Legal Disclaimer

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY KIND OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN CONNECTIVITY FOUNDATION, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF NON-INFRINGEMENT, ACCURACY OR LACK OF VIRUSES.

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or other countries. *Other names and brands may be claimed as the property of others.

Copyright © 2019-2022 Open Connectivity Foundation, Inc. All rights reserved.

Copying or other form of reproduction and/or distribution of these works are strictly prohibited.
CONTENTS

Introduction .. viii

1 Scope .. 1
2 Normative references .. 1
3 Terms, definitions symbols and abbreviations ... 2
 3.1 Terms and definitions .. 2
4 Document conventions and organization .. 2
 4.1 Conventions .. 2
 4.2 Notation .. 3
5 Theory of operation ... 3
 5.1 Interworking approach ... 3
5.2 Mapping syntax .. 3
 5.2.1 Introduction ... 4
 5.2.2 General ... 4
 5.2.3 Value assignment .. 4
 5.2.4 Property naming .. 4
 5.2.5 Range .. 4
 5.2.6 Arrays .. 4
 5.2.7 Default mapping .. 4
 5.2.8 Conditional mapping ... 4
 5.2.9 Method invocation ... 4
6 Zigbee translation .. 5
 6.1 Operational scenarios ... 5
 6.2 Requirements specific to Zigbee bridging function .. 5
 6.2.1 Requirements specific to Zigbee .. 5
 6.2.2 Exposing Zigbee 3.0 servers to OCF clients .. 6
 6.2.3 Translation for well-defined set .. 7
 6.2.4 Exposing a Zigbee 3.0 server as a virtual OCF server 8
7 Device type mapping ... 14
 7.1 Introduction ... 14
 7.2 Zigbee device types to OCF device types ... 14
8 Resource to zigbee cluster equivalence ... 15
 8.1 Introduction ... 15
 8.2 Zigbee clusters to OCF resources .. 15
 8.2.1 Introduction ... 15
 8.2.2 On/off ... 16
 8.2.3 Level control .. 16
 8.2.4 Color control .. 17
 8.2.5 Thermostat .. 17
 8.2.6 Window covering ... 18
 8.2.7 Temperature measurement .. 18
 8.2.8 Occupancy sensing ... 19
 8.2.9 IAS zone ... 19

Copyright Open Connectivity Foundation, Inc. © 2019-2022. All rights Reserved
Detailed mapping APIs .. 19

9.1 Introduction .. 19

9.2 Color control cluster - color space - control ... 19
 9.2.1 Derived model .. 19
 9.2.2 Property definition .. 19
 9.2.3 Derived model definition .. 20

9.3 Color control cluster - color space - information .. 21
 9.3.1 Derived model .. 21
 9.3.2 Property definition .. 21
 9.3.3 Derived model definition .. 21

9.4 Color control cluster - color temperature - information 22
 9.4.1 Derived model .. 22
 9.4.2 Property definition .. 22
 9.4.3 Derived model definition .. 22

9.5 Color control cluster - color temperature - information 23
 9.5.1 Derived model .. 23
 9.5.2 Property definition .. 23
 9.5.3 Derived model definition .. 23

9.6 Color control cluster - hue and saturation - control ... 24
 9.6.1 Derived model .. 24
 9.6.2 Property definition .. 24
 9.6.3 Derived model definition .. 25

9.7 Color control cluster - hue and saturation - information 26
 9.7.1 Derived model .. 26
 9.7.2 Property definition .. 26
 9.7.3 Derived model definition .. 26

9.8 IAS zone cluster - control ... 27
 9.8.1 Derived model .. 27
 9.8.2 Property definition .. 27
 9.8.3 Derived model definition .. 27

9.9 IAS zone cluster - information ... 28
 9.9.1 Derived model .. 28
 9.9.2 Property definition .. 28
 9.9.3 Derived model definition .. 32

9.10 Level control cluster - control .. 35
 9.10.1 Derived model .. 35
 9.10.2 Property definition .. 35
 9.10.3 Derived model definition .. 36

9.11 Level control cluster - information .. 36
 9.11.1 Derived model .. 36
 9.11.2 Property definition .. 36
 9.11.3 Derived model definition .. 37

9.12 Occupancy sensing cluster - information .. 37
 9.12.1 Derived model .. 37
 9.12.2 Property definition .. 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.12.3</td>
<td>Derived model definition</td>
<td>38</td>
</tr>
<tr>
<td>9.13</td>
<td>On/Off cluster - control</td>
<td>38</td>
</tr>
<tr>
<td>9.13.1</td>
<td>Derived model</td>
<td>38</td>
</tr>
<tr>
<td>9.13.2</td>
<td>Property definition</td>
<td>38</td>
</tr>
<tr>
<td>9.13.3</td>
<td>Derived model definition</td>
<td>39</td>
</tr>
<tr>
<td>9.14</td>
<td>On/off cluster - information</td>
<td>40</td>
</tr>
<tr>
<td>9.14.1</td>
<td>Derived model</td>
<td>40</td>
</tr>
<tr>
<td>9.14.2</td>
<td>Property definition</td>
<td>40</td>
</tr>
<tr>
<td>9.14.3</td>
<td>Derived model definition</td>
<td>40</td>
</tr>
<tr>
<td>9.15</td>
<td>Temperature measurement cluster - information</td>
<td>41</td>
</tr>
<tr>
<td>9.15.1</td>
<td>Derived model</td>
<td>41</td>
</tr>
<tr>
<td>9.15.2</td>
<td>Property definition</td>
<td>41</td>
</tr>
<tr>
<td>9.15.3</td>
<td>Derived model definition</td>
<td>41</td>
</tr>
<tr>
<td>9.16</td>
<td>Thermostat cluster - cool - control</td>
<td>42</td>
</tr>
<tr>
<td>9.16.1</td>
<td>Derived model</td>
<td>42</td>
</tr>
<tr>
<td>9.16.2</td>
<td>Property definition</td>
<td>42</td>
</tr>
<tr>
<td>9.16.3</td>
<td>Derived model definition</td>
<td>43</td>
</tr>
<tr>
<td>9.17</td>
<td>Thermostat cluster - current temperature - information</td>
<td>43</td>
</tr>
<tr>
<td>9.17.1</td>
<td>Derived model</td>
<td>43</td>
</tr>
<tr>
<td>9.17.2</td>
<td>Property definition</td>
<td>43</td>
</tr>
<tr>
<td>9.17.3</td>
<td>Derived model definition</td>
<td>44</td>
</tr>
<tr>
<td>9.18</td>
<td>Thermostat cluster - heat - control</td>
<td>44</td>
</tr>
<tr>
<td>9.18.1</td>
<td>Derived model</td>
<td>44</td>
</tr>
<tr>
<td>9.18.2</td>
<td>Property definition</td>
<td>44</td>
</tr>
<tr>
<td>9.18.3</td>
<td>Derived model definition</td>
<td>45</td>
</tr>
<tr>
<td>9.19</td>
<td>Window covering cluster - configuration - control</td>
<td>45</td>
</tr>
<tr>
<td>9.19.1</td>
<td>Derived model</td>
<td>45</td>
</tr>
<tr>
<td>9.19.2</td>
<td>Property definition</td>
<td>45</td>
</tr>
<tr>
<td>9.19.3</td>
<td>Derived model definition</td>
<td>46</td>
</tr>
<tr>
<td>9.20</td>
<td>Window covering cluster - configuration - information</td>
<td>48</td>
</tr>
<tr>
<td>9.20.1</td>
<td>Derived model</td>
<td>48</td>
</tr>
<tr>
<td>9.20.2</td>
<td>Property definition</td>
<td>48</td>
</tr>
<tr>
<td>9.20.3</td>
<td>Derived model definition</td>
<td>51</td>
</tr>
<tr>
<td>9.21</td>
<td>Window covering cluster - lift percentage - control</td>
<td>53</td>
</tr>
<tr>
<td>9.21.1</td>
<td>Derived model</td>
<td>53</td>
</tr>
<tr>
<td>9.21.2</td>
<td>Property definition</td>
<td>53</td>
</tr>
<tr>
<td>9.21.3</td>
<td>Derived model definition</td>
<td>53</td>
</tr>
<tr>
<td>9.22</td>
<td>Window covering cluster - lift percentage - information</td>
<td>54</td>
</tr>
<tr>
<td>9.22.1</td>
<td>Derived model</td>
<td>54</td>
</tr>
<tr>
<td>9.22.2</td>
<td>Property definition</td>
<td>54</td>
</tr>
<tr>
<td>9.22.3</td>
<td>Derived model definition</td>
<td>54</td>
</tr>
<tr>
<td>9.23</td>
<td>Window covering cluster - lift position - control</td>
<td>55</td>
</tr>
<tr>
<td>9.23.1</td>
<td>Derived model</td>
<td>55</td>
</tr>
<tr>
<td>9.23.2</td>
<td>Property definition</td>
<td>55</td>
</tr>
<tr>
<td>9.23.3</td>
<td>Derived model definition</td>
<td>55</td>
</tr>
</tbody>
</table>
9.24 Window covering cluster - lift position - information ... 56
 9.24.1 Derived model .. 56
 9.24.2 Property definition .. 56
 9.24.3 Derived model definition ... 56

9.25 Window covering cluster - tilt percentage - control .. 57
 9.25.1 Derived model .. 57
 9.25.2 Property definition .. 57
 9.25.3 Derived model definition ... 58

9.26 Window covering cluster - tilt percentage - information ... 58
 9.26.1 Derived model .. 58
 9.26.2 Property definition .. 58
 9.26.3 Derived model definition ... 59

9.27 Window covering cluster - tilt position - control ... 59
 9.27.1 Derived model .. 59
 9.27.2 Property definition .. 59
 9.27.3 Derived model definition ... 60

9.28 Window covering cluster - tilt position - information .. 60
 9.28.1 Derived model .. 60
 9.28.2 Property definition .. 60
 9.28.3 Derived model definition ... 61
Tables

Table 1 – Translation Rule between Zigbee and OCF Data Models .. 6
Table 2 – Zigbee to OCF Mapping Example (Color Temperature Light) ... 6
Table 3 – Zigbee 3.0 Device & Cluster – OCF Device & Resource mapping 7
Table 4 – "oic.wk.p" Resource Type mapping ... 9
Table 5 – "oic.wk.d" Resource Type mapping ... 10
Table 6 – "oic.wk.con" Resource Type mapping ... 13
Table 7 – Zigbee to OCF Device Type Mapping ... 14
Table 8 – Zigbee Server Cluster to OCF Resource Type Mapping ... 16
Table 9 – The Property mapping for "zcl.colorcontrol_csc.control.movetocolor". 19
Table 10 – The Properties of "zcl.colorcontrol_csc.control.movetocolor". .. 20
Table 11 – The Property mapping for "zcl.colorcontrol_csc.info". .. 21
Table 12 – The Properties of "zcl.colorcontrol_csc.info". ... 21
Table 13 – The Property mapping for "zcl.colorcontrol_ct.control.movetocolortemperature". 22
Table 14 – The Properties of "zcl.colorcontrol_ct.control.movetocolortemperature". 22
Table 15 – The Property mapping for "zcl.colorcontrol_ct.info". .. 23
Table 16 – The Properties of "zcl.colorcontrol_ct.info". ... 23
Table 17 – The Property mapping for "zcl.colorcontrol_hs.control.movetohueandsaturation". 24
Table 18 – The Properties of "zcl.colorcontrol_hs.control.movetohueandsaturation". 25
Table 19 – The Property mapping for "zcl.colorcontrol_hs.info". .. 26
Table 20 – The Properties of "zcl.colorcontrol_hs.info". ... 26
Table 21 – The Property mapping for "zcl.iaszone.control". .. 27
Table 22 – The Properties of "zcl.iaszone.control". ... 27
Table 23 – The Property mapping for "zcl.iaszone.info". ... 28
Table 24 – The Properties of "zcl.iaszone.info". ... 31
Table 25 – The Property mapping for "zcl.levelcontrol.control.moveto". ... 36
Table 26 – The Properties of "zcl.levelcontrol.control.moveto". ... 36
Table 27 – The Property mapping for "zcl.levelcontrol.info". .. 36
Table 28 – The Properties of "zcl.levelcontrol.info". ... 37
Table 29 – The Property mapping for "zcl.occupancysensing.info" ... 37
Table 30 – The Properties of "zcl.occupancysensing.info". .. 38
Table 31 – The Property mapping for "zcl.onoff.control.off". .. 38
Table 32 – The Properties of "zcl.onoff.control.off". ... 39
Table 33 – The Property mapping for "zcl.onoff.control.on". ... 39
Table 34 – The Properties of "zcl.onoff.control.on". .. 39
Table 35 – The Property mapping for "zcl.onoff". .. 40
Table 36 – The Properties of "zcl.onoff". ... 40
Table 37 – The Property mapping for "zcl.temperaturemeasurement.info". 41
Table 38 – The Properties of "zcl.temperaturemeasurement.info". ... 41
Table 39 – The Property mapping for “zcl.thermostat_cool.control.setpointraiseLower” 42
Table 40 – The Properties of “zcl.thermostat_cool.control.setpointraiseLower” 43
Table 41 – The Property mapping for “zcl.thermostat_currenttemperature.info” 43
Table 42 – The Properties of “zcl.thermostat_currenttemperature.info” 44
Table 43 – The Property mapping for “zcl.thermostat_heat.control.setpointraiseLower” 44
Table 44 – The Properties of “zcl.thermostat_heat.control.setpointraiseLower” 45
Table 45 – The Property mapping for “zcl.windowcovering_conf.control” 45
Table 46 – The Properties of “zcl.windowcovering_conf.control” ... 46
Table 47 – The Property mapping for “zcl.windowcovering_conf.info” 48
Table 48 – The Properties of “zcl.windowcovering_conf.info” ... 49
Table 49 – The Property mapping for “zcl.windowcovering_liftpercentage.control.gotoliftpercentage” .. 53
Table 50 – The Properties of “zcl.windowcovering_liftpercentage.control.gotoliftpercentage” .. 53
Table 51 – The Property mapping for “zcl.windowcovering_liftpercentage.info” 54
Table 52 – The Properties of “zcl.windowcovering_liftpercentage.info” 54
Table 53 – The Property mapping for “zcl.windowcovering_liftposition.control.gotoliftvalue” .. 55
Table 54 – The Properties of “zcl.windowcovering_liftposition.control.gotoliftvalue” 55
Table 55 – The Property mapping for “zcl.windowcovering_liftposition.info” 56
Table 56 – The Properties of “zcl.windowcovering_liftposition.info” 56
Table 57 – The Property mapping for “zcl.windowcovering_tiltpercentage.control.gototiltpercentage” .. 57
Table 58 – The Properties of “zcl.windowcovering_tiltpercentage.control.gototiltpercentage” .. 58
Table 59 – The Property mapping for “zcl.windowcovering_tiltpercentage.info” 58
Table 60 – The Properties of “zcl.windowcovering_tiltpercentage.info” 59
Table 61 – The Property mapping for “zcl.windowcovering_tiltposition.control.gototiltvalue” .. 59
Table 62 – The Properties of “zcl.windowcovering_tiltposition.control.gototiltvalue” 60
Table 63 – The Property mapping for “zcl.windowcovering_tiltposition.info” 60
Table 64 – The Properties of “zcl.windowcovering_tiltposition.info” 61
Introduction

This document, and all the other parts associated with this document, were developed in response to worldwide demand for smart home focused Internet of Things (IoT) devices, such as appliances, door locks, security cameras, sensors, and actuators; these to be modelled and securely controlled, locally and remotely, over an IP network.

While some inter-device communication existed, no universal language had been developed for the IoT. Device makers instead had to choose between disparate frameworks, limiting their market share, or developing across multiple ecosystems, increasing their costs. The burden then falls on end users to determine whether the products they want are compatible with the ecosystem they bought into, or find ways to integrate their devices into their network, and try to solve interoperability issues on their own.

In addition to the smart home, IoT deployments in commercial environments are hampered by a lack of security. This issue can be avoided by having a secure IoT communication framework, which this standard solves.

The goal of these documents is then to connect the next 25 billion devices for the IoT, providing secure and reliable device discovery and connectivity across multiple OSs and platforms. There are multiple proposals and forums driving different approaches, but no single solution addresses the majority of key requirements. This document and the associated parts enable industry consolidation around a common, secure, interoperable approach.

The OCF specification suite is made up of nineteen discrete documents, the documents fall into logical groupings as described herein:

- Core framework
 - Core Specification
 - Security Specification
 - Onboarding Tool Specification
- Bridging framework and bridges
 - Bridging Specification
 - Resource to Alljoyn Interface Mapping Specification
 - OCF Resource to oneM2M Resource Mapping Specification
 - OCF Resource to BLE Mapping Specification
 - OCF Resource to EnOcean Mapping Specification
 - OCF Resource to LWM2M Mapping Specification
 - OCF Resource to UPlus Mapping Specification
 - OCF Resource to Zigbee Cluster Mapping Specification
 - OCF Resource to Z-Wave Mapping Specification
- Resource and Device models
 - Resource Type Specification
 - Device Specification
- Core framework extensions
 - Easy Setup Specification
 - Core Optional Specification
- OCF Cloud
 - Cloud API for Cloud Services Specification
- Device to Cloud Services Specification
- Cloud Security Specification
OCF Resource to Zigbee Cluster Mapping Specification

1 Scope
This document provides detailed mapping information between Zigbee defined Clusters and OCF defined Resources.

2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 30118-1 Information technology -- Open Connectivity Foundation (OCF) Specification -- Part 1: Core specification
https://www.iso.org/standard/53238.html
Latest version available at: https://openconnectivity.org/specs/OCF_Core_Specification.pdf

https://www.iso.org/standard/74239.html

https://www.iso.org/standard/74240.html

https://www.iso.org/standard/74241.html
Latest version available at: https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf

ISO/IEC 30118-5 Information technology – Open Connectivity Foundation (OCF) Specification – Part 5: Smart home device specification
https://www.iso.org/standard/74242.html

Derived Models for Interoperability between IoT Ecosystems, Stevens & Merriam, March 2016

Zigbee, Zigbee Specification, August 2015
http://www.zigbee.org/zigbee-for-developers/zigbee-3-0/

Zigbee Cluster Library Specification, Version 1.0
http://www.zigbee.org/zigbee-for-developers/zigbee-3-0/

ZigBee Lighting & Occupancy Device, Version 1.0
http://www.zigbee.org/zigbee-for-developers/zigbee-3-0/
3 Terms, definitions symbols and abbreviations

3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/IEC 30118-1, ISO/IEC 30118-2, and ISO/IEC 30118-3 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:
- ISO Online browsing platform: available at https://www.iso.org/obp

3.1.1 Zigbee Attribute
data entity which represents a physical quantity or state within Zigbee.

3.1.2 Zigbee Cluster
one or more Zigbee Attributes (3.1.1), commands, behaviours, and dependencies, which supports an independent utility or application function.

3.1.3 Zigbee Server
cluster interface which is listed in the input cluster list of the simple descriptor on an endpoint.

3.1.4 Zigbee 3.0 Server
Zigbee Server (3.1.3) which is built on Zigbee 3.0 stack

3.1.5 Zigbee Client
cluster interface which is listed in the output cluster list of the simple descriptor on an endpoint.

3.1.6 Zigbee 3.0 Client
Zigbee Client (3.1.5) which is built on Zigbee 3.0 stack

3.1.7 Zigbee Device
unique device identifier and a set of mandatory and optional clusters to be implemented on a single Zigbee endpoint.

3.1.8 Zigbee 3.0 Device
Zigbee Device (3.1.7) which is built on Zigbee 3.0 stack

4 Document conventions and organization

4.1 Conventions
In this document a number of terms, conditions, mechanisms, sequences, parameters, events, states, or similar terms are printed with the first letter of each word in uppercase and the rest lowercase (e.g., Network Architecture). Any lowercase uses of these words have the normal technical English meaning.
In this document, to be consistent with the IETF usages for RESTful operations, the RESTful operation words CRUDN, CREATE, RETRIEVE, UPDATE, DELETE, and NOTIFY will have all letters capitalized. Any lowercase uses of these words have the normal technical English meaning.

4.2 Notation

In this document, features are described as required, recommended, allowed or DEPRECATED as follows:

Required (or shall or mandatory).

These basic features shall be implemented to comply with the Mapping Specification. The phrases “shall not”, and “PROHIBITED” indicate behavior that is prohibited, i.e. that if performed means the implementation is not in compliance.

Recommended (or should).

These features add functionality supported by the Mapping Specification and should be implemented. Recommended features take advantage of the capabilities the Mapping Specification, usually without imposing major increase of complexity. Notice that for compliance testing, if a recommended feature is implemented, it shall meet the specified requirements to be in compliance with these guidelines. Some recommended features could become requirements in the future. The phrase “should not” indicates behavior that is permitted but not recommended.

Allowed (or allowed).

These features are neither required nor recommended by the Mapping Specification, but if the feature is implemented, it shall meet the specified requirements to be in compliance with these guidelines.

Conditionally allowed (CA)

The definition or behaviour depends on a condition. If the specified condition is met, then the definition or behaviour is allowed, otherwise it is not allowed.

Conditionally required (CR)

The definition or behaviour depends on a condition. If the specified condition is met, then the definition or behaviour is required. Otherwise the definition or behaviour is allowed as default unless specifically defined as not allowed.

DEPRECATED

Although these features are still described in this document, they should not be implemented except for backward compatibility. The occurrence of a deprecated feature during operation of an implementation compliant with the current document has no effect on the implementation’s operation and does not produce any error conditions. Backward compatibility may require that a feature is implemented and functions as specified but it shall never be used by implementations compliant with this document.

Strings that are to be taken literally are enclosed in “double quotes”.

Words that are emphasized are printed in italic.

5 Theory of operation

5.1 Interworking approach

The interworking between ZigBee Clusters and OCF defined Resources is modelled using the derived model syntax described in Derived Models for Interoperability between IoT Ecosystems.
5.2 Mapping syntax

5.2.1 Introduction

Within the defined syntax for derived modelling used by this document there are two blocks that define the actual Property-Property equivalence or mapping. These blocks are identified by the keywords "x-to-ocf" and "x-from-ocf". Derived Models for Interoperability between IoT Ecosystems does not define a rigid syntax for these blocks; they are free form string arrays that contain pseudo-coded mapping logic.

Within this document we apply the rules in defined in clause 5.2 to these blocks to ensure consistency and re-usability and extensibility of the mapping logic that is defined.

5.2.2 General

All statements are terminated with a carriage return.

5.2.3 Value assignment

The equals sign (=) is used to assign one value to another. The assignee is on the left of the operator; the value being assigned on the right.

5.2.4 Property naming

All Property names are identical to the name used by the original model; for example, from the OCF Temperature Resource the Property name "temperature" is used whereas when referred to the derived ecosystem then the semantically equivalent Property name is used.

The name of the OCF defined Property is prepended by the ecosystem designator "ocf" to avoid ambiguity (e.g. "ocf.step")

5.2.5 Range

The range on the OCF side is fixed.

5.2.6 Arrays

An array element is indicated by the use of square brackets "[]" with the index of the element contained therein, e.g. range [1]. All arrays start at an index of 0.

5.2.7 Default mapping

There are cases where the specified mapping is not possible as one or more of the Properties being mapped is optional in the source model. In all such instances a default mapping is provided. (e.g. "transitiontime = 1")

5.2.8 Conditional mapping

When a mapping is dependent on the meeting of other conditions then the syntax:

If "condition", then "mapping".

is applied.

E.g. if onoff = false, then ocf.value = false

5.2.9 Method invocation

The invocation of a command from the derived ecosystem as part of the mapping from an OCF Resource is indicated by the use if a double colon "::" delimiter between the applicable resource, service, interface or other construct identifier and the command name. The command name always includes trailing parentheses which would include any parameters should they be passed.
For example, when dealing with the "on()" command for Zigbee On/off Cluster this gives a complete command invocation as: "zb.command.onoff::on()".

6 Zigbee translation

6.1 Operational scenarios

The overall goal is to make Bridged Zigbee 3.0 Servers appear to OCF Clients as if they were native OCF Servers in the local network or cloud environment.

The mapping between the OCF data models and Zigbee Clusters is specified in 9. Programmatic (i.e. On-the-fly) data model translation is not supported.

Figure 1 shows an overview of a Zigbee 3.0 Bridge Platform and its general topology. It exposes Zigbee 3.0 Servers to OCF Clients. Each Bridged Zigbee 3.0 Server is represented as a Virtual OCF Server. The Zigbee 3.0 Bridging Function supports Asymmetric bridging. The scope of this document is the asymmetric bridging to expose the Zigbee Server to OCF. The asymmetric bridging to expose an OCF Server to a Zigbee Client is out of scope.

![Figure 1 – OCF Zigbee Bridge Platform and Components](image)

6.2 Requirements specific to Zigbee bridging function

6.2.1 Requirements specific to Zigbee

This document refers to Zigbee 3.0 or higher. Zigbee 3.0 is built on Zigbee Pro 2015 or newer, which enhances the IEEE 802.15.4 standard by adding a mesh network and security layers along with an application framework. Low power support is not the scope of this document.

An OCF Zigbee Bridging Function shall act as a Zigbee Coordinator in network layer. A Zigbee Coordinator is responsible for initiating and maintaining the devices on the network. An OCF Zigbee Bridge Platform will act as Zigbee Client towards the Zigbee 3.0 Devices in the application layer. Users can expect that a certified OCF Bridge Platform will be able to talk to Zigbee 3.0 Devices, without the user having to buy some other device.
6.2.2 Exposing Zigbee 3.0 servers to OCF clients

The nature of how Zigbee Devices are structured may be different than how an OCF Device is structured. The mapping of the structure of a Zigbee device on an OCF Device is given by Table 1.

A Zigbee Server cluster may map to one or more OCF Resources. If a specific Zigbee Server cluster has specific commands, one or more OCF Resources corresponding to the specific command attributes may be additionally needed.

A Zigbee Attribute of a Zigbee Server cluster typically maps to an OCF Resource Property. However, in some special cases, multiple attributes are mapped to a single OCF Resource Property e.g., “CurrentX” and “CurrentY” of the Zigbee color control cluster map to the “csc” Property in the "oic.r.colour.csc" (Colour Space Coordinates) Resource because of the difference in the data types, i.e., "csc" is an array, but "CurrentX" and "CurrentY" map to a number.

Table 2 is a mapping example of this rule

<table>
<thead>
<tr>
<th>From Zigbee</th>
<th>mapping count</th>
<th>To OCF</th>
<th>mapping count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zigbee Device</td>
<td>1</td>
<td>OCF Device</td>
<td>1</td>
</tr>
<tr>
<td>Zigbee Cluster</td>
<td>1</td>
<td>OCF Resource</td>
<td>n</td>
</tr>
<tr>
<td>Zigbee Attribute</td>
<td>1</td>
<td>OCF Resource Property</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2 – Zigbee to OCF Mapping Example (Color Temperature Light)

<table>
<thead>
<tr>
<th>From Zigbee</th>
<th>To OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zigbee 3.0 Device</td>
<td>0x010c (Color Temperature Light)</td>
</tr>
<tr>
<td>Zigbee Server Cluster</td>
<td>0x0006 (On/Off)</td>
</tr>
<tr>
<td></td>
<td>0x0300 (Color Control Cluster)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Zigbee Attribute</td>
<td>0x0000 (OnOff of On/Off Cluster)</td>
</tr>
<tr>
<td></td>
<td>0x0003 (CurrentX of Color Control Cluster)</td>
</tr>
<tr>
<td></td>
<td>0x0004 (CurrentY of Color Control Cluster)</td>
</tr>
</tbody>
</table>

Table 1 – Translation Rule between Zigbee and OCF Data Models
If a Zigbee 3.0 Device, Zigbee Server Cluster, Zigbee Attribute are enlisted in the well-defined set, the Bridging Function shall follow the requirements for translating it to an OCF Device, OCF Resource, or OCF Resource Property (i.e., "deep translation").

A Zigbee 3.0 Server Device maps to a single OCF Device Type. The OCF Device Type is provided by using the Device ID of the Zigbee 3.0 Server Device (The Device ID is allocated by the Zigbee Alliance and has the same meaning of the OCF Device Type). The Zigbee 3.0 Bridging Function has a table which includes the mapping information between the Zigbee Device ID and the OCF Device Type. Based on the table, the Zigbee 3.0 Bridging Function finds the OCF Device Type according to the Zigbee Device ID.

A Zigbee Device includes one or more Zigbee Server Clusters. If a Zigbee Cluster maps to multiple OCF Resources, the Zigbee Cluster may be translated as a Resource with a Collection Resource Type. The resource mapping between Zigbee Server Cluster and OCF Resources is defined in 9 for deep translation. The Zigbee 3.0 Bridging Function has a table which includes the mapping information between the identifier of Zigbee Cluster and OCF Resource Type(s). The Zigbee 3.0 Bridging Function obtains the list of cluster identifiers after the Virtual Zigbee 3.0 Client and Zigbee 3.0 Server Device are bound. Based on the table, the Zigbee 3.0 Bridging Function finds the OCF Resource Type(s) according to the identifier of Zigbee Cluster.

Since a Bridging Function knows all relationships between OCF Resources and Zigbee Server Clusters, the path component of URI can be free to choose. Maintaining relationship information and URI definition is implementation specific.

If a Zigbee operation fails, the Bridging Function send an appropriate OCF error response to the OCF Client. It constructs an appropriate OCF error message (e.g., diagnostic payload if using CoAP) from the Zigbee enumerated status value and Zigbee enumerated status (if any), using the form "<error name>: <error message>", with the <error name> taken from the Zigbee Status Code field and the <error message> taken from the Zigbee enumerated status, and the error code for the OCF network set to an appropriate value.

6.2.3 Translation for well-defined set

If a Zigbee 3.0 Device, Zigbee Server Cluster, Zigbee Attribute are enlisted in the well-defined set, the Bridging Function shall follow the requirements for translating it to an OCF Device, OCF Resource, or OCF Resource Property (i.e., "deep translation"). Table 3 is the list of Zigbee 3.0 devices and mandatory Zigbee Server Clusters with corresponding OCF devices and mandatory OCF Resources. Optional OCF Resources mapped with the specific Zigbee Server Clusters are enlisted in the well-defined set.

Table 3 – Zigbee 3.0 Device & Cluster – OCF Device & Resource mapping

<table>
<thead>
<tr>
<th>Zigbee 3.0 Device Name (Device ID)</th>
<th>Zigbee 3.0 Mandatory Cluster</th>
<th>OCF Mandatory Resource Type</th>
<th>OCF Device Type (“rt”)</th>
<th>OCF Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/off light (0x0100)</td>
<td>On/off</td>
<td>oic.r.switch.binary,</td>
<td>oic.d.light</td>
<td>Light</td>
</tr>
<tr>
<td>Color Temperature Light (0x010c)</td>
<td>On/off, Level Control,</td>
<td>oic.r.switch.binary,</td>
<td>oic.d.light</td>
<td>Light</td>
</tr>
<tr>
<td>Product Description</td>
<td>Control Modes</td>
<td>Interface</td>
<td>Platform</td>
<td>Category</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Extended Color Light (0x010d)</td>
<td>On/off, Level Control, Color Control</td>
<td>oic.r.switch.binary, oic.d.light</td>
<td>Light</td>
<td></td>
</tr>
<tr>
<td>Dimmable Light (0x0101)</td>
<td>On/off, Level Control</td>
<td>oic.r.switch.binary, oic.d.light</td>
<td>Light</td>
<td></td>
</tr>
<tr>
<td>Color Dimmable Light (0x0102)</td>
<td>On/off Level Control, Color Control</td>
<td>oic.r.switch.binary, oic.d.light</td>
<td>Light</td>
<td></td>
</tr>
<tr>
<td>Temperature Sensor (0x0302)</td>
<td>Temperature Measurement</td>
<td>oic.r.temperature, oic.d.sensor</td>
<td>Generic Sensor</td>
<td></td>
</tr>
<tr>
<td>Thermostat (0x0301)</td>
<td>Thermostat</td>
<td>oic.r.temperature(2), oic.d.thermostat</td>
<td>Thermostat</td>
<td></td>
</tr>
<tr>
<td>Window Covering Device (0x0202)</td>
<td>Window Covering</td>
<td>oic.r.openlevel, oic.d.blind</td>
<td>Blind</td>
<td></td>
</tr>
<tr>
<td>Smart Plug (0x0051)</td>
<td>On/off, Metering</td>
<td>oic.r.switch.binary, oic.d.smartplug</td>
<td>Smart Plug</td>
<td></td>
</tr>
<tr>
<td>Mains Power Outlet (0x0009)</td>
<td>On/off</td>
<td>oic.r.switch.binary, oic.d.smartplug</td>
<td>Smart Plug</td>
<td></td>
</tr>
<tr>
<td>On/off output (0x0022)</td>
<td>On/off</td>
<td>oic.r.switch.binary, oic.d.smartplug</td>
<td>Smart Plug</td>
<td></td>
</tr>
<tr>
<td>IAS Zone (0x0402)</td>
<td>IAS Zone</td>
<td>oic.r.ias.zone, oic.d.sensor</td>
<td>Generic Sensor</td>
<td></td>
</tr>
<tr>
<td>Occupancy Sensor (0x0107)</td>
<td>Occupancy Sensing</td>
<td>oic.r.sensor.presence, oic.d.sensor</td>
<td>Generic Sensor</td>
<td></td>
</tr>
</tbody>
</table>

6.2.4 Exposing a Zigbee 3.0 server as a virtual OCF server

Table 4 shows how OCF Platform properties, as specified in ISO/IEC 30118-1, shall be derived, typically from fields of Descriptor specified in Zigbee.
Table 4 – “oic.wk.p” Resource Type mapping

<table>
<thead>
<tr>
<th>To OCF Property title</th>
<th>OCF Property name</th>
<th>OCF Description</th>
<th>OCF Mandatory</th>
<th>From Zigbee 3.0 Field name</th>
<th>Zigbee 3.0 Description</th>
<th>Zigbee 3.0 Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform ID</td>
<td>pi</td>
<td>Unique identifier for the physical platform (UUID); this shall be a UUID in accordance with IETF RFC 4122. It is recommended that the UUID be created using the random generation scheme (version 4 UUID) specific in the RFC.</td>
<td>Y</td>
<td>(none)</td>
<td>Bridging Function should return a randomly-generated UUID (Please see section 4.4 of IETF RFC 4122 for randomly-generated UUID)</td>
<td></td>
</tr>
<tr>
<td>Manufacturer Name</td>
<td>mnmn</td>
<td>Name of manufacturer (not to exceed 16 characters)</td>
<td>Y</td>
<td>Manufacturer name (in DefaultLanguage, truncated to 16 characters)</td>
<td>Name of the manufacturer as a ZigBee character string Defined in Basic Cluster</td>
<td>Y</td>
</tr>
<tr>
<td>Manufacturer Details Link (URL)</td>
<td>mnml</td>
<td>URL to manufacturer (not to exceed 32 characters)</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Model Number</td>
<td>mmmo</td>
<td>Model number as designated by manufacturer</td>
<td>N</td>
<td>Model Identifier</td>
<td>Model number (or other identifier) assigned by the manufacturer as a ZigBee character string Defined in Basic Cluster</td>
<td>Y</td>
</tr>
<tr>
<td>Date of Manufacture</td>
<td>mndt</td>
<td>Manufacturing date of device</td>
<td>N</td>
<td>DateCode</td>
<td>Date of manufacturer of the device in international date notation according to ISO 8601, i.e., YYYYMMDD, Defined in Basic Cluster</td>
<td>N</td>
</tr>
<tr>
<td>Platform Version</td>
<td>mnpv</td>
<td>Version of platform – string (defined by manufacturer)</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>OS Version</td>
<td>mnos</td>
<td>Version of platform resident OS – string (defined by manufacturer)</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Hardware Version</td>
<td>mnhw</td>
<td>Version of platform hardware</td>
<td>N</td>
<td>HWVersion</td>
<td>Version number of the hardware of the device. Defined in Basic Cluster</td>
<td>N</td>
</tr>
<tr>
<td>Firmware version</td>
<td>mnfv</td>
<td>Version of device firmware</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
</tbody>
</table>
Table 5 shows how OCF Device Properties, as specified in Table 20 in ISO/IEC 30118-1, shall be derived, typically from fields of Descriptor or Attributes of Basic cluster specified in Zigbee and Zigbee Cluster Library Specification, respectively.

As specified in ISO/IEC 30118-2, the value of the “di” Property of OCF Devices (including Virtual OCF Devices) shall be established as part of Onboarding of that Virtual OCF Device.

Table 5 – “oic.wk.d” Resource Type mapping

<table>
<thead>
<tr>
<th>To OCF Property title</th>
<th>OCF Property name</th>
<th>OCF Description</th>
<th>OCF Mandatory</th>
<th>From Zigbee 3.0 Field name</th>
<th>Zigbee 3.0 Description</th>
<th>Zigbee 3.0 Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support link</td>
<td>mnsl</td>
<td>URI that points to support information from manufacturer</td>
<td>N</td>
<td>ProductURL</td>
<td>Link to a web page containing specific product information Defined in Basic Cluster</td>
<td>N</td>
</tr>
<tr>
<td>SystemTime</td>
<td>st</td>
<td>Reference time for the device</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
<tr>
<td>Vendor ID</td>
<td>vid</td>
<td>Vendor defined string for the platform. The string is freeform and up to the vendor on what text to populate it.</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td>N</td>
</tr>
</tbody>
</table>

(Devic) Name

Human friendly name
For example, “Bob’s Thermostat”

Y

User description if it exists, else Model Name if it exists, else translate Application Device Identifier (=Device ID) to Human friendly name by using Application Device Identifier value/dialog on table

User description: Information that allows the user to identify the device using a user-friendly character string, such as “Bedroom TV” Defined in User Descriptor

Model Name: character string representing the name of the manufacturer’s model of the device Defined in Complex Descriptor

Application Device Identifier: device description supported on this endpoint Cluster Defined in Simple Descriptor

Spec Version

Spec version of the core specification this device is implemented to.

Y

Spec version of the core specification that the Bridging Platform
<table>
<thead>
<tr>
<th>To OCF Property title</th>
<th>OCF Property name</th>
<th>OCF Description</th>
<th>OCF Mandatory</th>
<th>From Zigbee 3.0 Field name</th>
<th>Zigbee 3.0 Description</th>
<th>Zigbee 3.0 Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>The syntax is "core.major.minor"</td>
<td></td>
<td>implements should return its own value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device UUID</td>
<td>di</td>
<td>Unique identifier for Device. This value shall be as defined in OCF Security Specification for Device UUID.</td>
<td>Y</td>
<td>(none)</td>
<td>Use as defined in the ISO/IEC 30118-2</td>
<td></td>
</tr>
<tr>
<td>Protocol-Independent ID</td>
<td>piid</td>
<td>Unique identifier for OCF Device (UUID)</td>
<td>Y</td>
<td>(none)</td>
<td>Bridging Function should return a randomly-generated UUID (Please see section 4.4 of IETF RFC 4122 for randomly-generated UUID)</td>
<td></td>
</tr>
<tr>
<td>Data Model Version</td>
<td>dmv</td>
<td>Spec version(s) of the vertical specifications this device data model is implemented to. The syntax is a comma separated list of "<vertical>.major.minor". <vertical> is the name of the vertical (i.e. sh for Smart Home)</td>
<td>Y</td>
<td>(none)</td>
<td>Bridging Function should return its own value.</td>
<td></td>
</tr>
<tr>
<td>Localized Descriptions</td>
<td>ld</td>
<td>Detailed description of the Device, in one or more languages. This property is an array of objects where each object has a "language" field (containing an RFC 5646 language tag) and a "value" field containing the device description in the indicated language.</td>
<td>N</td>
<td>(none)</td>
<td>Zigbee provides Language and Character Set field only which specifies the language and character set used by the character strings by using ISO 639-1 language code</td>
<td></td>
</tr>
<tr>
<td>To OCF Property title</td>
<td>OCF Property name</td>
<td>OCF Description</td>
<td>OCF Mandatory</td>
<td>From Zigbee 3.0 Field name</td>
<td>Zigbee 3.0 Description</td>
<td>Zigbee 3.0 Mandatory</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Software Version</td>
<td>sv</td>
<td>Version of the device software.</td>
<td>N</td>
<td>ApplicationVersion</td>
<td>Version number of the application software contained in the device. Defined in Basic Cluster</td>
<td>Y</td>
</tr>
<tr>
<td>Manufacturer Name</td>
<td>dmn</td>
<td>Name of manufacturer of the Device, in one or more languages. This property is an array of objects where each object has a "language" field (containing an RFC 5646 language tag) and a "value" field containing the manufacturer name in the indicated language.</td>
<td>N</td>
<td>Manufacturer name</td>
<td>Name of the manufacturer as a ZigBee character string Defined in Basic Cluster</td>
<td>Y</td>
</tr>
<tr>
<td>Model Number</td>
<td>dmno</td>
<td>Model number as designated by manufacturer.</td>
<td>N</td>
<td>Model Identifier</td>
<td>Model number (or other identifier) assigned by the manufacturer as a ZigBee character string Defined in Basic Cluster</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 6 shows how OCF Device Configuration properties, as specified in Table 15 in ISO/IEC 30118-1 shall be derived.
Table 6 – "oic.wk.con" Resource Type mapping

<table>
<thead>
<tr>
<th>To OCF Property title</th>
<th>OCF Property name</th>
<th>OCF Description</th>
<th>OCF Mandatory</th>
<th>From Zigbee 3.0 Field name</th>
<th>Zigbee 3.0 Description</th>
<th>Zigbee 3.0 Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Device) Name</td>
<td>n</td>
<td>Human friendly name For example, “Bob’s Thermostat”</td>
<td>Y</td>
<td>User description if it exists, else Model Name if it exists, else translate Application Device Identifier (=Device ID) to Human friendly name by using Application Device Identifier value/description on table</td>
<td>User description; Information that allows the user to identify the device using a user-friendly character string, such as “Bedroom TV” Defined in User Descriptor Model Name; character string representing the name of the manufacturer’s model of the device Defined in Complex Descriptor Application Device Identifier; device description supported on this endpoint Cluster Defined in Simple Descriptor</td>
<td>User description: N Model Name: N Application Device Identifier: Y</td>
</tr>
<tr>
<td>Location</td>
<td>loc</td>
<td>Provides location information where available.</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td></td>
</tr>
<tr>
<td>Location Name</td>
<td>locn</td>
<td>Human friendly name for location For example, “Living Room”.</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td></td>
</tr>
<tr>
<td>Currency</td>
<td>c</td>
<td>Indicates the currency that is used for any monetary transactions</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>r</td>
<td>Free form text Indicating the current region in which the device is located geographically. The free form text shall not start with a quote (").</td>
<td>N</td>
<td>(none)</td>
<td>(none)</td>
<td></td>
</tr>
<tr>
<td>Localized Names</td>
<td>ln</td>
<td>Human-friendly name of the Device, in one or more languages. This property is an array of objects where each object has a "language" field (containing an RFC 5646 language tag) and a "value" field containing the</td>
<td>N</td>
<td>User description if it exists, else Model Name if it exists, else translate Application Device Identifier (=Device ID) to Human</td>
<td>User description; Information that allows the user to identify the device using a user-friendly character string, such as “Bedroom TV” Defined in User Descriptor Model Name; character string representing the</td>
<td>User description: N Model Name: N Application Device Identifier: Y</td>
</tr>
</tbody>
</table>
7 Device type mapping

7.1 Introduction

This clause contains the mappings from Zigbee Device Types to OCF Device Types.

7.2 Zigbee device types to OCF device types

Table 7 captures the equivalency mapping between Zigbee defined Device Types (Please see reference Zigbee Cluster Library Specification) and OCF defined Device Types (please see reference ISO/IEC 30118-5).

Table 7 – Zigbee to OCF Device Type Mapping

<table>
<thead>
<tr>
<th>Zigbee Device Type</th>
<th>Zigbee Device ID</th>
<th>OCF Device Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/off Output</td>
<td>0x0002</td>
<td>oic.d.smartplug</td>
</tr>
<tr>
<td>Mains Power Outlet</td>
<td>0x0009</td>
<td>oic.d.smartplug</td>
</tr>
<tr>
<td>Smart Plug</td>
<td>0x0051</td>
<td>oic.d.smartplug</td>
</tr>
</tbody>
</table>

OCF Property title	**OCF Property name**	**OCF Description**	**OCF Mandatory**	**From Zigbee 3.0 Field name**	**Zigbee 3.0 Description**	**Zigbee 3.0 Mandatory**
device name in the indicated language. If this property and the Device Name (n) property are both supported, the Device Name (n) value shall be included in this array. | friendly name by using Application Device Identifier value/descriptor table | name of the manufacturer’s model of the device Defined in Complex Descriptor Application Device Identifier: device description supported on this endpoint Cluster Defined in Simple Descriptor | N | ISO 639-1 language code (if it exists, else property is absent) | Language used for character strings. | N

Default Language | **dl** | The default language supported by the Device, specified as an RFC 5646 language tag. By default, clients can treat any string property as being in this language unless the property specifies otherwise. | N | ISO 639-1 language code (if it exists, else property is absent) | Language used for character strings. | N

7 Device type mapping

7.1 Introduction

This clause contains the mappings from Zigbee Device Types to OCF Device Types.

7.2 Zigbee device types to OCF device types

Table 7 captures the equivalency mapping between Zigbee defined Device Types (Please see reference Zigbee Cluster Library Specification) and OCF defined Device Types (please see reference ISO/IEC 30118-5).

Table 7 – Zigbee to OCF Device Type Mapping

<table>
<thead>
<tr>
<th>Zigbee Device Type</th>
<th>Zigbee Device ID</th>
<th>OCF Device Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/off Output</td>
<td>0x0002</td>
<td>oic.d.smartplug</td>
</tr>
<tr>
<td>Mains Power Outlet</td>
<td>0x0009</td>
<td>oic.d.smartplug</td>
</tr>
<tr>
<td>Smart Plug</td>
<td>0x0051</td>
<td>oic.d.smartplug</td>
</tr>
</tbody>
</table>
Resource to zigbee cluster equivalence

8.1 Introduction

This clause introduces new Resource Types for mapping between Zigbee Clusters and OCF Resources and lists the complete set of applicable Zigbee Clusters and equivalent OCF Resource Type(s) in clause 8.2.

8.2 Zigbee clusters to OCF resources

8.2.1 Introduction

Table 8 captures the equivalency mapping between Zigbee defined Clusters (see Zigbee Cluster Library Specification) and OCF defined Resource Types (see ISO/IEC 30118-4). Detailed Property by Property mappings are provided in clause 8.1.

Clause 9 captures the mappings for mandatory server clusters for Zigbee 3.0 devices.
<table>
<thead>
<tr>
<th>Zigbee Cluster</th>
<th>OCF Resource Type Name</th>
<th>OCF Resource Type ID</th>
<th>OCF Interface(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/off</td>
<td>Binary Switch</td>
<td>oic.r.switch.binary</td>
<td>oic.if.a</td>
</tr>
<tr>
<td>Level Control</td>
<td>Dimming</td>
<td>oic.r.light.dimming</td>
<td>oic.if.a</td>
</tr>
<tr>
<td>Color Control</td>
<td>Colour Hue and</td>
<td>oic.r.colour.hs,</td>
<td>oic.if.a</td>
</tr>
<tr>
<td></td>
<td>Saturation, Colour</td>
<td>oic.r.colour.csc,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Space Coordinates,</td>
<td>oic.r.colour.colourtemperature,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colour Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermostat</td>
<td>Temperature (3)</td>
<td>oic.r.temperature (3)</td>
<td>oic.if.s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* 1 for sensor, 2 for heater and cooler</td>
<td>oic.if.a</td>
</tr>
<tr>
<td>Window</td>
<td>Window Covering</td>
<td>oic.r.windowcovering.</td>
<td>oic.if.rw</td>
</tr>
<tr>
<td>Covering</td>
<td></td>
<td>oic.r.openlevel (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* 2 for lift (percentage scale and cm scale), 2 for tilt (percentage scale and cm scale)</td>
<td>oic.if.a</td>
</tr>
<tr>
<td>Temperature Measurement</td>
<td>Temperature</td>
<td>oic.r.temperature</td>
<td>oic.if.s</td>
</tr>
<tr>
<td>Occupancy</td>
<td>Presence Sensor</td>
<td>oic.r.sensor.presence</td>
<td>oic.if.s</td>
</tr>
<tr>
<td>Sensing</td>
<td>IAS Zone</td>
<td>oic.r.ias.zone</td>
<td>oic.if.rw</td>
</tr>
</tbody>
</table>

8.2.2 On/off
The APIs with "zcl.onoff" define the mapping between an instance of an OCF Binary Switch Resource and the Zigbee On/off Cluster. In clause 9.14 a RETRIEVE on an OCF Binary Switch Resource maps to a general Read command on a Zigbee On/off Cluster. The value of Zigbee Attribute in Zigbee On/off Cluster is retrieved via the general Read command and mapped with the value of OCF Property in OCF Binary Switch Resource. In clause 9.13 an UPDATE on a Binary Switch maps to a command invocation on either "on()" command or "off()" command of Zigbee On/off Cluster. "value = true" maps to "on()", "value = false" maps to "off()" of Zigbee On/off Cluster.

8.2.3 Level control
The APIs with "zcl.levelcontrol" define the mapping between an instance of an OCF Dimming Resource and the Zigbee Level Control Cluster. In clause 9.11, a RETRIEVE on an OCF Dimming Resource maps to a general Read command on a Zigbee Level Control Cluster. The value of Zigbee Attribute in Zigbee Level Control Cluster is retrieved via the general Read command and
mapped with the value of OCF Property in OCF Dimming Resource. In clause 9.10, an UPDATE on a "dimmingSetting" maps to a command invocation on "movetolevel(level,transitiontime=0)" of Zigbee Level Control Cluster.

8.2.4 Color control

The APIs with "zcl.colorcontrol" define the mapping between instances of OCF Colour Resources and the Zigbee Color Control Cluster. The OCF Colour Resources are OCF Hue and Saturation Resource, OCF Colour Space Coordinate Resource, OCF Colour Temperature Resource.

The APIs with "zcl.colorcontrol_hs" define the mapping between an instance of OCF Hue and Saturation Resources and the Zigbee Color Control Cluster. In clause 9.7, a RETRIEVE on an OCF Hue and Saturation Resource maps to a general Read command on a Zigbee Color Control Cluster. The values of Zigbee Attributes in Zigbee Color Control Cluster are retrieved via the general Read command and mapped with those of OCF Properties in OCF Hue and Saturation Resource. In clause 9.6, an UPDATE on OCF Colour Hue and Saturation Resource maps to a command invocation on "movetohueandsaturation(hue,saturation,transitiontime=0)" of Zigbee Color Control Cluster.

The APIs with "zcl.colorcontrol_csc" define the mapping between an instance of OCF Colour Space Coordinate Resource and the Zigbee Color Control Cluster. In clause 9.3, a RETRIEVE on an OCF Colour Space Coordinate Resource maps to a general Read command on a Zigbee Color Control Cluster. The values of Zigbee Attributes in Zigbee Color Control Cluster are retrieved via the general Read command and mapped with those of OCF Properties in OCF Colour Space Coordinate Resource. In clause 9.2, an UPDATE on OCF Colour Space Coordinate Resource maps to a command invocation on "movetocolor(colorx,colory,transitiontime=0)" of Zigbee Color Control Cluster.

The APIs with "zcl.colorcontrol_ct" define the mapping between an instance of OCF Colour Temperature Resource and the Zigbee Color Control Cluster. In clause 9.4, a RETRIEVE on an OCF Colour Temperature Resource maps to a general Read command on a Zigbee Color Control Cluster. The values of Zigbee Attributes in Zigbee Color Control Cluster are retrieved via the general Read command and mapped with those of OCF Properties in OCF Colour Temperature Resource. In clause 9.5, an UPDATE on OCF Colour Temperature Resource maps to a command invocation on "movetocolortemperature(colortemperature,transitiontime=0)" of Zigbee Color Control Cluster.

8.2.5 Thermostat

The APIs with "zcl.thermostat" define the mapping between 3 instances of OCF Temperature Resources and the Zigbee Thermostat Cluster. The 3 instances of OCF Temperature Resources are for sensor, heater, and cooler respectively.

The API with "zcl.thermostat_currenttemperature" defines the mapping between an instance of OCF Temperature Resource and the Zigbee Thermostat Cluster for sensor. In clause 9.17, a RETRIEVE on an OCF Temperature Resource maps to a general Read command on a Zigbee Thermostat Cluster. The value of Zigbee Attribute in Zigbee Thermostat Cluster is retrieved via the general Read command and mapped with the value of OCF Property in OCF Temperature Resource. The value represents the current temperature.

The API with "zcl.thermostat_heat" defines the mapping between an instance of OCF Temperature Resource and the Zigbee Thermostat Cluster for heater. In clause 9.18, an UPDATE on "temperature" of OCF Temperature Resource maps to "setpointraiselower(mode=heat mode, amount)" on a Zigbee Thermostat Cluster.

The API with "zcl.thermostat_cool" defines the mapping between an instance of OCF Temperature Resource and the Zigbee Thermostat Cluster for cooler. In clause 9.16, an UPDATE on
"temperature" of OCF Temperature Resource maps to "setpointraiselower(mode=cool mode, amount)" on a Zigbee Thermostat Cluster.

8.2.6 Window covering

The APIs with "zcl.windowcovering" define the mapping between 5 instances of OCF Resources and the Zigbee Window Covering Cluster. The 5 instances of OCF Resources are the instance of OCF Window Covering Resource and the 4 instances of OCF Open Level Resources. The 4 instances of OCF Open Level Resources are for lift level with percentage scale, lift level with centimetre scale, tilt level with percentage scale, tilt level with centimetre scale.

The API with "zcl.windowcovering_conf" defines the mapping between an instance of OCF Window Covering Resource and the Zigbee window Covering Cluster. In clause 9.20, a RETRIEVE on an OCF Window Covering Resource maps to a general Read command on a Zigbee Window Covering Cluster. The values of Zigbee Attributes in Zigbee Window Covering Cluster is retrieved via the general Read command and mapped with the value of OCF Property in OCF Window Covering Resource. In clause 9.19, an UPDATE on OCF Window Covering Resource maps to a general Write command on a Zigbee Window Covering Cluster.

The API with "zcl.windowcovering_liftposition" defines the mapping between an instance of OCF Open Level Resource and the Zigbee window Covering Cluster for lift with centimetre scale. In clause 9.22, a RETRIEVE on an OCF Open Level Resource maps to a general Read command on "CurrentPosition-Lift" of Zigbee Window Covering Cluster. The value of Zigbee Attribute in Zigbee Window Covering Cluster is retrieved via the general Read command and mapped with the value of OCF Property in OCF Open Level Resource. In clause 9.21, an UPDATE on OCF Open Level Resource maps to "gotoliftvalue(liftvalue)" on a Zigbee Window Covering Cluster.

The API with "zcl.windowcovering_tiltposition" defines the mapping between an instance of OCF Open Level Resource and the Zigbee window Covering Cluster for tilt with centimetre scale. In clause 9.24, a RETRIEVE on an OCF Open Level Resource maps to a general Read command on "CurrentPosition-Tilt" of Zigbee Window Covering Cluster. The value of Zigbee Attribute in Zigbee Window Covering Cluster is retrieved via the general Read command and mapped with the value of OCF Property in OCF Open Level Resource. In clause 9.23, an UPDATE on OCF Open Level Resource maps to "gototiltvalue(tiltvalue)" on a Zigbee Window Covering Cluster.

The API with "zcl.windowcovering_liftposition" defines the mapping between an instance of OCF Open Level Resource and the Zigbee window Covering Cluster for lift with percentage scale. In clause 9.26, a RETRIEVE on an OCF Open Level Resource maps to a general Read command on "CurrentPositionTiltPercentage" of Zigbee Window Covering Cluster. The value of Zigbee Attribute in Zigbee Window Covering Cluster is retrieved via the general Read command and mapped with the value of OCF Property in OCF Open Level Resource. In clause 9.25, an UPDATE on OCF Open Level Resource maps to "gototiltpercentage(percentage)" on a Zigbee Window Covering Cluster.

The API with "zcl.windowcovering_tiltpercentage" defines the mapping between an instance of OCF Open Level Resource and the Zigbee window Covering Cluster for tilt with percentage scale. In clause 9.28, a RETRIEVE on an OCF Open Level Resource maps to a general Read command on "CurrentPosition-Tilt" of Zigbee Window Covering Cluster. The value of Zigbee Attribute in Zigbee Window Covering Cluster is retrieved via the general Read command and mapped with the value of OCF Property in OCF Open Level Resource. In clause 9.27, an UPDATE on OCF Open Level Resource maps to "gototiltvalue(tiltvalue)" on a Zigbee Window Covering Cluster.

8.2.7 Temperature measurement

The API with "zcl.temperaturemeasurement" defines the mapping between an instance of an OCF Temperature Resource and the Zigbee Temperature Measurement Cluster for sensor. In clause 9.15, a RETRIEVE on an OCF Temperature Resource maps to a general Read command on a
Zigbee Temperature Measurement Cluster. The value of Zigbee Attribute in Zigbee Temperature Measurement Cluster is retrieved via the general Read command and mapped with the value of OCF Property in OCF Temperature Resource. The value represents the current temperature.

8.2.8 Occupancy sensing

The API with "zcl.occupancysensing" defines the mapping between an instance of an OCF Presence Sensor Resource and the Zigbee Occupancy Sensing Cluster. In clause 9.12, a RETRIEVE on an OCF Presence Sensor Resource maps to a general Read command on a Zigbee Occupancy Sensing Cluster. The value of Zigbee Attribute in Zigbee Occupancy Sensing Cluster is retrieved via the general Read command and mapped with the value of OCF Property in OCF Presence Sensor.

8.2.9 IAS zone

The API with "zcl.iaszone" defines the mapping between an instance of an OCF IAS Zone Resource and the Zigbee IAS Zone Cluster. In clause 9.9, a RETRIEVE on an IAS Zone Resource maps to a general Read command on a Zigbee IAS Zone Cluster. The values of Zigbee Attributes in Zigbee IAS Zone Cluster are retrieved via the general Read command and mapped with those of OCF Properties in OCF IAS Zone Resource. In clause 9.8, an UPDATE on OCF IAS Zone Resource maps to a general Write command on a Zigbee IAS Zone Cluster.

9 Detailed mapping APIs

9.1 Introduction

This clause provides an API and mapping description that aligns with the Derived Modelling syntax described in Derived Models for Interoperability between IoT Ecosystems for all Module Classes and Resources that are within scope.

The derived model definitions presented in clause 9 are formatted for readability, and so may appear to have extra line breaks.

9.2 Color control cluster - color space - control

9.2.1 Derived model

The derived model: "zcl.colorcontrol_csc.control.movetocolor".

9.2.2 Property definition

Table 9 provides the detailed per Property mapping for "zcl.colorcontrol_csc.control.movetocolor".

Table 9 – The Property mapping for "zcl.colorcontrol_csc.control.movetocolor".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>colory</td>
<td>oic.r.colour.cs</td>
<td>N/A</td>
<td>colory = ocf.csc[1]*65536 & transitiontime=0zcl.command.colorcontrol::movetocolor(colorx,colory,transitiontime).</td>
</tr>
<tr>
<td>colorx</td>
<td>oic.r.colour.cs</td>
<td>N/A</td>
<td>colorx = ocf.csc[0]*65536 & transitiontime=0zcl.command.colorcontrol::movetocolor(colorx,colory,transitiontime).</td>
</tr>
</tbody>
</table>

Table 10 provides the details of the Properties that are part of "zcl.colorcontrol_csc.control.movetocolor".
Table 10 – The Properties of "zcl.colorcontrol_csc.control.movetocolor".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>colory</td>
<td>number</td>
<td>no</td>
<td>Move to certain value(s) of color coordinates as fast as possible with transitiontime=0. transitiontime is set by Zigbee 3.0 translator.</td>
</tr>
<tr>
<td>colorx</td>
<td>number</td>
<td>no</td>
<td>Move to certain value(s) of color coordinates as fast as possible with transitiontime=0. transitiontime is set by Zigbee 3.0 translator.</td>
</tr>
</tbody>
</table>

9.2.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.colorcontrol_csc.control.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Color Control Cluster - Color Space - Control",
  "definitions": {
    "zcl.colorcontrol_csc.control.movetocolor": {
      "properties": {
        "colorx": {
          "type": "number",
          "description": "Move to certain value(s) of color coordinates as fast as possible with transitiontime=0. transitiontime is set by Zigbee 3.0 translator.",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.colour.csc",
            "x-from-ocf": ["colorx = ocf.csc[0]*65536 & transitiontime=0", "zcl.command.colorcontrol::movetocolor(colorx,colory,transitiontime)."],
            "x-to-ocf": ["N/A"]
          }
        },
        "colory": {
          "type": "number",
          "description": "Move to certain value(s) of color coordinates as fast as possible with transitiontime=0. transitiontime is set by Zigbee 3.0 translator.",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.colour.csc",
            "x-from-ocf": ["colory = ocf.csc[1]*65536 & transitiontime=0", "zcl.command.colorcontrol::movetocolor(colorx,colory,transitiontime)."],
            "x-to-ocf": ["N/A"]
          }
        }
      }
    }
  }
}
```

Copyright Open Connectivity Foundation, Inc. © 2019-2022. All rights Reserved
9.3 Color control cluster - color space - information

9.3.1 Derived model

The derived model: "zcl.colorcontrol_csc.info".

9.3.2 Property definition

Table 11 provides the detailed per Property mapping for "zcl.colorcontrol_csc.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>currentX</td>
<td>oic.r.colour.csc</td>
<td>ocf.csc[0] = currentX/65536</td>
<td>N/A</td>
</tr>
<tr>
<td>currentY</td>
<td>oic.r.colour.csc</td>
<td>ocf.csc[1] = currentY/65536</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 12 provides the details of the Properties that are part of "zcl.colorcontrol_csc.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>currentX</td>
<td>integer</td>
<td>no</td>
<td>current value of the normalized chromaticity value x, as defined in the CIE xy Color Space</td>
</tr>
<tr>
<td>currentY</td>
<td>integer</td>
<td>no</td>
<td>current value of the normalized chromaticity value y, as defined in the CIE xy Color Space</td>
</tr>
</tbody>
</table>

9.3.3 Derived model definition

```
{
  "id": "http://openinterconnect.org/zigbeemappingschemas/zcl.colorcontrol_csc.info.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Color Control Cluster - Color Space - Information",
  "definitions": {
    "zcl.colorcontrol_csc.info": {
      "type": "object",
      "properties": {
        "currentX": {
          "type": "integer",
          "description": "current value of the normalized chromaticity value x, as defined in the CIE xy Color Space",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.colour.csc",
            "x-to-ocf": [
              "ocf.csc[0] = currentX/65536"
            ],
            "x-from-ocf": [
              "N/A"
            ]
          }
        },
        "currentY": {
          "type": "integer",
          "description": "current value of the normalized chromaticity value y, as defined in the CIE xy Color Space",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.colour.csc",
            "x-to-ocf": [
              "ocf.csc[1] = currentY/65536"
            ]
          }
        }
      }
    }
  }
}
```
9.4 Color control cluster - color temperature - information

9.4.1 Derived model

The derived model: "zcl.colorcontrol_ct.control.movetocolortemperature".

9.4.2 Property definition

Table 13 provides the detailed per Property mapping for "zcl.colorcontrol_ct.control.movetocolortemperature".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>colortemperature</td>
<td>oic.r.colour.colourtemperature</td>
<td>N/A</td>
<td>colourtemperature=ocf.ct & transitiontime=0zcl.command.colorcontrol::movetocolortemperature(colortemperature,transitiontime)</td>
</tr>
</tbody>
</table>

Table 14 provides the details of the Properties that are part of "zcl.colorcontrol_ct.control.movetocolortemperature".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>colortemperature</td>
<td>integer</td>
<td>no</td>
<td>Move to certain value of colortemperature as fast as possible with transitiontime=0. transitiontime is set by Zigbee 3.0 translator.</td>
</tr>
</tbody>
</table>

9.4.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.colorcontrol_ct.control.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Color Control Cluster - Color Temperature - Information",
  "definitions": {
    "zcl.colorcontrol_ct.control.movetocolortemperature": {
      "properties": {
        "colortemperature": {
          "type": "integer",
          "description": "Move to certain value of colortemperature as fast as possible with transitiontime=0. transitiontime is set by Zigbee 3.0 translator."
        },
        "x-ocf-conversion": {
          "x-ocf-alias": "oic.r.colour.colourtemperature",
          "x-from-ocf": "colourtemperature=ocf.ct & transitiontime=0zcl.command.colorcontrol::movetocolortemperature(colortemperature,transitiontime)"
        }
      }
    }
  }
}``
9.5 Color control cluster - color temperature - information

9.5.1 Derived model
The derived model: "zcl.colorcontrol_ct.info".

9.5.2 Property definition
Table 15 provides the detailed per Property mapping for "zcl.colorcontrol_ct.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>colorphysicalmax</td>
<td>oic.r.colour.colourtemperature</td>
<td>ocf.range[1] = colorphysicalmax</td>
<td>N/A</td>
</tr>
<tr>
<td>colortemphysicalmin</td>
<td>oic.r.colour.colourtemperature</td>
<td>ocf.range[0] = colortemphysicalmin</td>
<td>N/A</td>
</tr>
<tr>
<td>colortemperaturemired</td>
<td>oic.r.colour.colourtemperature</td>
<td>ocf.ct = colortemperaturemired</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 16 provides the details of the Properties that are part of "zcl.colorcontrol_ct.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorphysicalmax</td>
<td>integer</td>
<td>no</td>
<td>maximum mired value supported by the hardware</td>
</tr>
<tr>
<td>Colortemphysicalmin</td>
<td>integer</td>
<td>no</td>
<td>minimum mired value supported by the hardware</td>
</tr>
<tr>
<td>Colortemperaturemired</td>
<td>integer</td>
<td>yes</td>
<td>Scaled inverse of the current value of the color temperature</td>
</tr>
</tbody>
</table>

9.5.3 Derived model definition

```
{ "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.colorcontrol_ct.info.json#", "schema": "http://json-schema.org/draft-04/schema#", "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.", "title": "Color Control Cluster - Color Temperature - Information", "definitions": { "zcl.colorcontrol_ct.info": { "type": "object", "properties": { "colortemperaturemired": { "type": "integer", "description": "Scaled inverse of the current value of the color temperature" }} }}
```
9.6 Color control cluster - hue and saturation - control

9.6.1 Derived model

The derived model: "zcl.colorcontrol_hs.control.movetohueandsaturation".

9.6.2 Property definition

Table 17 provides the detailed per Property mapping for "zcl.colorcontrol_hs.control.movetohueandsaturation".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>saturation</td>
<td>oic.r.colour.hs</td>
<td>N/A</td>
<td>saturation=ocf.saturation &amp; transitiontime=0zcl.command.colorcontrol::movetohueandsaturation(hue,saturation, transitiontime)</td>
</tr>
</tbody>
</table>
Table 18 provides the details of the Properties that are part of "zcl.colorcontrol_hs.control.movetohueandsaturation".

Table 18 – The Properties of "zcl.colorcontrol_hs.control.movetohueandsaturation".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>saturation</td>
<td>integer</td>
<td>no</td>
<td>Move to certain value(s) of hue or saturation or both as fast as possible with transitiontime=0. transitiontime is set by Zigbee 3.0 translator.</td>
</tr>
<tr>
<td>hue</td>
<td>integer</td>
<td>no</td>
<td>Move to certain value(s) of hue or saturation or both as fast as possible with transitiontime=0. transitiontime is set by Zigbee 3.0 translator.</td>
</tr>
</tbody>
</table>

9.6.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.colorcontrol_hs.control.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Color Control Cluster - Hue and Saturation - Control",
 "definitions": {
 "zcl.colorcontrol_hs.control.movetohueandsaturation": {
 "properties": {
 "hue": {
 "type": "integer",
 "description": "Move to certain value(s) of hue or saturation or both as fast as possible with transitiontime=0. transitiontime is set by Zigbee 3.0 translator.",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.colour.hs",
 "x-from-ocf": [
 "hue=ocf.hue/360 * 254 & transitiontime=0",
 "zcl.command.colorcontrol::movetohueandsaturation(hue,saturation,transitiontime)"
],
 "x-to-ocf": [
 "N/A"
]
 }
 },
 "saturation": {
 "type": "integer",
 "description": "Move to certain value(s) of hue or saturation or both as fast as possible with transitiontime=0. transitiontime is set by Zigbee 3.0 translator.",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.colour.hs",
 "x-from-ocf": [
 "saturation=ocf.saturation & transitiontime=0",
 "zcl.command.colorcontrol::movetohueandsaturation(hue,saturation,transitiontime)"
],
 "x-to-ocf": [
 "N/A"
]
 }
 }
 }
 }
 }
}
```

Copyright Open Connectivity Foundation, Inc. © 2019-2022. All rights Reserved
9.7 Color control cluster - hue and saturation - information

9.7.1 Derived model

The derived model: "zcl.colorcontrol_hs.info".

9.7.2 Property definition

Table 19 provides the detailed per Property mapping for "zcl.colorcontrol_hs.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>currentsaturation</td>
<td>oic.r.colour.hs</td>
<td>ocf.saturation = currentsaturation &amp; maximumsaturation=254</td>
<td>N/A</td>
</tr>
<tr>
<td>currenthue</td>
<td>oic.r.colour.hs</td>
<td>ocf.hue = currenthue/254 * 360</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 20 provides the details of the Properties that are part of "zcl.colorcontrol_hs.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>currentsaturation</td>
<td>integer</td>
<td>yes</td>
<td>current saturation value of the light</td>
</tr>
<tr>
<td>currenthue</td>
<td>integer</td>
<td>yes</td>
<td>current hue value of the light</td>
</tr>
</tbody>
</table>

9.7.3 Derived model definition

```json
{
 "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.colorcontrol_hs.info.json",
 "schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Color Control Cluster - Hue and Saturation - Information",
 "definitions": {
 "zcl.colorcontrol_hs.info": {
 "type": "object",
 "properties": {
 "currenthue": {
 "type": "integer",
 "description": "current hue value of the light",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.colour.hs",
 "x-to-ocf": [
 "ocf.hue = currenthue/254 * 360"
],
 "x-from-ocf": [
 "N/A"
]
 }
 },
 "currentsaturation": {
 "type": "integer",
 "description": "current saturation value of the light",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.colour.hs",
 "x-to-ocf": [
 "ocf.saturation = currentsaturation & maximumsaturation=254"
],
 "x-from-ocf": [null]
 }
 }
 }
 }
 }
}
```
9.8 IAS zone cluster - control

9.8.1 Derived model
The derived model: "zcl.iaszone.control".

9.8.2 Property definition
Table 21 provides the detailed per Property mapping for "zcl.iaszone.control".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>currentzonesensitivitylevel</td>
<td>oic.r.ias.zone</td>
<td>N/A</td>
<td>currentzonesensitivitylevel = ocf.currentzonesensitivitylevel(\text{zcl.command.general::write(currentzonesensitivitylevel)})</td>
</tr>
</tbody>
</table>

Table 22 provides the details of the Properties that are part of "zcl.iaszone.control".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>currentzonesensitivitylevel</td>
<td>integer</td>
<td>no</td>
<td>Set a sensitivity level of IAS Zone</td>
</tr>
</tbody>
</table>

9.8.3 Derived model definition

```json
{
"id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.iaszone.control.json#",
"schema": "http://json-schema.org/draft-04/schema#",
"description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
"title": "IAS Zone Cluster - Control",
"definitions": {
"zcl.iaszone.control": {
"properties": {
"currentzonesensitivitylevel": {
"type": "integer",
"description": "Set a sensitivity level of IAS Zone",
"x-ocf-conversion": {
"x-ocf-alias": "oic.r.ias.zone",
"x-from-ocf": {
"currentzonesensitivitylevel = ocf.currentzonesensitivitylevel\(\text{zcl.command.general::write(currentzonesensitivitylevel)}\)"
},
"x-to-ocf": {
"N/A"
}
}
}
}
}
}```
9.9 IAS zone cluster - information

9.9.1 Derived model
The derived model: "zcl.iaszone.info".

9.9.2 Property definition
Table 23 provides the detailed per Property mapping for "zcl.iaszone.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>zoneID</td>
<td>oic.r.iaszone</td>
<td>ocf.zoneid=zoneID</td>
<td>N/A</td>
</tr>
<tr>
<td>numberofzonesensitivitylevelsupported</td>
<td>oic.r.iaszone</td>
<td>ocf.numzonesensitivitylevel=numberofzonesensitivitylevelsupported</td>
<td>N/A</td>
</tr>
<tr>
<td>zonestate</td>
<td>oic.r.iaszone</td>
<td>if zonestate=0x00, ocf.zonestate=false if zonestate=0x01, ocf.zonestate=true</td>
<td>N/A</td>
</tr>
<tr>
<td>IAS_CIE_address</td>
<td>oic.r.iaszone</td>
<td>ocf.iascieaddress=IAS_CIE_address</td>
<td>N/A</td>
</tr>
<tr>
<td>zonetype</td>
<td>oic.r.iaszone</td>
<td>if zonetype=0x0000, ocf.zonetype=Standard CIE if zonetype=0x000d, ocf.zonetype=Motion sensor if zonetype=0x0015, ocf.zonetype=Contact switch if zonetype=0x0028, ocf.zonetype=Fire sensor if zonetype=0x002a, ocf.zonetype=Water sensor if zonetype=0x002b, ocf.zonetype=Carbon Monoxide (CO) sensor if zonetype=0x002c, ocf.zonetype=Personal emergency device if zonetype=0x002d, ocf.zonetype=Vibration/Movement sensor if zonetype=0x010f, ocf.zonetype=Remote Control if zonetype=0x0115, ocf.zonetype=Key fob if zonetype=0x021d, ocf.zonetype=Keypad if zonetype=0x0225, ocf.zonetype=Standard Warning Device if zonetype=0x0226, ocf.zonetype=Glass break sensor if zonetype=0x0229, ocf.zonetype=Security repeater if zonetype=0xff, ocf.zonetype=Invalid Zone Type</td>
<td>N/A</td>
</tr>
<tr>
<td>zonestatus</td>
<td>oic.r.iaszone</td>
<td>if zonetype=0x0000 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[] if zonetype=0x0000 & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=["system"] if zonetype=0x0000 & zonestatus=xxxxxxxxxxxx0x, ocf.zonestatus.alarms=[] if zonetype=0x0000 & zonestatus=xxxxxxxxxxxx1x, ocf.zonestatus.alarms=["zone"] if zonetype=0x0000 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[] if zonetype=0x0000 & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=["intrusion"] if zonetype=0x0000 & zonestatus=xxxxxxxxxxxx0x, ocf.zonestatus.alarms=[] if zonetype=0x0000 & zonestatus=xxxxxxxxxxxx1x, ocf.zonestatus.alarms=["presence"] if zonetype=0x0000 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[] if zonetype=0x0015 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[] if zonetype=0x0015 &</td>
<td>N/A</td>
</tr>
</tbody>
</table>
zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['1stportalopenclose']
if zonetype=0x0015 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']
if zonetype=0x0015 & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['2ndportalopenclose']
if zonetype=0x0015 & zonestatus=xxxxxxxxxxxxx11, ocf.zonestatus.alarms=['1stportalopenclose','2ndportalopenclose']
if zonetype=0x0028 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']
if zonetype=0x0028 & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']
if zonetype=0x002a & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']
if zonetype=0x002a & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']
if zonetype=0x002b & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']
if zonetype=0x002b & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']
if zonetype=0x002c & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']
if zonetype=0x002c & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']
if zonetype=0x002d & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']
if zonetype=0x002d & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']
if zonetype=0x002e & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']
if zonetype=0x002e & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']
if zonetype=0x002f & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']
if zonetype=0x002f & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']
if zonetype=0x010f & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']
if zonetype=0x010f & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']
if zonetype=0x0115 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']
if zonetype=0x0115 & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']
if zonetype=0x0115 & zonestatus=xxxxxxxxxxxxx11, ocf.zonestatus.alarms=['']
if zonetype=0x0115 & zonestatus=xxxxxxxxxxxxx11, ocf.zonestatus.alarms=['']
if zonetype=0x021d & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']
if zonetype=0x021d & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']
if zonetype=0x021d & zonestatus=xxxxxxxxxxxxx11, ocf.zonestatus.alarms=['']
if zonetype=0x021d &
Table 24 provides the details of the Properties that are part of "zcl.iaszone.info".
<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zoneID</td>
<td>integer</td>
<td>no</td>
<td>Unique id allocated by IAS CIE</td>
</tr>
<tr>
<td>numberofzonesensitivitylevelsupported</td>
<td>integer</td>
<td>no</td>
<td>Total number of sensitivity levels supported by the IAS Zone</td>
</tr>
<tr>
<td>zonestate</td>
<td>boolean</td>
<td>yes</td>
<td>Enrollment status of IAS Zone false=not enrolled, true=enrolled</td>
</tr>
<tr>
<td>IAS_CIE_address</td>
<td>string</td>
<td>no</td>
<td>Address of IAS Control and Indicating Equipment (CIE)</td>
</tr>
<tr>
<td>zonetype</td>
<td>string</td>
<td>no</td>
<td>Zonetype and Meaning of Alarm1 and Alarm2 zonestatus</td>
</tr>
<tr>
<td>zonestatus</td>
<td>array</td>
<td>no</td>
<td>x is a variable, zonestatus in Zigbee maps to zonestatus, zonebattery, and zonepowersource in OCF. Data type of zonestatus in Zigbee is 16 bitmap (xxxxxxxxxxxxxxxxx) : bit 0 = Alarm1, bit 1 = Alarm2, bit 2 = Tamper, bit 3 = Battery, bit 4 = Supervision reports, bit 5 = Restore reports, bit 6 = Trouble, bit 7 = AC (mains), bit 8 = Test, bit 9 = Battery Defect. Alarm1 : 1 = opened or alarmed 0 = closed or not alarmed, Alarm2 : 1 = opened or alarmed 0 = closed or not alarmed, Tamper : 1 = Tampered 0 = Not tampered, Battery : 1 = Low battery 0 = Battery OK, Supervision reports : 1 = Reports 0 = Does not report, Restore reports : 1 = Reports restore 0 = Does not report restore, Trouble : 1 = Trouble/Failure 0 = OK, AC (mains) : 1 = AC/Mains fault 0 = AC/Mains OK, Test : 1 = Sensor is in test mode 0 = Sensor is in operation mode, Battery Defect : 1 = Sensor detects a defective battery 0 = Sensor battery is functioning.</td>
</tr>
<tr>
<td>currentzonesensitivitylevel</td>
<td>integer</td>
<td>no</td>
<td>Sensitivity level of IAS Zone</td>
</tr>
</tbody>
</table>
9.9.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.iaszone.info.json#",
  "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "IAS Zone Cluster - Information",
  "definitions": {
    "zcl.iaszone.info": {
      "type": "object",
      "properties": {
        "zonestate": {
          "type": "boolean",
          "description": "Enrollment status of IAS Zone false=not enrolled, true=enrolled",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.iaszone",
            "x-to-ocf": [
              "if zonestate=0x00, ocf.zonestate=false",
              "if zonestate=0x01, ocf.zonestate=true"
            ],
            "x-from-ocf": [
              "N/A"
            ]
          }
        },
        "zonetype": {
          "type": "string",
          "description": "Zonetype and Meaning of Alarm1 and Alarm2 zonestatus",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.iaszone",
            "x-to-ocf": [
              "if zonetype=0x0000, ocf.zonetype=Standard CIE",
              "if zonetype=0x000d, ocf.zonetype=Motion sensor",
              "if zonetype=0x0015, ocf.zonetype=Contact switch",
              "if zonetype=0x0028, ocf.zonetype=Fire sensor",
              "if zonetype=0x002a, ocf.zonetype=Water sensor",
              "if zonetype=0x002b, ocf.zonetype=Carbon Monoxide (CO) sensor",
              "if zonetype=0x002c, ocf.zonetype=Personal emergency device",
              "if zonetype=0x002d, ocf.zonetype=Vibration/Movement sensor",
              "if zonetype=0x010f, ocf.zonetype=Remote Control",
              "if zonetype=0x0115, ocf.zonetype=Key fob",
              "if zonetype=0x021d, ocf.zonetype=Keypad",
              "if zonetype=0x0225, ocf.zonetype=Standard Warning Device",
              "if zonetype=0x0226, ocf.zonetype=Glass break sensor",
              "if zonetype=0x0229, ocf.zonetype=Security repeater",
              "if zonetype=0xffff, ocf.zonetype=Invalid Zone Type"
            ],
            "x-from-ocf": [
              "N/A"
            ]
          }
        },
        "zonestatus": {
          "type": "array",
          "items": {
            "type": "integer"
          },
          "description": "x is a variable. zonestatus in Zigbee maps to zonestatus, zonebattery, and zonepowersource in OCF. Data type of zonestatus in Zigbee is 16 bitmap (xxxxxxxxxxxxxxxx) : bit 0 - Alarm1, bit 1 - Alarm2, bit 2 - Tamper, bit 3 - Battery, bit 4 - Supervision reports, bit 5 - Restore reports, bit 6 - Trouble, bit 7 - AC (mains), bit 8 - Test, bit 9 - Battery Defect. Alarm1: 1 - opened or alarmed 0 - closed or not alarmed, Alarm2: 1 - opened or alarmed 0 - closed or not alarmed, Tamper: 1 - Tampered 0 - Not tampered, Battery: 1 - Low battery 0 - Battery OK, Supervision reports: 1 - Reports 0 - Does not report, Restore reports: 1 - Reports restore 0 - Does not report restore, Trouble: 1 - Trouble/Failure 0 - OK, AC (mains): 1 - AC/Mains fault 0 - AC/Mains OK, Test: 1 - Sensor is in test mode 0 - Sensor is in operation mode, Battery Defect: 1 - Sensor detects a defective battery 0 - Sensor battery is functioning.",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.iaszone",
            "x-to-ocf": [
              "if zonestate=0x00, ocf.zonestate=false",
              "if zonestate=0x01, ocf.zonestate=true"
            ],
            "x-from-ocf": [
              "N/A"
            ]
          }
        }
      }
    }
  }
}
```
"if zonetype=0x0000 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[''],
"if zonetype=0x0000 & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['system'],
"if zonetype=0x0000 & zonestatus=xxxxxxxxxxxxx0x, ocf.zonestatus.alarms=[''],
"if zonetype=0x0000 & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=[''],

"if zonetype=0x000d & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[''],
"if zonetype=0x000d & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['intrusion'],
"if zonetype=0x000d & zonestatus=xxxxxxxxxxxx0x, ocf.zonestatus.alarms=[''],
"if zonetype=0x000d & zonestatus=xxxxxxxxxxxx1x, ocf.zonestatus.alarms=['presence'],
"if zonetype=0x000d & zonestatus=xxxxxxxxxxxx11, ocf.zonestatus.alarms=['intrusion','presence'],

"if zonetype=0x0015 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[''],
"if zonetype=0x0015 & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['1stportalopenclose'],
"if zonetype=0x0015 & zonestatus=xxxxxxxxxxxx0x, ocf.zonestatus.alarms=[''],
"if zonetype=0x0015 & zonestatus=xxxxxxxxxxxx1x, ocf.zonestatus.alarms=['2ndportalopenclose'],
"if zonetype=0x0015 & zonestatus=xxxxxxxxxxxx11, ocf.zonestatus.alarms=['1stportalopenclose','2ndportalopenclose'],

"if zonetype=0x0028 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[''],
"if zonetype=0x0028 & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['fire'],
"if zonetype=0x0028 & zonestatus=xxxxxxxxxxxx0x, ocf.zonestatus.alarms=[''],
"if zonetype=0x0028 & zonestatus=xxxxxxxxxxxx1x, ocf.zonestatus.alarms=[''],

"if zonetype=0x002a & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[''],
"if zonetype=0x002a & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['wateroverflow'],
"if zonetype=0x002a & zonestatus=xxxxxxxxxxxx0x, ocf.zonestatus.alarms=[''],
"if zonetype=0x002a & zonestatus=xxxxxxxxxxxx1x, ocf.zonestatus.alarms=[''],

"if zonetype=0x002b & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[''],
"if zonetype=0x002b & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['CO'],
"if zonetype=0x002b & zonestatus=xxxxxxxxxxxx0x, ocf.zonestatus.alarms=[''],
"if zonetype=0x002b & zonestatus=xxxxxxxxxxxx1x, ocf.zonestatus.alarms=['cooking'],
"if zonetype=0x002b & zonestatus=xxxxxxxxxxxx11, ocf.zonestatus.alarms=['CO','cooking'],

"if zonetype=0x002c & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[''],
"if zonetype=0x002c & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['fall'],
"if zonetype=0x002c & zonestatus=xxxxxxxxxxxx0x, ocf.zonestatus.alarms=[''],
"if zonetype=0x002c & zonestatus=xxxxxxxxxxxx1x, ocf.zonestatus.alarms=['emergencybutton'],
"if zonetype=0x002c & zonestatus=xxxxxxxxxxxx11, ocf.zonestatus.alarms=['fall','emergencybutton'],

"if zonetype=0x002d & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[''],
"if zonetype=0x002d & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['movement'],
"if zonetype=0x002d & zonestatus=xxxxxxxxxxxx0x, ocf.zonestatus.alarms=[''],
"if zonetype=0x002d & zonestatus=xxxxxxxxxxxx1x, ocf.zonestatus.alarms=['vibration'],
"if zonetype=0x002d & zonestatus=xxxxxxxxxxxx11, ocf.zonestatus.alarms=['movement','vibration'],

"if zonetype=0x010f & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[''],
"if zonetype=0x010f & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['panic'],
"if zonetype=0x010f & zonestatus=xxxxxxxxxxxx0x, ocf.zonestatus.alarms=[''],
"if zonetype=0x010f & zonestatus=xxxxxxxxxxxx1x, ocf.zonestatus.alarms=['emergency'],
"if zonetype=0x010f & zonestatus=xxxxxxxxxxxx11, ocf.zonestatus.alarms=['panic','emergency'],

"if zonetype=0x0115 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=[''],
"if zonetype=0x0115 & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=[''],
ocf.zonestatus.alarms=['emergency!'],
 "if zonetype=0x0215 & zonestatus=xxxxxxxxxxxxx11,
 ocf.zonestatus.alarms=['panic', 'emergency']",

 "if zonetype=0x021d & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']",
 "if zonetype=0x021d & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['panic']",
 "if zonetype=0x021d & zonestatus=xxxxxxxxxxxxx0x, ocf.zonestatus.alarms=['']",
 "if zonetype=0x021d & zonestatus=xxxxxxxxxxxxx1x,
 ocf.zonestatus.alarms=['emergency']",
 "if zonetype=0x021d & zonestatus=xxxxxxxxxxxxx11,
 ocf.zonestatus.alarms=['panic', 'emergency']",

 "if zonetype=0x0225 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']",
 "if zonetype=0x0225 & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['glassbreak']",
 "if zonetype=0x0225 & zonestatus=xxxxxxxxxxxxx0x, ocf.zonestatus.alarms=['']",
 "if zonetype=0x0225 & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']",
 "if zonetype=0x0226 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']",
 "if zonetype=0x0226 & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['']",
 "if zonetype=0x0226 & zonestatus=xxxxxxxxxxxxx0x, ocf.zonestatus.alarms=['']",
 "if zonetype=0x0226 & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']",
 "if zonetype=0x0229 & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']",
 "if zonetype=0x0229 & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['']",
 "if zonetype=0x0229 & zonestatus=xxxxxxxxxxxxx0x, ocf.zonestatus.alarms=['']",
 "if zonetype=0x0229 & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']",
 "if zonetype=0xffff & zonestatus=xxxxxxxxxxxxx0, ocf.zonestatus.alarms=['']",
 "if zonetype=0xffff & zonestatus=xxxxxxxxxxxxx1, ocf.zonestatus.alarms=['']",
 "if zonetype=0xffff & zonestatus=xxxxxxxxxxxxx0x, ocf.zonestatus.alarms=['']",
 "if zonetype=0xffff & zonestatus=xxxxxxxxxxxxx1x, ocf.zonestatus.alarms=['']",

 "if zonestatus=xxxxxxxxxxx0xx, ocf.zonestatus.tamper=false",
 "if zonestatus=xxxxxxxxxxx1xx, ocf.zonestatus.tamper=true",

 "if zonestatus=xxxxxxxxxxxx0xxx, ocf.zonebattery.charge=100 &
 ocf.zonebattery.lowbattery=false",
 "if zonestatus=xxxxxxxxxxxx1xxx, ocf.zonebattery.charge=100 &
 ocf.zonebattery.lowbattery=true",

 "if zonestatus=xxxxxxxxxxxx0xxxx, ocf.zonestatus.zonestatusreports='none'",
 "if zonestatus=xxxxxxxxxxxx1xxxx, ocf.zonestatus.zonestatusreports='statuschangeonly'
 ",
 "if zonestatus=xxxxxxxxxxxx0xxxx, ocf.zonestatus.zonestatusreports='alarmclearonly' ",
 "if zonestatus=xxxxxxxxxxxx1xxxx, ocf.zonestatus.zonestatusreports='statuschangeandalarmclear'
 ,
 "if zonestatus=xxxxxxxxxxxx0xxxx, ocf.zonestatus.fault=false",
 "if zonestatus=xxxxxxxxxxxx1xxxx, ocf.zonestatus.fault=true",

 "if zonestatus=xxxxxxxxxxxx0xxxx, ocf.zonepowersource.powerSources=['AC (Mains)
 Power'] & ocf.zonepowersource.sourcefault=false",
 "if zonestatus=xxxxxxxxxxxx1xxxx, ocf.zonepowersource.powerSources=['AC (Mains)
 Power'] & ocf.zonepowersource.sourcefault=true",

 "if zonestatus=xxxxxxxxxxxx0xxxx, ocf.zonestatus.test=false",
 "if zonestatus=xxxxxxxxxxxx1xxxx, ocf.zonestatus.test=true",

 "if zonestatus=xxxxxxxxxxxx0xxxx, ocf.zonepowersource.powerSources=['Internal
 Battery'] & oic.r.ias.zone.zonebattery.defect=false & oic.r.ias.zone.zonebattery.charge=100.
 ",
 "if zonestatus=xxxxxxxxxxxx1xxxx, oic.r.ias.zone.zonepowersource.powerSources=['Internal
 Battery'] &
 oic.r.ias.zone.zonebattery.defect=true & oic.r.ias.zone.zonebattery.charge=100.
 }
]

 "x-from-ocf": ["N/A"
]
},

"IAS_CIE_address": {

}
"type": "string",
"description": "Address of IAS Control and Indicating Equipment (CIE)",
"x-ocf-conversion": {
"x-ocf-alias": "oic.r.iaszone",
"x-to-ocf": [
"ocf.iascieaddress= IAS_CIE_address"
],
"x-from-ocf": [
"N/A"
]
}
},
"zoneID": {
"type": "integer",
"description": "Unique id allocated by IAS CIE",
"x-ocf-conversion": {
"x-ocf-alias": "oic.r.iaszone",
"x-to-ocf": [
"ocf.zoneid=zoneID"
],
"x-from-ocf": [
"N/A"
]
}
},
"numberofzonesensitivitylevelsupported": {
"type": "integer",
"description": "Total number of sensitivity levels supported by the IAS Zone",
"x-ocf-conversion": {
"x-ocf-alias": "oic.r.iaszone",
"x-to-ocf": [
"ocf.numzonesensitivitylevel= numberofzonesensitivitylevelsupported"
],
"x-from-ocf": [
"N/A"
]
}
},
"currentzonesensitivitylevel": {
"type": "integer",
"description": "Sensitivity level of IAS Zone",
"x-ocf-conversion": {
"x-ocf-alias": "oic.r.iaszone",
"x-to-ocf": [
"ocf.currentzonesensitivitylevel = currentzonesensitivitylevel"
],
"x-from-ocf": [
"N/A"
]
}
}
,"type": "object",
"allOf": [
{"$ref": "#/definitions/zcl.iaszone.info"}
],
"required": ["zonestate"
]

9.10 Level control cluster - control
9.10.1 Derived model
The derived model: "zcl.levelcontrol.control.moveto".
9.10.2 Property definition
Table 25 provides the detailed per Property mapping for "zcl.levelcontrol.control.moveto".
Table 25 – The Property mapping for "zcl.levelcontrol.control.moveto".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>oic.r.light.dimming</td>
<td>N/A</td>
<td>level=ocf.dimmingSetting * 254 /100,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>transitiontime=0zcl.command.levelcontrol::movetolevel(level,transitiontime)</td>
</tr>
</tbody>
</table>

Table 26 provides the details of the Properties that are part of "zcl.levelcontrol.control.moveto".

Table 26 – The Properties of "zcl.levelcontrol.control.moveto".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>integer</td>
<td>no</td>
<td>Move to certain dimming value as fast as possible</td>
</tr>
</tbody>
</table>

9.10.3 Derived model definition

```json
{
    "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.levelcontrol.control.json#",
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
    "title": "Level Control Cluster - Control",
    "definitions": {
        "zcl.levelcontrol.control.moveto": {
            "properties": {
                "level": {
                    "type": "integer",
                    "description": "Move to certain dimming value as fast as possible ",
                    "x-ocf-conversion": {
                        "x-ocf-alias": "oic.r.light.dimming",
                        "x-from-ocf": ["level=ocf.dimmingSetting * 254 /100 , transitiontime=0",
                                    "zcl.command.levelcontrol::movetolevel(level,transitiontime)"
                        ],
                        "x-to-ocf": ["N/A"
                    ]
                }
            }
        }
    }
}
```

9.11 Level control cluster - information

9.11.1 Derived model

The derived model: "zcl.levelcontrol.info".

9.11.2 Property definition

Table 27 provides the detailed per Property mapping for "zcl.levelcontrol.info".

Table 27 – The Property mapping for "zcl.levelcontrol.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>currentlevel</td>
<td>oic.r.light.dimming</td>
<td>ocf.dimmingsetting = currentlevel/254 * 100</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 28 provides the details of the Properties that are part of “zcl.levelcontrol.info”.

Table 28 – The Properties of “zcl.levelcontrol.info”.

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>currentlevel</td>
<td>integer</td>
<td>yes</td>
<td>current dimming value</td>
</tr>
</tbody>
</table>

9.11.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.levelcontrol.info.json#",
  "schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Level Control Cluster - Information",
  "definitions": {
    "zcl.levelcontrol.info": {
      "type": "object",
      "properties": {
        "currentlevel": {
          "type": "integer",
          "description": "current dimming value",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.light.dimming",
            "x-to-ocf": ["ocf.dimmingsetting = currentlevel/254 * 100"],
            "x-from-ocf": ["N/A"],
          }
        }
      }
    }
  },
  "type": "object",
  "allOf": [{"$ref": "#/definitions/zcl.levelcontrol.info"}],
  "required": ["currentlevel"
}
```

9.12 Occupancy sensing cluster - information

9.12.1 Derived model

The derived model: "zcl.occupancysensing.info".

9.12.2 Property definition

Table 29 provides the detailed per Property mapping for "zcl.occupancysensing.info”.

Table 29 – The Property mapping for "zcl.occupancysensing.info”.

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>occupancy</td>
<td>oic.r.sensor.presence</td>
<td>if occupancy =xxxxxxx0, then ocf.value = false if occupancy =xxxxxxx1, then ocf.value = true</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 30 provides the details of the Properties that are part of “zcl.occupancysensing.info”.

Copyright Open Connectivity Foundation, Inc. © 2019-2022. All rights Reserved
Table 30 – The Properties of "zcl.occupancysensing.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>occupancy</td>
<td>number</td>
<td>yes</td>
<td>x is a variable. Data type of occupancy in Zigbee is 8 bitmap (xxxxxxxx) while data type of value in OCF is boolean type i.e., true=occupied, false=unoccupied</td>
</tr>
</tbody>
</table>

9.12.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.occupancysensing.info.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Occupancy Sensing Cluster - Information",
  "definitions": {
    "zcl.occupancysensing.info": {
      "type": "object",
      "properties": {
        "occupancy": {
          "type": "number",
          "description": "x is a variable. Data type of occupancy in Zigbee is 8 bitmap (xxxxxxxx) while data type of value in OCF is boolean type i.e., true=occupied, false=unoccupied",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.sensor.presence",
            "x-to-ocf": [
              "if occupancy =xxxxxxx0, then ocf.value = false",
              "if occupancy =xxxxxxx1, then ocf.value = true"
            ],
            "x-from-ocf": ["N/A"]
          }
        }
      }
    }
  }
}
```

9.13 On/Off cluster - control

9.13.1 Derived model

The derived model: "zcl.onoff.control.off".

The derived model: "zcl.onoff.control.on".

9.13.2 Property definition

Table 31 provides the detailed per Property mapping for "zcl.onoff.control.off".

Table 31 – The Property mapping for "zcl.onoff.control.off".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>onoff</td>
<td>oic.r.switch.binary</td>
<td>N/A</td>
<td>if ocf.value = false, zcl.command.onoff::off()</td>
</tr>
</tbody>
</table>

Table 32 provides the details of the Properties that are part of "zcl.onoff.control.off".
Table 32 – The Properties of "zcl.onoff.control.off".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onoff</td>
<td>boolean</td>
<td>no</td>
<td>Turn off the device</td>
</tr>
</tbody>
</table>

Table 33 provides the detailed per Property mapping for "zcl.onoff.control.on".

Table 33 – The Property mapping for "zcl.onoff.control.on".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>onoff</td>
<td>oic.r.switch.binary</td>
<td>N/A</td>
<td>if ocf.value = true, zcl.command.onoff::on().</td>
</tr>
</tbody>
</table>

Table 34 provides the details of the Properties that are part of "zcl.onoff.control.on".

Table 34 – The Properties of "zcl.onoff.control.on".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onoff</td>
<td>boolean</td>
<td>no</td>
<td>Turn on the device</td>
</tr>
</tbody>
</table>

9.13.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/zbemapping/schemas/zcl.onoff.control.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "On/Off Cluster - Control",
  "definitions": {
    "zcl.onoff.control.on": {
      "properties": {
        "onoff": {
          "type": "boolean",
          "description": "Turn on the device",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.switch.binary",
            "x-from-ocf": [
              "if ocf.value = true, zcl.command.onoff::on()."
            ],
            "x-to-ocf": [
              "N/A"
            ]
          }
        }
      }
    },
    "zcl.onoff.control.off": {
      "properties": {
        "onoff": {
          "type": "boolean",
          "description": "Turn off the device",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.switch.binary",
            "x-from-ocf": [
              "if ocf.value = false, zcl.command.onoff::off()."
            ],
            "x-to-ocf": [
              "N/A"
            ]
          }
        }
      }
    }
  }
}
```
9.14 On/off cluster - information

9.14.1 Derived model

The derived model: "zcl.onoff".

9.14.2 Property definition

Table 35 provides the detailed per Property mapping for "zcl.onoff".

Table 35 – The Property mapping for "zcl.onoff".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>onoff</td>
<td>oic.r.switch.binary</td>
<td>if onoff = false, then ocf.value = false, if onoff = true, then ocf.value = true</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 36 provides the details of the Properties that are part of "zcl.onoff".

Table 36 – The Properties of "zcl.onoff".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onoff</td>
<td>boolean</td>
<td>yes</td>
<td>On/off status of the device</td>
</tr>
</tbody>
</table>

9.14.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.onoff.info.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "On/off Cluster - Information",
  "definitions": {
    "zcl.onoff": {
      "type": "object",
      "properties": {
        "onoff": {
          "type": "boolean",
          "description": "On/off status of the device",
          "x-ocf-conversion": {  
            "x-ocf-alias": "oic.r.switch.binary",
            "x-to-ocf": [  
              "if onoff = false, then ocf.value = false",
              "if onoff = true, then ocf.value = true"
            ],
            "x-from-ocf": [  
              "N/A"
            ]
          }
        }
      }
    }
  }
}
```
9.15 Temperature measurement cluster - information

9.15.1 Derived model
The derived model: "zcl.temperaturemeasurement.info".

9.15.2 Property definition
Table 37 provides the detailed per Property mapping for "zcl.temperaturemeasurement.info".

Table 37 – The Property mapping for "zcl.temperaturemeasurement.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeasuredValue</td>
<td>oic.r.temperature</td>
<td>ocf.temperature = MeasuredValue/100</td>
<td>units = C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>MinMeasuredValue</td>
<td>oic.r.temperature</td>
<td>ocf.range[0] = MinMeasuredValue/100</td>
<td>N/A</td>
</tr>
<tr>
<td>Tolerance</td>
<td>oic.r.temperature</td>
<td>ocf.precision = Tolerance/100</td>
<td>N/A</td>
</tr>
<tr>
<td>MaxMeasuredValue</td>
<td>oic.r.temperature</td>
<td>ocf.range[1] = MaxMeasuredValue/100</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 38 provides the details of the Properties that are part of "zcl.temperaturemeasurement.info".

Table 38 – The Properties of "zcl.temperaturemeasurement.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeasuredValue</td>
<td>number</td>
<td>yes</td>
<td>Measured value</td>
</tr>
<tr>
<td>MinMeasuredValue</td>
<td>number</td>
<td>yes</td>
<td>Minimum value of MeasuredValue</td>
</tr>
<tr>
<td>Tolerance</td>
<td>number</td>
<td>yes</td>
<td>Magnitude of the possible error</td>
</tr>
<tr>
<td>MaxMeasuredValue</td>
<td>number</td>
<td>yes</td>
<td>Maximum value of MeasuredValue</td>
</tr>
</tbody>
</table>

9.15.3 Derived model definition

```json
{"id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.temperaturemeasurement.info.json#", "Schema": "http://json-schema.org/draft-04/schema#", "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.", "title": "Temperature Measurement Cluster - Information", "definitions": 

"zcl.temperaturemeasurement.info": { "type": "object", "properties": { "MeasuredValue": { "type": "number", "description": "Measured value", "x-ocf-conversion": { "x-ocf-alias": "oic.r.temperature", "x-to-ocf": [ "ocf.temperature = MeasuredValue/100", "units = C" ], "x-from-ocf": [ "N/A" ] } }, "Tolerance": { "type": "number", ...
```


9.16 Thermostat cluster - cool - control

9.16.1 Derived model

The derived model: "zcl.thermostat_cool.control.setpointraiselower".

9.16.2 Property definition

Table 39 provides the detailed per Property mapping for "zcl.thermostat_cool.control.setpointraiselower".

Table 39 – The Property mapping for "zcl.thermostat_cool.control.setpointraiselower".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>amount</td>
<td>oic.r.temperature</td>
<td>N/A</td>
<td>if ocf.temperature is updated, then amount=ocf.temperature*100.zcl.command.thermostat::setpointraiselower(mode, amount)</td>
</tr>
</tbody>
</table>
Table 40 provides the details of the Properties that are part of "zcl.thermostat_cool.control.setpointraiselower".

Table 40 – The Properties of "zcl.thermostat_cool.control.setpointraiselower".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>amount</td>
<td>number</td>
<td>no</td>
<td>Set the target temperature with cool mode. Mode=0x01 is set by Zigbee 3.0 translator</td>
</tr>
</tbody>
</table>

9.16.3 Derived model definition

```
{
  "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.thermostat_cool.control.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Thermostat Cluster - Cool - Control",
  "definitions": {
    "zcl.thermostat_cool.control.setpointraiselower": {
      "type": "object",
      "properties": {
        "amount": {
          "type": "number",
          "description": "Set the target temperature with cool mode. Mode=0x01 is set by Zigbee 3.0 translator",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.temperature",
            "x-from-ocf": [
              "if ocf.temperature is updated, then amount= ocf.temperature*100.",
              "zcl.command.thermostat::setpointraiselower(mode, amount)"
            ],
            "x-to-ocf": []
          }
        }
      }
    }
  }
}
```

9.17 Thermostat cluster - current temperature - information

9.17.1 Derived model

The derived model: "zcl.thermostat_currenttemperature.info".

9.17.2 Property definition

Table 41 provides the detailed per Property mapping for "zcl.thermostat_currenttemperature.info".

Table 41 – The Property mapping for "zcl.thermostat_currenttemperature.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>localtemperature</td>
<td>oic.r.temperature</td>
<td>ocf.temperature=localtempearture/100units = C</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 42 provides the details of the Properties that are part of "zcl.thermostat_currenttemperature.info".
Table 42 – The Properties of “zcl.thermostat_currenttemperature.info”.

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>localtemperature</td>
<td>Number</td>
<td>no</td>
<td>current sensed temperature</td>
</tr>
</tbody>
</table>

9.17.3 Derived model definition

```json

"id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.thermostat_currenttemperature.info.json#",
"$schema": "http://json-schema.org/draft-04/schema#",
"description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved."
"title": "Thermostat Cluster - Current Temperature - Information",
"definitions": {
"zcl.thermostat_currenttemperature.info": {
"type": "object",
"properties": {
"localtemperature": {
"type": "number",
"description": "current sensed temperature",
"x-ocf-conversion": {
"x-ocf-alias": "oic.r.temperature",
"x-to-ocf": ["ocf.temperature=localtemperature/100", "units = C"],
"x-from-ocf": ["N/A"]
}
}
}
},
"type": "object",
"allOf": [{"$ref": "#/definitions/zcl.thermostat_currenttemperature.info"}],
"required": ["localtemperature"]

```

9.18 Thermostat cluster - heat - control

9.18.1 Derived model

The derived model: "zcl.thermostat_heat.control.setpointraiseLower".

9.18.2 Property definition

Table 43 provides the detailed per Property mapping for "zcl.thermostat_heat.control.setpointraiseLower".

Table 43 – The Property mapping for “zcl.thermostat_heat.control.setpointraiseLower”.

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>amount</td>
<td>oic.r.temperature</td>
<td>N/A</td>
<td>if ocf.temperature is updated, then amount=ocf.temperature*100,zcl.command.thermostat::setpointraiseLower(mode, amount)</td>
</tr>
</tbody>
</table>

Table 44 provides the details of the Properties that are part of "zcl.thermostat_heat.control.setpointraiseLower".
Table 44 – The Properties of "zcl.thermostat_heat.control.setpointraiseLower".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount</td>
<td>number</td>
<td>no</td>
<td>Set the target temperature with heat mode. Mode=0x00 is set by Zigbee 3.0 translator</td>
</tr>
</tbody>
</table>

9.18.3 Derived model definition

```json
{
    "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.thermostat_heat.control.json#",
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
    "title": "Thermostat Cluster - Heat - Control",
    "definitions": {
        "zcl.thermostat_heat.control.setpointraiseLower": {
            "type": "object",
            "properties": {
                "amount": {
                    "type": "number",
                    "description": "Set the target temperature with heat mode. Mode=0x00 is set by Zigbee 3.0 translator",
                    "x-ocf-conversion": {
                        "x-ocf-alias": "oic.r.temperature",
                        "x-from-ocf": [
                            "if ocf.temperature is updated, then amount= ocf.temperature*100.",
                            "zcl.command.thermostat::setpointraiseLower(mode, amount)"
                        ],
                        "x-to-ocf": [
                            "N/A"
                        ]
                    }
                }
            }
        }
    }
}
```

9.19 Window covering cluster - configuration - control

9.19.1 Derived model

The derived model: "zcl.windowcovering_conf.control".

9.19.2 Property definition

Table 45 provides the detailed per Property mapping for "zcl.windowcovering_conf.control".

Table 45 – The Property mapping for "zcl.windowcovering_conf.control".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration Time-Lift</td>
<td>oic.r.windowcovering</td>
<td>N/A</td>
<td>if ocf.liftaccelerationtime is updated, Acceleration Time-Lift=oic.liftaccelerationtime.zcl.command.general::write(Acceleration Time-Lift)</td>
</tr>
<tr>
<td>Velocity-Lift</td>
<td>oic.r.windowcovering</td>
<td>N/A</td>
<td>if ocf.liftvelocity is updated, Velocity-Lift = oic.liftvelocity.zcl.command.general::write(Velocity-Lift)</td>
</tr>
</tbody>
</table>
Deceleration Time-Lift | oic.r.windowcovering | N/A | if ocf.liftdecelerationtime is updated, Deceleration Time-Lift=ocf.liftdecelerationtime.zcl.command.general::write(Deceleration Time-Lift)

mode | oic.r.windowcovering | N/A | if ocf.mode is updated & ocf.mode = [false,x,x,x], Mode =xxxxxxx0x.if ocf.mode is updated & ocf.mode = [true,x,x,x], Mode =xxxxxxx1x.if ocf.mode is updated & ocf.mode = [false,x,x,x], Mode =xxxxxxx00.x.if ocf.mode is updated & ocf.mode = [true,x,x,x], Mode =xxxxxxx10.x.if ocf.mode is updated & ocf.mode = [false,x,x,x], Mode =xxxxxxx0x.x.if ocf.mode is updated & ocf.mode = [true,x,x,x], Mode =xxxxxxx1xx.if ocf.mode is updated & ocf.mode = [false,x,x,x], Mode =xxxxxxx0xx.if ocf.mode is updated & ocf.mode = [true,x,x,x], Mode =xxxxxxx1xxx.if ocf.mode is updated & ocf.mode = [false,x,x,x], Mode =xxxxxxx0xxx.if ocf.mode is updated & ocf.mode = [true,x,x,x], Mode =xxxxxxx1xxxx.

Table 46 provides the details of the Properties that are part of "zcl.windowcovering_conf.control".

Table 46 – The Properties of "zcl.windowcovering_conf.control".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration Time-Lift</td>
<td>integer</td>
<td>no</td>
<td>Set ramp up times to reaching the velocity setting (0.1sec).</td>
</tr>
<tr>
<td>Velocity-Lift</td>
<td>integer</td>
<td>no</td>
<td>Set velocity associated with Lifting the Window Covering (cm/sec).</td>
</tr>
<tr>
<td>Deceleration Time-Lift</td>
<td>integer</td>
<td>no</td>
<td>Set ramp down times associated with stopping the velocity setting (0.1sec).</td>
</tr>
<tr>
<td>mode</td>
<td>integer</td>
<td>no</td>
<td>Set the mode. x is a variable. Data type of Mode in Zigbee is 8 bitmap (xxxxxxx) while data type of mode in OCF is array with 4 Boolean type items(i.e., [Reversed Motor Direction, Calibration Mode, Maintenance Mode, LED]). Reversed Motor Direction : 0 = motor direction is normal, 1 = motor direction is reversed. Calibration Mode : 0 = run in normal mode, 1 = run in calibration mode. Maintenance Mode : 0 = motor is running normally, 1 = motor is running in maintenance mode. LED: 0 = LEDs are off, 1 = LEDs will display feedback.</td>
</tr>
</tbody>
</table>

9.19.3 Derived model definition

```json
"id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.windowcovering_conf.control.json#", "schema": "http://json-schema.org/draft-04/schema#", "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.", "title": "Window Covering Cluster - Configuration - Control", "definitions": { "zcl.windowcovering_conf.control": { "properties": { "mode": { "type": "integer", "description": "Set the mode. x is a variable. Data type of Mode in Zigbee is 8 bitmap (xxxxxxx) while data type of mode in OCF is array with 4 Boolean type items(i.e., [Reversed Motor Direction, Calibration Mode, Maintenance Mode, LED]). Reversed Motor Direction : 0 = motor direction is normal, 1 = motor direction is reversed. Calibration Mode : 0 = run in normal mode, 1 = run in calibration mode. Maintenance Mode : 0 = motor is running normally, 1 = motor is running in maintenance mode. LED: 0 = LEDs are off, 1 = LEDs will display feedback. "
```
Direction, Calibration Mode, Maintenance Mode, LED]). Reversed Motor Direction : 0 - motor direction is normal, 1 - motor direction is reversed. Calibration Mode : 0 - run in normal mode, 1 - run in calibration mode. Maintenance Mode : 0 - motor is running normally, 1 - motor is running in maintenance mode. LED: 0 = LEDs are off, 1 = LEDs will display feedback.

"x-ocf-conversion": {
 "x-ocf-alias": "oic.r.windowcovering",
 "x-from-ocf": [
 "if ocf.mode is updated & ocf.mode = [false,x,x,x], Mode =xxxxxxx0.",
 "if ocf.mode is updated & ocf.mode = [true,x,x,x], Mode =xxxxxxx1.",
 "if ocf.mode is updated & ocf.mode = [false,x,x,x], Mode =xxxxx0x.",
 "if ocf.mode is updated & ocf.mode = [true,x,x,x], Mode =xxxxx1x.",
 "if ocf.mode is updated & ocf.mode = [false,x,x,x], Mode =xxxx0xx.",
 "if ocf.mode is updated & ocf.mode = [true,x,x,x], Mode =xxxx1xx.",
 "if ocf.mode is updated & ocf.mode = [false,x,x,x], Mode =xxxx0xxx.",
 "if ocf.mode is updated & ocf.mode = [true,x,x,x], Mode =xxxx1xxx.",
 "zcl.command.general::write(mode)"
],
 "x-to-ocf": [
 "N/A"
]
},
"Velocity-Lift": {
 "type": "integer",
 "description": "Set velocity associated with Lifting the Window Covering (cm/sec).",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.windowcovering",
 "x-from-ocf": [
 "if ocf.liftvelocity is updated, Velocity-Lift = ocf.liftvelocity.",
 "zcl.command.general::write(Velocity-Lift)"
],
 "x-to-ocf": [
 "N/A"
]
 }
},
"Acceleration Time-Lift": {
 "type": "integer",
 "description": "Set ramp up times to reaching the velocity setting (0.1sec).",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.windowcovering",
 "x-from-ocf": [
 "if ocf.liftaccelerationtime is updated, Acceleration Time-Lift=ocf.liftaccelerationtime.",
 "zcl.command.general::write(Acceleration Time-Lift)"
],
 "x-to-ocf": [
 "N/A"
]
 }
},
"Deceleration Time-Lift": {
 "type": "integer",
 "description": "Set ramp down times associated with stopping the velocity setting (0.1sec).",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.windowcovering",
 "x-from-ocf": [
 "if ocf.liftdecelerationtime is updated, Deceleration Time-Lift=ocf.liftdecelerationtime.",
 "zcl.command.general::write(Deceleration Time-Lift)"
],
 "x-to-ocf": [
 "N/A"
]
 }
},
"type": "object"
9.20 Window covering cluster - configuration - information

9.20.1 Derived model
The derived model: "zcl.windowcovering_conf.info".

9.20.2 Property definition
Table 47 provides the detailed per Property mapping for "zcl.windowcovering_conf.info".

Table 47 – The Property mapping for "zcl.windowcovering_conf.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity-Lift</td>
<td>oic.r.windowcovering</td>
<td>ocf.liftvelocity = Velocity-Lift</td>
<td>N/A</td>
</tr>
<tr>
<td>Windowcoveringtype</td>
<td>oic.r.windowcovering</td>
<td>if WindowCoveringType=0x00,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocf.windowcoveringtype= Rollershade.if</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WindowCoveringType=0x01,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocf.windowcoveringtype= RollerShade-2 Motor.if</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WindowCoveringType=0x02,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocf.windowcoveringtype= RollerShade-Exterior.if</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WindowCoveringType=0x03,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocf.windowcoveringtype= RollerShade-Exterior-2 Motor.if</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WindowCoveringType=0x04,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocf.windowcoveringtype= Drapery.if</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WindowCoveringType=0x05,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocf.windowcoveringtype= Awnning.if</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WindowCoveringType=0x06,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocf.windowcoveringtype= Shutter.if</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WindowCoveringType=0x07,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocf.windowcoveringtype= Tilt Blind - Tilt Only.if</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WindowCoveringType=0x08,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocf.windowcoveringtype= Tilt Blind</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Lift and Tilt",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WindowCoveringType=0x09,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocf.windowcoveringtype= Projector Screen.</td>
<td></td>
</tr>
</tbody>
</table>

Config/Status	oic.r.windowcovering	if Config/Status =xxxxxxx0,	N/A	
		ocf.configstatus.operational = falseif		
		Config/Status =xxxxxxx1,		
		ocf.configstatus.operational = trueif		
		Config/Status =xxxxxxx0x,		
		ocf.configstatus.online = falseif		
		Config/Status =xxxxxxx1x,		
		ocf.configstatus.online = trueif		
		Config/Status =xxxxxxx0xx,		
		ocf.configstatus.rotationdirection =		
		"normal"if Config/Status =xxxxxxx1xx,		
		ocf.configstatus.rotationdirection =		
		"reversed"if Config/Status =xxxxxxx0xxx,		
		ocf.configstatus.controllift =		
		"openloop"if Config/Status =xxxxxxx1xx,		
		ocf.configstatus.controllift =		
		"closedloop"if Config/Status =xxxxxxx0xxx,		
		ocf.configstatus.controllift =		
Table 48 provides the details of the Properties that are part of "zcl.windowcovering_conf.info".

Table 48 – The Properties of "zcl.windowcovering_conf.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity-Lift</td>
<td>integer</td>
<td>no</td>
<td>Velocity associated with Lifting the Window Covering (cm/sec).</td>
</tr>
<tr>
<td>Windowcoveringtype</td>
<td>string</td>
<td>yes</td>
<td>Type of Window Covering (i.e., [Rollershade, RollerShade-2 Motor, RollerShade-Exterior, RollerShade-Exterior-2 Motor, Drapery, Awning, Shutter, Tilt Blind - Tilt Only, Tilt Blind & Lift and Tilt, Projector Screen])</td>
</tr>
<tr>
<td>Config/Status</td>
<td>integer</td>
<td>yes</td>
<td>x is a variable. Config/Status in Zigbee maps to configstatus in OCF. Data type of Config/Status in Zigbee is 8 bitmap (xxxxxxxx) : bit 0 = Operational, bit 1 = Online, bit 2 = Reversal, bit 3 = Control-Lift, bit 4 = Control-Tilt, bit 5 = Encoder-Lift, bit 6 = Encoder-Tilt. Operational: This status bit defines if</td>
</tr>
<tr>
<td>Status Bit</td>
<td>Type</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Online</td>
<td>integer</td>
<td>no</td>
<td>This status bit defines if the Window Covering is enabled for transmitting over the ZigBee network. 0 = Not Online, 1 = Online. Online: This status bit defines if the Window Covering is operational. 0 = Not Operational, 1 = Operational.</td>
</tr>
<tr>
<td>Reversal</td>
<td>integer</td>
<td>no</td>
<td>This status bit identifies if the direction of rotation for the Window Covering has been reversed in order for Open/Up commands to match the physical installation condition. 0 = Commands are normal, 1 = Open/Up Commands have been reversed.</td>
</tr>
<tr>
<td>Control Lift</td>
<td>integer</td>
<td>no</td>
<td>This status bit identifies if the window covering supports Open Loop or Closed Loop Lift Control. 0 = Lift control is Open Loop, 1 = Lift control is Closed. Control Lift: This status bit identifies if the window covering supports Open Loop or Closed Loop Lift Control. 0 = Lift control is Open Loop, 1 = Lift control is Closed.</td>
</tr>
<tr>
<td>Control Tilt</td>
<td>integer</td>
<td>no</td>
<td>This status bit identifies if the window covering supports Open Loop or Closed Loop Tilt Control. 0 = Tilt control is Open Loop, 1 = Tilt control is Closed. Control Tilt: This status bit identifies if the window covering supports Open Loop or Closed Loop Tilt Control. 0 = Tilt control is Open Loop, 1 = Tilt control is Closed.</td>
</tr>
<tr>
<td>Encoder Lift</td>
<td>integer</td>
<td>no</td>
<td>This status bit identifies if a Closed Loop Controlled Window Covering is employing an encoder for positioning the height of the window covering. 0 = Timer Controlled, 1 = Encoder Controlled. Encoder Lift: This status bit identifies if a Closed Loop Controlled Window Covering is employing an encoder for positioning the height of the window covering. 0 = Timer Controlled, 1 = Encoder Controlled.</td>
</tr>
<tr>
<td>Encoder Tilt</td>
<td>integer</td>
<td>no</td>
<td>This status bit identifies if a Closed Loop Controlled Window Covering is employing an encoder for tilting the window covering. 0 = Timer Controlled, 1 = Encoder Controlled. Encoder Tilt: This status bit identifies if a Closed Loop Controlled Window Covering is employing an encoder for tilting the window covering. 0 = Timer Controlled, 1 = Encoder Controlled.</td>
</tr>
<tr>
<td>Deceleration Time-Lift</td>
<td>integer</td>
<td>no</td>
<td>Ramp down times associated with stopping the velocity setting (0.1sec).</td>
</tr>
<tr>
<td>Mode</td>
<td>integer</td>
<td>yes</td>
<td>x is a variable. Mode in Zigbee maps to mode in OCF. Data type of Mode in Zigbee is 8 bitmap (xxxxxxxx) : bit 0 = Reversed Motor Direction, bit 1 = Calibration Mode, bit 2 = Maintenance Mode, bit 3 = LED. Reversed Motor Direction : 0 = motor direction is normal, 1 = motor direction is reversed. Calibration Mode : 0 = run in normal</td>
</tr>
</tbody>
</table>
mode, 1 = run in calibration mode.

Maintenance Mode: 0 = motor is running normally, 1 = motor is running in maintenance mode. LED:
0 = LEDs are off, 1 = LEDs will display feedback.

| Acceleration Time-Lift | integer | no | Ramp up times to reaching the velocity setting (0.1sec). |

9.20.3 Derived model definition

```json
{
   "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.windowcovering_conf.info.json#",
   "$schema": "http://json-schema.org/draft-04/schema#",
   "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
   "title": "Window Covering Cluster - Configuration - Information",
   "definitions": {
      "zcl.windowcovering_conf.info": {
         "type": "object",
         "properties": {
            "Windowcoveringtype": {
               "type": "string",
               "description": "Type of Window Covering(i.e., [Rollershade,RollerShade-2 Motor, RollerShade-Exterior, RollerShade-Exterior-2 Motor, Drapery, Awning, Shutter, Tilt Blind - Tilt Only, Tilt Blind â€“ Lift and Tilt, Projector Screen])",
               "x-ocf-conversion": {
                  "x-ocf-alias": "oic.r.windowcovering",
                  "x-to-ocf": [
                     "if WindowCoveringType=0x00, ocf.windowcoveringtype= Rollershade.",
                     "if WindowCoveringType=0x01, ocf.windowcoveringtype= RollerShade-2 Motor.",
                     "if WindowCoveringType=0x02, ocf.windowcoveringtype= RollerShade-Exterior.",
                     "if WindowCoveringType=0x03, ocf.windowcoveringtype= RollerShade-Exterior-2 Motor.",
                     "if WindowCoveringType=0x04, ocf.windowcoveringtype= Drapery.",
                     "if WindowCoveringType=0x05, ocf.windowcoveringtype= Awning.",
                     "if WindowCoveringType=0x06, ocf.windowcoveringtype= Shutter.",
                     "if WindowCoveringType=0x07, ocf.windowcoveringtype= Tilt Blind - Tilt Only.",
                     "if WindowCoveringType=0x08, ocf.windowcoveringtype= Tilt Blind â€“ Lift and Tilt.",
                     "if WindowCoveringType=0x09, ocf.windowcoveringtype= Projector Screen."
                  ],
                  "x-from-ocf": ["N/A"]
               }
            }
         }
      },
      "Config/Status": {
         "type": "integer",
         "description": "x is a variable. Config/Status in Zigbee maps to configstatus in OCF. Data type of Config/Status in Zigbee is 8 bitmap (xxxxxxxx) : bit 0 = Operational, bit 1 = Online, bit 2 = Reversal, bit 3 = Control-Lift, bit 4 = Control-Tilt, bit 5 = Encoder-Lift, bit 6 = Encoder-Tilt. Operational: This status bit defines if the Window Covering is operational. 0 = Not Operational, 1 = Operational. Online: This status bit defines if the Window Covering is enabled for transmitting over the ZigBee network. 0 = Not Online, 1 = Online. Reversal: This status bit identifies if the direction of rotation for the Window Covering has been reversed in order for Open/Up commands to match the physical installation condition. 0 = Commands are normal, 1 = Open/Up Commands have been reversed. Control Lift: This status bit identifies if the window covering supports Open Loop or Closed Loop Lift Control. 0 = Lift control is Open Loop, 1 = Lift control is Closed. Control Tilt: This status bit identifies if the window covering supports Open Loop or Closed Loop Tilt Control. 0 = Tilt control is Open Loop, 1 = Tilt control is Closed. Encoder Lift: This status bit identifies if a Closed Loop Controlled Window Covering is employing an encoder for positioning the height of the window covering. 0 = Timer Controlled, 1 = Encoder Controlled. Encoder Tilt: This status bit identifies if a Closed Loop Controlled Window Covering is employing an encoder for tilting the window covering. 0 = Timer Controlled, 1 = Encoder Controlled.",
         "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.windowcovering",
            "x-to-ocf": [
               "if Config/Status =xxxxxxx0, ocf.configstatus.operational = false",
               "if Config/Status =xxxxxxx1, ocf.configstatus.operational = true"
            ]
         }
      }
   }
}
```

Copyright Open Connectivity Foundation, Inc. © 2019-2022. All rights Reserved
"if Config/Status =xxxx0x0, ocf.configstatus.online = false",
"if Config/Status =xxxx0x1, ocf.configstatus.online = true",
"if Config/Status =xxxx1xx, ocf.configstatus.rotationdirection = 'normal'",
"if Config/Status =xxxx1lx, ocf.configstatus.rotationdirection = 'reversed'",
"if Config/Status =xxxx0xxx, ocf.configstatus.controllift = 'openloop'",
"if Config/Status =xxxx1xxx, ocf.configstatus.controllift = 'closedloop'",
"if Config/Status =xxxx0xxxx, ocf.configstatus.controllift = 'openloop'",
"if Config/Status =xxxx1xxxx, ocf.configstatus.controllift = 'closedloop'",
"if Config/Status =xx0xxxxx, ocf.configstatus.closedloopliftcontrol = 'timer'",
"if Config/Status =xx1xxxxx, ocf.configstatus.closedloopliftcontrol = 'encoder'",
"if Config/Status =x0xxxxxx, ocf.configstatus.closedlooptiltcontrol = 'timer'",
"if Config/Status =x1xxxxxx, ocf.configstatus.closedlooptiltcontrol = 'encoder'
],
"x-from-ocf": [
 "N/A"
]
},
"Mode": {
 "type": "integer",
 "description": "x is a variable. Mode in Zigbee maps to mode in OCF. Data type of Mode in Zigbee is 8 bitmap (xxxxxxx0x) : bit 0 = Reversed Motor Direction, bit 1 = Calibration Mode, bit 2 = Maintenance Mode, bit 3 = LED. Reversed Motor Direction : 0 = motor direction is normal, 1 = motor direction is reversed. Calibration Mode : 0 = run in normal mode, 1 = run in calibration mode. Maintenance Mode : 0 = motor is running normally, 1 = motor is running in maintenance mode. LED: 0 = LEDs are off, 1 = LEDs will display feedback.",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.windowcovering",
 "x-to-ocf": [
 "if Mode =xxxxxxx0, ocf.mode.motordirection = false",
 "if Mode =xxxxxxx1, ocf.mode.motordirection = true",
 "if Mode =xxxxxx0x, ocf.mode.calibration = false",
 "if Mode =xxxxxx1x, ocf.mode.calibration = true",
 "if Mode =xxxxx0xx, ocf.mode.maintenance = false",
 "if Mode =xxxxx1xx, ocf.mode.maintenance = true",
 "if Mode =xxxx0xxx, ocf.mode.ledfeedback = false",
 "if Mode =xxxx1xxx, ocf.mode.ledfeedback = true"
],
 "x-from-ocf": [
 "N/A"
]
 }
},
"Velocity-Lift": {
 "type": "integer",
 "description": "Velocity associated with Lifting the Window Covering (cm/sec).",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.windowcovering",
 "x-to-ocf": [
 "ocf.liftvelocity = Velocity-Lift"
],
 "x-from-ocf": [
 "N/A"
]
 }
},
"Acceleration Time-Lift": {
 "type": "integer",
 "description": "Ramp up times to reaching the velocity setting (0.1sec).",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.windowcovering",
 "x-to-ocf": [
 "ocf.liftaccelerationtime = Acceleration Time-Lift"
],
 "x-from-ocf": [
 "N/A"
]
 }
},
"Deceleration Time-Lift": {
 "type": "integer",
 "description": "Ramp down times to stopping the velocity setting (0.1sec).",
 "x-ocf-conversion": {
 "x-ocf-alias": "oic.r.windowcovering",
 "x-to-ocf": [
 "ocf.liftdecelerationtime = Deceleration Time-Lift"
],
 "x-from-ocf": [
 "N/A"
]
 }
}
"description": "Ramp down times associated with stoping the velocity setting (0.1sec).",
"x-ocf-conversion": {
 "x-ocf-alias": "oic.r.windowcovering",
 "x-to-ocf": {
 "ocf.liftdecelerationtime= Deceleration Time-Lift"
 },
 "x-from-ocf": {
 "N/A"
 }
}
}
}
}

9.21 Window covering cluster - lift percentage - control

9.21.1 Derived model
The derived model: "zcl.windowcovering_liftpercentage.control.gotoliftpercentage".

9.21.2 Property definition
Table 49 provides the detailed per Property mapping for "zcl.windowcovering_liftpercentage.control.gotoliftpercentage".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>percentageliftvalue</td>
<td>oic.r.openlevel</td>
<td>N/A</td>
<td>if ocf.openLevel is updated, percentage lift value = ocf.openLevel.zcl.command.windowcovering::gotoliftpercentage(percentageliftvalue)</td>
</tr>
</tbody>
</table>

Table 50 provides the details of the Properties that are part of "zcl.windowcovering_liftpercentage.control.gotoliftpercentage".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>percentageliftvalue</td>
<td>integer</td>
<td>no</td>
<td>Adjust the window at the percentage lift value.</td>
</tr>
</tbody>
</table>

9.21.3 Derived model definition
{
 "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.windowcovering_liftpercentage.control.json#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
 "title": "Window Covering Cluster - Lift Percentage - Control",
 "definitions": {
 "zcl.windowcovering_liftpercentage.control.gotoliftpercentage": {
 "properties": {
 "percentageliftvalue": {
 "type": "integer",
 "required": true,
 "description": "Adjust the window at the percentage lift value."
 }
 }
 }
 }
}
9.22 Window covering cluster - lift percentage - information

9.22.1 Derived model

The derived model: "zcl.windowcovering_lifthpercentage.info".

9.22.2 Property definition

Table 51 provides the detailed per Property mapping for "zcl.windowcovering_lifthpercentage.info".

Table 51 – The Property mapping for "zcl.windowcovering_lifthpercentage.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CurrentPositionLiftPercentage</td>
<td>oic.r.openlevel</td>
<td>ocf.openLevel= CurrentPositionLiftPercentage</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 52 provides the details of the Properties that are part of "zcl.windowcovering_lifthpercentage.info".

Table 52 – The Properties of "zcl.windowcovering_lifthpercentage.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CurrentPositionLiftPercentage</td>
<td>integer</td>
<td>yes</td>
<td>Position as a percentage between InstalledOpenLimit-Lift and InstalledClosedLimit-Lift</td>
</tr>
</tbody>
</table>

9.22.3 Derived model definition

```json
{
    "id": "http://openinterconnect.org/zoombeemapping/schemas/zcl.windowcovering_lifthpercentage.info.json#",
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
    "title": "Window Covering Cluster - Lift Percentage - Information",
    "definitions": {
        "zcl.windowcovering_lifthpercentage.info": {
            "type": "object",
            "properties": {
                "CurrentPositionLiftPercentage": {
                    "type": "integer",
                    "description": "Position as a percentage between InstalledOpenLimit-Lift and InstalledClosedLimit-Lift",
                    "x-ocf-conversion": {
                        "x-ocf-alias": "oic.r.openlevel",
                        "x-from-ocf": {
                            "if ocf.openLevel is updated, percentage lift value = ocf.openLevel."
                        },
                        "x-to-ocf": {
                            "N/A"
                        }
                    }
                }
            }
        }
    }
}
```
9.23 Window covering cluster - lift position - control

9.23.1 Derived model

The derived model: "zcl.windowcovering_liftposition.control.gotoliftvalue".

9.23.2 Property definition

Table 53 provides the detailed per Property mapping for "zcl.windowcovering_liftposition.control.gotoliftvalue".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>liftvalue</td>
<td>oic.r.openlevel</td>
<td>N/A</td>
<td>if ocf.openLevel is updated, lift value= ocf.openLevel.zcl.command.windowcovering::gotoliftvalue(liftvalue)</td>
</tr>
</tbody>
</table>

Table 54 provides the details of the Properties that are part of "zcl.windowcovering_liftposition.control.gotoliftvalue".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>liftvalue</td>
<td>integer</td>
<td>no</td>
<td>Adjust the window at the lift value.</td>
</tr>
</tbody>
</table>

9.23.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.windowcovering_liftposition.control.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Window Covering Cluster - Lift Position - Control",
  "definitions": {
    "zcl.windowcovering_liftposition.control.gotoliftvalue": {
      "properties": {
        "liftvalue": {
          "type": "integer",
          "description": "Adjust the window at the lift value.",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.openlevel",
            "x-from-ocf": ["if ocf.openLevel is updated, lift value= ocf.openLevel.zcl.command.windowcovering::gotoliftvalue(liftvalue)"
          }
        }
      }
    }
  }
}
```
9.24 Window covering cluster - lift position - information

9.24.1 Derived model
The derived model: "zcl.windowcovering_liftposition.info".

9.24.2 Property definition
Table 55 provides the detailed per Property mapping for "zcl.windowcovering_liftposition.info".

Table 55 – The Property mapping for "zcl.windowcovering_liftposition.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CurrentPosition-Lift</td>
<td>oic.r.openlevel</td>
<td>ocf.openLevel=</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CurrentPosition-Lift</td>
<td></td>
</tr>
<tr>
<td>InstalledClosedLimit-Lift</td>
<td>oic.r.openlevel</td>
<td>ocf.range[0]=</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>InstalledClosedLimit-Lift</td>
<td></td>
</tr>
<tr>
<td>InstalledOpenLimit-Lift</td>
<td>oic.r.openlevel</td>
<td>ocf.range[1]=</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>InstalledOpenLimit-Lift</td>
<td></td>
</tr>
</tbody>
</table>

Table 56 provides the details of the Properties that are part of "zcl.windowcovering_liftposition.info".

Table 56 – The Properties of "zcl.windowcovering_liftposition.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CurrentPosition-Lift</td>
<td>integer</td>
<td>yes</td>
<td>Position of Window Covering from the top of the shade (cm)</td>
</tr>
<tr>
<td>InstalledClosedLimit-Lift</td>
<td>integer</td>
<td>yes</td>
<td>Close limit for lifting the Window Covering (cm)</td>
</tr>
<tr>
<td>InstalledOpenLimit-Lift</td>
<td>integer</td>
<td>yes</td>
<td>Open limit for lifting the Window Covering (cm)</td>
</tr>
</tbody>
</table>

9.24.3 Derived model definition

```json
{"id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.windowcovering_liftposition.info.json#", "schema": "http://json-schema.org/draft-04/schema#", "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved."}, "title": "Window Covering Cluster - Lift Position - Information", "definitions": { "zcl.windowcovering_liftposition.info": { "type": "object", "properties": { "InstalledClosedLimit-Lift": { "type": "integer", "description": "Close limit for lifting the Window Covering (cm)" }, "InstalledOpenLimit-Lift": { "type": "integer", "description": "Open limit for lifting the Window Covering (cm)" } } } }
```

Copyright Open Connectivity Foundation, Inc. © 2019-2022. All rights Reserved
9.25 Window covering cluster - tilt percentage - control

9.25.1 Derived model

The derived model: "zcl.windowcovering_tiltpercentage.control.gototiltpercentage".

9.25.2 Property definition

Table 57 provides the detailed per Property mapping for "zcl.windowcovering_tiltpercentage.control.gototiltpercentage".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>percentagetiltvalue</td>
<td>oic.r.openlevel</td>
<td>N/A</td>
<td>if ocf.openLevel is updated, percentage tilt value = ocf.openLevel.zcl.command.windowcovering::gototiltpercentage(percentagetiltvalue)</td>
</tr>
</tbody>
</table>
Table 58 provides the details of the Properties that are part of "zcl.windowcovering_tiltpercentage.control.gototiltpercentage".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>percentagetiltvalue</td>
<td>integer</td>
<td>no</td>
<td>Adjust the window at the percentage tilt value.</td>
</tr>
</tbody>
</table>

9.25.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.windowcovering_tiltpercentage.control.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Window Covering Cluster - Tilt Percentage - Control",
  "definitions": {
    "zcl.windowcovering_tiltpercentage.control.gototiltpercentage": {
      "properties": {
        "percentagetiltvalue": {
          "type": "integer",
          "description": "Adjust the window at the percentage tilt value.",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.openlevel",
            "x-from-ocf": [
              "if ocf.openLevel is updated, percentage tilt value = ocf.openLevel."
            ],
            "x-to-ocf": [
              "N/A"
            ]
          }
        }
      }
    }
  },
  "type": "object",
  "allOf": [
    {
      "$ref": "#/definitions/zcl.windowcovering_tiltpercentage.control.gototiltpercentage"
    }
  ]
}
```

9.26 Window covering cluster - tilt percentage - information

9.26.1 Derived model

The derived model: "zcl.windowcovering_tiltpercentage.info".

9.26.2 Property definition

Table 59 provides the detailed per Property mapping for "zcl.windowcovering_tiltpercentage.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CurrentPositionTiltPercentage</td>
<td>oic.r.openlevel</td>
<td>ocf.openlevel=CurrentPositionTiltPercentage</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 60 provides the details of the Properties that are part of "zcl.windowcovering_tiltpercentage.info".
Table 60 – The Properties of "zcl.windowcovering_tiltpercentage.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CurrentPositionTiltPercentage</td>
<td>integer</td>
<td>yes</td>
<td>Tilt position as a percentage</td>
</tr>
</tbody>
</table>

9.26.3 Derived model definition

```json
{
  "id": "http://openinterconnect.org/zigbeemapping/schemas/zcl.windowcovering_tiltpercentage.info.json#",
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
  "title": "Window Covering Cluster - Tilt Percentage - Information",
  "definitions": {
    "zcl.windowcovering_tiltpercentage.info": {
      "type": "object",
      "properties": {
        "CurrentPositionTiltPercentage": {
          "type": "integer",
          "description": "Tilt position as a percentage",
          "x-ocf-conversion": {
            "x-ocf-alias": "oic.r.openlevel",
            "x-to-ocf": [
              "ocf.openlevel=CurrentPositionTiltPercentage"
            ],
            "x-from-ocf": [
              "N/A"
            ]
          }
        }
      }
    }
  },
  "type": "object",
  "allOf": [
    {"$ref": "#/definitions/zcl.windowcovering_tiltpercentage.info"}
  ],
  "required": [
    "CurrentPositionTiltPercentage"
  ]
}
```

9.27 Window covering cluster - tilt position - control

9.27.1 Derived model
The derived model: "zcl.windowcovering_tiltposition.control.gototiltvalue".

9.27.2 Property definition
Table 61 provides the detailed per Property mapping for "zcl.windowcovering_tiltposition.control.gototiltvalue".

Table 61 – The Property mapping for "zcl.windowcovering_tiltposition.control.gototiltvalue".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiltvalue</td>
<td>oic.r.openlevel</td>
<td>N/A</td>
<td>if ocf.openLevel is updated, tiltvalue=ocf.openLevel.zb.command.windowcovering::gototiltvalue(tiltvalue)</td>
</tr>
</tbody>
</table>

Table 62 provides the details of the Properties that are part of "zcl.windowcovering_tiltposition.control.gototiltvalue".
Table 62 – The Properties of "zcl.windowcovering_tiltposition.control.gototiltvalue".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiltvalue</td>
<td>integer</td>
<td>no</td>
<td>Adjust the window at the tilt value.</td>
</tr>
</tbody>
</table>

9.27.3 Derived model definition

```json
{
    "id": "http://openinterconnect.org/ zigbeemapping/schemas/zcl.windowcovering_tiltposition.control.json#",
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
    "title": "Window Covering Cluster - Tilt Position - Control",
    "definitions": {
        "zcl.windowcovering_tiltposition.control.gototiltvalue": {
            "properties": {
                "tiltvalue": {
                    "type": "integer",
                    "description": "Adjust the window at the tilt value.",
                    "x-ocf-conversion": {
                        "x-ocf-alias": "oic.r.openlevel",
                        "x-from-ocf": [
                            "if ocf.openLevel is updated, tiltvalue = ocf.openLevel.",
                            "zb.command.windowcovering::gototiltvalue(tiltvalue)"
                        ],
                        "x-to-ocf": [
                            "N/A"
                        ]
                    }
                }
            }
        }
    },
    "type": "object",
    "allOf": [
        {"$ref": "#/definitions/zcl.windowcovering_tiltposition.control.gototiltvalue"}
    ]
}
```

9.28 Window covering cluster - tilt position - information

9.28.1 Derived model

The derived model: "zcl.windowcovering_tiltposition.info".

9.28.2 Property definition

Table 63 provides the detailed per Property mapping for "zcl.windowcovering_tiltposition.info".

Table 63 – The Property mapping for "zcl.windowcovering_tiltposition.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>OCF Resource</th>
<th>To OCF</th>
<th>From OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstalledOpenLimit-Tilt</td>
<td>oic.r.openlevel</td>
<td>ocf.range[1]= InstalledOpenLimit-Tilt</td>
<td>N/A</td>
</tr>
<tr>
<td>CurrentPosition-Tilt</td>
<td>oic.r.openlevel</td>
<td>ocf.openlevel= CurrentPosition-Tilt</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 64 provides the details of the Properties that are part of "zcl.windowcovering_tiltposition.info".
Table 64 – The Properties of "zcl.windowcovering_tiltposition.info".

<table>
<thead>
<tr>
<th>Zigbee Property name</th>
<th>Type</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstalledOpenLimit-Tilt</td>
<td>integer</td>
<td>yes</td>
<td>Open limit for tilting the Window Covering (0.1 degree)</td>
</tr>
<tr>
<td>CurrentPosition-Tilt</td>
<td>integer</td>
<td>no</td>
<td>Tilt position of Window Covering from open (0.1 degree)</td>
</tr>
</tbody>
</table>

9.28.3 Derived model definition

```json
{
    "id": "http://openinterconnect.org/ zigbeemapping/schemas/zcl.windowcovering_tiltposition.info.json#",
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Copyright (c) 2018 Open Connectivity Foundation, Inc. All rights reserved.",
    "title": "Window Covering Cluster - Tilt Position - Information",
    "definitions": {
        "zcl.windowcovering_tiltposition.info": {
            "type": "object",
            "properties": {
                "InstalledOpenLimit-Tilt": {
                    "type": "integer",
                    "description": "Close limit for tilting the Window Covering (0.1 degree)",
                    "x-ocf-conversion": {
                        "x-ocf-alias": "oic.r.openlevel",
                        "x-to-ocf": [
                            "ocf.range[0] = InstalledClosedLimit-Tilt"
                        ],
                        "x-from-ocf": ["N/A"]
                    }
                },
                "InstalledOpenLimit-Tilt": {
                    "type": "integer",
                    "description": "Open limit for tilting the Window Covering (0.1 degree)",
                    "x-ocf-conversion": {
                        "x-ocf-alias": "oic.r.openlevel",
                        "x-to-ocf": [
                            "ocf.range[1] = InstalledOpenLimit-Tilt"
                        ],
                        "x-from-ocf": ["N/A"]
                    }
                },
                "CurrentPosition-Tilt": {
                    "type": "integer",
                    "description": "Tilt position of Window Covering from open (0.1 degree)",
                    "x-ocf-conversion": {
                        "x-ocf-alias": "oic.r.openlevel",
                        "x-to-ocf": [
                            "ocf.openlevel= CurrentPosition-Tilt"
                        ],
                        "x-from-ocf": ["N/A"]
                    }
                }
            }
        }
    }
}
```

Copyright Open Connectivity Foundation, Inc. © 2019-2022. All rights Reserved