – The Property mapping for "D5_00_01"	.. 41
Table 54 – The Properties of "D5_00_01"	.. 42
Table 55 – The Property mapping for "F6_05_02"	.. 42
Table 56 – The Properties of "F6_05_02"	.. 43
Table 57 – The Property mapping for "A5_04_01"	.. 43
Table 58 – The Properties of "A5_04_01"	.. 44
Table 59 – The Property mapping for "A5_04_02"	.. 45
Table 60 – The Properties of "A5_04_02"	.. 45
Table 61 – The Property mapping for "A5_04_03"	.. 46
Table 62 – The Properties of "A5_04_03"	.. 46
Table 63 – The Property mapping for "A5_02_01"	.. 47
Table 64 – The Properties of "A5_02_01"	.. 47
Table 65 – The Property mapping for "A5_02_02"	.. 48
Table 66 – The Properties of "A5_02_02"	.. 48
Table 67 – The Property mapping for "A5_02_03"	.. 49
Table 68 – The Properties of "A5_02_03"	.. 49
Table 69 – The Property mapping for "A5_02_04"	.. 50
Table 70 – The Properties of "A5_02_04"	.. 50
Table 71 – The Property mapping for "A5_02_05"	.. 51
Table 72 – The Properties of "A5_02_05"	.. 51
Table 73 – The Property mapping for "A5_02_06"	.. 52
Table 74 – The Properties of "A5_02_06"	.. 52
Table 75 – The Property mapping for "A5_02_07"	.. 53
Table 76 – The Properties of "A5_02_07"	.. 53
Table 77 – The Property mapping for "A5_02_08"	.. 54
Table 78 – The Properties of "A5_02_08"	.. 54
Introduction

This document, and all the other parts associated with this document, were developed in response to worldwide demand for smart home focused Internet of Things (IoT) devices, such as appliances, door locks, security cameras, sensors, and actuators; these to be modelled and securely controlled, locally and remotely, over an IP network.

While some inter-device communication existed, no universal language had been developed for the IoT. Device makers instead had to choose between disparate frameworks, limiting their market share, or developing across multiple ecosystems, increasing their costs. The burden then falls on end users to determine whether the products they want are compatible with the ecosystem they bought into, or find ways to integrate their devices into their network, and try to solve interoperability issues on their own.

In addition to the smart home, IoT deployments in commercial environments are hampered by a lack of security. This issue can be avoided by having a secure IoT communication framework, which this standard solves.

The goal of these documents is then to connect the next 25 billion devices for the IoT, providing secure and reliable device discovery and connectivity across multiple OSs and platforms. There are multiple proposals and forums driving different approaches, but no single solution addresses the majority of key requirements. This document and the associated parts enable industry consolidation around a common, secure, interoperable approach.

The OCF specification suite is made up of nineteen discrete documents, the documents fall into logical groupings as described herein:

- Core framework
 - Core Specification
 - Security Specification
 - Onboarding Tool Specification
- Bridging framework and bridges
 - Bridging Specification
 - Resource to Alljoyn Interface Mapping Specification
 - OCF Resource to oneM2M Resource Mapping Specification
 - OCF Resource to BLE Mapping Specification
 - OCF Resource to EnOcean Mapping Specification
 - OCF Resource to LWM2M Mapping Specification
 - OCF Resource to UPlus Mapping Specification
 - OCF Resource to Zigbee Cluster Mapping Specification
 - OCF Resource to Z-Wave Mapping Specification
- Resource and Device models
 - Resource Type Specification
 - Device Specification
- Core framework extensions
 - Easy Setup Specification
 - Core Optional Specification
- OCF Cloud
 - Cloud API for Cloud Services Specification
– Device to Cloud Services Specification
– Cloud Security Specification
OCF Resource to EnOcean Mapping Specification

Scope
This document provides detailed mapping information between EnOcean defined EEPs and OCF defined Devices and Resources.

Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 30118-1 Information technology -- Open Connectivity Foundation (OCF) Specification -- Part 1: Core specification
https://www.iso.org/standard/53238.html
Latest version available at: https://openconnectivity.org/specs/OCF_Core_Specification.pdf

https://www.iso.org/standard/74239.html

https://www.iso.org/standard/74240.html

https://www.iso.org/standard/74241.html
Latest version available at: https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf

https://www.iso.org/standard/79389.html

Derived Models for Interoperability between IoT Ecosystems, Stevens & Merriam, March 2016

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005
https://www.rfc-editor.org/info/rfc4122

Terms, definitions, symbols and abbreviated terms

3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/IEC 30118-1, ISO/IEC 30118-2, and ISO/IEC 30118-3 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp

3.1.1 **EnOcean Device**
Device with Sensors and/or Actuators which communicates over ERP and uses a well-defined EEP.

3.1.2 **EnOcean Shadow Device**
virtual copy of an *EnOcean Device* (3.1.1) which contains the last values that have been sent over ERP from the actual *EnOcean Device* (3.1.1).

3.1.3 **EnOcean Bridge Platform**
Platform which contains an ERP transceiver and can communicate over various OCF relevant protocols. It implements the EnOcean bridging function and the *EnOcean Shadow Device* (3.1.2) list which translates well-defined *EnOcean Devices* (3.1.1) to Virtual OCF Servers.

3.1.4 **EnOcean Telegram**
telegram which can be sent over ERP and contains different Parameters. It contains the byte-representation of actual values, a RORG and an Identifier. It may contain Teach-In Information.

3.1.5 **EnOcean Teach-In Information**
EEP of a real device to identify the type.

3.1.6 **EnOcean Transceiver**
Hardware to communicate bi-directional in the ERP.

3.2 **Symbols and abbreviated terms**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP</td>
<td>EnOcean Radio Protocol</td>
</tr>
<tr>
<td>EEP</td>
<td>EnOcean Equipment Profile</td>
</tr>
<tr>
<td>RORG</td>
<td>Radio-Telegram types grouped Organizationally</td>
</tr>
</tbody>
</table>

Document conventions and organization

4.1 **Conventions**

In this document a number of terms, conditions, mechanisms, sequences, parameters, events, states, or similar terms are printed with the first letter of each word in uppercase and the rest lowercase (e.g., Network Architecture). Any lowercase uses of these words have the normal technical English meaning.

In this document, to be consistent with the IETF usages for RESTful operations, the RESTful operation words CRUDN, CREATE, RETRIEVE, UPDATE, DELETE, and NOTIFY will have all letters capitalized. Any lowercase uses of these words have the normal technical English meaning.
4.2 Notation

In this document, features are described as required, recommended, allowed or DEPRECATED as follows:

Required (or shall or mandatory).

These basic features shall be implemented to comply with the Mapping Specification. The phrases "shall not", and "PROHIBITED" indicate behavior that is prohibited, i.e. that if performed means the implementation is not in compliance.

Recommended (or should).

These features add functionality supported by the Mapping Specification and should be implemented. Recommended features take advantage of the capabilities the Mapping Specification, usually without imposing major increase of complexity. Notice that for compliance testing, if a recommended feature is implemented, it shall meet the specified requirements to be in compliance with these guidelines. Some recommended features could become requirements in the future. The phrase "should not" indicates behavior that is permitted but not recommended.

Allowed (or allowed).

These features are neither required nor recommended by the Mapping Specification, but if the feature is implemented, it shall meet the specified requirements to be in compliance with these guidelines.

Conditionally allowed (CA)

The definition or behaviour depends on a condition. If the specified condition is met, then the definition or behaviour is allowed, otherwise it is not allowed.

Conditionally required (CR)

The definition or behaviour depends on a condition. If the specified condition is met, then the definition or behaviour is required. Otherwise the definition or behaviour is allowed as default unless specifically defined as not allowed.

DEPRECATED

Although these features are still described in this document, they should not be implemented except for backward compatibility. The occurrence of a deprecated feature during operation of an implementation compliant with the current document has no effect on the implementation's operation and does not produce any error conditions. Backward compatibility may require that a feature is implemented and functions as specified but it shall never be used by implementations compliant with this document.

Strings that are to be taken literally are enclosed in "double quotes".

Words that are emphasized are printed in italic.

Theory of operation

5.1 Interworking approach

The interworking between EnOcean Devices and OCF defined Devices and Resources is modelled using the derived model syntax described in Derived Models for Interoperability between IoT Ecosystems.

5.2 General

All statements are terminated with a carriage return.
5.2.1 Value assignment
The equals sign (=) is used to assign one value to another. The assignee is on the left of the operator; the value being assigned on the right.

5.2.2 Property naming
All Property names are identical to the name used by the original model; for example from the OCF Temperature Resource the Property name "temperature" is used whereas when referred to the derived ecosystem then the semantically equivalent Property name is used.

The name of the OCF defined Property is prepended by the ecosystem designator "ocf" to avoid ambiguity (e.g. "ocf.step")

5.2.3 Range
The range on the OCF side is fixed.

5.2.4 Arrays
An array element is indicated by the use of square brackets "[]" with the index of the element contained therein, e.g. range [1]. All arrays start at an index of 0.

5.2.5 Default mapping
There are cases where the specified mapping is not possible as one or more of the Properties being mapped is optional in the source model. In all such instances a default mapping is provided. (e.g. "transitiontime = 1")

5.2.6 Conditional mapping
When a mapping is dependent on the meeting of other conditions then the syntax:

If "condition", then "mapping"

is applied.

E.g. if onoff = false, then ocf.value = false

5.2.7 Method invocation
The invocation of a command from the derived ecosystem as part of the mapping from an OCF Resource is indicated by the use if a double colon "::" delimiter between the applicable resource, service, interface or other construct identifier and the command name. The command name always includes trailing parentheses which would include any parameters should they be passed.

EnOcean translation

6.1 Operational scenarios
The overall goal is to make EnOcean Devices appear as OCF Servers in a local network. Like in Figure 1 every EnOcean Device is represented as an EnOcean Shadow Device on the EnOcean Bridge Platform. An EnOcean Shadow Device contains the last values that have been sent over ERP from the real EnOcean device. Over the EnOcean Bridging Function each EnOcean Shadow Device shall be represented as a Virtual OCF Server. The EnOcean Bridging Function supports Asymmetric Server Bridging only since an EnOcean Device always will be represented as an OCF Server and not as an OCF Client.
6.1.1 Use case for enocean bridging

In Figure 2 a use-case for EnOcean Bridging is shown. An EnOcean Bridge Platform which provides an EnOcean Device as an EnOcean Shadow Device can be retrieved by an OCF Client and used to trigger other OCF Devices over rules or just show the actual value of the EnOcean Shadow Device. The connection between the OCF Client and the EnOcean Bridge Platform could be every protocol OCF supports. For the communication between an actual EnOcean Device and the EnOcean Bridge Platform the ERP shall be used.

6.2 Requirements specific to enocean bridging function

6.2.1 Introduction

Each EnOcean Device specified in this document follows the EEP Specification 2.6.8 or higher and uses one telegram type to transmit data over the ERP. To identify a new EnOcean Device the EnOcean Teach-In information is required in the first EnOcean Telegram sent by the EnOcean Device to the EnOcean Bridge Platform.

The EnOcean Bridge Platform acts as an EnOcean Gateway/Transceiver in the ERP. It is responsible for Teaching-In new devices and keeping the EnOcean Shadow Devices updated with the real values from the EnOcean Devices. Through the EnOcean Bridging Function each EnOcean
Shadow Device will be translated, not the real devices directly, since they are commonly Energy Harvesting devices and can't communicate bi-directly.

6.2.2 Exposing enocean devices to OCF clients

6.2.2.1 General requirements

Because the information structure of EnOcean Devices is different from OCF Devices and Resources a structure mapping is given by Table 1. An EnOcean Device will always be mapped as one OCF Device with one or multiple Resources.

<table>
<thead>
<tr>
<th>From EnOcean</th>
<th>Mapping count</th>
<th>To OCF</th>
<th>Mapping count</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnOcean Device</td>
<td>1</td>
<td>OCF Device</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCF Resource</td>
<td>1..n</td>
</tr>
<tr>
<td>EnOcean Telegram Parameter</td>
<td>1</td>
<td>OCF Resource Property</td>
<td>1..n</td>
</tr>
</tbody>
</table>

The Telegram Parameters of a Telegram sent by an EnOcean Device are mapped on Resource(s) and/or Resource Properties. The mapping count of Telegram Parameters on Resources and Resource Properties depends strongly on the individual EnOcean Device.

<table>
<thead>
<tr>
<th>From EnOcean</th>
<th>To OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnOcean Device</td>
<td>A5-02-01 (Temperature Sensor)</td>
</tr>
<tr>
<td></td>
<td>OCF Device oic.d.sensor</td>
</tr>
<tr>
<td></td>
<td>OCF Resource oic.r.temperature</td>
</tr>
<tr>
<td>EnOcean Telegram</td>
<td>Temperature value</td>
</tr>
<tr>
<td>Meta Information from EEP Spec</td>
<td>OCF Resource Properties temperature.value</td>
</tr>
<tr>
<td>Unit (C)</td>
<td>temperature.unit</td>
</tr>
<tr>
<td>Range (-40°C to 0°C)</td>
<td>temperature.range</td>
</tr>
</tbody>
</table>

In Table 2 a mapping example for a simple temperature sensor can be found. The type is identified by the EEP and the EnOcean Device is represented by a single OCF Device and one or more OCF Resources. The temperature value of the EnOcean Device is mapped into a temperature Resource and into the matching OCF Resource property "value". Meta Information provided by the EEP Spec can also be used as OCF Resource Properties. In this example the unit of the value and the range will be mapped into suitable Properties.

The EnOcean Bridging Function shall always follow the requirements in clause 8 to translate all EnOcean Devices and Telegram Parameters in OCF Devices, OCF Resources and Properties. It contains well-defined translation rules for each EnOcean Device. This kind of deep translation is the only way to represent EnOcean Devices as OCF Devices. On the fly translation is technically not possible and shall not be supported.

A Resource URI can be chosen freely since the Bridging Function knows all semantic information of the EnOcean Devices and the OCF Data Model. Maintaining the EnOcean Shadow Devices and how the translation rules will be realised is also implementation specific.

If received Telegrams on the EnOcean Bridge Platform are not readable because they are not following any well-defined EEP they shall be dropped and the EnOcean Bridge Platform may throw a warning message.
6.2.2.2 Translation for well-defined EEPs

If an EnOcean Device uses an EEP which is well-defined in clause 8 the EnOcean Bridging Function shall follow it to translate the Device and its Telegram Parameters to an OCF Device, one or more OCF Resources and OCF Resource Properties.

<table>
<thead>
<tr>
<th>EnOcean Device Name (EEP)</th>
<th>EnOcean Telegram Parameters</th>
<th>OCF Resource Type(s)</th>
<th>OCF Device Type</th>
<th>OCF Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push Button (F6-01-01)</td>
<td>Push Button Released Push Button Pressed</td>
<td>oic.r.button</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Rocker Switch, 2 Rocker</td>
<td>Rocker 1st Action AI Rocker 1st Action AO Rocker 1st Action BI Rocker 1st Action BO</td>
<td>oic.r.button</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Rocker Switch, 4 Rocker</td>
<td>Rocker 1st Action AI Rocker 1st Action AO Rocker 1st Action BI Rocker 1st Action BO Rocker 1st Action CI Rocker 1st Action CO Rocker 1st Action DI Rocker 1st Action DO</td>
<td>oic.r.button</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Position Switch (F6-04-01)</td>
<td>Key Card activated Key Card taken out</td>
<td>oic.r.keycardswitch</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Position Switch (F6-04-02)</td>
<td>Key Card inserted Key Card taken out</td>
<td>oic.r.keycardswitch</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Liquid Leakage Detector (Water) (F6-05-01)</td>
<td>Alert Signal</td>
<td>oic.r.sensor.water</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Smoke Detector (F6-05-02)</td>
<td>Smoke Alarm ON Smoke Alarm OFF</td>
<td>oic.r.sensor.smoke</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Single Input Contact (D5-00-01)</td>
<td>Open Closed</td>
<td>oic.r.sensor.contact</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Temperature Sensor (A5-02-XX)</td>
<td>Temperature value Unit (defined by spec) Range (by type spec)</td>
<td>oic.r.temperature</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Temperature and Humidity Sensor (A5-04-XX)</td>
<td>Temperature value Temperature unit (by spec) Temperature range (by type spec) Humidity (%)</td>
<td>oic.r.temperature, oic.r.humidity</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Barometric Sensor (A5-05-01)</td>
<td>Barometer value</td>
<td>oic.r.sensor.atmosphericpressure</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Light Sensor (A5-06-XX)</td>
<td>Illumination value (linear, lx) range (by type Spec)</td>
<td>oic.r.sensor.illuminance</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Occupancy Sensor (A5-07-XX)</td>
<td>PIR Status Uncertain</td>
<td>oic.r.sensor.presence</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Light, Temperature and Occupancy Sensor (A5-08-XX)</td>
<td>Temperature Value</td>
<td>oic.r.temperature</td>
<td>Generic Sensor</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>------------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Temp Unit (by spec)</td>
<td></td>
<td>oic.r.sensor.illuminance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp Range (by TYPE spec)</td>
<td></td>
<td>oic.r.sensor.presence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illumination Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illumination range (by type spec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 - "oic.wk.p" Resource Type definition

<table>
<thead>
<tr>
<th>To OCF Property title</th>
<th>OCF Property name</th>
<th>OCF Description</th>
<th>OCF Mandatory</th>
<th>From EnOcean Device or EEP Spec</th>
<th>EnOcean Description</th>
<th>EnOcean Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform ID</td>
<td>pi</td>
<td>Unique identifier for the physical platform (UUID); this shall be a UUID in accordance with IETF RFC 4122. It is recommended that the UUID be created using the random generation scheme (version 4 UUID) specific in the RFC.</td>
<td>Y</td>
<td>(none)</td>
<td>Bridging Function should return a randomly-generated UUID (Please see section 4.4 of IETF RFC 4122 for randomly-generatedUUID)</td>
<td>N</td>
</tr>
<tr>
<td>Manufacturer Name</td>
<td>mnmn</td>
<td>Name of manufacturer (not to exceed 16 characters)</td>
<td>Y</td>
<td>ManID</td>
<td>The ID of the EnOcean Device contains the Manufacturer ID of it, which shall be used by Bridging Function to resolve it to the corresponding name. If the name exceeds 16 Characters a Manufacturer Short name shall be used.</td>
<td>Y</td>
</tr>
<tr>
<td>Manufacturer Details Link (URL)</td>
<td>mnml</td>
<td>URL to manufacturer (not to exceed 32 characters)</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Model Number</td>
<td>mnmo</td>
<td>Model number as designated by manufacturer</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Date of Manufacture</td>
<td>mndt</td>
<td>Manufacturing date of device</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>To OCF Property title</td>
<td>OCF Property name</td>
<td>OCF Description</td>
<td>OCF Mandatory</td>
<td>From EnOcean Device or EEP Spec</td>
<td>EnOcean Description</td>
<td>EnOcean Mandatory</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Platform Version</td>
<td>mnpv</td>
<td>Version of platform – string (defined by manufacturer)</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>OS Version</td>
<td>mnos</td>
<td>Version of platform resident OS – string (defined by manufacturer)</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Hardware Version</td>
<td>mnhw</td>
<td>Version of platform hardware</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Firmware version</td>
<td>mnfv</td>
<td>Version of device firmware</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Support link</td>
<td>mns!</td>
<td>URI that points to support information from manufacturer</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>System Time</td>
<td>st</td>
<td>Reference time for the device</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Vendor ID</td>
<td>vid</td>
<td>Vendor defined string for the platform. The string is freeform and up to the vendor on what text to populate it.</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
</tbody>
</table>

Table 4 – "oic.wk.d" Resource Type definition

<table>
<thead>
<tr>
<th>To OCF Property title</th>
<th>OCF Property name</th>
<th>OCF Description</th>
<th>OCF Mandatory</th>
<th>From EnOcean Device or EEP Spec</th>
<th>EnOcean Description</th>
<th>EnOcean Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Device) Name</td>
<td>n</td>
<td>Human friendly name For example, “Bob’s Thermostat”</td>
<td>Y</td>
<td>(none)</td>
<td>Should be set by the user in the EnOcean Bridge Platform configuration or on Onboarding.</td>
<td>N</td>
</tr>
<tr>
<td>Spec Version</td>
<td>icv</td>
<td>Spec version of ISO/IEC 30118-1 this device is implemented to. The syntax is “core.major.minor”]</td>
<td>Y</td>
<td>(none)</td>
<td>Spec version of ISO/IEC 30118-1 that the Bridging Platform implements should return its own value</td>
<td>N</td>
</tr>
<tr>
<td>Device UUID</td>
<td>di</td>
<td>Unique identifier for Device. This value shall be as defined in ISO/IEC 30118-2 for Device UUID.</td>
<td>Y</td>
<td>(none)</td>
<td>Use as defined in ISO/IEC 30118-2</td>
<td>N</td>
</tr>
<tr>
<td>To OCF Property title</td>
<td>OCF Property name</td>
<td>OCF Description</td>
<td>OCF Mandatory</td>
<td>From EnOcean Device or EEPROM Spec</td>
<td>EnOcean Description</td>
<td>EnOcean Mandatory</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Protocol-Independent ID</td>
<td>piid</td>
<td>Unique identifier for OCF Device (UUID)</td>
<td>Y</td>
<td>(none)</td>
<td>Bridging Function should return a randomly-generated UUID (Please see section 4.4 of IETF RFC 4122 for randomly-generated UUID)</td>
<td>N</td>
</tr>
<tr>
<td>Data Model Version</td>
<td>dmv</td>
<td>Spec version(s) of the vertical specifications this device data model is implemented to. The syntax is a comma separated list of "<vertical>.major.minor". <vertical> is the name of the vertical (i.e. sh for Smart Home)</td>
<td>Y</td>
<td>(none)</td>
<td>Bridging Function should return its own value.</td>
<td>N</td>
</tr>
<tr>
<td>Localized Descriptions</td>
<td>ld</td>
<td>Detailed description of the Device, in one or more languages. This property is an array of objects where each object has a "language" field (containing an RFC 5646 language tag) and a "value" field containing the device description in the indicated language.</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td></td>
</tr>
<tr>
<td>Software Version</td>
<td>sv</td>
<td>Version of the device software.</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Manufacturer Name</td>
<td>dmn</td>
<td>Name of manufacturer of the Device, in one or more languages. This property is an array of objects where each object has a "language" field (containing an RFC 5646 language tag) and a "value" field containing the manufacturer name in the indicated language.</td>
<td>N</td>
<td>ManID</td>
<td>The ID of the EnOcean Device contains the Manufacturer ID of it, which shall be used by Bridging Function to resolve it to the corresponding name.</td>
<td>Y</td>
</tr>
<tr>
<td>To OCF Property title</td>
<td>OCF Property name</td>
<td>OCF Description</td>
<td>OCF Mandatory</td>
<td>From EnOcean Device or EEP Spec</td>
<td>EnOcean Description</td>
<td>EnOcean Mandatory</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Model Number</td>
<td>dmno</td>
<td>Model number as designated by manufacturer.</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
</tbody>
</table>

Table 5 – "oic.wk.con" Resource Type definition

<table>
<thead>
<tr>
<th>To OCF Property title</th>
<th>OCF Property name</th>
<th>OCF Description</th>
<th>OCF Mandatory</th>
<th>From EnOcean Device or EEP Spec</th>
<th>EnOcean Description</th>
<th>EnOcean Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Device) Name</td>
<td>n</td>
<td>Human friendly name For example, "Bob’s Thermostat"</td>
<td>Y</td>
<td>(none)</td>
<td>Should be set by the user in the EnOcean Bridge Platform configuration or on Onboarding.</td>
<td>N</td>
</tr>
<tr>
<td>Location</td>
<td>loc</td>
<td>Provides location information where available.</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Location Name</td>
<td>locn</td>
<td>Human friendly name for location For example, “Living Room”.</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Currency</td>
<td>c</td>
<td>Indicates the currency that is used for any monetary transactions</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Region</td>
<td>r</td>
<td>Free form text Indicating the current region in which the device is located geographically. The free form text shall not start with a quote (").</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Localized Names</td>
<td>ln</td>
<td>Human-friendly name of the Device, in one or more languages. This property is an array of objects where each object has a "language" field (containing an RFC 5646 language tag) and a "value" field containing the device name in the indicated language. If this property and the Device Name (n) property are both supported, the</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
</tbody>
</table>
6.2.3 Protocol translation between enocean and OCF

6.2.3.1 EnOcean behavior translated to OCF actions

On the EnOcean side of the EnOcean Bridge Platform there are overall three different behaviours. A Translation from it to OCF Actions is given by Table 6.

<table>
<thead>
<tr>
<th>EnOcean Behaviour</th>
<th>OCF Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teach-In (EEP) new device</td>
<td>Create VOD and proper resources</td>
</tr>
<tr>
<td>Receiving Telegram of a Teached-In Device</td>
<td>Update Resource(s), notify observers</td>
</tr>
<tr>
<td>Deleting Device (by User)</td>
<td>Remove VOD and Resource(s)</td>
</tr>
</tbody>
</table>

Teaching-In a new device over a proper telegram results in a new virtual OCF Server and corresponding Resources. Depending on the EnOcean Device there may be already one or more real values from the EnOcean Device in the telegram which shall be used to initiate the Resource Properties. The new EnOcean Device will be saved as an EnOcean Shadow Device in a suitable data representation. If the Teach-In telegram contains an invalid EEP or an EEP which isn't specified yet it shall not be translated. If the EEP is vendor specific but may be mapped on existing specified EEPs a translation could be possible.

If a telegram of an EnOcean Device is received by the EnOcean Bridge Platform which is already Teached-In and maintained in the EnOcean Shadow Device List, the associated OCF Resources will be updated. If there are existing observers on the Resource a notify to each observer will be executed. If the Device ID of the Telegram doesn't fit on any already Teached-In EnOcean device, it will be ignored.

Users have the possibility to delete Teached-In Devices. If an EnOcean Device will be deleted all corresponding Resources and the VOD shall be deleted as well.

6.2.3.2 OCF actions and enocean bridge results

In Table 7 the OCF actions are displayed with the corresponding EnOcean translation results. Each action has different effects on the Bridging Function.
Table 7 - OCF Actions translated to EnOcean

<table>
<thead>
<tr>
<th>OCF Action</th>
<th>EnOcean Bridge Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery</td>
<td>Answering with OCF Representation of all EnOcean Shadow Devices</td>
</tr>
<tr>
<td>Retrieve</td>
<td>Answering with OCF Representation of a Device or Resources of the EnOcean Shadow devices, not the actual EnOcean Device</td>
</tr>
<tr>
<td>Observe</td>
<td>Register on a resource of an EnOcean Shadow Device</td>
</tr>
<tr>
<td>Update</td>
<td>(Not supported yet)</td>
</tr>
</tbody>
</table>

Answering to an OCF Discovery will result in a representation of all EnOcean Shadow Devices which are Teached-In in the EnOcean Bridge Platform. The Bridging Function is following the proper translation rules for each individual device. This operation has no impact on the EnOcean Device directly.

A retrieve operation also will be processed through the Bridging Function with an EnOcean Shadow Device. It will deliver the last known value of the actual EnOcean Device, since these Devices mostly can’t communicate bi-directly.

Observe Requests will be attached to the respective EnOcean Shadow Device. Each EnOcean Shadow Device contains a list of registered observers and will notify them if a new value from the proper EnOcean Device is received.

Since the EnOcean Device mapping list doesn’t contain actuators yet update requests are not supported by the EnOcean Bridge Platform.

Device type mapping

7.1 Introduction

This clause contains the mappings from EnOcean EEPs to OCF Device Types and OCF Resource Types. Additionally, all different Telegram Parameters with corresponding OCF Resource(s) will be presented.

7.2 EnOcean equipment profiles to OCF device types and OCF resource types

All supported EEPs are represented as “oic.d.sensor” Devices. Actuators are currently not supported.

Table 8 - EnOcean to OCF Mapping Table

<table>
<thead>
<tr>
<th>EnOcean Device Name (EEP)</th>
<th>EnOcean Telegram Parameters</th>
<th>OCF Resource Type(s)</th>
<th>OCF Device Type</th>
<th>OCF Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push Button (F6-01-01)</td>
<td>Push Button Released</td>
<td>oic.r.button</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td></td>
<td>Push Button Pressed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocker Switch, 2</td>
<td>Rocker 1st Action AI</td>
<td>oic.r.button</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Rocker (F6-02-XX)</td>
<td>Rocker 1st Action AO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rocker 1st Action BI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rocker 1st Action BO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocker Switch, 4</td>
<td>Rocker 1st Action AI</td>
<td>oic.r.button</td>
<td>oic.d.sensor</td>
<td>Generic Sensor</td>
</tr>
<tr>
<td>Rocker (F6-03-XX)</td>
<td>Rocker 1st Action AO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rocker 1st Action BI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rocker 1st Action BO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rocker 1st Action CI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component</td>
<td>Description</td>
<td>Range</td>
<td>Unit</td>
<td>Additional Details</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------</td>
<td>------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Rocker 1st Action CO, Rocker 1st Action DI, Rocker 1st Action DO</td>
<td>Key Card activated, Key Card taken out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position Switch (F6-04-01)</td>
<td>Key Card inserted, Key Card taken out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position Switch (F6-04-02)</td>
<td>Key Card activated, Key Card taken out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rocker 1st action</td>
<td>Key Card inserted, Key Card taken out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Leakage Detector (Water) (F6-05-01)</td>
<td>Alert Signal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoke Detector (F6-05-02)</td>
<td>Smoke Alarm ON, Smoke Alarm OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Input Contact (D5-00-01)</td>
<td>Open, Closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Sensor (A5-02-XX)</td>
<td>Temperature value, Temperature unit (by spec), Temperature range (by type spec), Humidity (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature and Humidity Sensor (A5-04-XX)</td>
<td>Temperature value, Temperature unit (by spec), Temperature range (by type spec), Humidity (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barometric Sensor (A5-05-01)</td>
<td>Barometer value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Sensor (A5-06-XX)</td>
<td>Illumination value (linear, lx), range (by type Spec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupancy Sensor (A5-07-XX)</td>
<td>PIR Status Uncertain, PIR Status Motion detected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light, Temperature and Occupancy Sensor (A5-08-XX)</td>
<td>Temperature value, Temp Unit (by spec), Temp Range (by TYPE spec), Illumination value, Illumination range (by type spec), Occupancy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.3 Telegram parameters

7.3.1 Push button

A Push Button value in EnOcean only contains the information if a button is pressed or released. It is represented as an “oic.r.button” Resource which value is flipping from “false” to “true” or from “true” to “false” each time the value signals that the EnOcean Push Button has been pressed.

7.3.2 Rocker 1st action

This Parameter is used in Rocker Buttons and contains the actual state of a Rocker Button and which Rocker has been pressed. Each Rocker is represented as an “oic.r.button” Resource. The
current state of a Rocker changes the value of the matching OCF Resource (e.g. State AI – “true”, AO – “false”).

Rocker Buttons contain another Parameter called Rocker 2nd Action. This Parameter is not translated since it contains the same semantic information as Rocker 1st Action.

7.3.3 Key card
A Key Card Parameter can represent two States. The first one indicates that a valid Card has been inserted. The second state describes that the Card has been taken out. It is represented as an “oic.r.keycardswitch” resource.

7.3.4 Alert signals
Alarm Signal Parameters are simple On/Off Parameters. It contains the Information if an Alarm has been triggered or if everything seems fine (for example Smoke Alarm or Water Leakage). Depending on the semantic use of this field it is mapped on an “oic.r.sensor.smoke” or on an “oic.r.sensor.water” Resource. The semantic use of this Parameter is specified by the EEP.

7.3.5 Open/closed
Single Input Contacts only transfer a Parameter which indicates that a Contact has been Open or Closed. This generic type can be used from many different EnOcean Devices. Since there is no other semantic information available the only suiting resource is the “oic.r.sensor.contact” Resource.

7.3.6 Temperature
A Temperature Parameter contains the actual temperature in an 8 bit or 10 bit resolution. The Unit and the Range are specified through the EEP. The “oic.r.temperature” Resource is used for translation of this Parameter. The standard Unit of this Parameter is “°C”.

7.3.7 Barometer
This Parameter contains a 10 bit value and is translated to an “oic.r.sensor.atmosphericpressure” Resource. The used Unit and Range are specified by the EEP. The standard Unit of this Parameter is “hPa”.

7.3.8 Illumination
The Illumination Parameter is used for the actual illuminance value. It normally uses an 8 bit resolution. Unit and Range are specified by the used EEP. The standard Unit of this Parameter is “lx”. It is mapped on an “oic.r.sensor.illuminance” Resource.

7.3.9 Humidity
This Parameter is used for humidity measurements and only contains the relative value in percent. The range on all EEPs which are using this field is 0 % to 100 %. It is mapped on an “oic.r.humidity” Resource.

7.3.10 PIR/occupancy
The Parameter of the Passive Infrared Sensors for Motion Detection contains the Information if there has been a motion or not. The “oic.r.sensor.presence” is used for this field.

7.4 Indirect parameters through enocean equipment profile
7.4.1 Introduction
In clause 8 some values of OCF Resources are already filled with semantic information. This information is given by the corresponding EEP of the EnOcean Device and is not changed during translation.
7.4.2 Range
EnOcean Devices with Parameters like Illumination, Temperature or other continuous value types have a specified range. This range is not transmitted over ERP and can only be acquired over the EEP. It consists of a min and a max value and can be mapped into the generic range of OCF Resources.

7.4.3 Unit
EnOcean Devices with Parameters like Illumination, Temperature or other continuous value types have a specified unit. This unit is not transmitted over ERP and can only be acquired over the EEP. It can be mapped as a unit into OCF Resources.

Detailed mapping APIs

8.1 Introduction
This clause provides a Device Type mapping description (using JSON that aligns with the Derived Modelling syntax described in Derived Models for Interoperability between IoT Ecosystems) for all EnOcean EEPs and OCF Resources that are within scope.

8.2 Barometric sensor EEP A5-05-01

8.2.1 Derived model
The derived model: "A5_05_01".

8.2.2 Property definition
Table 9 provides the detailed per Property mapping for "A5_05_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>barometer</td>
<td>oic.r.sensor.atmosphericpressure</td>
<td>oic.r.sensor.atmosphericpressure.atmosphericPressure = barometer</td>
<td>[500.0, 1150.0]</td>
</tr>
</tbody>
</table>

Table 10 provides the details of the Properties that are part of "A5_05_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>barometer</td>
<td>number</td>
<td>yes</td>
<td>Current Pressure</td>
</tr>
</tbody>
</table>

8.2.3 Derived model definition

```json
{
    "id": "http://openinterconnect.org/enoceanmapping/schemas/BarometricSensor.A5_05_01.json#",
    "Schema": "http://json-schema.org/draft-04/schema#",
    "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
    "title": "Barometric Sensor EEP A5-05-01",
    "definitions": {
        "A5_05_01": {          
            "type": "object",
            "properties": {
                "barometer": {          
                    "type": "number",
                    "description": "Current Pressure",
                    "x-ocf-conversion": {
                        "x-ocf-alias": "oic.r.sensor.atmosphericpressure",
                        "x-to-ocf": [          
                            "oic.r.sensor.atmosphericpressure.atmosphericPressure = barometer",
                            "barometer = oic.r.sensor.atmosphericpressure.atmosphericPressure"
                        ]
                    }
                }
            }
        }
    }
}
```
"oic.r.sensor.atmosphericpressure.range = [500.0, 1150.0]"
},
"x-from-ocf": [
 "N/A"
]
}
}
}
}
}

"type": "object",
"allOf": [
 {"$ref": "/definitions/A5_05_01"}
],
"required": ["barometer"
]
}

8.3 Key card switch, EEP F6-04-01
8.3.1 Derived model
The derived model: "F6_04_01".

8.3.2 Property definition
Table 11 provides the detailed per Property mapping for "F6_04_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
</table>
| KeyCard | oic.r.keycardswitch | if (KeyCard == 112):
 oic.r.keycardswitch.stateofcard = 'validCardInserted'
else:
 oic.r.keycardswitch.stateofcard = 'validCardNotInserted' | N/A |

Table 12 provides the details of the Properties that are part of "F6_04_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KeyCard</td>
<td>number</td>
<td>yes</td>
<td>Valid Key Card inserted or Taken out</td>
</tr>
</tbody>
</table>

8.3.3 Derived model definition

```
{
  "id": "http://openinterconnect.org/enoceanmapping/schemas/KeyCardSwitch.F6_04_01.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Key Card Switch, EEP F6-04-01",
  "definitions": {
    "F6_04_01": {
      "type": "object",
      "properties": {
        "KeyCard": {
          "type": "number",
          "description": "Valid Key Card inserted or Taken out",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.keycardswitch",
            "x-to-ocf": [
              if (KeyCard == 112):
                oic.r.keycardswitch.stateofcard = 'validCardInserted'
              else:
                oic.r.keycardswitch.stateofcard = 'validCardNotInserted'
            ]
          }
        }
      }
    }
  }
}
```
8.4 Key card switch, EEP F6-04-02

8.4.1 Derived model
The derived model: "F6_04_02".

8.4.2 Property definition
Table 13 provides the detailed per Property mapping for "F6_04_02".

Table 13 – The Property mapping for “F6_04_02”.

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>StateOfCard</td>
<td>oic.r.keycardswitch</td>
<td>if (StateOfCard == 1): oic.r.keycardswitch.stateofcard = 'validCardInserted'; else: oic.r.keycardswitch.stateofcard = 'validCardNotInserted'</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 14 provides the details of the Properties that are part of "F6_04_02".

Table 14 – The Properties of “F6_04_02”.

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StateOfCard</td>
<td>number</td>
<td>yes</td>
<td>Valid Key Card inserted or Taken out</td>
</tr>
</tbody>
</table>

8.4.3 Derived model definition

```json
{
   "id": "http://openinterconnect.org/enoceanmapping/schemas/KeyCardSwitch.F6_04_02.json#",
   "$schema": "http://json-schema.org/draft-04/schema#",
   "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
   "title": "Key Card Switch, EEP F6-04-02",
   "definitions": {
      "F6_04_02": {
         "type": "object",
         "properties": {
            "StateOfCard": {
               "type": "number",
               "description": "Valid Key Card inserted or Taken out",
               "x-ocf-conversion": {
                  "x-ocf-alias": "oic.r.keycardswitch",
                  "x-to-ocf": {
                     "if (StateOfCard == 1):",
                     "   oic.r.keycardswitch.stateofcard = 'validCardInserted';",
                     "else:"",
                     "   oic.r.keycardswitch.stateofcard = 'validCardNotInserted';"
                  }
               }
            }
         }
      }
   }
}
```
8.5 Light sensor EEP A5-06-01

8.5.1 Derived model
The derived model: "A5_06_01".

8.5.2 Property definition
Table 15 provides the detailed per Property mapping for "A5_06_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightsensor</td>
<td>oic.r.sensor.illuminance</td>
<td>oic.r.sensor.illuminance.illuminance = lightsensor, oic.r.sensor.illuminance.range = [300.0, 60000.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 16 provides the details of the Properties that are part of "A5_06_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightsensor</td>
<td>number</td>
<td>yes</td>
<td>Current Illuminance in Lux</td>
</tr>
</tbody>
</table>
8.6 Light sensor EEP A5-06-02

8.6.1 Derived model

The derived model: "A5_06_02".

8.6.2 Property definition

Table 17 provides the detailed per Property mapping for "A5_06_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightsensor</td>
<td>oic.r.sensor.illuminance</td>
<td>oic.r.sensor.illuminance.illuminance = lightsensor, oic.r.sensor.illuminance.range = [0.0, 1020.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 18 provides the details of the Properties that are part of "A5_06_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightsensor</td>
<td>number</td>
<td>yes</td>
<td>Current Illuminance in Lux</td>
</tr>
</tbody>
</table>

8.6.3 Derived model definition

```
...
"type": "object",
"allOf": [
  {"$ref": "#/definitions/A5_06_01"}
],
"required": [ "lightsensor"
]
...
```
8.7 Light sensor EEP A5-06-03

8.7.1 Derived model

The derived model: "A5_06_03".

8.7.2 Property definition

Table 19 provides the detailed per Property mapping for "A5_06_03".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightsensor</td>
<td>oic.r.sensor.illuminance</td>
<td>oic.r.sensor.illuminance.illuminance = lightsensor, oic.r.sensor.illuminance.range = [0.0, 1000.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 20 provides the details of the Properties that are part of "A5_06_03".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightsensor</td>
<td>number</td>
<td>yes</td>
<td>Current Illuminance in Lux</td>
</tr>
</tbody>
</table>
8.8 Light sensor EEP A5-06-04

8.8.1 Derived model

The derived model: "A5_06_04".

8.8.2 Property definition

Table 21 provides the detailed per Property mapping for "A5_06_04".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightsensor</td>
<td>oic.r.sensor.illuminance</td>
<td>oic.r.sensor.illuminance.illuminance = lightsensor.oic.r.sensor.illuminance.range = [0.0, 65535.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 22 provides the details of the Properties that are part of "A5_06_04".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightsensor</td>
<td>number</td>
<td>yes</td>
<td>Current Illuminance in Lux</td>
</tr>
</tbody>
</table>

8.8.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/enoceanmapping/schemas/LightSensor.A5_06_04.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Light Sensor EEP A5-06-04",
  "definitions": {
    "A5_06_04": {
      "type": "object",
      "properties": {
        "lightsensor": {
          "type": "number",
          "description": "Current Illuminance in Lux",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.sensor.illuminance",
            "x-to-ocf": [
              "oic.r.sensor.illuminance.illuminance = lightsensor",
              "oic.r.sensor.illuminance.range = [0.0, 65535.0]"
            ],
            "x-from-ocf": [
              "N/A"
            ]
          }
        }
      }
    }
  },
  "type": "object",
  "allOf": [
    {"$ref": "#/definitions/A5_06_04"}
  ],
  "required": ["lightsensor"]
}```
8.9 Light Sensor EEP A5-06-05

8.9.1 Derived model
The derived model: "A5_06_05".

8.9.2 Property definition
Table 23 provides the detailed per Property mapping for "A5_06_05".

**Table 23 – The Property mapping for "A5_06_05".**

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightsensor</td>
<td>oic.r.sensor.illuminance</td>
<td>oic.r.sensor.illuminance.illuminance = lightsensor.oic.r.sensor.illuminance.range = [0.0, 10200.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 24 provides the details of the Properties that are part of "A5_06_05".

**Table 24 – The Properties of "A5_06_05".**

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightsensor</td>
<td>number</td>
<td>yes</td>
<td>Current Illuminance in Lux</td>
</tr>
</tbody>
</table>

8.9.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/LightSensor.A5_06_05.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Light Sensor EEP A5-06-05",
 "definitions": {
 "A5_06_05": {
 "type": "object",
 "properties": {
 "lightsensor": {
 "type": "number",
 "description": "Current Illuminance in Lux",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.sensor.illuminance",
 "x-to-ocf": [{
 "oic.r.sensor.illuminance.illuminance = lightsensor",
 "oic.r.sensor.illuminance.range = [0.0, 10200.0]"
 }],
 "x-from-ocf": ["N/A"
]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [{
 "$ref": "#/definitions/A5_06_05"
 }],
 "required": ["lightsensor"
]
}
```

8.10 Light, temperature and occupancy sensor EEP A5-08-01

8.10.1 Derived model
The derived model: "A5_08_01".
8.10.2 Property definition

Table 25 provides the detailed per Property mapping for "A5_08_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
</table>
| PIR                   | oic.r.sensor.presence | if (PIR==0):
                          oic.r.sensor.presence.value = true
                          else:
                          oic.r.sensor.presence.value = false | N/A      |
| lightsensor           | oic.r.sensor.illuminance | oic.r.sensor.illuminance.illuminance = lightsensor
                          oic.r.sensor.illuminance.range = [0.0, 510.0] | N/A      |
| temperature           | oic.r.temperature    | oic.r.temperature.temperature = temperature
                          oic.r.temperature.units = temperature
                          oic.r.temperature.range = [0.0, 51.0] | N/A      |

Table 26 provides the details of the Properties that are part of "A5_08_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR</td>
<td>number</td>
<td>yes</td>
<td>Occupancy</td>
</tr>
<tr>
<td>lightsensor</td>
<td>number</td>
<td>yes</td>
<td>Current Illuminance in Lux</td>
</tr>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.10.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/LightTemperatureOccupancySensor.A5_08_01.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Light, Temperature and Occupancy Sensor EEP A5-08-01",
 "definitions": {
 "A5_08_01": {
 "type": "object",
 "properties": {
 "PIR": {
 "type": "number",
 "description": "Occupancy",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.sensor.presence",
 "x-to-ocf": [
 "if (PIR==0):
 oic.r.sensor.presence.value = true",
 "else:
 oic.r.sensor.presence.value = false"
],
 "x-from-ocf": ["N/A"]
 }
 },
 "lightsensor": {
 "type": "number",
 "description": "Current Illuminance in Lux",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.sensor.illuminance",
 "x-to-ocf": [
 "oic.r.sensor.illuminance.illuminance = lightsensor",
 "oic.r.sensor.illuminance.range = [0.0, 510.0]"
]
 }
 }
 }
 }
 }
}
```
8.11 Light, temperature and occupancy sensor EEP A5-08-02

8.11.1 Derived model
The derived model: "A5_08_02".

8.11.2 Property definition
Table 27 provides the detailed per Property mapping for "A5_08_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
</table>
| PIR                   | oic.r.sensor.presence | if (PIR==0):
                         oic.r.sensor.presence.value = trueelse:
                         oic.r.sensor.presence.value = false | N/A |
| lightsensor           | oic.r.sensor.illuminance | oic.r.sensor.illuminance.illuminance = lightsensor.oic.r.sensor.illuminance.illuminance.range = [0.0, 1020.0] | N/A |
| temperature           | oic.r.temperature | oic.r.temperature.temperature = temperature.oic.r.temperature.units = Coic.r.temperature.range = [0.0, 51.0] | N/A |

Table 28 provides the details of the Properties that are part of "A5_08_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR</td>
<td>number</td>
<td>yes</td>
<td>Occupancy</td>
</tr>
<tr>
<td>lightsensor</td>
<td>number</td>
<td>yes</td>
<td>Current Illuminance in Lux</td>
</tr>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>
8.11.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/LightTemperatureOccupancySensor.A5_08_02.json#",
 "schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Light, Temperature and Occupancy Sensor EEP A5-08-02",
 "definitions": {
 "A5_08_02": {
 "type": "object",
 "properties": {
 "PIR": {
 "type": "number",
 "description": "Occupancy",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.sensor.presence",
 "x-to-ocf": [
 "if (PIR==0):
 oic.r.sensor.presence.value = true",
 "else:
 oic.r.sensor.presence.value = false"
],
 "x-from-ocf": ["N/A"]
 }
 },
 "lightsensor": {
 "type": "number",
 "description": "Current Illuminance in Lux",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.sensor.illuminance",
 "x-to-ocf": [
 "oic.r.sensor.illuminance.illuminance = lightsensor",
 "oic.r.sensor.illuminance.range = [0.0, 1020.0]"
],
 "x-from-ocf": ["N/A"]
 }
 },
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [0.0, 51.0]"
],
 "x-from-ocf": ["N/A"]
 }
 }
 }
 },
 "allOf": [
 {"$ref": "#/definitions/A5_08_02"}
],
 "required": ["PIR", "temperature", "lightsensor"]
 }
}
```
8.12 Light, temperature and occupancy sensor EEP A5-08-03

8.12.1 Derived model
The derived model: "A5_08_03".

8.12.2 Property definition
Table 29 provides the detailed per Property mapping for "A5_08_03".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR</td>
<td>oic.r.sensor.presence</td>
<td>if (PIR==0):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.sensor.presence.value = true else:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.sensor.presence.value = false</td>
<td></td>
</tr>
<tr>
<td>lightsensor</td>
<td>oic.r.sensor.illuminance</td>
<td>oic.r.sensor.illuminance.illuminance = lightsensor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.sensor.illuminance.range = [0.0, 1530.0]</td>
<td></td>
</tr>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.temperature.units = Coic.r.temperature.range = [-30.0, 50.0]</td>
<td></td>
</tr>
</tbody>
</table>

N/A

Table 30 provides the details of the Properties that are part of "A5_08_03".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR</td>
<td>number</td>
<td>yes</td>
<td>Occupancy</td>
</tr>
<tr>
<td>lightsensor</td>
<td>number</td>
<td>yes</td>
<td>Current Illuminance in Lux</td>
</tr>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.12.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/LightTemperatureOccupancySensor.A5_08_03.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Light, Temperature and Occupancy Sensor EEP A5-08-03",
 "definitions": {
 "A5_08_03": {
 "type": "object",
 "properties": {
 "PIR": {
 "type": "number",
 "description": "Occupancy",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.sensor.presence",
 "x-to-ocf": {
 "if (PIR==0):",
 "oic.r.sensor.presence.value = true",
 "else:
 "oic.r.sensor.presence.value = false"
 },
 "x-from-ocf": {
 "N/A"
 }
 }
 },
 "lightsensor": {
 "type": "number",
 "description": "Current Illuminance in Lux",
```


8.13 Liquid leakage detector (water) EEP F6-05-01

8.13.1 Derived model

The derived model: "F6_05_01".

8.13.2 Property definition

Table 31 provides the detailed per Property mapping for "F6_05_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
</table>
| watersensor           | oic.r.sensor.water | if (watersensor==17):
   oic.r.sensor.water.value = true
else:
   oic.r.sensor.water.value = false | N/A |

Table 32 provides the details of the Properties that are part of "F6_05_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>watersensor</td>
<td>number</td>
<td>yes</td>
<td>Water detector</td>
</tr>
</tbody>
</table>
8.13.3 Derived model definition

```
"id": "http://openinterconnect.org/enoceanmapping/schemas/LiquidLeakageDetectorWater.F6_05_01.json#",
"$schema": "http://json-schema.org/draft-04/schema#",
"description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
"title": "Liquid Leakage Detector (Water) EEP F6-05-01",
"definitions": {
 "F6_05_01": {
 "type": "object",
 "properties": {
 "watersensor": {
 "type": "number",
 "description": "Water detector",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.sensor.water",
 "x-to-ocf": [
 "if (watersensor==17):",
 " oic.r.sensor.water.value = true",
 "else:",
 " oic.r.sensor.water.value = false"
]
 }"x-from-ocf": ["N/A"
 }
 }
 }
}
```

8.14 Occupancy sensor EEP A5-07-01

8.14.1 Derived model

The derived model: "A5_07_01".

8.14.2 Property definition

Table 33 provides the detailed per Property mapping for "A5_07_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
</table>
| PIR                   | oic.r.sensor.presence | if (PIR<128):
                        | oic.r.sensor.presence.value = true
                        | else:
                        | oic.r.sensor.presence.value = false |
|                       |                       | N/A                                         |          |

Table 34 provides the details of the Properties that are part of "A5_07_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR</td>
<td>number</td>
<td>yes</td>
<td>Occupancy</td>
</tr>
</tbody>
</table>
8.14.3 Derived model definition

```
8.15 Occupancy sensor EEP A5-07-02

8.15.1 Derived model
The derived model: "A5_07_02".

8.15.2 Property definition
Table 35 provides the detailed per Property mapping for "A5_07_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR</td>
<td>oic.r.sensor.presence</td>
<td>if (PIR==0): oic.r.sensor.presence.value = false; otherwise: oic.r.sensor.presence.value = true</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 36 provides the details of the Properties that are part of "A5_07_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR</td>
<td>number</td>
<td>yes</td>
<td>Occupancy</td>
</tr>
</tbody>
</table>

8.15.3 Derived model definition

```

8.16 Occupancy sensor EEP A5-07-03

8.16.1 Derived model

The derived model: "A5_07_03".

8.16.2 Property definition

Table 37 provides the detailed per Property mapping for "A5_07_03".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
</table>
| PIR                  | oic.r.sensor.presence | if (PIR==0):
|                      |                    |         oic.r.sensor.presence.value = false
|                      |                    | else:
|                      |                    |         oic.r.sensor.presence.value = true
|                      |                    | N/A |

Table 38 provides the details of the Properties that are part of "A5_07_03".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR</td>
<td>number</td>
<td>yes</td>
<td>Occupancy</td>
</tr>
</tbody>
</table>

8.16.3 Derived model definition


"A5_07_03": {  
   "type": "object",  
   "properties": {  
      "PIR": {  
         "type": "number",  
         "description": "Occupancy",  
         "x-ocf-conversion": {  
            "x-ocf-alias": "oic.r.sensor.presence",  
            "x-to-ocf": [  
               "if (PIR==0):",  
               "   oic.r.sensor.presence.value = false",  
               "else":",  
               "   oic.r.sensor.presence.value = true"  
            ],  
            "x-from-ocf": [  
               "N/A"  
            ]  
         }  
      }  
   }  
}  
},  
"type": "object",  
"allOf": [  
   {"$ref": "#/definitions/A5_07_03"}  
],  
"required": [ "PIR"]  
}  
}  
},  
"type": "object",  
"allof": [  
   {"$ref": "#/definitions/A5_07_03"}  
],  
"required": [ "PIR"]  
}  

8.17 Push button, EEP F6-01-01
8.17.1 Derived model
The derived model: "F6_01_01".

8.17.2 Property definition
Table 39 provides the detailed per Property mapping for "F6_01_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PushButton</td>
<td>oic.r.button</td>
<td>if (PushButton == 1): oic.r.button.value = !oic.r.button.value</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 40 provides the details of the Properties that are part of "F6_01_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PushButton</td>
<td>number</td>
<td>yes</td>
<td>Simple Button with Released/Pressed Mechanism</td>
</tr>
</tbody>
</table>

8.17.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/PushButton.F6_01_01.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved. ",
 "title": "Push Button, EEP F6-01-01",
 "definitions": {
 "F6_01_01": {
 "type": "object",
 "properties": {
 "PushButton": {
```
8.18 Rocker switch, 2 rocker EEP F6-02-01

8.18.1 Derived model
The derived model: "F6_02_01".

8.18.2 Property definition
Table 41 provides the detailed per Property mapping for "F6_02_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
</table>
| Rocker1stAction       | oic.r.button | if (Rocker1stAction == 0): 
/Btn1ResURI/oic.r.button.value = true else if (Rocker1stAction == 1): 
/Btn1ResURI/oic.r.button.value = false else if (Rocker1stAction == 2): 
/Btn2ResURI/oic.r.button.value = true else if (Rocker1stAction == 3): 
/Btn2ResURI/oic.r.button.value = false | N/A |

Table 42 provides the details of the Properties that are part of "F6_02_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker1stAction</td>
<td>number</td>
<td>yes</td>
<td>1st action of Rocker</td>
</tr>
</tbody>
</table>
"definitions": {
  "F6_02_01": {
    "type": "object",
    "properties": {
      "Rocker1stAction": {
        "type": "number",
        "description": "1st action of Rocker",
        "x-ocf-conversion": {
          "x-ocf-alias": "oic.r.button",
          "x-to-ocf": [
            "if (Rocker1stAction == 0):
            /Button1ResURI/oic.r.button.value = true",
            "else if (Rocker1stAction == 1):
            /Button1ResURI/oic.r.button.value = false",
            "else if (Rocker1stAction == 2):
            /Button2ResURI/oic.r.button.value = true",
            "else if (Rocker1stAction == 3):
            /Button2ResURI/oic.r.button.value = false"
          ],
          "x-from-ocf": ["N/A"]
        }
      }
    }
  }
},
"allOf": [
  {
    "$ref": "#/definitions/F6_02_01"
  }
],
"required": ["Rocker1stAction"]
}

8.19 Rocker switch, 2 rocker EEP F6-02-02

8.19.1 Derived model

The derived model: "F6_02_02".

8.19.2 Property definition

Table 43 provides the detailed per Property mapping for "F6_02_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
</table>
| Rocker1stAction       | oic.r.button | if (Rocker1stAction == 0):
                        /Button1ResURI/oic.r.button.value = true
                        else if (Rocker1stAction == 1):
                        /Button1ResURI/oic.r.button.value = false
                        else if (Rocker1stAction == 2):
                        /Button2ResURI/oic.r.button.value = true
                        else if (Rocker1stAction == 3):
                        /Button2ResURI/oic.r.button.value = false | N/A |

Table 44 provides the details of the Properties that are part of "F6_02_02".
Table 44 – The Properties of "F6_02_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker1stAction</td>
<td>number</td>
<td>yes</td>
<td>1st action of Rocker</td>
</tr>
</tbody>
</table>

8.19.3 Derived model definition

```json
{ "id": "http://openinterconnect.org/enoceanmapping/schemas/RockerSwitch2Rocker.F6_02_02.json#", "$schema": "http://json-schema.org/draft-04/schema#", "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.", "title": "Rocker Switch, 2 Rocker EEP F6-02-02", "definitions": { "F6_02_02": { "type": "object", "properties": { "Rocker1stAction": { "type": "number", "description": "1st action of Rocker", "x-ocf-conversion": { "x-ocf-alias": "oic.r.button", "x-to-ocf": ["if (Rocker1stAction == 0):", " /Button1ResURI/oic.r.button.value = true", "else if (Rocker1stAction == 1):", " /Button1ResURI/oic.r.button.value = false", "else if (Rocker1stAction == 2):", " /Button2ResURI/oic.r.button.value = true", "else if (Rocker1stAction == 3):", " /Button2ResURI/oic.r.button.value = false"], "x-from-ocf": ["N/A"] } }, "allOf": [{ "$ref": "#/definitions/F6_02_02" }], "required": ["Rocker1stAction"] } }, "type": "object", "allOf": [{ "$ref": "#/definitions/F6_02_02" }], "required": ["Rocker1stAction"] } }, "type": "object", "allOf": [{ "$ref": "#/definitions/F6_02_02" }], "required": ["Rocker1stAction"] } }
```

8.20 Rocker switch, 2 rocker EEP F6-02-03

8.20.1 Derived model

The derived model: "F6_02_03".

8.20.2 Property definition

Table 45 provides the detailed per Property mapping for "F6_02_03".

Table 45 – The Property mapping for "F6_02_03".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>RockerAction</td>
<td>oic.r.button</td>
<td>if (RockerAction == 48):</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/Button1ResURI/oic.r.button.value = true</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>else if (RockerAction == 16):</td>
<td></td>
</tr>
</tbody>
</table>
Table 46 provides the details of the Properties that are part of "F6_02_03".

Table 46 – The Properties of "F6_02_03".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RockerAction</td>
<td>number</td>
<td>yes</td>
<td>Action Code of Rocker</td>
</tr>
</tbody>
</table>

8.20.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/RockerSwitch2Rocker.F6_02_03.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Rocker Switch, 2 Rocker EEP F6-02-03",
 "definitions": {
 "F6_02_03": {
 "type": "object",
 "properties": {
 "RockerAction": {
 "type": "number",
 "description": "Action Code of Rocker",
 "x-ocf-alias": "oic.r.button",
 "x-to-ocf": [
 "if (RockerAction == 48):",
 " /Button1ResURI/oic.r.button.value = true",
 "else if (RockerAction == 16):",
 " /Button1ResURI/oic.r.button.value = false",
 "else if (RockerAction == 112):",
 " /Button2ResURI/oic.r.button.value = true",
 "else if (RockerAction == 80):",
 " /Button2ResURI/oic.r.button.value = false"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }
 }
}
```

8.21 Rocker switch, 2 rocker EEP F6-02-04

8.21.1 Derived model

The derived model: "F6_02_04".
8.21.2 Property definition

Table 47 provides the detailed per Property mapping for "F6_02_04".

Table 47 – The Property mapping for "F6_02_04".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>oic.r.button</td>
<td>if (AI == 1): /Button1ResURI/oic.r.button.value = true</td>
<td>N/A</td>
</tr>
<tr>
<td>AO</td>
<td>oic.r.button</td>
<td>if (AO == 1): /Button1ResURI/oic.r.button.value = false</td>
<td>N/A</td>
</tr>
<tr>
<td>BI</td>
<td>oic.r.button</td>
<td>if (BI == 1): /Button2ResURI/oic.r.button.value = true</td>
<td>N/A</td>
</tr>
<tr>
<td>BO</td>
<td>oic.r.button</td>
<td>if (BO == 1): /Button2ResURI/oic.r.button.value = false</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 48 provides the details of the Properties that are part of "F6_02_04".

Table 48 – The Properties of "F6_02_04".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>number</td>
<td>yes</td>
<td>Rocker A State I</td>
</tr>
<tr>
<td>AO</td>
<td>number</td>
<td>yes</td>
<td>Rocker A State O</td>
</tr>
<tr>
<td>BI</td>
<td>number</td>
<td>yes</td>
<td>Rocker B State I</td>
</tr>
<tr>
<td>BO</td>
<td>number</td>
<td>yes</td>
<td>Rocker B State O</td>
</tr>
</tbody>
</table>

8.21.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/RockerSwitch2Rocker.F6_02_04.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Rocker Switch, 2 Rocker EEP F6-02-04",
 "definitions": {
 "F6_02_04": {
 "type": "object",
 "properties": {
 "AI": {
 "type": "number",
 "description": "Rocker A State I",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.button",
 "x-to-ocf": ["if (AI == 1): "/Button1ResURI/oic.r.button.value = true",
 "if (AI == 1): "/Button1ResURI/oic.r.button.value = false"
],
 "x-from-ocf": ["N/A"
]
 }
 },
 "AO": {
 "type": "number",
 "description": "Rocker A State O",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.button",
 "x-to-ocf": ["if (AO == 1): "/Button2ResURI/oic.r.button.value = true",
 "if (AO == 1): "/Button2ResURI/oic.r.button.value = false"
],
 "x-from-ocf": ["N/A"
]
 }
 }
 }
 }
 }
}
```
8.22 Rocker switch, 4 rocker EEP F6-03-01

8.22.1 Derived model

The derived model: "F6_03_01".

8.22.2 Property definition

Table 49 provides the detailed per Property mapping for "F6_03_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker1stAction</td>
<td>oic.r.button</td>
<td>if (Rocker1stAction == 0): /Button1ResURI/oic.r.button.value = true else if (Rocker1stAction == 1): /Button2ResURI/oic.r.button.value = false</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 50 provides the details of the Properties that are part of "F6_03_01".

<table>
<thead>
<tr>
<th>EnOcean Property Name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker1stAction</td>
<td>number</td>
<td>yes</td>
<td>1st action of Rocker</td>
</tr>
</tbody>
</table>

### 8.22.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/RockerSwitch4Rocker.F6_03_01.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Rocker Switch, 4 Rocker EEP F6-03-01",
 "definitions": {
 "F6_03_01": {
 "type": "object",
 "properties": {
 "Rocker1stAction": {
 "type": "number",
 "description": "1st action of Rocker",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.button",
 "x-to-ocf": [
 "if (Rocker1stAction == 0):
 /Button1ResURI/oic.r.button.value = true",
 "else if (Rocker1stAction == 1):
 /Button1ResURI/oic.r.button.value = false",
 "else if (Rocker1stAction == 2):
 /Button2ResURI/oic.r.button.value = true",
 "else if (Rocker1stAction == 3):
 /Button2ResURI/oic.r.button.value = false",
 "else if (Rocker1stAction == 4):
 /Button3ResURI/oic.r.button.value = true",
 "else if (Rocker1stAction == 5):
 /Button3ResURI/oic.r.button.value = false",
 "else if (Rocker1stAction == 6):
 /Button4ResURI/oic.r.button.value = true",
 "else if (Rocker1stAction == 7):
 /Button4ResURI/oic.r.button.value = false"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }
 }
 }
}
```
8.23 Rocker switch, 4 rocker EEP F6-03-02

8.23.1 Derived model

The derived model: "F6_03_02".

8.23.2 Property definition

Table 51 provides the detailed per Property mapping for "F6_03_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker1stAction</td>
<td>oic.r.button</td>
<td>if (Rocker1stAction == 0): /Button1ResURI/oic.r.button.value = true else if (Rocker1stAction == 1): /Button1ResURI/oic.r.button.value = false else if (Rocker1stAction == 2): /Button2ResURI/oic.r.button.value = true else if (Rocker1stAction == 3): /Button2ResURI/oic.r.button.value = false else if (Rocker1stAction == 4): /Button3ResURI/oic.r.button.value = true else if (Rocker1stAction == 5): /Button3ResURI/oic.r.button.value = false else if (Rocker1stAction == 6): /Button4ResURI/oic.r.button.value = true else if (Rocker1stAction == 7): /Button4ResURI/oic.r.button.value = false</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 52 provides the details of the Properties that are part of "F6_03_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker1stAction</td>
<td>number</td>
<td>yes</td>
<td>1st action of Rocker</td>
</tr>
</tbody>
</table>

8.23.3 Derived model definition

{"id": "http://openinterconnect.org/enoceanmapping/schemas/RockerSwitch4Rocker.F6_03_02.json#", "schema": "http://json-schema.org/draft-04/schema#", "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.", "title": "Rocker Switch, 4 Rocker EEP F6-03-02", "definitions": { "F6_03_02": { "type": "object", "allOf": [ { "$ref": "#/definitions/F6_03_01" } ], "required": [ "Rocker1stAction" ] } }
"properties": {  
  "Rocker1stAction": {  
    "type": "number",  
    "description": "1st action of Rocker",  
    "x-ocf-conversion": {  
      "x-ocf-alias": "oic.r.button",  
      "x-to-ocf": {  
        "if (Rocker1stAction == 0):",  
        "/Button1ResURI/oic.r.button.value = true",  
        "else if (Rocker1stAction == 1):",  
        "/Button1ResURI/oic.r.button.value = false",  
        "else if (Rocker1stAction == 2):",  
        "/Button2ResURI/oic.r.button.value = true",  
        "else if (Rocker1stAction == 3):",  
        "/Button2ResURI/oic.r.button.value = false",  
        "else if (Rocker1stAction == 4):",  
        "/Button3ResURI/oic.r.button.value = true",  
        "else if (Rocker1stAction == 5):",  
        "/Button3ResURI/oic.r.button.value = false",  
        "else if (Rocker1stAction == 6):",  
        "/Button4ResURI/oic.r.button.value = true",  
        "else if (Rocker1stAction == 7):",  
        "/Button4ResURI/oic.r.button.value = false"
      }
    },  
    "x-from-ocf": {  
      "N/A"
    }
  }
},  
"type": "object",  
"allOf": [  
  {  
    "$ref": "#/definitions/F6_03_02"
  }
],  
"required": [  
  "Rocker1stAction"
}
}

8.24 Single input contact EEP D5-00-01

8.24.1 Derived model
The derived model: "D5_00_01".

8.24.2 Property definition
Table 53 provides the detailed per Property mapping for "D5_00_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>contact</td>
<td>oic.r.sensor.contact</td>
<td>if (contact==0): oic.r.sensor.contact.value = true else if (contact==1): oic.r.sensor.contact.value = false</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 54 provides the details of the Properties that are part of "D5_00_01".
Table 54 – The Properties of “D5_00_01”.

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>contact</td>
<td>number</td>
<td>yes</td>
<td>Single Input Contact</td>
</tr>
</tbody>
</table>

8.24.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/SingleInputContact.D5_00_01.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved."
 "title": "Single Input Contact EEP D5-00-01",
 "definitions": {
 "D5_00_01": {
 "type": "object",
 "properties": {
 "contact": {
 "type": "number",
 "description": "Single Input Contact",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.sensor.contact",
 "x-to-ocf": [
 "if (contact==0):",
 " oic.r.sensor.contact.value = true",
 "else if (contact==1):",
 " oic.r.sensor.contact.value = false"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [{
 "$ref": "#/definitions/D5_00_01"
 }]
}
```

8.25 Smoke detector EEP F6-05-02
8.25.1 Derived model
The derived model: "F6_05_02".

8.25.2 Property definition
Table 55 provides the detailed per Property mapping for "F6_05_02".

Table 55 – The Property mapping for “F6_05_02”.

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>smokestatus</td>
<td>oic.r.sensor.smoke</td>
<td>if (smokestatus==0): oic.r.sensor.smoke.value = falseelse if (smokestatus==16): oic.r.sensor.smoke.value = true</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 56 provides the details of the Properties that are part of "F6_05_02".
Table 56 – The Properties of “F6_05_02”.

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>smokestatus</td>
<td>number</td>
<td>yes</td>
<td>Smoke detector</td>
</tr>
</tbody>
</table>

8.25.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/SmokeDetector.F6_05_02.json#",
 "schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Smoke Detector EEP F6-05-02",
 "definitions": {
 "F6_05_02": {
 "type": "object",
 "properties": {
 "smokestatus": {
 "type": "number",
 "description": "Smoke detector",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.sensor.smoke",
 "x-to-ocf": [
 "if (smokestatus==0):",
 " oic.r.sensor.smoke.value = false",
 "else if (smokestatus==16):",
 " oic.r.sensor.smoke.value = true"
],
 "x-from-ocf": []
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [
 {
 "$ref": "#/definitions/F6_05_02"
 }
],
 "required": ["smokestatus"
]
}
```

8.26 Temperature and humidity sensor EEP A5-04-01

8.26.1 Derived model

The derived model: "A5_04_01".

8.26.2 Property definition

Table 57 provides the detailed per Property mapping for "A5_04_01".

Table 57 – The Property mapping for "A5_04_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature.oic.r.temperature.units = Coic.r.temperature.range = [0.0, 40.0]</td>
<td>N/A</td>
</tr>
<tr>
<td>relativeHumidity</td>
<td>oic.r.humidity</td>
<td>oic.r.humidity.humidity = relativeHumidity</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 58 provides the details of the Properties that are part of "A5_04_01".
Table 58 – The Properties of “A5_04_01”.

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
<tr>
<td>relativeHumidity</td>
<td>number</td>
<td>yes</td>
<td>Humidity</td>
</tr>
</tbody>
</table>

8.26.3 Derived model definition

```
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureHumiditySensor.A5_04_01.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature and Humidity Sensor EEP A5-04-01",
 "definitions": {
 "A5_04_01": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [0.0, 40.0]"
],
 "x-from-ocf": ["N/A"]
 }
 },
 "relativeHumidity": {
 "type": "number",
 "description": "Humidity",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.humidity",
 "x-to-ocf": {
 "oic.r.humidity.humidity = relativeHumidity"
 },
 "x-from-ocf": ["N/A"]
 }
 }
 },
 "type": "object",
 "allOf": [{"$ref": "#/definitions/A5_04_01"}],
 "required": ["temperature", "relativeHumidity"]
 }
 },
 "type": "object",
 "allOf": [{"$ref": "#/definitions/A5_04_01"}],
 "required": ["temperature", "relativeHumidity"]
}
```

8.27 Temperature and humidity sensor EEP A5-04-02

8.27.1 Derived model

The derived model: "A5_04_02".

8.27.2 Property definition

Table 59 provides the detailed per Property mapping for "A5_04_02".
Table 59 – The Property mapping for "A5_04_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature oic.r.temperature.units = C oic.r.temperature.range = [-20.0, 60.0]</td>
<td>N/A</td>
</tr>
<tr>
<td>relativeHumidity</td>
<td>oic.r.humidity</td>
<td>oic.r.humidity.humidity = relativeHumidity</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 60 provides the details of the Properties that are part of "A5_04_02".

Table 60 – The Properties of "A5_04_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
<tr>
<td>relativeHumidity</td>
<td>number</td>
<td>yes</td>
<td>Humidity</td>
</tr>
</tbody>
</table>

8.27.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureHumiditySensor.A5_04_02.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature and Humidity Sensor EEP A5-04-02",
 "definitions": {
 "A5_04_02": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [-20.0, 60.0]"
],
 "x-from-ocf": [
 "N/A"
]
 }
 },
 "relativeHumidity": {
 "type": "number",
 "description": "Humidity",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.humidity",
 "x-to-ocf": [
 "oic.r.humidity.humidity = relativeHumidity"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }
 }
 }
}
```

Copyright Open Connectivity Foundation, Inc. © 2022. All rights Reserved
### 8.28 Temperature and humidity sensor EEP A5-04-03

#### 8.28.1 Derived model

The derived model: "A5_04_03".

#### 8.28.2 Property definition

Table 61 provides the detailed per Property mapping for "A5_04_03".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature; oic.r.temperature.units = C; oic.r.temperature.range = [-20.0, 60.0]</td>
<td>N/A</td>
</tr>
<tr>
<td>relativeHumidity</td>
<td>oic.r.humidity</td>
<td>oic.r.humidity.humidity = relativeHumidity</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 62 provides the details of the Properties that are part of "A5_04_03".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
<tr>
<td>relativeHumidity</td>
<td>number</td>
<td>yes</td>
<td>Humidity</td>
</tr>
</tbody>
</table>

#### 8.28.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureHumiditySensor.A5_04_03.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature and Humidity Sensor EEP A5-04-03",
 "definitions": {
 "A5_04_03": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [-20.0, 60.0]"
],
 "x-from-ocf": ["N/A"]
 }
 },
 "relativeHumidity": {
 "type": "number",
 "description": "Humidity",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.humidity",
 "x-to-ocf": [
 "oic.r.humidity.humidity = relativeHumidity"
],
 "x-from-ocf": ["N/A"]
 }
 }
 }
 }
 }
}
```
8.29 Temperature sensor EEP A5-02-01

8.29.1 Derived model

The derived model: "A5_02_01".

8.29.2 Property definition

Table 63 provides the detailed per Property mapping for "A5_02_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature, oic.r.temperature.units = C, oic.r.temperature.range = [-40.0, 0.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 64 provides the details of the Properties that are part of "A5_02_01".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.29.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_01.json#",
 "schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved."
}"
```
8.30 Temperature sensor EEP A5-02-02

8.30.1 Derived model

The derived model: "A5_02_02".

8.30.2 Property definition

Table 65 provides the detailed per Property mapping for "A5_02_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.temperature.units = C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.temperature.range = [-30.0, 10.0]</td>
<td></td>
</tr>
</tbody>
</table>

Table 66 provides the details of the Properties that are part of "A5_02_02".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.30.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_02.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-02",
 "definitions": {
 "A5_02_02": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": ["oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [-30.0, 10.0]"
],
 "x-from-ocf": ["N/A"
]
 }
 }
 }
 }
}
```
8.31 Temperature sensor EEP A5-02-03

8.31.1 Derived model
The derived model: "A5_02_03".

8.31.2 Property definition
Table 67 provides the detailed per Property mapping for "A5_02_03".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature, oic.r.temperature.units = °C, oic.r.temperature.range = [-20.0, 20.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 68 provides the details of the Properties that are part of "A5_02_03".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.31.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_03.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-03",
 "definitions": {
 "A5_02_03": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = °C",
 "oic.r.temperature.range = [-20.0, 20.0]"
],
 "x-from-ocf": ["N/A"]
 }
 }
 }
 }
 }
}
```

Copyright Open Connectivity Foundation, Inc. © 2022. All rights Reserved
8.32 Temperature sensor EEP A5-02-04

8.32.1 Derived model
The derived model: "A5_02_04".

8.32.2 Property definition
Table 69 provides the detailed per Property mapping for "A5_02_04".

Table 69 – The Property mapping for "A5_02_04".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature, oic.r.temperature.units = C, oic.r.temperature.range = [-10.0, 30.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 70 provides the details of the Properties that are part of "A5_02_04".

Table 70 – The Properties of "A5_02_04".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.32.3 Derived model definition

```
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_04.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-04",
 "definitions": {
 "A5_02_04": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": ["oic.r.temperature.temperature = temperature", "oic.r.temperature.units = C", "oic.r.temperature.range = [-10.0, 30.0]"],
 "x-from-ocf": ["N/A"]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [{"$ref": "#/definitions/A5_02_04"}],
 "required": ["temperature"]
}
```

8.33 Temperature sensor EEP A5-02-05

8.33.1 Derived model
The derived model: "A5_02_05".
8.33.2 Property definition
Table 71 provides the detailed per Property mapping for "A5_02_05".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature, oic.r.temperature.units = C, oic.r.temperature.range = [0.0, 40.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 72 provides the details of the Properties that are part of "A5_02_05".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.33.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_05.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-05",
 "definitions": {
 "A5_02_05": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [0.0, 40.0]"
],
 "x-from-ocf": ["N/A"]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [
 {"$ref": "#/definitions/A5_02_05"}
],
 "required": ["temperature"]
}
```

8.34 Temperature sensor EEP A5-02-06
8.34.1 Derived model
The derived model: "A5_02_06".

8.34.2 Property definition
Table 73 provides the detailed per Property mapping for "A5_02_06".
Table 73 – The Property mapping for "A5_02_06".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature, oic.r.temperature.units = C, oic.r.temperature.range = [10.0, 50.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 74 provides the details of the Properties that are part of "A5_02_06".

Table 74 – The Properties of "A5_02_06".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.34.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_06.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-06",
 "definitions": {
 "A5_02_06": {
 "type": "object",
 "properties": {
 "temperature": { // Type: number
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [10.0, 50.0]"
],
 "x-from-ocf": ["N/A"]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [
 {"$ref": "#/definitions/A5_02_06"}
],
 "required": ["temperature"]
}
```

8.35 Temperature sensor EEP A5-02-07

8.35.1 Derived model

The derived model: "A5_02_07".

8.35.2 Property definition

Table 75 provides the detailed per Property mapping for "A5_02_07".
Table 75 – The Property mapping for "A5_02_07".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.temperature.units = C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.temperature.range = [20.0, 60.0]</td>
<td></td>
</tr>
</tbody>
</table>

Table 76 provides the details of the Properties that are part of "A5_02_07".

Table 76 – The Properties of "A5_02_07".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.35.3 Derived model definition

```json
{
"id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_07.json#",
"Schema": "http://json-schema.org/draft-04/schema#",
"description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
"title": "Temperature Sensor EEP A5-02-07",
"definitions": {
"A5_02_07": {
"type": "object",
"properties": {
"temperature": {
"type": "number",
"description": "Current Temperature",
"x-ocf-conversion": {
"x-ocf-alias": "oic.r.temperature",
"x-to-ocf": [
"oic.r.temperature.temperature = temperature",
"oic.r.temperature.units = C",
"oic.r.temperature.range = [20.0, 60.0]"
],
"x-from-ocf": [
"N/A"
],
"x/"}
},
"required": ["temperature"
]
},
"type": "object",
"allOf": [{
"$ref": "#/definitions/A5_02_07"
}],
"required": ["temperature"
]
}
```

8.36 Temperature sensor EEP A5-02-08

8.36.1 Derived model

The derived model: "A5_02_08".

8.36.2 Property definition

Table 77 provides the detailed per Property mapping for "A5_02_08".
Table 77 – The Property mapping for “A5_02_08”.

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature oic.r.temperature.units = C oic.r.temperature.range = [30.0, 70.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 78 provides the details of the Properties that are part of "A5_02_08”.

Table 78 – The Properties of “A5_02_08”.

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.36.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoeanmapping/schemas/TemperatureSensor.A5_02_08.json#",
 "schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-08",
 "definitions": {
 "A5_02_08": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": {
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [30.0, 70.0]"
 },
 "x-from-ocf": {
 "N/A"
 }
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [{
 "$ref": "#/definitions/A5_02_08"
 }],
 "required": ["temperature"
}
```

8.37 Temperature sensor EEP A5-02-09

8.37.1 Derived model

The derived model: "A5_02_09".

8.37.2 Property definition

Table 79 provides the detailed per Property mapping for "A5_02_09".
Table 79 – The Property mapping for "A5_02_09".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature, oic.r.temperature.units = C, oic.r.temperature.range = [40.0, 80.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 80 provides the details of the Properties that are part of "A5_02_09".

Table 80 – The Properties of "A5_02_09".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.37.3 Derived model definition

```
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_09.json#",
 "schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved. ",
 "title": "Temperature Sensor EEP A5-02-09",
 "definitions": {
 "A5_02_09": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": ["oic.r.temperature.temperature = temperature",
 "temperature = C",
 "oic.r.temperature.range = [40.0, 80.0]"]
 },
 "x-from-ocf": [null]
 }
 }
 }
 },
 "type": "object",
 "allOf": ["#/definitions/A5_02_09"]
}
```

8.38 Temperature sensor EEP A5-02-0A

8.38.1 Derived model

The derived model: "A5_02_0A".

8.38.2 Property definition

Table 81 provides the detailed per Property mapping for "A5_02_0A".
### Table 81 – The Property mapping for "A5_02_0A".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperatureoic.r.temperature.units = Coic.r.temperature.range = [50.0, 90.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 82 provides the details of the Properties that are part of "A5_02_0A".

### Table 82 – The Properties of "A5_02_0A".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

### 8.38.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_0A.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-0A",
 "definitions": {
 "A5_02_0A": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [{
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [50.0, 90.0]"
 }],
 "x-from-ocf": ["N/A"]
 }
 }
 }
 }
 }
}
```

### 8.39 Temperature sensor EEP A5-02-0B

#### 8.39.1 Derived model

The derived model: "A5_02_0B".

#### 8.39.2 Property definition

Table 83 provides the detailed per Property mapping for "A5_02_0B".
Table 83 – The Property mapping for "A5_02_0B".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature; oic.r.temperature.units = C; oic.r.temperature.range = [60.0, 100.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 84 provides the details of the Properties that are part of "A5_02_0B".

Table 84 – The Properties of "A5_02_0B".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.39.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_0B.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-0B",
 "definitions": {
 "A5_02_0B": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [60.0, 100.0]"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [{
 "$ref": "#/definitions/A5_02_0B"
 }],
 "required": ["temperature"
}
```

8.40 Temperature sensor EEP A5-02-10

8.40.1 Derived model

The derived model: "A5_02_10".

8.40.2 Property definition

Table 85 provides the detailed per Property mapping for "A5_02_10".
Table 85 – The Property mapping for "A5_02_10".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.temperature.units    = C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.temperature.range = ([-60.0, 20.0])</td>
<td></td>
</tr>
</tbody>
</table>

Table 86 provides the details of the Properties that are part of "A5_02_10".

Table 86 – The Properties of "A5_02_10".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.40.3 Derived model definition

```json
{"id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_10.json#",
"schema": "http://json-schema.org/draft-04/schema#",
"description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
"title": "Temperature Sensor EEP A5-02-10",
"definitions": {
"A5_02_10": {
"type": "object",
"properties": {
"temperature": {
"type": "number",
"description": "Current Temperature",
"x-ocf-conversion": {
"x-ocf-alias": "oic.r.temperature",
"x-to-ocf": [
"oic.r.temperature.temperature = temperature",
"oic.r.temperature.units = C",
"oic.r.temperature.range = \([-60.0, 20.0]\)"

],
"x-from-ocf": [
"N/A"

],
}
}
}
},
"type": "object",
"allOf": [
{"$ref": "/definitions/A5_02_10"}
],
"required": [
"temperature"

```

8.41 Temperature sensor EEP A5-02-11

8.41.1 Derived model

The derived model: "A5_02_11".

8.41.2 Property definition

Table 87 provides the detailed per Property mapping for "A5_02_11".

Copyright Open Connectivity Foundation, Inc. © 2022. All rights Reserved
Table 87 – The Property mapping for "A5_02_11".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.temperature.units = Coic.r.temperature.range = [-50.0, 30.0]</td>
<td></td>
</tr>
</tbody>
</table>

Table 88 provides the details of the Properties that are part of "A5_02_11".

Table 88 – The Properties of "A5_02_11".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.41.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_11.json#",
 "schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-11",
 "definitions": {
 "A5_02_11": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [-50.0, 30.0]"
],
 "x-from-ocf": [
 "N/A"
]
 }
 },
 "type": "object",
 "allOf": [
 {
 "$ref": "#/definitions/A5_02_11"
 }
],
 "required": ["temperature"]
 }
 }
 },
 "type": "object",
 "allOf": [
 {"$ref": "#/definitions/A5_02_11"}
],
 "required": ["temperature"]
}
```

8.42 Temperature sensor EEP A5-02-12

8.42.1 Derived model

The derived model: "A5_02_12".

8.42.2 Property definition

Table 89 provides the detailed per Property mapping for "A5_02_12".
Table 89 – The Property mapping for "A5_02_12".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature</td>
<td>Coic.r.temperature.units = temperature = oic.r.temperature.range = [-40.0, 40.0]</td>
</tr>
</tbody>
</table>

Table 90 provides the details of the Properties that are part of "A5_02_12".

Table 90 – The Properties of "A5_02_12".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.42.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_12.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-12",
 "definitions": {
 "A5_02_12": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [-40.0, 40.0]"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [
 {
 "$ref": "#/definitions/A5_02_12"
 }
],
 "required": ["temperature"
]
}
```

8.43 Temperature sensor EEP A5-02-13

8.43.1 Derived model

The derived model: "A5_02_13".

8.43.2 Property definition

Table 91 provides the detailed per Property mapping for "A5_02_13".
Table 91 – The Property mapping for "A5_02_13".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature; oic.r.temperature.units = C; oic.r.temperature.range = [-30.0, 50.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 92 provides the details of the Properties that are part of "A5_02_13".

Table 92 – The Properties of "A5_02_13".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.43.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_13.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-13",
 "definitions": {
 "A5_02_13": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [-30.0, 50.0]"
],
 "x-from-ocf": [
 "N/A"
],
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": ["#/definitions/A5_02_13"],
 "required": ["temperature"]
}
```

8.44 Temperature sensor EEP A5-02-14

8.44.1 Derived model

The derived model: "A5_02_14".

8.44.2 Property definition

Table 93 provides the detailed per Property mapping for "A5_02_14".
Table 93 – The Property mapping for "A5_02_14".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature, oic.r.temperature.units = C, oic.r.temperature.range = [-20.0, 60.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 94 provides the details of the Properties that are part of "A5_02_14".

Table 94 – The Properties of "A5_02_14".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.44.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_14.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-14",
 "definitions": {
 "A5_02_14": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [-20.0, 60.0]"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [
 {"$ref": "#/definitions/A5_02_14"}
],
 "required": ["temperature"
]
}
```

8.45 Temperature sensor EEP A5-02-15

8.45.1 Derived model

The derived model: "A5_02_15".

8.45.2 Property definition

Table 95 provides the detailed per Property mapping for "A5_02_15".
Table 95 – The Property mapping for "A5_02_15".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.temperature.units = C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.temperature.range = [-10.0, 70.0]</td>
<td></td>
</tr>
</tbody>
</table>

Table 96 provides the details of the Properties that are part of "A5_02_15".

Table 96 – The Properties of "A5_02_15".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.45.3 Derived model definition

```
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_15.json#",
 "schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved."
 "title": "Temperature Sensor EEP A5-02-15",
 "definitions": {
 "A5_02_15": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [-10.0, 70.0]"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [{
 "$ref": "#/definitions/A5_02_15"
 }],
 "required": ["temperature"
}
```

8.46 Temperature sensor EEP A5-02-16

8.46.1 Derived model
The derived model: "A5_02_16".

8.46.2 Property definition
Table 97 provides the detailed per Property mapping for "A5_02_16".
Table 97 – The Property mapping for "A5_02_16".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature, oic.r.temperature.units = C, oic.r.temperature.range = [0.0, 80.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 98 provides the details of the Properties that are part of "A5_02_16".

Table 98 – The Properties of "A5_02_16".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.46.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_16.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-16",
 "definitions": {
 "A5_02_16": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [0.0, 80.0]"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [
 {
 "$ref": "#/definitions/A5_02_16"
 }
],
 "required": ["temperature"
]
}
```

8.47 Temperature sensor EEP A5-02-17

8.47.1 Derived model

The derived model: "A5_02_17".

8.47.2 Property definition

Table 99 provides the detailed per Property mapping for "A5_02_17".
Table 99 – The Property mapping for "A5_02_17".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature =</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.temperature.units =</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coic.r.temperature.range =</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[10.0, 90.0]</td>
<td></td>
</tr>
</tbody>
</table>

Table 100 provides the details of the Properties that are part of "A5_02_17".

Table 100 – The Properties of "A5_02_17".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.47.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_17.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-17",
 "definitions": {
 "A5_02_17": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [10.0, 90.0]"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [
 {"$ref": "#/definitions/A5_02_17"}
],
 "required": ["temperature"
]
}
```

8.48 Temperature sensor EEP A5-02-18

8.48.1 Derived model

The derived model: "A5_02_18".

8.48.2 Property definition

Table 101 provides the detailed per Property mapping for "A5_02_18".
## Table 101 – The Property mapping for "A5_02_18".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature, oic.r.temperature.units = C, oic.r.temperature.range = [20.0, 100.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 102 provides the details of the Properties that are part of "A5_02_18".

## Table 102 – The Properties of "A5_02_18".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

### 8.48.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_18.json#",
 "schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-18",
 "definitions": {
 "A5_02_18": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [20.0, 100.0]"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }"object",
 "allOf": [
 {"$ref": "#/definitions/A5_02_18"}
],
 "required": ["temperature"
 }
 }
}
```

### 8.49 Temperature sensor EEP A5-02-19

#### 8.49.1 Derived model

The derived model: "A5_02_19".

#### 8.49.2 Property definition

Table 103 provides the detailed per Property mapping for "A5_02_19".
Table 103 – The Property mapping for "A5_02_19".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature, oic.r.temperature.units = C, oic.r.temperature.range = [30.0, 110.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 104 provides the details of the Properties that are part of "A5_02_19".

Table 104 – The Properties of "A5_02_19".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.49.3 Derived model definition

```json
{
 "Schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-19",
 "definitions": {
 "A5_02_19": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [30.0, 110.0]"
],
 "x-from-ocf": ["N/A"]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": ["#/definitions/A5_02_19"],
 "required": ["temperature"]
}
```

8.50 Temperature sensor EEP A5-02-1A

8.50.1 Derived model

The derived model: "A5_02_1A".

8.50.2 Property definition

Table 105 provides the detailed per Property mapping for "A5_02_1A".
Table 105 – The Property mapping for “A5_02_1A”.

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature</td>
<td>oic.r.temperature.range = [40.0, 120.0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Table 106 provides the details of the Properties that are part of “A5_02_1A”.

Table 106 – The Properties of “A5_02_1A”.

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.50.3 Derived model definition

```
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_1A.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-1A",
 "definitions": {
 "A5_02_1A": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [40.0, 120.0]"
],
 "x-from-ocf": ["N/A"]
 }
 }
 }
 }
 }
}
```

8.51 Temperature sensor EEP A5-02-1B

8.51.1 Derived model

The derived model: "A5_02_1B".

8.51.2 Property definition

Table 107 provides the detailed per Property mapping for "A5_02_1B".
Table 107 – The Property mapping for "A5_02_1B".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature, oic.r.temperature.units = C, oic.r.temperature.range = [50.0, 130.0]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 108 provides the details of the Properties that are part of "A5_02_1B".

Table 108 – The Properties of "A5_02_1B".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.51.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_1B.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-1B",
 "definitions": {
 "A5_02_1B": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [50.0, 130.0]"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [
 {"$ref": "#/definitions/A5_02_1B"}
],
 "required": ["temperature"
]
}
```

8.52 Temperature sensor EEP A5-02-20

8.52.1 Derived model

The derived model: "A5_02_20".

8.52.2 Property definition

Table 109 provides the detailed per Property mapping for "A5_02_20".
Table 109 – The Property mapping for "A5_02_20".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature, oic.r.temperature.units = C, oic.r.temperature.range = [-10.0, 41.2]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 110 provides the details of the Properties that are part of "A5_02_20".

Table 110 – The Properties of "A5_02_20".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.52.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_20.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-20",
 "definitions": {
 "A5_02_20": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [-10.0, 41.2]"
],
 "x-from-ocf": ["N/A"]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [{"$ref": "#/definitions/A5_02_20"}],
 "required": ["temperature"]
}
```

8.53 Temperature sensor EEP A5-02-30

8.53.1 Derived model

The derived model: "A5_02_30".

8.53.2 Property definition

Table 111 provides the detailed per Property mapping for "A5_02_30".
Table 111 – The Property mapping for "A5_02_30".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = temperature,oic.r.temperature.units = C,oic.r.temperature.range = [-40.0, 62.3]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 112 provides the details of the Properties that are part of "A5_02_30".

Table 112 – The Properties of "A5_02_30".

<table>
<thead>
<tr>
<th>EnOcean Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>number</td>
<td>yes</td>
<td>Current Temperature</td>
</tr>
</tbody>
</table>

8.53.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/enoceanmapping/schemas/TemperatureSensor.A5_02_30.json",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2019 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Temperature Sensor EEP A5-02-30",
 "definitions": {
 "A5_02_30": {
 "type": "object",
 "properties": {
 "temperature": {
 "type": "number",
 "description": "Current Temperature",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = temperature",
 "oic.r.temperature.units = C",
 "oic.r.temperature.range = [-40.0, 62.3]"
],
 "x-from-ocf": [
 "N/A"
]
 }
 }
 }
 }
 },
 "type": "object",
 "allOf": [
 {
 "$ref": "#/definitions/A5_02_30"
 }
],
 "required": ["temperature"
}
```