Legal Disclaimer

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY KIND OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN CONNECTIVITY FOUNDATION, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF NON-INFRINGEMENT, ACCURACY OR LACK OF VIRUSES.

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or other countries. *Other names and brands may be claimed as the property of others.

Copyright © 2022 Open Connectivity Foundation, Inc. All rights reserved.

Copying or other form of reproduction and/or distribution of these works are strictly prohibited.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>vii</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms, definitions and abbreviated terms</td>
<td>1</td>
</tr>
<tr>
<td>3.1 Terms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>4 Document conventions and organization</td>
<td>2</td>
</tr>
<tr>
<td>4.1 Conventions</td>
<td>2</td>
</tr>
<tr>
<td>4.2 Notation</td>
<td>2</td>
</tr>
<tr>
<td>5 Theory of Operation</td>
<td>3</td>
</tr>
<tr>
<td>5.1 Interworking Approach</td>
<td>3</td>
</tr>
<tr>
<td>5.2 Mapping Syntax</td>
<td>3</td>
</tr>
<tr>
<td>5.2.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>5.2.2 General</td>
<td>4</td>
</tr>
<tr>
<td>5.2.3 Value Assignment</td>
<td>4</td>
</tr>
<tr>
<td>5.2.4 Property Naming</td>
<td>4</td>
</tr>
<tr>
<td>5.2.5 Arrays</td>
<td>4</td>
</tr>
<tr>
<td>5.2.6 Conditional Mapping</td>
<td>4</td>
</tr>
<tr>
<td>6 LWM2M Translation</td>
<td>4</td>
</tr>
<tr>
<td>6.1 Operational Scenarios</td>
<td>4</td>
</tr>
<tr>
<td>6.2 Enabling LWM2M Application access to OCF Servers</td>
<td>5</td>
</tr>
<tr>
<td>6.3 Enabling OCF Client access to LWM2M Devices</td>
<td>6</td>
</tr>
<tr>
<td>6.4 On-the-fly Translation</td>
<td>6</td>
</tr>
<tr>
<td>7 Device Type Mapping</td>
<td>6</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>7.2 OCF Device Types for OCF Resources to LWM2M Object mapping</td>
<td>6</td>
</tr>
<tr>
<td>8 Resource to LWM2M Object Equivalence</td>
<td>7</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>8.2 LWM2M Objects to OCF Resources</td>
<td>7</td>
</tr>
<tr>
<td>9 Detailed Mapping</td>
<td>8</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>8</td>
</tr>
<tr>
<td>9.2 Actuation</td>
<td>8</td>
</tr>
<tr>
<td>9.2.1 Derived model</td>
<td>8</td>
</tr>
<tr>
<td>9.2.2 Property definition</td>
<td>8</td>
</tr>
<tr>
<td>9.2.3 Derived model definition</td>
<td>8</td>
</tr>
<tr>
<td>9.3 Buzzer</td>
<td>9</td>
</tr>
<tr>
<td>9.3.1 Derived model</td>
<td>9</td>
</tr>
<tr>
<td>9.3.2 Property definition</td>
<td>9</td>
</tr>
<tr>
<td>9.3.3 Derived model definition</td>
<td>10</td>
</tr>
</tbody>
</table>
9.4 Device .. 10
 9.4.1 Derived model .. 10
 9.4.2 Property definition .. 10
 9.4.3 Derived model definition .. 12
9.5 Digital Input ... 14
 9.5.1 Derived model .. 14
 9.5.2 Property definition .. 14
 9.5.3 Derived model definition .. 14
9.6 Door .. 15
 9.6.1 Derived model .. 15
 9.6.2 Property definition .. 15
 9.6.3 Derived model definition .. 16
9.7 Energy .. 16
 9.7.1 Derived model .. 16
 9.7.2 Property definition .. 17
 9.7.3 Derived model definition .. 17
9.8 Humidity ... 18
 9.8.1 Derived model .. 18
 9.8.2 Property definition .. 18
 9.8.3 Derived model definition .. 18
9.9 Load Control .. 19
 9.9.1 Derived model .. 19
 9.9.2 Property definition .. 19
 9.9.3 Derived model definition .. 19
9.10 Lock ... 20
 9.10.1 Derived model .. 20
 9.10.2 Property definition .. 20
 9.10.3 Derived model definition .. 20
9.11 On/Off switch .. 21
 9.11.1 Derived model .. 21
 9.11.2 Property definition .. 21
 9.11.3 Derived model definition .. 22
9.12 Position .. 22
 9.12.1 Derived model .. 22
 9.12.2 Property definition .. 22
 9.12.3 Derived model definition .. 23
9.13 Power .. 24
 9.13.1 Derived model .. 24
 9.13.2 Property definition .. 24
 9.13.3 Derived model definition .. 24
9.14 Temperature .. 25
 9.14.1 Derived model .. 25
 9.14.2 Property definition .. 25
9.14.3 Derived model definition
Figures

Figure 1 – OCF-LWM2M Asymmetric Client Bridge ... 4
Figure 2 – OCF-LWM2M Data Model Translation .. 5
Figure 3 – Relationship between LWM2M Application, Object, and Resource 6
Tables

Table 1 – Supported OCF Device Types for OCF Resources to LWM2M Object Mapping 6
Table 2 – LWM2M Object to OCF Resource Type Mapping .. 7
Table 3 – The Property mapping for "lwm2m.o.actuation". .. 8
Table 4 – The Properties of "lwm2m.o.actuation". ... 8
Table 5 – The Property mapping for "lwm2m.o.buzzer". ... 9
Table 6 – The Properties of "lwm2m.o.buzzer". ... 10
Table 7 – The Property mapping for "lwm2m.o.device". ... 11
Table 8 – The Properties of "lwm2m.o.device". ... 11
Table 9 – The Property mapping for "lwm2m.o.digitalinput". .. 14
Table 10 – The Properties of "lwm2m.o.digitalinput". .. 14
Table 11 – The Property mapping for "lwm2m.o.door". .. 15
Table 12 – The Properties of "lwm2m.o.door". ... 15
Table 13 – The Property mapping for "lwm2m.o.energy". ... 17
Table 14 – The Properties of "lwm2m.o.energy". ... 17
Table 15 – The Property mapping for "lwm2m.o.humidity". ... 18
Table 16 – The Properties of "lwm2m.o.humidity". ... 18
Table 17 – The Property mapping for "lwm2m.o.loadcontrol". .. 19
Table 18 – The Properties of "lwm2m.o.loadcontrol". .. 19
Table 19 – The Property mapping for "lwm2m.o.lock". .. 20
Table 20 – The Properties of "lwm2m.o.lock". ... 20
Table 21 – The Property mapping for "lwm2m.o.onoffswitch". .. 21
Table 22 – The Properties of "lwm2m.o.onoffswitch". ... 21
Table 23 – The Property mapping for "lwm2m.o.position". ... 22
Table 24 – The Properties of "lwm2m.o.position". ... 23
Table 25 – The Property mapping for "lwm2m.o.power". .. 24
Table 26 – The Properties of "lwm2m.o.power". ... 24
Table 27 – The Property mapping for "lwm2m.o.temperature". ... 25
Table 28 – The Properties of "lwm2m.o.temperature". .. 25
Introduction

This document, and all the other parts associated with this document, were developed in response to worldwide demand for smart home focused Internet of Things (IoT) devices, such as appliances, door locks, security cameras, sensors, and actuators; these to be modelled and securely controlled, locally and remotely, over an IP network.

While some inter-device communication existed, no universal language had been developed for the IoT. Device makers instead had to choose between disparate frameworks, limiting their market share, or developing across multiple ecosystems, increasing their costs. The burden then falls on end users to determine whether the products they want are compatible with the ecosystem they bought into, or find ways to integrate their devices into their network, and try to solve interoperability issues on their own.

In addition to the smart home, IoT deployments in commercial environments are hampered by a lack of security. This issue can be avoided by having a secure IoT communication framework, which this standard solves.

The goal of these documents is then to connect the next 25 billion devices for the IoT, providing secure and reliable device discovery and connectivity across multiple OSs and platforms. There are multiple proposals and forums driving different approaches, but no single solution addresses the majority of key requirements. This document and the associated parts enable industry consolidation around a common, secure, interoperable approach.

The OCF specification suite is made up of nineteen discrete documents, the documents fall into logical groupings as described herein:

- Core framework
 - Core Specification
 - Security Specification
 - Onboarding Tool Specification
- Bridging framework and bridges
 - Bridging Specification
 - Resource to AllJoyn Interface Mapping Specification
 - OCF Resource to oneM2M Resource Mapping Specification
 - OCF Resource to BLE Mapping Specification
 - OCF Resource to EnOcean Mapping Specification
 - OCF Resource to LWM2M Mapping Specification
 - OCF Resource to UPlus Mapping Specification
 - OCF Resource to Zigbee Cluster Mapping Specification
- Resource and Device models
 - Resource Type Specification
 - Device Specification
- Core framework extensions
 - Easy Setup Specification
 - Core Optional Specification
- OCF Cloud
 - Cloud API for Cloud Services Specification
 - Device to Cloud Services Specification
 - Cloud Security Specification
OCF Resource to LwM2M Object Mapping Specification

1 Scope

This document provides detailed mapping information to provide equivalency between LWM2M defined Objects and OCF defined Resources.

A LWM2M Bridge is Asymmetric Client Bridge, therefore this document provides some OCF Device Types for unidirectional mapping, identifies equivalent OCF Resources for specific LWM2M Objects, and defines the detailed Property by Property mapping using OCF defined extensions to JSON schema to programmatically define the mappings.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

https://www.iso.org/standard/53238.html
Latest version available at: https://openconnectivity.org/specs/OCF_Core_Specification.pdf

https://www.iso.org/standard/74239.html

https://www.iso.org/standard/74241.html
Latest version available at:
https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf

Derived Models for Interoperability between IoT Ecosystems, Stevens & Merriam, March 2016

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 30118-1 and ISO/IEC 30118-2 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

Copyright Open Connectivity Foundation, Inc. © 2022. All rights Reserved
3.1.1 LWM2M Resource
an atomic piece of information that can be read, written, or executed.

3.1.2 LWM2M Object
a collection of LWM2M Resources. Within LWM2M Object, LWM2M Resources are logically organized.

3.1.3 LWM2M Application
represents the LWM2M entity (i.e. LWM2M Client of Server), being mapped to a virtual OCF Client, where LWM2M Object instances and LWM2M Resource instances are organized.

4 Document conventions and organization

4.1 Conventions
In this document a number of terms, conditions, mechanisms, sequences, parameters, events, states, or similar terms are printed with the first letter of each word in uppercase and the rest in lowercase (e.g., Network Architecture). Any lowercase uses of these words have the normal technical English meaning.

4.2 Notation
In this document, features are described as required, recommended, allowed or DEPRECATED as follows:

Required (or shall or mandatory).

These basic features shall be implemented to comply with OIC Core Architecture. The phrases "shall not", and "PROHIBITED" indicate behavior that is prohibited, i.e. that if performed means the implementation is not in compliance.

Recommended (or should).

These features add functionality supported by OIC Core Architecture and should be implemented. Recommended features take advantage of the capabilities OIC Core Architecture, usually without imposing major increase of complexity. Notice that for compliance testing, if a recommended feature is implemented, it shall meet the specified requirements to be in compliance with these guidelines. Some recommended features could become requirements in the future. The phrase "should not" indicates behavior that is permitted but not recommended.

Allowed (or allowed).

These features are neither required nor recommended by OIC Core Architecture, but if the feature is implemented, it shall meet the specified requirements to be in compliance with these guidelines.

Conditionally allowed (CA)

The definition or behaviour depends on a condition. If the specified condition is met, then the definition or behaviour is allowed, otherwise it is not allowed.

Conditionally required (CR)

The definition or behaviour depends on a condition. If the specified condition is met, then the definition or behaviour is required. Otherwise the definition or behaviour is allowed as default unless specifically defined as not allowed.

DEPRECATED
Although these features are still described in this specification, they should not be implemented except for backward compatibility. The occurrence of a deprecated feature during operation of an implementation compliant with the current specification has no effect on the implementation’s operation and does not produce any error conditions. Backward compatibility may require that a feature is implemented and functions as specified but it shall never be used by implementations compliant with this specification.

Strings that are to be taken literally are enclosed in “double quotes”.

Words that are emphasized are printed in italic.

5 Theory of Operation

5.1 Interworking Approach

The interworking between LWM2M defined Objects and OCF defined Resource Types is modelled using the derived model syntax described in Derived Models for Interoperability.

5.2 Mapping Syntax

5.2.1 Introduction

Within the defined syntax for derived modelling used by this document there are two blocks that define the actual Property-Property equivalence or mapping. These blocks are identified by the keywords "x-to-ocf" and "x-from-ocf". Derived Models for Interoperability does not define a rigid syntax for these blocks; they are free form string arrays that contain pseudo-coded mapping logic.

Within this document we apply the rules defined in clause 5.2 to these blocks to ensure consistency and re-usability and extensibility of the mapping logic that is defined.

In this document, Python (version >= 3.0) syntax is used to describe translation rules.

The JSON skeleton shows typical translation block used in the derived models.

```
"<LWM2M Object Name(ID)>" : {
  "type": "object",
  "properties": {
    "<LWM2M Resource Name(ID)>": {
      "x-ocf-conversion": {
        "x-ocf-alias": "<corresponding OCF Resource type>",
        "x-to-ocf": [ ...
        ...
        ],
        "x-from-ocf": [ ...
        ...
        ],
      },
    },
  }
}
```

- `<LWM2M Object Name>`: this is the LWM2M Object with prefix string,"lwm2m.o"(e.g. "lwm2m.0.buzzer")
- `<LWM2M Resource Name(ID)>`: this is the LWM2M Resource name with LWM2M Resource ID in parentheses.(e.g. “on/off(5850)”)
- `<corresponding OCF Resource type>`: an OCF Resource type which is corresponding to this LWM2M Object.
5.2.2 General
All statements are terminated with a carriage return.

5.2.3 Value Assignment
The equals sign (=) is used to assign one value to another. The assignee is on the left of the operator; the value being assigned on the right.

5.2.4 Property Naming
All Property names are identical to the name used by the original model; for example, from the OCF Temperature Resource the Property name “temperature” is used whereas when referred to the derived ecosystem then the semantically equivalent Property name is used.

5.2.5 Arrays
An array element is indicated by the use of square brackets "[]" with the index of the element contained therein, e.g. range[1]. All arrays start at an index of 0. If an entire array is being referenced, then no index is included.

5.2.6 Conditional Mapping
When a mapping is dependent on the meeting of other conditions then the syntax:

if "condition", "mapping".

is applied.

6 LWM2M Translation

6.1 Operational Scenarios
The purpose of the LWM2M Bridge Platform is to enable access by the LWM2M ecosystem to select OCF Servers. Figure 2 shows an overview of the LWM2M Bridge Platform and its general topology. The LWM2M Bridging Function supports Asymmetric bridging. This is accomplished by creating Virtual OCF Clients to represent the necessary access levels to the OCF servers that are exposed to the LWM2M ecosystem. The LWM2M Bridge Platform then exposes native LWM2M entities (i.e. LWM2M devices) that map to those Virtual OCF Clients.

Figure 1 – OCF-LWM2M Asymmetric Client Bridge
Figure 3 shows OCF-LWM2M Data Model Translation. When LWM2M device boots up, firstly it tries to register its resources (e.g., LWM2M Objects, and LWM2M Resource) to a LWM2M Server. Although the LWM2M Server doesn’t discover devices, it is able to access to the LWM2M Client through the registered resources. LWM2M basically does not define the device type. As shown in Figure 3, while OCF Resource corresponds to LWM2M Object and OCF property corresponds to LWM2M Resource, there is no LWM2m data model corresponding to OCF device.

<table>
<thead>
<tr>
<th>OCF Resource-Property</th>
<th>LWM2M Object-Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCF device type</td>
<td>N/A</td>
</tr>
<tr>
<td>OCF Resource type</td>
<td>LWM2M Object</td>
</tr>
<tr>
<td>OCF Resource Property</td>
<td>LWM2M Resource</td>
</tr>
</tbody>
</table>

Figure 2 – OCF-LWM2M Data Model Translation

The mapping between the OCF data models and the LWM2M data models is specified in Programmatic (i.e. On-the-fly) data model translation is not supported.

6.2 Enabling LWM2M Application access to OCF Servers

Each level of LWM2M Application access for OCF servers is modelled as a Virtual OCF Client. In this way, LWM2M Application access can be appropriately restricted and enforced by the OCF security capabilities. Figure 3 provides more details on the relationship between an LWM2M Application, objects and resources.
6.3 Enabling OCF Client access to LWM2M Devices
This capability is not supported.

6.4 On-the-fly Translation
All devices and resources have been aligned between the OCF and LWM2M ecosystems, so on-the-fly translation is not required.

If new OCF devices are not reflected into the LWM2M ecosystem by updates to the LWM2M specifications, the Bridge Platform will not provide a successful translation of those devices.

7 Device Type Mapping

7.1 Introduction
This clause contains the OCF Device Types for OCF Resource to LWM2M Object mapping.

7.2 OCF Device Types for OCF Resources to LWM2M Object mapping
In LWM2M Specification, there is no definition for Device type but the definition for LWM2M object, which is similar to OCF Resource type. Table 1 captures the list of the supported OCF Device Types for OCF Resource to LWM2M Object mapping.

<table>
<thead>
<tr>
<th>LWM2M Object name</th>
<th>OCF Resource Type</th>
<th>OCF Device Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off switch</td>
<td>oic.r.switch.binary</td>
<td>oic.d.airconditioner</td>
</tr>
<tr>
<td>Temperature</td>
<td>oic.r.temperature</td>
<td></td>
</tr>
<tr>
<td>On/Off switch</td>
<td>oic.r.switch.binary</td>
<td>oic.d.airpurifier</td>
</tr>
<tr>
<td>On/Off switch</td>
<td>oic.r.switch.binary</td>
<td>oic.d.washerdryer</td>
</tr>
<tr>
<td>On/Off switch</td>
<td>oic.r.switch.binary</td>
<td>oic.d.dehumidifier</td>
</tr>
<tr>
<td>Power</td>
<td>oic.r.energy.consumption</td>
<td>oic.d.electricmeter</td>
</tr>
</tbody>
</table>
8 Resource to LWM2M Object Equivalence

8.1 Introduction

This clause lists the complete set of applicable LWM2M Objects and provides the equivalent OCF Resource Type(s) to which the Objects map.

8.2 LWM2M Objects to OCF Resources

Table 2 captures the equivalency mapping between LWM2M defined Objects and OCF defined Resource Types (see ISO/IEC 30118-4). Detailed Property by Property mappings are provided in clause 9.

Table 2 – LWM2M Object to OCF Resource Type Mapping

<table>
<thead>
<tr>
<th>LWM2M Object Name</th>
<th>LWM2M Object ID</th>
<th>OCF Resource Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuation</td>
<td>3306</td>
<td>oic.r.audio</td>
</tr>
<tr>
<td>Buzzer</td>
<td>3338</td>
<td>oic.r.door</td>
</tr>
<tr>
<td>Device</td>
<td>3</td>
<td>oic.wk.d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.wk.p</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oic.r.energy.battery</td>
</tr>
<tr>
<td>Digital Input</td>
<td>3300</td>
<td>oic.r.vehicleconnector</td>
</tr>
<tr>
<td>Door</td>
<td>10351</td>
<td>oic.r.door</td>
</tr>
<tr>
<td>Energy</td>
<td>3331</td>
<td>oic.r.energy.consumption</td>
</tr>
<tr>
<td>Humidity</td>
<td>3304</td>
<td>oic.r.humidity</td>
</tr>
<tr>
<td>Load Control</td>
<td>3310</td>
<td>oic.r.time.period</td>
</tr>
<tr>
<td>Lock</td>
<td>10359</td>
<td>oic.r.lock.status</td>
</tr>
<tr>
<td>On/Off switch</td>
<td>3342</td>
<td>oic.r.switch.binary</td>
</tr>
<tr>
<td>Positioner</td>
<td>3337</td>
<td>oic.r.openlevel</td>
</tr>
<tr>
<td>Power</td>
<td>3328</td>
<td>oic.r.energy.consumption</td>
</tr>
</tbody>
</table>
9 Detailed Mapping

9.1 Introduction

This clause provides an API and mapping description that aligns with the Derived Modelling syntax described in Derived Models for Interoperability for all Objects and Resources that are within scope.

The derived model definitions presented in clause 9 are formatted for readability, and so may appear to have extra line breaks.

9.2 Actuation

9.2.1 Derived model

The derived model: "lwm2m.o.actuation".

9.2.2 Property definition

Table 3 provides the detailed per Property mapping for "lwm2m.o.actuation".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off(5850)</td>
<td>oic.r.audio</td>
<td>oic.r.audio.mute = On/Off(5850)</td>
<td>On/Off(5850) = oic.r.audio.mute</td>
</tr>
<tr>
<td>Dimmer(5851)</td>
<td>oic.r.audio</td>
<td>oic.r.audio.volume = Dimmer(5851)</td>
<td>Dimmer(5851) = oic.r.audio.volume</td>
</tr>
<tr>
<td>Application Type(5750)</td>
<td>oic.r.audio</td>
<td>oic.r.audio.n = Application Type(5750)</td>
<td>Application Type(5750) = oic.r.audio.n</td>
</tr>
</tbody>
</table>

Table 4 provides the details of the Properties that are part of "lwm2m.o.actuation".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off(5850)</td>
<td>boolean</td>
<td>yes</td>
<td>On/off control. Boolean value where True is On and False is Off.</td>
</tr>
<tr>
<td>Dimmer(5851)</td>
<td>integer</td>
<td>no</td>
<td>This resource represents a dimmer setting, which has an integer value between 0 and 100 as a percentage.</td>
</tr>
<tr>
<td>Application Type(5750)</td>
<td>string</td>
<td>no</td>
<td>The application type of the sensor or actuator as a string depending on the use case.</td>
</tr>
</tbody>
</table>

9.2.3 Derived model definition

```json
{
    "id": "http://openconnectivity.org/asamapping/schemas/asa.environment.currentairquality.json#",
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description" : "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved.",
    "title": "Actuation",
    "definitions": {
        "lwm2m.o.actuation": {
            "type": "object",
            "properties": {
                "On/Off(5850)": {
                    "type": "boolean",
                }
            }
        }
    }
}
```
"description": "On/off control. Boolean value where True is On and False is Off.",
"x-ocf-conversion": {
 "x-ocf-alias": "oic.r.audio",
 "x-to-ocf": {
 "oic.r.audio.mute = On/Off(5850)"
 },
 "x-from-ocf": {
 "On/Off(5850) = oic.r.audio.mute"
 }
},
"Dimmer(5851)": {
 "type": "integer",
 "description": "This resource represents a dimmer setting, which has an Integer value between 0 and 100 as a percentage.",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.audio",
 "x-to-ocf": {
 "oic.r.audio.volume = Dimmer(5851)"
 },
 "x-from-ocf": {
 "Dimmer(5851) = oic.r.audio.volume"
 }
 }
},
"Application Type(5750)": {
 "type": "string",
 "description": "The application type of the sensor or actuator as a string depending on the use case.",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.audio",
 "x-to-ocf": {
 "oic.r.audio.n = Application Type(5750)"
 },
 "x-from-ocf": {
 "Application Type(5750) = oic.r.audio.n"
 }
 }
}
},
"type": "object",
"allOf": [
 {"$ref": "#/definitions/lwm2m.o.actuation"
},
 {"required": ["On/Off(5850)"]}
}
}

9.3 Buzzer

9.3.1 Derived model

The derived model: "lwm2m.o.buzzer".

9.3.2 Property definition

Table 5 provides the detailed per Property mapping for "lwm2m.o.buzzer".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off(5850)</td>
<td>oic.r.door</td>
<td>oic.r.door.openAlarm = On/Off(5850)</td>
<td>On/Off(5850) = oic.r.door.openAlarm</td>
</tr>
<tr>
<td>Application Type(5750)</td>
<td>oic.r.door</td>
<td></td>
<td>Application Type(5750) = "Door Open Alarm"</td>
</tr>
</tbody>
</table>

Table 6 provides the details of the Properties that are part of "lwm2m.o.buzzer".
Table 6 – The Properties of "lwm2m.o.buzzer".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off(5850)</td>
<td>boolean</td>
<td>yes</td>
<td>On/off control. Boolean value where True is On and False is Off.</td>
</tr>
<tr>
<td>Application Type(5750)</td>
<td>string</td>
<td>no</td>
<td>The application type of the sensor or actuator as a string depending on the use case.</td>
</tr>
</tbody>
</table>

9.3.3 Derived model definition

```json
{ "id": "http://openinterconnect.org/asamapping/schemas/asa.environment.currentairquality.json#", "schema": "http://json-schema.org/draft-04/schema#", "description": "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved. ", "title": "Buzzer", "definitions": { "lwm2m.o.buzzer": { "type": "object", "properties": { "On/Off(5850)": { "type": "boolean", "description": "On/off control. Boolean value where True is On and False is Off." }, "Application Type(5750)": { "type": "string", "description": "The application type of the sensor or actuator as a string depending on the use case." }, } }, } }, "allOf": [ { "$ref": "#/definitions/lwm2m.o.buzzer" } ], "required": ["On/Off(5850)"] }
```

9.4 Device

9.4.1 Derived model

The derived model: "lwm2m.o.device".

9.4.2 Property definition

Table 7 provides the detailed per Property mapping for "lwm2m.o.device".
Table 7 – The Property mapping for "lwm2m.o.device".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Level (9)</td>
<td>oic.r.energy.battery</td>
<td>oic.r.energy.battery.charge = Battery Level(9)</td>
<td>Battery Level(9) = oic.r.energy.battery.charge</td>
</tr>
<tr>
<td>Device Type (17)</td>
<td>oic.wk.d</td>
<td>oic.wk.d.n = Device Type (17)</td>
<td>Device Type (17) = oic.wk.d.n</td>
</tr>
</tbody>
</table>
| Battery Status (20) | oic.r.energy.battery | switch (Battery Status (20)) { Case 0 : oic.r.energy.battery.charging = FALSE; oic.r.energy.battery.defect = FALSE; oic.r.energy.battery.lowbattery = FALSE; break; Case 1 : oic.r.energy.battery.charging = TRUE; oic.r.energy.battery.defect = FALSE; oic.r.energy.battery.lowbattery = FALSE; break; Case 2 : oic.r.energy.battery.charging = FALSE; oic.r.energy.battery.defect = FALSE; oic.r.energy.battery.lowbattery = FALSE; break; Case 3 : oic.r.energy.battery.charging = FALSE; oic.r.energy.battery.defect = TRUE; oic.r.energy.battery.lowbattery = FALSE; break; Case 4 : oic.r.energy.battery.charging = FALSE; oic.r.energy.battery.defect = FALSE; oic.r.energy.battery.lowbattery = TRUE; break; If (oic.r.energy.battery.charging == TRUE) {Battery Status (20) = 1;} else { if (oic.r.energy.battery.defect == TRUE) {Battery Status (20) = 3;} if (oic.r.energy.battery.lowbattery == TRUE) {Battery Status (20) = 4;} if (oic.r.energy.battery.charge == 100) {Battery Status (20) = 2;} else { Battery Status (20) = 0;} }
| Manufacturer (0) | oic.wk.p | oic.wk.p.mmmm = Manufacturer (0) | Manufacturer (0) = oic.wk.p.mmmm |
| Model Number (1) | oic.wk.p | oic.wk.p.mmmo = Model Number (1) | Model Number (1) = oic.wk.p.mmmo |
| Serial Number (2) | oic.wk.p | oic.wk.p.mnsel = Serial Number (2) | Serial Number (2) = oic.wk.p.mnsel |

Table 8 provides the details of the Properties that are part of "lwm2m.o.device".

Table 8 – The Properties of "lwm2m.o.device".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Level (9)</td>
<td>integer</td>
<td>no</td>
<td>Contains the current battery level as a percentage (with a range from 0 to 100). This value...</td>
</tr>
<tr>
<td>Field Name</td>
<td>Type</td>
<td>Required</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Device Type (17)</td>
<td>string</td>
<td>no</td>
<td>Type of the device (manufacturer specified string: e.g. smart meters / dev Class...)</td>
</tr>
<tr>
<td>Battery Status (20)</td>
<td>integer</td>
<td>no</td>
<td>This value is only valid for the Device Internal Battery if present</td>
</tr>
<tr>
<td>Manufacturer (0)</td>
<td>string</td>
<td>no</td>
<td>Human readable manufacturer name</td>
</tr>
<tr>
<td>Model Number (1)</td>
<td>string</td>
<td>no</td>
<td>A model identifier (manufacturer specified string)</td>
</tr>
<tr>
<td>Serial Number (2)</td>
<td>string</td>
<td>no</td>
<td>Serial Number</td>
</tr>
<tr>
<td>Firmware Version (3)</td>
<td>string</td>
<td>no</td>
<td>Current firmware version of the Device.</td>
</tr>
<tr>
<td>Hardware Version (18)</td>
<td>string</td>
<td>no</td>
<td>Current hardware version of the device.</td>
</tr>
</tbody>
</table>

9.4.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/asamapping/schemas/asa.environment.currentairquality.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved. ",
  "title": "Device",
  "definitions": {
    "lwm2m.o.device": {
      "type": "object",
      "properties": {
        "Battery Level (9)": {
          "type": "integer",
          "description": "Contains the current battery level as a percentage (with a range from 0 to 100). This value is only valid for the Device internal Battery if present (one Available Power Sources Resource Instance is 1).",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.energy.battery",
            "x-to-ocf": ["oic.r.energy.battery.charge = Battery Level(9)"],
            "x-from-ocf": ["Battery Level(9) = oic.r.energy.battery.charge"]
          }
        },
        "Device Type (17)": {
          "type": "string",
          "description": "Type of the device (manufacturer specified string: e.g. smart meters / dev Class...)",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.wk.d",
            "x-to-ocf": ["oic.wk.d.n = Device Type (17)"],
            "x-from-ocf": ["Device Type (17) = oic.wk.d.n"]
          }
        },
        "Battery Status (20)": {
          "type": "integer",
          "description": "This value is only valid for the Device Internal Battery if present",
          "x-ocf-conversion": {
```
"x-to-ocf": {
 "switch (Battery Status (20)) {
 "Case 0 : oic.r.energy.battery.charging = FALSE; oic.r.energy.battery.defect =
FALSE; oic.r.energy.battery.lowbattery = FALSE; break;",
 "Case 1 : oic.r.energy.battery.charging = TRUE; oic.r.energy.battery.defect = FALSE;
 oic.r.energy.battery.lowbattery = FALSE; break;",
 "Case 2 : oic.r.energy.battery.charging = FALSE; oic.r.energy.battery.defect = FALSE;
 oic.r.energy.battery.lowbattery = FALSE; break;",
 "Case 3 : oic.r.energy.battery.charging = FALSE; oic.r.energy.battery.defect = TRUE;
 oic.r.energy.battery.lowbattery = FALSE; break;",
 "Case 4 : oic.r.energy.battery.charging = FALSE; oic.r.energy.battery.defect = FALSE;
 oic.r.energy.battery.lowbattery = TRUE; break;"
 },
 "x-from-ocf": {
 "If (oic.r.energy.battery.charging == TRUE) {Battery Status (20) = 1;}
else { if (oic.r.energy.battery.defect == TRUE) {Battery Status (20) = 3;}
 if (oic.r.energy.battery.lowbattery == TRUE) {Battery Status (20) = 4;}
 if (oic.r.energy.battery.charge == 100) {Battery Status (20) = 2;}
 else {Battery Status (20) = 0; }
 }
}
}
"Manufacturer (0)": {
 "type": "string",
 "description": "Human readable manufacturer name",
 "x-ocf-conversion": {
 "x-to-ocf": "oic.wk.p.mnmn = Manufacturer (0)"
 },
 "x-from-ocf": { "Manufacturer (0) = oic.wk.p.mnmn"
 } },
"Model Number (1)": {
 "type": "string",
 "description": "A model identifier (manufacturer specified string)",
 "x-ocf-conversion": {
 "x-to-ocf": "oic.wk.p.mnmo = Model Number (1)"
 },
 "x-from-ocf": { "Model Number (1) = oic.wk.p.mnmo"
 } },
"Serial Number (2)": {
 "type": "string",
 "description": "Serial Number",
 "x-ocf-conversion": {
 "x-to-ocf": "oic.wk.p.mnsel = Serial Number (2)"
 },
 "x-from-ocf": { "Serial Number (2) = oic.wk.p.mnsel"
 } },
"Firmware Version (3)": {
 "type": "string",
 "description": "Current firmware version of the Device.",
 "x-ocf-conversion": {
 "x-to-ocf": "oic.wk.p.mntv = Firmware Version (3)"
 },
 "x-from-ocf": {
"Firmware Version (3) = oic.wk.p.mnfv"

"Hardware Version (18)" {
 "type" : "string",
 "description" : "Current hardware version of the device."
 "x-ocf-conversion" : {
 "x-ocf-alias" : "oic.wk.p",
 "x-to-ocf" : {
 "oic.wk.p.mnhw = Hardware Version (18)"
 }
 "x-from-ocf" : {
 "Hardware Version (18) = oic.wk.p.mnhw"
 }
 }
}

9.5 Digital Input

9.5.1 Derived model
The derived model: "lwm2m.o.digitalinput".

9.5.2 Property definition
Table 9 provides the detailed per Property mapping for "lwm2m.o.digitalinput".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Input state (5500)</td>
<td>oic.r.vehicle.connector</td>
<td>oic.r.vehicle.connector.connected = Digital Input state (5500)</td>
<td>Digital Input state (5500) = oic.r.vehicle.connector.connected</td>
</tr>
<tr>
<td>Sensor Type (5751)</td>
<td>oic.r.vehicle.connector</td>
<td></td>
<td>Sensor Type (5751) = "Vehicle Connector"</td>
</tr>
<tr>
<td>Application Type (5750)</td>
<td>oic.r.vehicle.connector</td>
<td></td>
<td>Application Type (5750) = "Vehicle Connector"</td>
</tr>
</tbody>
</table>

Table 10 provides the details of the Properties that are part of "lwm2m.o.digitalinput".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Input state (5500)</td>
<td>boolean</td>
<td>yes</td>
<td>The current state of a digital input.</td>
</tr>
<tr>
<td>Sensor Type (5751)</td>
<td>string</td>
<td>no</td>
<td>The type of the sensor</td>
</tr>
<tr>
<td>Application Type (5750)</td>
<td>string</td>
<td>no</td>
<td>The minimum value that can be measured by the sensor.</td>
</tr>
</tbody>
</table>

9.5.3 Derived model definition
"description": "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved.",
"title": "Digital Input",
"definitions": {
 "lwm2m.o.digitalinput": {
 "type": "object",
 "properties": {
 "Digital Input state (5500)": {
 "type": "boolean",
 "description": "The current state of a digital input.",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.vehicle.connector",
 "x-to-ocf": ["oic.r.vehicle.connector.connected = Digital Input state (5500)"],
 "x-from-ocf": ["Digital Input state (5500) = oic.r.vehicle.connector.connected"]
 }
 }
 }
 },
 "Sensor Type (5751)": {
 "type": "string",
 "description": "The type of the sensor",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.vehicle.connector",
 "x-to-ocf": [""],
 "x-from-ocf": ["Sensor Type (5751) = \"Vehicle Connector\""
]
 }
},
 "Application Type (5750)": {
 "type": "string",
 "description": "The minimum value that can be measured by the sensor.",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.vehicle.connector",
 "x-to-ocf": [""],
 "x-from-ocf": ["Application Type (5750) = \"Vehicle Connector\""]
 }
}
},
"type": "object",
"allOf": [
 {"$ref": "#/definitions/lwm2m.o.digitalinput"},
 {"required": ["Digital Input state (5500)"]}
]

9.6 Door
9.6.1 Derived model
The derived model: "lwm2m.o.door".
9.6.2 Property definition
Table 11 provides the detailed per Property mapping for "lwm2m.o.door".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door status(50)</td>
<td>oic.r.door</td>
<td>If (Door status(50) == 1) {oic.r.door.openState = "open")</td>
<td>if(oic.r.door.openState == "open")</td>
</tr>
</tbody>
</table>

Table 11 – The Property mapping for "lwm2m.o.door".
Table 12 provides the details of the Properties that are part of "lwm2m.o.door".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door status(50)</td>
<td>boolean</td>
<td>yes</td>
<td>The status of the door, 1:Opened, 0:Closed.</td>
</tr>
<tr>
<td>Door Name(1)</td>
<td>float</td>
<td>yes</td>
<td>The name of the door.</td>
</tr>
</tbody>
</table>

9.6.3 Derived model definition

```json
{
   "id": "http://openinterconnect.org/asamapping/schemas/asa.environment.currentairquality.json#",
   "schema": "http://json-schema.org/draft-04/schema#",
   "description": "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved.",
   "title": "Door",
   "definitions": {
      "lwm2m.o.door": {
         "type": "object",
         "properties": {
            "Door status(50)": {
               "type": "boolean",
               "description": "The status of the door, 1:Opened, 0:Closed.",
               "x-ocf-conversion": {
                  "x-ocf-alias": "oic.r.door",
                  "x-to-ocf": ["If (Door status(50) == 1) {oic.r.door.openState = "open";} else {oic.r.door.openState = "closed";}"],
                  "x-from-ocf": ["if(oic.r.door.openState == "open") {Door status(50) = 1; } else { Door status(50) = 0;}"],
               },
            "Door Name(1)": {
               "type": "float",
               "description": "The name of the door.",
               "x-ocf-conversion": {
                  "x-ocf-alias": "oic.r.door",
                  "x-to-ocf": ["oic.r.door.n = Door Name(1);"],
                  "x-from-ocf": ["Door Name(1) = oic.r.door.n"],
               },
            },
         },
      },
      "type": "object",
      "allOf": ["#/definitions/lwm2m.o.door"]
   },
   "required": ["Door status(50)", "Door Name(1)"
}
}
```

9.7 Energy

9.7.1 Derived model

The derived model: "lwm2m.o.energy".

Copyright Open Connectivity Foundation, Inc. © 2022. All rights Reserved
9.7.2 Property definition

Table 13 provides the detailed per Property mapping for "lwm2m.o.energy".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Value (5700)</td>
<td>oic.r.energy.consumption</td>
<td>oic.r.energy.consumption.energy = Sensor Value(5700)</td>
<td>Sensor Value(5700) = oic.r.energy.consumption.energy</td>
</tr>
<tr>
<td>Application Type (5750)</td>
<td>oic.r.energy.consumption</td>
<td></td>
<td>Application Type (5750) = "Energy consumption"</td>
</tr>
</tbody>
</table>

Table 14 provides the details of the Properties that are part of "lwm2m.o.energy".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Value (5700)</td>
<td>float</td>
<td>yes</td>
<td>Last or Current Measured Value from the Sensor. (energy consumption (Cumulative Power) of an electrical load)</td>
</tr>
<tr>
<td>Application Type (5750)</td>
<td>float</td>
<td>no</td>
<td>The application type of the sensor or actuator as a string depending on the use case</td>
</tr>
</tbody>
</table>

9.7.3 Derived model definition

```json
{
"id": "http://openinterconnect.org/asamapping/schemas/asa.environment.currentairquality.json#",
"Schema": "http://json-schema.org/draft-04/schema#",
"description": "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved.",
"title": "Energy",
"definitions": {
"lwm2m.o.energy": {
	"type": "object",
	"properties": {
	"Sensor Value (5700)": {
		"type": "float",
		"description": "Last or Current Measured Value from the Sensor. (energy consumption (Cumulative Power) of an electrical load)",
		"x-ocf-conversion": {
			"x-ocf-alias": "oic.r.energy.consumption",
			"x-to-ocf": [oic.r.energy.consumption.energy = Sensor Value(5700)]
		},
	"Application Type (5750)": {
		"type": "float",
		"description": "The application type of the sensor or actuator as a string depending on the use case.",
		"x-ocf-conversion": {
			"x-ocf-alias": "oic.r.energy.consumption",
			"x-to-ocf": [],
		},
		"x-from-ocf": [Application Type (5750) = "Energy consumption"]
	}
	}
	}
}
```
The derived model: "lwm2m.o.humidity".

Property definition

Table 15 provides the detailed per Property mapping for "lwm2m.o.humidity".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Value (5700)</td>
<td>oic.r.humidity</td>
<td>oic.r.humidity.humidity = Sensor Value(5700)</td>
<td>Sensor Value(5700) = oic.r.humidity.humidity</td>
</tr>
</tbody>
</table>

Table 16 provides the details of the Properties that are part of "lwm2m.o.humidity".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Value (5700)</td>
<td>float</td>
<td>yes</td>
<td>Last or Current Measured Value from the Sensor.</td>
</tr>
</tbody>
</table>

Derived model definition

```json
{
  "id": "http://openinterconnect.org/asamapping/schemas/asa.environment.currentairquality.json#",
  "schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Humidity",
  "definitions": {
    "lwm2m.o.humidity": {
      "type": "object",
      "properties": {
        "Sensor Value (5700)": {
          "type": "float",
          "description": "Last or Current Measured Value from the Sensor."
        }
      }
    }
  }
}
```
9.9 Load Control

9.9.1 Derived model

The derived model: "lwm2m.o.loadcontrol".

9.9.2 Property definition

Table 17 provides the detailed per Property mapping for "lwm2m.o.loadcontrol".

Table 17 – The Property mapping for "lwm2m.o.loadcontrol".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Time(5824)</td>
<td>oic.r.time.period</td>
<td>oic.r.time.period.startTime = Start Time(5824)</td>
<td>Start Time(5824) = oic.r.time.period.startTime</td>
</tr>
<tr>
<td>Duration in Min(5825)</td>
<td>oic.r.time.period</td>
<td>oic.r.time.period.interval = Duration in Min(5825)</td>
<td>Duration in Min(5825) = oic.r.time.period.interval</td>
</tr>
<tr>
<td>Event Identifier(5823)</td>
<td>oic.r.time.period</td>
<td>oic.r.time.period.id = Event Identifier(5823)</td>
<td>Event Identifier(5823) = oic.r.time.period.id</td>
</tr>
</tbody>
</table>

Table 18 provides the details of the Properties that are part of "lwm2m.o.loadcontrol".

Table 18 – The Properties of "lwm2m.o.loadcontrol".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Time(5824)</td>
<td>time</td>
<td>yes</td>
<td>Start time</td>
</tr>
<tr>
<td>Duration in Min(5825)</td>
<td>integer</td>
<td>yes</td>
<td>Duration</td>
</tr>
<tr>
<td>Event Identifier(5823)</td>
<td>string</td>
<td>yes</td>
<td>Identifier</td>
</tr>
</tbody>
</table>

9.9.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/asamapping/schemas/asa.environment.currentairquality.json#",
  "schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Load Control",
  "definitions": {
    "lwm2m.o.loadcontrol": {
      "type": "object",
      "properties": {
        "Start Time(5824)": {
          "type": "time",
          "description": "Start time",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.time.period",
            "x-to-ocf": [
              "oic.r.time.period.startTime = Start Time(5824)"
            ],
            "x-from-ocf": [
              "Start Time(5824) = oic.r.time.period.startTime"
            ]
        },
        "Duration in Min(5825)": {
          "type": "integer",
          "description": "Duration",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.time.period",
            "x-to-ocf": [
              "oic.r.time.period.interval = Duration in Min(5825)"
            ],
            "x-from-ocf": [
              "Duration in Min(5825) = oic.r.time.period.interval"
            ]
        }
      }
    }
  }
}
```
"Event Identifier(5823)" : {
 "type" : "string",
 "description" : "Identifier",
 "x-ocf-conversion" : {
 "x-ocf-alias" : "oic.r.time.period",
 "x-to-ocf" : ["oic.r.time.period.id = Event Identifier(5823)"
],
 "x-from-ocf" : ["Event Identifier(5823) = oic.r.time.period.id"
]
 }
},

"type" : "object",
"allOf" : [{"$ref" : "#/definitions/lwm2m.o.loadcontrol"}],
"required" : ["Start Time(5824)", "Duration in Min(5825)", "Event Identifier(5823)"]
}

9.10 Lock

9.10.1 Derived model

The derived model: "lwm2m.o.lock".

9.10.2 Property definition

Table 19 provides the detailed per Property mapping for "lwm2m.o.lock".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock Status(50)</td>
<td>oic.r.lock.status</td>
<td>If(Lock Status(50) == 1) {oic.r.lock.status.lockState = "Locked";} else {oic.r.lock.status.lockState = "Unlocked";}</td>
<td>If(oic.r.lock.status.lockState == "Locked") {Lock Status(50) = 1;} else {Lock Status(50) = 0;}</td>
</tr>
<tr>
<td>Lock Name(1)</td>
<td>oic.r.lock.status</td>
<td>oic.r.lock.status.n = Lock Name(1);</td>
<td>Lock Name(1) = oic.r.lock.status.n</td>
</tr>
</tbody>
</table>

Table 20 provides the details of the Properties that are part of "lwm2m.o.lock".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock Status(50)</td>
<td>boolean</td>
<td>no</td>
<td>The status of the lock, 1:Locked, 0:Unlocked.</td>
</tr>
<tr>
<td>Lock Name(1)</td>
<td>string</td>
<td>yes</td>
<td>Name</td>
</tr>
</tbody>
</table>

9.10.3 Derived model definition

```json
{
  "id" : "http://openinterconnect.org/asamapping/schemas/asa.environment.currentairquality.json#",
  "title" : "Buzzer",
  "definitions" : {
    "lwm2m.o.lock" : {
      "type" : "object",
      "properties" : {
        "Lock Status(50)" : {
          "type" : "boolean",
          "description" : "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved."
        },
        "Lock Name(1)" : {
          "type" : "string",
          "description" : "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved."
        }
      }
    }
  }
}
```
"description": "The status of the lock, 1:Locked, 0:Unlocked.",
"x-ocf-conversion": {
 "x-ocf-alias": "oic.r.lock.status",
 "x-to-ocf": [
 "If(Lock Status(50) == 1) {oic.r.lock.status.lockState = "Locked";} else {
 oic.r.lock.status.lockState = "Unlocked";}
],
 "x-from-ocf": [
 "If(oic.r.lock.status.lockState == "Locked") {Lock Status(50) = 1;} else {Lock Status(50) = 0;}
]
},
"Lock Name(1)": {
 "type": "string",
 "description": "Name",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.lock.status",
 "x-to-ocf": [
 "oic.r.lock.status.n = Lock Name(1);"
],
 "x-from-ocf": [
 "Lock Name(1) = oic.r.lock.status.n"
]
 }
}

9.11 On/Off switch
9.11.1 Derived model
The derived model: "lwm2m.o.onoffswitch".
9.11.2 Property definition
Table 21 provides the detailed per Property mapping for "lwm2m.o.onoffswitch".

Table 21 – The Property mapping for "lwm2m.o.onoffswitch".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Input State (5500)</td>
<td>oic.r.switch.binary</td>
<td>oic.r.switch.binary.value = Digital Input State(5500) = oic.r.switch.binary.value</td>
<td></td>
</tr>
<tr>
<td>Application Type (5750)</td>
<td>oic.r.switch.binary</td>
<td>oic.r.switch.binary.id = Application Type (5750) = oic.r.switch.binary.id</td>
<td></td>
</tr>
</tbody>
</table>

Table 22 provides the details of the Properties that are part of "lwm2m.o.onoffswitch".

Table 22 – The Properties of "lwm2m.o.onoffswitch".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Input State (5500)</td>
<td>boolean</td>
<td>yes</td>
<td>The current state of a digital input.</td>
</tr>
<tr>
<td>Application Type (5750)</td>
<td>string</td>
<td>no</td>
<td>The application type of the sensor or actuator as a string depending on the use case.</td>
</tr>
</tbody>
</table>
9.11.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/asamapping/schemas/asa.environment.currentairquality.json#",
  "schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "On/Off switch",
  "definitions": {
    "lwm2m.o.onoffswitch": {
      "type": "object",
      "properties": {
        "Digital Input State (5500)": {
          "type": "boolean",
          "description": "The current state of a digital input.",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.switch.binary",
            "x-to-ocf": [
              "oic.r.switch.binary.value = Digital Input State(5500)"
            ],
            "x-from-ocf": [
              "Digital Input State(5500) = oic.r.switch.binary.value"
            ]
          }
        }
      }
    }
  }
}
```

9.12 Position

9.12.1 Derived model

The derived model: "lwm2m.o.position".

9.12.2 Property definition

Table 23 provides the detailed per Property mapping for "lwm2m.o.position".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Position (5536)</td>
<td>oic.r.openlevel</td>
<td>oic.r.openlevel.openLevel = Current Position(5536)</td>
<td>Current Position(5536) = oic.r.openlevel.openLevel</td>
</tr>
<tr>
<td>Min Limit (5520)</td>
<td>oic.r.openlevel</td>
<td>oic.r.openlevel.range[0] = Min Limit (5520)</td>
<td>Min Limit (5520) = oic.r.openlevel.range[0]</td>
</tr>
<tr>
<td>Max Limit (5750)</td>
<td>oic.r.openlevel</td>
<td>oic.r.openlevel.range[1] = Max Limit (5750)</td>
<td>Max Limit (5750) = oic.r.openlevel.range[1]</td>
</tr>
</tbody>
</table>
Table 24 provides the details of the Properties that are part of "lwm2m.o.position".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Position (5536)</td>
<td>float</td>
<td>no</td>
<td>Current position or desired position of a positioner actuator.</td>
</tr>
<tr>
<td>Min Limit (5520)</td>
<td>float</td>
<td>no</td>
<td>The minimum value that can be measured by the sensor.</td>
</tr>
<tr>
<td>Max Limit (5750)</td>
<td>float</td>
<td>no</td>
<td>The maximum value that can be measured by the sensor.</td>
</tr>
</tbody>
</table>

9.12.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/asamapping/schemas/asa.environment.currentairquality.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Position",
  "definitions": {
    "lwm2m.o.position": {
      "type": "object",
      "properties": {
        "Current Position (5536)": {
          "type": "float",
          "description": "Current position or desired position of a positioner actuator.",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.openlevel",
            "x-to-ocf": "[oic.r.openlevel.openLevel = Current Position(5536)]"
          }
        },
        "Min Limit (5520)": {
          "type": "float",
          "description": "The minimum value that can be measured by the sensor.",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.openlevel",
            "x-to-ocf": "[oic.r.openlevel.ragne[0] = Min Limit (5520)]"
          }
        },
        "Max Limit (5750)": {
          "type": "float",
          "description": "The maximum value that can be measured by the sensor.",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.openlevel",
            "x-to-ocf": "[oic.r.openlevel.ragne[1] = Max Limit (5750)]"
          }
        }
      }
    }
  }
}
```
9.13 Power

9.13.1 Derived model

The derived model: "lwm2m.o.power".

9.13.2 Property definition

Table 25 provides the detailed per Property mapping for "lwm2m.o.power".

Table 25 – The Property mapping for "lwm2m.o.power".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Value (5700)</td>
<td>oic.r.energy.consumption</td>
<td>oic.r.energy.consumption.power</td>
<td>Sensor Value(5700) = oic.r.energy.consumption.power</td>
</tr>
<tr>
<td>Application Type (5750)</td>
<td>oic.r.energy.consumption</td>
<td></td>
<td>Application Type (5750) = "Power consumption"</td>
</tr>
</tbody>
</table>

Table 26 provides the details of the Properties that are part of "lwm2m.o.power".

Table 26 – The Properties of "lwm2m.o.power".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Value (5700)</td>
<td>float</td>
<td>yes</td>
<td>Last or Current Measured Value from the Sensor. (power measurements)</td>
</tr>
<tr>
<td>Application Type (5750)</td>
<td>float</td>
<td>no</td>
<td>The application type of the sensor or actuator as a string depending on the use case.</td>
</tr>
</tbody>
</table>

9.13.3 Derived model definition

```
{
  "id": "http://openinterconnect.org/asamapping/schemas/asamapping/asa.environment.currentairquality.json#",
  "schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Power",
  "definitions": {
    "lwm2m.o.power": {
      "type": "object",
      "properties": {
        "Sensor Value (5700)": {
          "type": "float",
          "description": "Last or Current Measured Value from the Sensor. (power measurements)",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.energy.consumption",
            "x-to-ocf": ["oic.r.energy.consumption.power = Sensor Value(5700)"],
            "x-from-ocf": ["Sensor Value(5700) = oic.r.energy.consumption.power"
          }
        },
        "Application Type (5750)": {
          "type": "float",
          "description": "The application type of the sensor or actuator as a string depending on the use case."
        }
      }
    }
  }
}
```
9.14 Temperature

9.14.1 Derived model

The derived model: "lwm2m.o.temperature".

9.14.2 Property definition

Table 27 provides the detailed per Property mapping for "lwm2m.o.temperature".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Value (5700)</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.temperature = Sensor Value(5700)</td>
<td>Sensor Value(5700) = oic.r.temperature.temperature</td>
</tr>
<tr>
<td>Sensor units (5701)</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.units = Sensor units (5701)</td>
<td>Sensor units (5701) = oic.r.temperature.units</td>
</tr>
<tr>
<td>Min Range Value (5603)</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.range[0] = Min Range Value (5603)</td>
<td>Min Range Value (5603) = oic.r.temperature.range[0]</td>
</tr>
<tr>
<td>Max Range Value (5604)</td>
<td>oic.r.temperature</td>
<td>oic.r.temperature.range[1] = Max Range Value (5604)</td>
<td>Max Range Value (5604) = oic.r.temperature.range[1]</td>
</tr>
</tbody>
</table>

Table 28 provides the details of the Properties that are part of "lwm2m.o.temperature".

<table>
<thead>
<tr>
<th>LWM2M Resource name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Value (5700)</td>
<td>float</td>
<td>yes</td>
<td>Last or Current Measured Value from the Sensor.</td>
</tr>
<tr>
<td>Sensor units (5701)</td>
<td>string</td>
<td>no</td>
<td>Measurement Units Definition.</td>
</tr>
<tr>
<td>Min Range Value (5603)</td>
<td>float</td>
<td>no</td>
<td>The minimum value that can be measured by the sensor.</td>
</tr>
<tr>
<td>Max Range Value (5604)</td>
<td>float</td>
<td>no</td>
<td>The maximum value that can be measured by the sensor.</td>
</tr>
</tbody>
</table>

9.14.3 Derived model definition

```json
{
    "id": "http://openinterconnect.org/asamapping/schemas/asa.environment.currentairquality.json#",
    "schema": "http://json-schema.org/draft-04/schema#",
    "description": "Copyright (c) 2017 Open Connectivity Foundation, Inc. All rights reserved.",
    "title": "Temperature",
    "definitions": {
        "type": "object",
        "allOf": [
            {
                "$ref": "#/definitions/lwm2m.o.power"
            }
        ],
        "required": ["Sensor Value (5700)"
    }
}
```
"lwm2m.o.temperature": {
 "type": "object",
 "properties": {
 "Sensor Value (5700)": {
 "type": "float",
 "description": "Last or Current Measured Value from the Sensor.",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.temperature = Sensor Value (5700)"
],
 "x-from-ocf": {
 "Sensor Value (5700) = oic.r.temperature.temperature"
 }
 }},
 "Sensor units (5701)": {
 "type": "string",
 "description": "Measurement Units Definition.",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.units = Sensor units (5701)"
],
 "x-from-ocf": {
 "Sensor units (5701) = oic.r.temperature.units"
 }
 }
 },
 "Min Range Value (5603)": {
 "type": "float",
 "description": "The minimum value that can be measured by the sensor.",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.range[0] = Min Range Value (5603)"
],
 "x-from-ocf": {
 "Min Range Value (5603) = oic.r.temperature.range[0]"
 }
 }
 },
 "Max Range Value (5604)": {
 "type": "float",
 "description": "The maximum value that can be measured by the sensor.",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.temperature",
 "x-to-ocf": [
 "oic.r.temperature.range[1] = Max Range Value (5604)"
],
 "x-from-ocf": {
 "Max Range Value (5604) = oic.r.temperature.range[1]"
 }
 }
 }
 }
}
"type": "object",
"allOf": [
 "$ref": "#/definitions/lwm2m.o.temperature"
],
"required": ["Sensor Value (5700)"
]