

CONTACT admin@openconnectivity.org
Copyright Open Connectivity Foundation, Inc. © 2020
All Rights Reserved.

OCF Core Specification
VERSION 2.2.1 | December 2020

mailto:admin@openconnectivity.org

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved i

Legal Disclaimer 2
 3

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY KIND 4
OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY 5
INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR 6
DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN IS PROVIDED 7
ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, 8
THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY DISCLAIM ALL OTHER 9
WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT 10
COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF 11
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN CONNECTIVITY 12
FOUNDATION, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF NON-13
INFRINGEMENT, ACCURACY OR LACK OF VIRUSES. 14

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or other 15
countries. *Other names and brands may be claimed as the property of others. 16

Copyright © 2016-2020 Open Connectivity Foundation, Inc. All rights reserved. 17

Copying or other form of reproduction and/or distribution of these works are strictly prohibited. 18
 19

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved ii

CONTENTS 20
Introduction... x 21

1 Scope .. 1 22

2 Normative references .. 1 23

3 Terms, definitions, and abbreviated terms ... 3 24

3.1 Terms and definitions.. 3 25

3.2 Symbols and abbreviated terms .. 7 26

4 Document conventions and organization .. 7 27

4.1 Conventions .. 7 28

4.2 Notation .. 7 29

4.3 Data types .. 8 30

4.4 Resource notation syntax .. 10 31

5 Architecture ... 10 32

5.1 Overview .. 10 33

5.2 Principle ... 11 34

5.3 Functional block diagram .. 12 35

5.4 Framework .. 13 36

6 Identification and addressing ... 14 37

6.1 Introduction ... 14 38

6.2 Identification ... 14 39

6.2.1 Device and Platform identification .. 14 40

6.2.2 Resource identification and addressing ... 14 41

6.3 Namespace: .. 16 42

6.4 Network addressing .. 16 43

7 Resource model .. 16 44

7.1 Introduction ... 16 45

7.2 Resource .. 17 46

7.3 Property .. 17 47

7.3.1 Introduction ... 17 48

7.3.2 Common Properties ... 18 49

7.4 Resource Type ... 19 50

7.4.1 Introduction ... 19 51

7.4.2 Resource Type Property .. 20 52

7.4.3 Resource Type definition ... 20 53

7.4.4 Multi-value "rt" Resource ... 22 54

7.5 Device Type .. 22 55

7.6 OCF Interface ... 23 56

7.6.1 Introduction ... 23 57

7.6.2 OCF Interface Property .. 23 58

7.6.3 OCF Interface methods .. 24 59

7.7 Resource representation ... 43 60

7.8 Structure ... 43 61

7.8.1 Introduction ... 43 62

7.8.2 Resource relationships (Links) ... 43 63

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved iii

7.8.3 Collections... 48 64

7.8.4 Atomic Measurement ... 50 65

7.9 Query Parameters ... 53 66

7.9.1 Introduction ... 53 67

7.9.2 Use of multiple parameters within a query ... 53 68

7.9.3 Application to multi-value "rt" Resources ... 53 69

7.9.4 OCF Interface specific considerations for queries .. 54 70

7.10 Error response payload ... 54 71

7.10.1 Overview ... 54 72

7.10.2 Error response payload content ... 54 73

7.10.3 Example of use .. 56 74

8 CRUDN ... 56 75

8.1 Overview .. 56 76

8.2 CREATE ... 57 77

8.2.1 Overview ... 57 78

8.2.2 CREATE request ... 57 79

8.2.3 Processing by the Server ... 58 80

8.2.4 CREATE response ... 58 81

8.3 RETRIEVE .. 58 82

8.3.1 Overview ... 58 83

8.3.2 RETRIEVE request .. 58 84

8.3.3 Processing by the Server ... 58 85

8.3.4 RETRIEVE response ... 59 86

8.4 UPDATE ... 59 87

8.4.1 Overview ... 59 88

8.4.2 UPDATE request ... 59 89

8.4.3 Processing by the Server ... 59 90

8.4.4 UPDATE response ... 60 91

8.5 DELETE .. 60 92

8.5.1 Overview ... 60 93

8.5.2 DELETE request .. 60 94

8.5.3 Processing by the Server ... 61 95

8.5.4 DELETE response ... 61 96

8.6 NOTIFY .. 61 97

8.6.1 Overview ... 61 98

8.6.2 NOTIFICATION response .. 61 99

9 Network and connectivity ... 61 100

9.1 Introduction ... 61 101

9.2 Architecture .. 62 102

9.3 IPv6 network layer requirements ... 63 103

9.3.1 Introduction ... 63 104

9.3.2 IPv6 node requirements ... 63 105

10 OCF Endpoint .. 63 106

10.1 OCF Endpoint definition .. 63 107

10.2 OCF Endpoint information ... 64 108

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved iv

10.2.1 Introduction ... 64 109

10.2.2 "ep" ... 64 110

10.2.3 "pri" ... 65 111

10.2.4 "lat" ... 65 112

10.2.5 OCF Endpoint information in "eps" Parameter ... 65 113

10.3 OCF Endpoint discovery ... 66 114

10.3.1 Introduction ... 66 115

10.3.2 Implicit discovery ... 66 116

10.3.3 Explicit discovery with "/oic/res" response ... 67 117

11 Functional interactions .. 69 118

11.1 Introduction ... 69 119

11.2 Resource discovery .. 69 120

11.2.1 Introduction ... 69 121

11.2.2 Resource based discovery: mechanisms ... 69 122

11.2.3 Resource based discovery: Finding information ... 70 123

11.2.4 Resource discovery using "/oic/res" ... 77 124

11.2.5 Multicast discovery using "/oic/res" .. 78 125

11.2.6 Multicast discovery using "/.well-known/core" .. 79 126

11.3 Notification ... 79 127

11.3.1 Overview ... 79 128

11.3.2 Observe ... 80 129

11.4 Introspection ... 81 130

11.4.1 Overview ... 81 131

11.4.2 Usage of Introspection ... 84 132

11.5 Semantic Tags .. 85 133

11.5.1 Introduction ... 85 134

11.5.2 Semantic Tag definitions ... 86 135

12 Messaging ... 88 136

12.1 Introduction ... 88 137

12.2 Mapping of CRUDN to CoAP ... 89 138

12.2.1 Overview ... 89 139

12.2.2 URIs .. 89 140

12.2.3 CoAP method with request and response .. 89 141

12.2.4 Content-Format negotiation ... 91 142

12.2.5 OCF-Content-Format-Version information .. 91 143

12.2.6 Content-Format policy ... 92 144

12.2.7 CRUDN to CoAP response codes .. 93 145

12.2.8 CoAP block transfer ... 93 146

12.2.9 Generic requirements for CoAP multicast .. 94 147

12.2.10 Setting timeout on response to a confirmable request 94 148

12.2.11 Mapping the error response payload .. 94 149

12.3 Mapping of CRUDN to CoAP serialization over TCP ... 94 150

12.3.1 Overview ... 94 151

12.3.2 URIs .. 95 152

12.3.3 CoAP method with request and response .. 95 153

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved v

12.3.4 Content-Format negotiation ... 95 154

12.3.5 OCF-Content-Format-Version information .. 95 155

12.3.6 Content-Format policy ... 95 156

12.3.7 CRUDN to CoAP response codes .. 95 157

12.3.8 CoAP block transfer ... 95 158

12.3.9 Keep alive (connection health) ... 95 159

12.3.10 CoAP using a proxy ... 95 160

12.3.11 Mapping the error response payload .. 95 161

12.4 Payload Encoding in CBOR .. 96 162

13 Security ... 96 163

 (normative) Resource Type definitions ... 97 164

A.1 List of Resource Type definitions .. 97 165

A.2 Atomic Measurement links list representation ... 97 166

A.2.1 Introduction ... 97 167

A.2.2 Example URI ... 97 168

A.2.3 Resource type ... 97 169

A.2.4 OpenAPI 2.0 definition ... 97 170

A.2.5 Property definition ... 104 171

A.2.6 CRUDN behaviour ... 105 172

A.3 Collection.. 105 173

A.3.1 Introduction ... 105 174

A.3.2 Example URI ... 105 175

A.3.3 Resource type ... 105 176

A.3.4 OpenAPI 2.0 definition ... 105 177

A.3.5 Property definition ... 113 178

A.3.6 CRUDN behaviour ... 114 179

A.4 Device .. 114 180

A.4.1 Introduction ... 114 181

A.4.2 Well-known URI ... 114 182

A.4.3 Resource type ... 114 183

A.4.4 OpenAPI 2.0 definition ... 114 184

A.4.5 Property definition ... 117 185

A.4.6 CRUDN behaviour ... 118 186

A.5 Introspection Resource ... 119 187

A.5.1 Introduction ... 119 188

A.5.2 Well-known URI ... 119 189

A.5.3 Resource type ... 119 190

A.5.4 OpenAPI 2.0 definition ... 119 191

A.5.5 Property definition ... 121 192

A.5.6 CRUDN behaviour ... 121 193

A.6 Platform .. 122 194

A.6.1 Introduction ... 122 195

A.6.2 Well-known URI ... 122 196

A.6.3 Resource type ... 122 197

A.6.4 OpenAPI 2.0 definition ... 122 198

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved vi

A.6.5 Property definition ... 125 199

A.6.6 CRUDN behaviour ... 125 200

A.7 Discoverable Resources ... 126 201

A.7.1 Introduction ... 126 202

A.7.2 Well-known URI ... 126 203

A.7.3 Resource type ... 126 204

A.7.4 OpenAPI 2.0 definition ... 126 205

A.7.5 Property definition ... 131 206

A.7.6 CRUDN behaviour ... 132 207

 (informative) OpenAPI 2.0 Schema Extension .. 133 208

B.1 OpenAPI 2.0 Schema Reference ... 133 209

B.2 OpenAPI 2.0 Introspection empty file .. 133 210

 (normative) Semantic Tag enumeration support ... 134 211

C.1 Introduction ... 134 212

C.2 "tag-pos-desc" supported enumeration .. 134 213

C.3 "tag-loc" supported enumeration ... 134 214

Bibliography .. 136 215

 216

 217

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved vii

Figures 218
 219

Figure 1 – Architecture - concepts .. 11 220

Figure 2 – Functional block diagram ... 12 221

Figure 3 – Communication layering model .. 13 222

Figure 4 – Example Resource ... 17 223

Figure 5 – CREATE operation ... 57 224

Figure 6 – RETRIEVE operation ... 58 225

Figure 7 – UPDATE operation ... 59 226

Figure 8 – DELETE operation ... 60 227

Figure 9 – High Level Network & Connectivity Architecture ... 62 228

Figure 10 – Resource based discovery: Finding information .. 70 229

Figure 11 – Observe Mechanism ... 80 230

Figure 12 – Example usage of oneOf JSON schema ... 83 231

Figure 13 – Interactions to check Introspection support and download the Introspection 232
Device Data. ... 85 233

Figure 14 – "tag-pos-rel" definition .. 87 234

Figure 15 – Content-Format Policy for backward compatible OCF Clients negotiating lower 235
OCF Content-Format-Version ... 93 236

Figure C.1 – Enumeration for "tag-pos-desc" Semantic Tag .. 134 237

Figure C.2 – Definition of "tag-pos-desc" Semantic Tag values ... 134 238

Figure C.3 – Enumeration for "tag-locn" Semantic Tag .. 135 239

 240

 241

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved viii

Tables 242
 243

Table 1 – Additional OCF Types ... 9 244

Table 2 – Name Property Definition .. 19 245

Table 3 – Resource Identity Property Definition .. 19 246

Table 4 – Resource Type Common Property definition .. 20 247

Table 5 – Example foobar Resource Type ... 21 248

Table 6 – Example foobar Properties .. 21 249

Table 7 – Resource Interface Property definition ... 23 250

Table 8 – OCF standard OCF Interfaces ... 24 251

Table 9 – Batch OCF Interface Example ... 31 252

Table 10 – Link target attributes list .. 45 253

Table 11 – "bm" Property definition ... 45 254

Table 12 – Resource Types Property definition ... 48 255

Table 13 – Mandatory Resource Types Property definition .. 48 256

Table 14 – Common Properties for Collections (in addition to Common Properties defined 257
in 7.3.2) .. 50 258

Table 15 – Common Properties for Atomic Measurement (in addition to Common 259
Properties defined in 7.3.2) ... 51 260

Table 16 – Atomic Measurement Resource Type .. 52 261

Table 17 – Properties for Atomic Measurement (in addition to Common Properties defined 262
in 7.3.2) .. 52 263

Table 18 – Standardized error message .. 55 264

Table 18 – Parameters of CRUDN messages .. 57 265

Table 19 – "ep" value for Transport Protocol Suite .. 65 266

Table 20 – List of Core Resources .. 69 267

Table 21 – Mandatory discovery Core Resources ... 71 268

Table 22 – "oic.wk.res" Resource Type definition .. 72 269

Table 23 – Protocol scheme registry ... 73 270

Table 24 – "oic.wk.d" Resource Type definition ... 74 271

Table 25 – "oic.wk.p" Resource Type definition ... 76 272

Table 26 – Introspection Resource .. 84 273

Table 27 – "oic.wk.introspection" Resource Type definition ... 84 274

Table 28 – "tag-pos-desc" Semantic Tag definition ... 86 275

Table 29 – "tag-pos-rel" Semantic Tag definition ... 87 276

Table 30 – "tag-func-desc" Semantic Tag definition .. 88 277

Table 31 – "tag-locn" Semantic Tag definition ... 88 278

Table 31 – CoAP request and response .. 89 279

Table 32 – OCF Content-Formats ... 91 280

Table 33 – OCF-Content-Format-Version and OCF-Accept-Content-Format-Version Option 281
Numbers ... 92 282

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved ix

Table 34 – OCF-Accept-Content-Format-Version and OCF-Content-Format-Version 283
Representation ... 92 284

Table 35 – Examples of OCF-Content-Format-Version and OCF-Accept-Content-Format-285
Version Representation .. 92 286

Table A.1 – Alphabetized list of Core Resources.. 97 287

Table A.2 – The Property definitions of the Resource with type "rt" = 288
"oic.wk.atomicmeasurement". ... 104 289

Table A.3 – The CRUDN operations of the Resource with type "rt" = 290
"oic.wk.atomicmeasurement". ... 105 291

Table A.4 – The Property definitions of the Resource with type "rt" = "oic.wk.col". 113 292

Table A.5 – The CRUDN operations of the Resource with type "rt" = "oic.wk.col". 114 293

Table A.6 – The Property definitions of the Resource with type "rt" = "oic.wk.d". 118 294

Table A.7 – The CRUDN operations of the Resource with type "rt" = "oic.wk.d". 118 295

Table A.8 – The Property definitions of the Resource with type "rt" = 296
"oic.wk.introspection". ... 121 297

Table A.9 – The CRUDN operations of the Resource with type "rt" = "oic.wk.introspection". 122 298

Table A.10 – The Property definitions of the Resource with type "rt" = "oic.wk.p". 125 299

Table A.11 – The CRUDN operations of the Resource with type "rt" = "oic.wk.p". 125 300

Table A.12 – The Property definitions of the Resource with type "rt" = "oic.wk.res". 131 301

Table A.13 – The CRUDN operations of the Resource with type "rt" = "oic.wk.res". 132 302

 303
 304

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved x

Introduction 305

This document, and all the other parts associated with this document, were developed in response 306
to worldwide demand for smart home focused Internet of Things (IoT) devices, such as appliances, 307
door locks, security cameras, sensors, and actuators; these to be modelled and securely controlled, 308
locally and remotely, over an IP network. 309

While some inter-device communication existed, no universal language had been developed for 310
the IoT. Device makers instead had to choose between disparate frameworks, limiting their market 311
share, or developing across multiple ecosystems, increasing their costs. The burden then falls on 312
end users to determine whether the products they want are compatible with the ecosystem they 313
bought into, or find ways to integrate their devices into their network, and try to solve interoperability 314
issues on their own. 315

In addition to the smart home, IoT deployments in commercial environments are hampered by a 316
lack of security. This issue can be avoided by having a secure IoT communication framework, which 317
this standard solves. 318

The goal of these documents is then to connect the next 25 billion devices for the IoT, providing 319
secure and reliable device discovery and connectivity across multiple OSs and platforms. There 320
are multiple proposals and forums driving different approaches, but no single solution addresses 321
the majority of key requirements. This document and the associated parts enable industry 322
consolidation around a common, secure, interoperable approach.323

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 1

1 Scope 324

The OCF Core specifications are divided into a set of documents: 325

– Core specification (this document): The Core specification document specifies the Framework, 326
i.e., the OCF core architecture, interfaces, protocols and services to enable OCF profiles 327
implementation for Internet of Things (IoT) usages and ecosystems. This document is 328
mandatory for all Devices to implement. 329

– Core optional specification: The Core optional specification document specifies the Framework, 330
i.e., the OCF core architecture, interfaces, protocols and services to enable OCF profiles 331
implementation for Internet of Things (IoT) usages and ecosystems that can optionally be 332
implemented by any Device. 333

– Core extension specification(s): The Core extension specification(s) document(s) specifies 334
optional OCF Core functionality that are significant in scope (e.g., Wi-Fi easy setup, Cloud). 335

2 Normative references 336

The following documents, in whole or in part, are normatively referenced in this document and are 337
indispensable for its application. For dated references, only the edition cited applies. For undated 338
references, the latest edition of the referenced document (including any amendments) applies. 339

ISO 8601, Data elements and interchange formats – Information interchange –Representation of 340
dates and times, International Standards Organization, December 3, 2004 341

ISO/IEC DIS 20924, Information Technology – Internet of Things – Vocabulary, June 2018 342
https://www.iso.org/standard/69470.html 343

ISO/IEC 30118-2, Information technology – Open Connectivity Foundation (OCF) Specification – 344
Part 2: Security specification 345
https://www.iso.org/standard/74239.html 346
Latest version available at: https://openconnectivity.org/specs/OCF_Security_Specification.pdf 347

IETF RFC 768, User Datagram Protocol, August 1980 348
https://www.rfc-editor.org/info/rfc768 349

IETF RFC 3339, Date and Time on the Internet: Timestamps, July 2002 350
https://www.rfc-editor.org/info/rfc3339 351

IETF RFC 3986, Uniform Resource Identifier (URI): General Syntax, January 2005. 352
https://www.rfc-editor.org/info/rfc3986 353

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005 354
https://www.rfc-editor.org/info/rfc4122 355

IETF RFC 4287, The Atom Syndication Format, December 2005, 356
https://www.rfc-editor.org/info/rfc4287 357

IETF RFC 4941, Privacy Extensions for Stateless Address Autoconfiguration in IPv6, September 358
2007 359
https://www.rfc-editor.org/info/rfc4941 360

IETF RFC 5646, Tags for Identifying Languages, September 2009 361
https://www.rfc-editor.org/info/rfc5646 362

IETF RFC 6347, Datagram Transport Layer Security Version 1.2, January 2012 363
https://www.rfc-editor.org/info/rfc6347 364

 365

https://www.iso.org/standard/69470.html
https://www.iso.org/standard/74239.html
https://openconnectivity.org/specs/OCF_Security_Specification.pdf
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc4941
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc6347

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 2

IETF RFC 6434, IPv6 Node Requirements, December 2011 366
https://www.rfc-editor.org/info/rfc6434 367

IETF RFC 6573, The Item and Collection Link Relations, April 2012 368
https://www.rfc-editor.org/info/rfc6573 369

IETF RFC 6690, Constrained RESTful Environments (CoRE) Link Format, August 2012 370
https://www.rfc-editor.org/info/rfc6690 371

IETF RFC 7049, Concise Binary Object Representation (CBOR), October 2013 372
https://www.rfc-editor.org/info/rfc7049 373

IETF RFC 7084, Basic Requirements for IPv6 Customer Edge Routers, November 2013 374
https://www.rfc-editor.org/info/rfc7084 375

IETF RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format, March 2014 376
https://www.rfc-editor.org/info/rfc7159 377

IETF RFC 7252, The Constrained Application Protocol (CoAP), June 2014 378
https://www.rfc-editor.org/info/rfc7252 379

IETF RFC 7301, Transport Layer Security (TLS) Application-Layer Protocol Negotiation 380
Extension, July 2014 381
https://www.rfc-editor.org/info/rfc7301 382

IETF RFC 7346, IPv6 Multicast Address Scopes, August 2014 383
https://www.rfc-editor.org/info/rfc7346 384

IETF RFC 7595, Guidelines and Registration Procedures for URI Schemes, June 2015 385
https://www.rfc-editor.org/info/rfc7595 386

IETF RFC 7641, Observing Resources in the Constrained Application Protocol 387
(CoAP), September 2015 388
https://www.rfc-editor.org/info/rfc7641 389

IETF RFC 7721, Security and Privacy Considerations for IPv6 Address Generation Mechanisms, 390
March 20016 391
https://www.rfc-editor.org/info/rfc7721 392

IETF RFC 7959, Block-Wise Transfers in the Constrained Application Protocol (CoAP), August 393
2016 394
https://www.rfc-editor.org/info/rfc7959 395

IETF RFC 8075, Guidelines for Mapping Implementations: HTTP to the Constrained Application 396
Protocol (CoAP), February 2017 397
https://www.rfc-editor.org/info/rfc8075 398

IETF RFC 8085, UDP Usage Guidelines, March 2017 399
https://www.rfc-editor.org/info/rfc8085 400

IETF RFC 8288, Web Linking, October 2017 401
https://www.rfc-editor.org/info/rfc8288 402

IETF RFC 8323, CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets, 403
February 2018 404
https://www.rfc-editor.org/info/rfc8323 405

https://www.rfc-editor.org/info/rfc6434
https://www.rfc-editor.org/info/rfc6573
https://www.rfc-editor.org/info/rfc6690
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7084
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7346
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7721
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc8075
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8323

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 3

IANA ifType-MIB Definitions 406
https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib 407

IANA IPv6 Multicast Address Space Registry 408
http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml 409

IANA Link Relations, October 2017 410
http://www.iana.org/assignments/link-relations/link-relations.xhtml 411

JSON Schema Validation, JSON Schema: interactive and non-interactive validation, January 2013 412
http://json-schema.org/draft-04/json-schema-validation.html 413

OpenAPI specification, fka Swagger RESTful API Documentation Specification, Version 2.0 414
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md 415

3 Terms, definitions, and abbreviated terms 416

3.1 Terms and definitions 417

For the purposes of this document, the terms and definitions given in the following apply. 418

ISO and IEC maintain terminological databases for use in standardization at the following 419
addresses: 420
– ISO Online browsing platform: available at https://www.iso.org/obp. 421

– IEC Electropedia: available at http://www.electropedia.org/. 422

3.1.1 423
Atomic Measurement 424
design pattern that ensures that the Client (3.1.6) can only access the Properties (3.1.34) of linked 425
Resources (3.1.32) atomically, that is as a single group 426

3.1.2 427
Bridged Client 428
logical entity that accesses data via a Bridged Protocol (3.1.4) 429

Note 1 to entry: For example, an AllJoyn Consumer application is a Bridged Client (3.1.2) 430

3.1.3 431
Bridged Device 432
Bridged Client (3.1.2) or Bridged Server (3.1.5) 433

3.1.4 434
Bridged Protocol 435
another protocol (e.g., AllJoyn) that is being translated to or from OCF protocols 436

3.1.5 437
Bridged Server 438
logical entity that provides data via a Bridged Protocol (3.1.4) 439

Note 1 to entry: For example an AllJoyn Producer is a Bridged Server (3.1.5). 440

Note 2 to entry: More than one Bridged Server (3.1.5) can exist on the same physical platform. 441

3.1.6 442
Client 443
logical entity that accesses a Resource (3.1.32) on a Server (3.1.37) 444

3.1.7 445
Collection 446
Resource (3.1.32) that contains zero or more Links (3.1.22) 447

https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib
http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://json-schema.org/draft-04/json-schema-validation.html
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://www.iso.org/obp
http://www.electropedia.org/

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 4

3.1.8 448
Common Properties 449
Properties (3.1.34) specified for all Resources (3.1.32) 450

3.1.9 451
Composite Device 452
Device (3.1.13) that is modelled as multiple Device Types (3.1.14); with each component Device 453
Type (3.1.14) being exposed as a Collection (3.1.7) 454

3.1.10 455
Configuration Source 456
cloud or service network or a local read-only file which contains and provides configuration related 457
information to the Devices (3.1.13) 458

3.1.11 459
Core Resources 460
those Resources (3.1.32) that are defined in this document 461

3.1.12 462
Default OCF Interface 463
OCF Interface (3.1.19) used to generate the response when an OCF Interface (3.1.19) is omitted 464
in a request 465

3.1.13 466
Device 467
logical entity that assumes one or more roles, e.g., Client (3.1.6), Server (3.1.37) 468

Note 1 to entry: More than one Device (3.1.13) can exist on a Platform (3.1.31). 469

3.1.14 470
Device Type 471
uniquely named definition indicating a minimum set of Resource Types (3.1.35) that a Device 472
(3.1.13) supports 473

Note 1 to entry: A Device Type (3.1.14) provides a hint about what the Device (3.1.13) is, such as a light or a fan, for 474
use during Resource (3.1.32) discovery. 475

3.1.15 476
Device UUID 477
stack instance identifier 478

3.1.16 479
Discoverable Resource 480
Resource (3.1.32) that is listed in "/oic/res" 481

3.1.17 482
OCF Endpoint 483
entity participating in the OCF protocol, further identified as the source or destination of a request 484
and response messages for a given Transport Protocol Suite 485

Note 1 to entry: Example of a Transport Protocol Suite would be CoAP over UDP over IPv6. 486

3.1.18 487
Framework 488
set of related functionalities and interactions defined in this document, which enable interoperability 489
across a wide range of networked devices, including IoT 490

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 5

3.1.19 491
OCF Interface 492
interface description extended by OCF that provides a view to and permissible responses from a 493
Resource (3.1.32) 494

[SOURCE: IETF RFC 6690] 495

3.1.20 496
Introspection 497
mechanism to determine the capabilities of the hosted Resources (3.1.32) of a Device (3.1.13) 498

3.1.21 499
Introspection Device Data (IDD) 500
data that describes the payloads per implemented method of the Resources (3.1.32) that make up 501
the Device (3.1.13) 502

Note 1 to entry: See 11.4 for all requirements and exceptions. 503

3.1.22 504
Links 505
extends typed web links 506

[SOURCE: IETF RFC 8288] 507

3.1.23 508
Non-Discoverable Resource 509
Resource (3.1.32) that is not listed in "/oic/res" 510

Note 1 to entry: The Resource (3.1.32) can be reached by a Link (3.1.22) which is conveyed by another Resource 511
(3.1.32). For example a Resource (3.1.32) linked in a Collection (3.1.7) does not have to be listed in "/oic/res", since 512
traversing the Collection (3.1.7) would discover the Resource (3.1.32) implemented on the Device (3.1.13). 513

3.1.24 514
Notification 515
mechanism to make a Client (3.1.6) aware of state changes in a Resource (3.1.32) 516

3.1.25 517
Observe 518
act of monitoring a Resource (3.1.32) by sending a RETRIEVE operation which is cached by the 519
Server (3.1.37) hosting the Resource (3.1.32) and reprocessed on every change to that Resource 520
(3.1.32) 521

3.1.26 522
OpenAPI 2.0 523
Resource (3.1.32) and Intropection Device Data (3.1.21) definitions used in this document 524

[SOURCE: OpenAPI specification] 525

3.1.27 526
Parameter 527
element that provides metadata about a Resource (3.1.32) referenced by the target URI of a Link 528
(3.1.22) 529

3.1.28 530
Partial UPDATE 531
UPDATE operation to a Resource (3.1.32) that includes a subset of the Properties (3.1.34) that are 532
visible via the OCF Interface (3.1.19) being applied for the Resource Type (3.1.35) 533

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 6

3.1.29 534
Permanent Immutable ID 535
identity for a Device (3.1.13) that cannot be altered 536

3.1.30 537
Physical Device 538
physical thing on which a Device(s) (3.1.13) is exposed 539

3.1.31 540
Platform 541
Physical Device (3.1.30) containing one or more Devices (3.1.13) 542

3.1.32 543
Resource 544
represents an entity modelled and exposed by the Framework (3.1.18) 545

3.1.33 546
Resource Interface 547
qualification of the permitted requests on a Resource (3.1.32) 548

3.1.34 549
Property 550
significant aspect or Parameter (3.1.27) of a Resource (3.1.32), including metadata, that is exposed 551
through the Resource (3.1.32) 552

3.1.35 553
Resource Type 554
uniquely named definition of a class of Properties (3.1.34) and the interactions that are supported 555
by that class 556

Note 1 to entry: Each Resource (3.1.32) has a Property (3.1.34) "rt" whose value is the unique name of the Resource 557
Type (3.1.35). 558

3.1.36 559
Secure OCF Endpoint 560
OCF Endpoint (3.1.17) with a secure connection (e.g., CoAPS) 561

3.1.37 562
Semantic Tag 563
meta-information that provides additional contextual information with regard to the Resource 564
(3.1.32) that is the target of a Link (3.1.22) 565

3.1.38 566
Server 567
Device (3.1.13) with the role of providing Resource (3.1.32) state information and facilitating remote 568
interaction with its Resources (3.1.32) 569

3.1.39 570
Sleepy Server 571
Server (3.1.38) that will have latency in responding to requests 572

3.1.40 573
Unsecure OCF Endpoint 574
OCF Endpoint (3.1.17) with an unsecure connection (e.g., CoAP) 575

3.1.41 576
Vertical Resource Type 577
Resource Type (3.1.35) in a vertical domain specification 578

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 7

Note 1 to entry: An example of a Vertical Resource Type (3.1.41) would be "oic.r.switch.binary". 579

3.2 Symbols and abbreviated terms 580

ACL Access Control List 581

BLE Bluetooth Low Energy 582

CBOR Concise Binary Object Representation 583

CoAP Constrained Application Protocol 584

CoAPs Secure Constrained Application Protocol 585

DTLS Datagram Transport Layer Security 586

IP Internet Protocol 587

ISP Internet Service Provider 588

JSON JavaScript Object Notation 589

MTU Maximum Transmission Unit 590

OCF Open Connectivity Foundation 591

REST Representational State Transfer 592

RESTful REST-compliant Web services 593

UDP User Datagram Protocol 594

URI Uniform Resource Identifier 595

UUID Universal Unique Identifier 596

4 Document conventions and organization 597

4.1 Conventions 598

In this document a number of terms, conditions, mechanisms, sequences, parameters, events, 599
states, or similar terms are printed with the first letter of each word in uppercase and the rest 600
lowercase (e.g., Network Architecture). Any lowercase uses of these words have the normal 601
technical English meaning. 602

In this document, to be consistent with the IETF usages for RESTful operations, the RESTful 603
operation words CRUDN, CREATE, RETRIVE, UPDATE, DELETE, and NOTIFY will have all letters 604
capitalized. Any lowercase uses of these words have the normal technical English meaning. 605

The messaging payload examples in this document contain OCF Vertical Device Types and 606
Resource Types, which are used for illustrative purposes only. 607

4.2 Notation 608

In this document, features are described as required, recommended, allowed or DEPRECATED as 609
follows: 610

Required (or shall or mandatory)(M). 611

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 8

– These basic features shall be implemented to comply with Core Architecture. The phrases "shall 612
not", and "PROHIBITED" indicate behaviour that is prohibited, i.e. that if performed means the 613
implementation is not in compliance. 614

Recommended (or should)(S). 615

– These features add functionality supported by Core Architecture and should be implemented. 616
Recommended features take advantage of the capabilities Core Architecture, usually without 617
imposing major increase of complexity. Notice that for compliance testing, if a recommended 618
feature is implemented, it shall meet the specified requirements to be in compliance with these 619
guidelines. Some recommended features could become requirements in the future. The phrase 620
"should not" indicates behaviour that is permitted but not recommended. 621

Allowed (may or allowed)(O). 622

– These features are neither required nor recommended by Core Architecture, but if the feature 623
is implemented, it shall meet the specified requirements to be in compliance with these 624
guidelines. 625

DEPRECATED. 626

– Although these features are still described in this document, they should not be implemented 627
except for backward compatibility. The occurrence of a deprecated feature during operation of 628
an implementation compliant with the current documenthas no effect on the implementation’s 629
operation and does not produce any error conditions. Backward compatibility may require that 630
a feature is implemented and functions as specified but it shall never be used by 631
implementations compliant with this document. 632

Conditionally allowed (CA). 633

– The definition or behaviour depends on a condition. If the specified condition is met, then the 634
definition or behaviour is allowed, otherwise it is not allowed. 635

Conditionally required (CR). 636

– The definition or behaviour depends on a condition. If the specified condition is met, then the 637
definition or behaviour is required. Otherwise the definition or behaviour is allowed as default 638
unless specifically defined as not allowed. 639

Strings that are to be taken literally are enclosed in "double quotes". 640

Words that are emphasized are printed in italic. 641

In all of the Property and Resource definition tables that are included throughout this document the 642
"Mandatory" column indicates that the item detailed is mandatory to implement; the mandating of 643
inclusion of the item in a Resource Payload associated with a CRUDN action is dependent on the 644
applicable schema for that action. 645

4.3 Data types 646

Resources are defined using data types derived from JSON values as defined in IETF RFC 7159. 647
However, a Resource can overload a JSON defined value to specify a particular subset of the 648
JSON value, using validation keywords defined in JSON Schema Validation. 649

Among other validation keywords, clause 7 in JSON Schema Validation defines a "format" keyword 650
with a number of format attributes such as "uri" and "date-time", and a "pattern" keyword with a 651
regular expression that can be used to validate a string. This clause defines patterns that are 652
available for use in describing OCF Resources. The pattern names can be used in documenttext 653
where JSON format names can occur. The actual JSON schemas shall use the JSON type and 654
pattern instead. 655

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 9

For all rows defined in Table 1, the JSON type is string. 656

Table 1 – Additional OCF Types 657

Pattern Name Pattern Description

"csv" <none> A comma separated list of values
encoded within a string. The value
type in the csv is described by the
Property where the csv is used. For
example a csv of integers.

NOTE csv is considered
deprecated and an array of strings
should be used instead for new
Resources.

"date" ^([0-9]{4})-(1[0-2]|0[1-9])-(3[0-1]|2[0-
9]|1[0-9]|0[1-9])$

The full-date format pattern
according to IETF RFC 3339

"duration" ^(P(?!$)([0-9]+Y)?([0-9]+M)?([0-
9]+W)?([0-9]+D)?((T(?=[0-
9]+[HMS])([0-9]+H)?([0-9]+M)?([0-
9]+S)?)?))$|^(P[0-9]+W)$|^(P[0-
9]{4})-(1[0-2]|0[1-9])-(3[0-1]|2[0-
9]|1[0-9]|0[1-9])T(2[0-3]|1[0-9]|0[1-
9]):([0-5][0-9]):([0-5][0-9])$|^(P[0-
9]{4})(1[0-2]|0[1-9])(3[0-1]|2[0-9]|1[0-
9]|0[1-9])T(2[0-3]|1[0-9]|0[1-9])([0-
5][0-9])([0-5][0-9])$

A string representing duration
formatted as defined in ISO 8601.
Allowable formats are:
P[n]Y[n]M[n]DT[n]H[n]M[n]S, P[n]W,
P[n]Y[n]-M[n]-DT[0-23]H[0-59]:M[0-
59]:S, and P[n]W, P[n]Y[n]M[n]DT[0-
23]H[0-59]M[0-59]S. P is mandatory,
all other elements are optional, time
elements must follow a T.

"int64" ^0|(-?[1-9][0-9]{0,18})$ A string instance is valid against this
attribute if it contains an integer in
the range [-(2**63), (2**63)-1]

NOTE IETF RFC 7159 clause 6
explains that JSON integers outside
the range [-(2**53)+1, (2**53)-1] are
not interoperable and so JSON
numbers cannot be used for 64-bit
numbers.

"language-tag" ^[A-Za-z]{1,8}(-[A-Za-z0-9]{1,8})*$ An IETF language tag formatted
according to IETF RFC 5646 clause
2.1.

"uint64" ^0|([1-9][0-9]{0,19})$ A string instance is valid against this
attribute if it contains an integer in
the range [0, (2**64)-1]

Also see note for "int64"

"uuid" ^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-
F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-
9]{12}$

A UUID string representation
formatted according to
IETF RFC 4122 clause 3.

 658

Strings shall be encoded as UTF-8 unless otherwise specified. 659

In a JSON schema, "maxLength" for a string indicates the maximum number of characters not 660
octets. However, "maxLength" shall also indicate the maximum number of octets. If no "maxLength" 661
is defined for a string, then the maximum length shall be 64 octets. 662

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 10

4.4 Resource notation syntax 663

When it is desired to describe the Property of a Resource Type or the "anchor" Parameter value in 664
an abbreviated notation, it can be described as follows: 665

– A value of the "rt" Property of the Resource Type or "anchor" Parameter value ":" Property name 666

– e.g., "oic.wk.d:di", which is the "di" Property of the Device Resource Type. 667

If Property name is a composite type (a type that is composed of several Properties), it can be 668
described in recursive way. The following expression describes this as a regular expression format: 669

– A value of the "rt" Property of the Resource Type or "anchor" Parameter value (":" Property 670
name)+ 671

– e.g., "oic.r.pstat:dos:s", which is the "s" Property of the "dos" Property of the "pstat" Resource 672
Type (see 13.8 of ISO/IEC 30118-2). 673

If there is a Resource URI (i.e., The Resource instance for a specific Resource Type), it can be 674
used instead of using a value of "rt" Property of Resource Type or the “anchor" Parameter value 675
as follows: 676

– A Resource URI (":" Property name)+ 677

– e.g., "/oic/d:di", which is the "di" Property of the Device Resource Type instance. 678

– e.g. "/oic/sec/pstat:dos:s", which is the "s" Property of the "dos" Property of the "oic.r.pstat" 679
Resource Type instance. 680

In the auto-generated Annex's Property definition tables for Resource Types, the Property names 681
can be noted as belonging to the RETRIEVE schema or to the UPDATE schema by prefixing the 682
Property name with "RETRIEVE" or "UPDATE" followed with the ":" separator. This is to avoid 683
duplicate Property names appearing in the Property definition tables that are auto-generated. The 684
following are examples using this notation with the "locn" Property of the "oic.wk.con" Resource 685
Type: 686

– "RETRIEVE:locn" 687

– "UPDATE:locn" 688

5 Architecture 689

5.1 Overview 690

The architecture Datagram enables resource based interactions among IoT artefacts, i.e. physical 691
devices or applications. The architecture leverages existing industry standards and technologies 692
and provides solutions for establishing connections (either wireless or wired) and managing the 693
flow of information among Devices, regardless of their form factors, operating systems or service 694
providers. 695

Specifically, the architecture provides: 696

– A communication and interoperability framework for multiple market segments (Consumer, 697
Enterprise, Industrial, Automotive, Health, etc.), OSs, platforms, modes of communication, 698
transports and use cases. 699

– A common and consistent model for describing the environment and enabling information and 700
semantic interoperability. 701

– Common communication protocols for discovery and connectivity. 702

– Common security and identification mechanisms. 703

– Opportunity for innovation and product differentiation. 704

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 11

– A scalable solution addressing different Device capabilities, applicable to smart devices as well 705
as the smallest connected things and wearable devices. 706

The architecture is based on the Resource Oriented Architecture design principles and described 707
in the 5.2 through 5.4 respectively. 5.2 presents the guiding principles for OCF operations. 5.3 708
defines the functional block diagram and Framework. 709

5.2 Principle 710

In the architecture, Entities in the physical world (e.g., temperature sensor, an electric light or a 711
home appliance) are represented as Resources. Interactions with an entity are achieved through 712
its Resource representations (see 7.6.3.9) using operations that adhere to Representational State 713
Transfer (REST) architectural style, i.e., RESTful interactions. 714

The architecture defines the overall structure of the Framework as an information system and the 715
interrelationships of the Entities that make up OCF. Entities are exposed as Resources, with their 716
unique identifiers (URIs) and support interfaces that enable RESTful operations on the Resources. 717
Every RESTful operation has an initiator of the operation (the Client) and a responder to the 718
operation (the Server). In the Framework, the notion of the Client and Server is realized through 719
roles. Any Device can act as a Client and initiate a RESTful operation on any Device acting as a 720
Server. Likewise, any Device that exposes Entities as Resources acts as a Server. Conformant to 721
the REST architectural style, each RESTful operation contains all the information necessary to 722
understand the context of the interaction and is driven using a small set of generic operations, i.e., 723
CREATE, RETRIEVE, UPDATE, DELETE and NOTIFY (CRUDN) defined in clause 8, which include 724
representations of Resources. 725

Figure 1 depicts the architecture. 726

OCF Device

Client

Protocol specific
Implementation of
CRUDN Operations

(e.g. CoAP, HTTP, XMPP)

OCF Device

Server

Protocol specific
implementation of

Server

Resource

OCF RESTful
Resource Model

Layer

Specific
Implementation of

Data Protocol/
Messaging

OCF Roles

Entity
(e.g. light bulb,

Heart rate
monitor)

Resource Mapping

OCF
Abstractions

COAP Request
E.g. GET /s/data

{ “bulb”: “on” }

 727

Figure 1 – Architecture - concepts 728

The architecture is organized conceptually into three major aspects that provide overall separation 729
of concern: Resource model, RESTful operations and abstractions. 730

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 12

– Resource model: The Resource model provides the abstractions and concepts required to 731
logically model, and logically operate on the application and its environment. The Core 732
Resource model is common and agnostic to any specific application domain such as smart 733
home, industrial or automotive. For example, the Resource model defines a Resource which 734
abstracts an entity and the representation of a Resource maps the entity’s state. Other 735
Resource model concepts can be used to model other aspects, for example behaviour. 736

– RESTful operations: The generic CRUDN operations are defined using the RESTful paradigm 737
to model the interactions with a Resource in a protocol and technology agnostic way. The 738
specific communication or messaging protocols are part of the protocol abstraction and 739
mapping of Resources to specific protocols is provided in 11.4. 740

– Abstraction: The abstractions in the Resource model and the RESTful operations are mapped 741
to concrete elements using abstraction primitives. An entity handler is used to map an entity to 742
a Resource and connectivity abstraction primitives are used to map logical RESTful operations 743
to data connectivity protocols or technologies. Entity handlers may also be used to map 744
Resources to Entities that are reached over protocols that are not natively supported by OCF. 745

5.3 Functional block diagram 746

The functional block diagram encompasses all the functionalities required for operation. These 747
functionalities are categorized as L2 connectivity, networking, transport, Framework, and 748
application profiles. The functional blocks are depicted in Figure 2. 749

 750

Figure 2 – Functional block diagram 751

– L2 connectivity: Provides the functionalities required for establishing physical and data link 752
layer connections (e.g., Wi-FiTM or Bluetooth® connection) to the network. 753

– Networking: Provides functionalities required for Devices to exchange data among themselves 754
over the network (e.g., Internet). 755

– Transport: Provides end-to-end flow transport with specific QoS constraints. Examples of a 756
transport protocol include TCP and UDP or new Transport protocols under development in the 757
IETF, e.g., Delay Tolerant Networking (DTN). 758

Security

Application(s)

OCF Data Models

Vertical Domain
Profiles

Smart
Home eHealth Industrial

Framework

ID &
Addressing

Resource
model CRUDN

Discovery Device
management Messaging

 L2 Connectivity Networking Transport

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 13

– Framework: Provides the core functionalities as defined in this document. The functional block 759
is the source of requests and responses that are the content of the communication between 760
two Devices. 761

– Vertical Domain profile: Provides market segment specific functionalities, e.g., functions for the 762
smart home market segment. 763

When two Devices communicate with each other, each functional block in a Device interacts with 764
its counterpart in the peer Device as shown in Figure 3. 765

Device 1 Device 2

Vertical Domain Vertical Domain

Framework

Transport

Networking

L2 Connectivity

Framework

Transport

Networking

L2 Connectivity

Profiles

 766

Figure 3 – Communication layering model 767

5.4 Framework 768

Framework consists of functions which provide core functionalities for operation. 769

– Identification and addressing. Defines the identifier and addressing capability. The Identification 770
and addressing function is defined in clause 6. 771

– Discovery. Defines the process for discovering available. 772

– Devices (OCF Endpoint Discovery in clause 10) and 773

– Resources (Resource discovery in 11.2). 774

– Resource model. Specifies the capability for representation of entities in terms of Resources 775
and defines mechanisms for manipulating the Resources. The Resource model function is 776
defined in clause 7. 777

– CRUDN. Provides a generic scheme for the interactions between a Client and Server as defined 778
in clause 8. 779

– Messaging. Provides specific message protocols for RESTful operation, i.e. CRUDN. For 780
example, CoAP is a primary messaging protocol. The messaging function is defined in 11.5. 781

– Security. Includes authentication, authorization, and access control mechanisms required for 782
secure access to Entities. The security function is defined in clause 13. 783

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 14

6 Identification and addressing 784

6.1 Introduction 785

Facilitating proper and efficient interactions between elements in the Framework, requires a means 786
to identify, name and address these elements. 787

The identifier unambiguously identifies an element in a context or domain. The context or domain 788
may be determined by the use or the application. The identifier is expected to be immutable over 789
the lifecycle of that element and is unambiguous within a context or domain. 790

The address is used to define a place, way or means of reaching or accessing the element in order 791
to interact with it. An address may be mutable based on the context. 792

The name is a handle that distinguishes the element from other elements in the Framework. The 793
name may be changed over the lifecycle of that element. 794

There may be methods or resolution schemes that allow determining any of these based on the 795
knowledge of one or more of others (e.g., determine name from address or address from name). 796

Each of these aspects may be defined separately for multiple contexts (e.g., a context could be a 797
layer in a stack). So an address may be a URL for addressing Resource and an IP address for 798
addressing at the connectivity layer. In some situations, both these addresses would be required. 799
For example, to do RETRIEVE (see 8.3) operation on a particular Resource representation, the 800
Client needs to know the address of the target Resource and the address of the Server through 801
which the Resource is exposed. 802

In a context or domain of use, a name or address could be used as identifier or vice versa. For 803
example, a URL could be used as an identifier for a Resource and designated as a URI. 804

The remainder of this clause discusses the identifier, address and naming from the point of view 805
of the Resource model and the interactions to be supported by the Resource model. Examples of 806
interactions are the RESTful interactions, i.e. CRUDN operation (clause 8) on a Resource. Also 807
the mapping of these to transport protocols, e.g., CoAP is described. 808

6.2 Identification 809

6.2.1 Device and Platform identification 810

This document defines three identifiers that are used for identification of the Device. All identifiers 811
are exposed via Resources that are also defined within this document (see clause 11.2). 812

The Permanent Immutable ID ("piid" Property of "/oic/d") is the immutable identity of the Device, 813
the persistent valid value of this property is typically only visible after the Device is on-boarded 814
(when not on-boarded the Device typically exposes a temporary value). This value does not change 815
across the life-cycle of the Device. 816

The Device UUID ("di" Property of "/oic/d") is a mutable identity. The value changes each time the 817
Device is on-boarded. It reflects a specific on-boarded instance of the Device. 818

The Platform ID ("pi" Property of "/oic/p") is the immutable identity of the Platform on which the 819
Device is resident. When multiple logical Devices are exposed on a single Platform (for example, 820
on a Bridge) then the "pi" exposed by each Device should be the same. 821

6.2.2 Resource identification and addressing 822

A Resource may be identified using a URI and addressed by the same URI if the URI is a URL. In 823
some cases, a Resource may need an identifier that is different from a URI; in this case, the 824
Resource may have a Property whose value is the identifier. When the URI is in the form of a URL, 825
then the URI may be used to address the Resource. 826

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 15

An OCF URI is based on the general form of a URI as defined in IETF RFC 3986 as follows (note 827
that the portion in square brackets is optional): 828

<scheme>://<authority>/<path>?<query> 829

Specifically, the OCF URI is specified in the following form: 830

ocf://<authority>/<path>?<query> 831

The following is a description of values that each component takes. 832

The "scheme" for the URI is "ocf". The "ocf" scheme represents the semantics, definitions and use 833
as defined in this document. If a URI has the portion preceding the "//" (double slash) omitted, then 834
the "ocf" scheme shall be assumed. 835

Each transport binding is responsible for specifying how an OCF URI is converted to a transport 836
protocol URI before sending over the network by the requestor. Similarly on the receiver side, each 837
transport binding is responsible for specifying how an OCF URI is converted from a transport 838
protocol URI before handing over to the Resource model layer on the receiver. 839

The authority of an OCF URI shall be the Device UUID ("di") value, as defined in [OCF Security], 840
of the Server. 841

The "path" is a string that unambiguously identifies or references a Resource within the context of 842
the Server. In this version of the document, a path shall not include pct-encoded non-ASCII 843
characters or NUL characters. A path shall be preceded by a "/" (slash). The path may have "/" 844
(slash) separated segments for human readability reasons. In the OCF context, the "/" (slash) 845
separated segments are treated as a single string that directly references the Resources (i.e. a flat 846
structure) and not parsed as a hierarchy. On the Server, the path or some substring in the path 847
may be shortened by using hashing or some other scheme provided the resulting reference is 848
unique within the context of the host. 849

Once a path is generated, a Client accessing the Resource or recipient of the URI should use that 850
path as an opaque string and should not parse to infer a structure, organization or semantic. 851

The "query" is a string that shall contain one or more "<name>=<value>" constructs (aka name-852
value pair). Where multiple such constructs are supported, each is separated by an "&" 853
(ampersand); this is not a logical "and" operation, but purely a delimiter. Where the use of a query 854
is supported, how the query is handled by the recipient thereof is explicitly defined by the relevant 855
clause in this document or other specifications. The query string will be mapped to the appropriate 856
syntax of the protocol used for messaging. (e.g., CoAP). 857

A URI may be either fully qualified or relative generation of URI. 858

A URI may be defined by the Client which is the creator of that Resource. Such a URI may be 859
relative or absolute (fully qualified). A relative URI shall be relative to the Device on which it is 860
hosted. Alternatively, a URI may be generated by the Server of that Resource automatically based 861
on a pre-defined convention or organization of the Resources, based on an OCF Interface, based 862
on some rules or with respect to different roots or bases. 863

The absolute path reference of a URI is to be treated as an opaque string and a Client should not 864
infer any explicit or implied structure in the URI – the URI is simply an address. It is also 865
recommended that Devices hosting a Resource treat the URI of each Resource as an opaque string 866
that addresses only that Resource. (e.g., URI's "/a" and "/a/b" are considered as distinct addresses 867
and Resource b cannot be construed as a child of Resource a). 868

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 16

6.3 Namespace: 869

The relative URI prefix "/oic/" is reserved as a namespace for URIs defined in OCF specifications 870
and shall not be used for URIs that are not defined in OCF specifications. The prefix "oic." used for 871
OCF Interfaces and Resource Types is reserved for OCF specification usage. 872

6.4 Network addressing 873

The following are the addresses used in this document: 874

IP address 875

– An IP address is used when the Device is using an IP configured interface. 876

– When a Device only has the identity information of its peer, a resolution mechanism is needed 877
to map the identifier to the corresponding address. 878

7 Resource model 879

7.1 Introduction 880

The Resource model defines concepts and mechanisms that provide consistency and core 881
interoperability between Devices in the OCF ecosystems. The Resource model concepts and 882
mechanisms are then mapped to the transport protocols to enable communication between the 883
Devices – each transport provides the communication protocol interoperability. The Resource 884
model, therefore, allows for interoperability to be defined independent of the transports. 885

The primary concepts in the Resource model are: entity, Resources, Uniform Resource Identifiers 886
(URI), Resource Types, Properties, Representations, OCF Interfaces, Collections and Links. In 887
addition, the general mechanisms are CREATE, RETRIEVE, UPDATE, DELETE and NOTIFY. 888
These concepts and mechanisms may be composed in various ways to define the rich semantics 889
and interoperability needed for a diverse set of use cases that the Framework is applied to. 890

In the OCF Resource model Framework, an entity needs to be visible, interacted with or 891
manipulated, it is represented by an abstraction called a Resource. A Resource encapsulates and 892
represents the state of an entity. A Resource is identified, addressed and named using URIs. 893

Properties are "key=value" pairs and represent state of the Resource. A snapshot of these 894
Properties is the Representation of the Resource. A specific view of the Representation and the 895
mechanisms applicable in that view are specified as OCF Interfaces. Interactions with a Resource 896
are done as Requests and Responses containing Representations. 897

A Resource instance is derived from a Resource Type. The uni-directional relationship between 898
one Resource and another Resource is defined as a Link. A Resource that has Properties and 899
Links is a Collection. 900

A set of Properties can be used to define a state of a Resource. This state may be retrieved or 901
updated using appropriate Representations respectively in the response from and request to that 902
Resource. 903

A Resource (and Resource Type) could represent and be used to expose a capability. Interactions 904
with that Resource can be used to exercise or use that capability. Such capabilities can be used to 905
define processes like discovery, management, advertisement etc. For example: discovery of 906
Resources on a Device can be defined as the retrieval of a representation of a specific Resource 907
where a Property or Properties have values that describe or reference the Resources on the Device. 908

The information for Request or Response with the Representation may be communicated on the 909
wire by serializing using a transfer protocol or encapsulated in the payload of the transport protocol 910
– the specific method is determined by the normative mapping of the Request or Response to the 911
transport protocol. See clause 12 for transport protocols supported. 912

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 17

The OpenAPI 2.0 definitions (Annex A) used in this document are normative. This includes that all 913
defined JSON payloads shall comply with the indicated OpeAPI 2.0 definitions. Annex A contains 914
all of the OpenAPI 2.0 definitions for Resource Types defined in this document. 915

7.2 Resource 916

A Resource shall be defined by one or more Resource Type(s) – see Annex A for Resource Type. 917
A request to CREATE a Resource shall specify one or more Resource Types that define that 918
Resource. 919

A Resource is hosted in a Device. A Resource shall have a URI as defined in clause 6. The URI 920
may be assigned by the Authority at the creation of the Resource or may be pre-defined by the 921
definition of the Resource Type. An example Resource representation is depicted in Figure 4. 922

 923

Figure 4 – Example Resource 924

Core Resources are the Resources defined in this document to enable functional interactions as 925
defined in clause 10 (e.g., Discovery, Device management, etc). Among the Core Resources, 926
"/oic/res", "/oic/p", and "/oic/d" shall be supported on all Devices. Devices may support other Core 927
Resources depending on the functional interactions they support. 928

7.3 Property 929

7.3.1 Introduction 930

A Property describes an aspect that is exposed through a Resource including meta-information 931
related to that Resource. 932

A Property shall have a name i.e. Property Name and a value i.e. Property Value. The Property is 933
expressed as a key-value pair where key is the Property Name and value the Property Value like 934
<Property Name> = <Property Value>. For example if the "temperature" Property has a Property 935
Name "temp" and a Property Value "30F", then the Property is expressed as "temp=30F". The 936
specific format of the Property depends on the encoding scheme. For example, in JSON, Property 937
is represented as "key": value (e.g., "temp": 30). 938

In addition, the Property definition shall have a 939

– Value Type – the Value Type defines the values that a Property Value may take. The Value 940
Type may be a simple data type (e.g. string, Boolean) as defined in 4.3 or may be a complex 941
data type defined with a schema. The Value Type may define 942

– Value Rules define the rules for the set of values that the Property Value may take. Such 943
rules may define the range of values, the min-max, formulas, the set of enumerated values, 944
patterns, conditional values, and even dependencies on values of other Properties. The 945
rules may be used to validate the specific values in a Property Value and flag errors. 946

– Mandatory – specifies if the Property is mandatory or not for a given Resource Type. 947

/my/resource/example

{
"rt": ["oic.r.foobar"],
"if": ["oic.if.a"],
"value": "foo value"
}

Properties

URI

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 18

– Access modes – specifies whether the Property may be read, written or both. Updates are 948
equivalent to a write. "r" is used for read and "w" is used for write – both may be specified. 949
Write does not automatically imply read. 950

The definition of a Property may include the following additional information – these items are 951
informative: 952

– Property Title - a human-friendly name to designate the Property; usually not sent over the wire. 953

– Description – descriptive text defining the purpose and expected use of this Property. 954

In general, a Property is meaningful only within the Resource to which it is associated. However a 955
base set of Properties that may be supported by all Resources, known as Common Properties, 956
keep their semantics intact across Resources i.e. their "key=value" pair means the same in any 957
Resource. Detailed tables for all Common Properties are defined in 7.3.2. 958

7.3.2 Common Properties 959

7.3.2.1 Introduction 960

The mandatory Common Properties defined in clause 7.3.2 shall be exposed and the optional 961
Common Properties may be exposed in all Resources. The following Properties are defined as 962
Common Properties: 963

The Common Properties for all Resources are specified in 7.3.2.3 through 7.3.2.6 respectively and 964
summarized as follows: 965

– Resource Type ("rt") – this mandatory Property is used to declare the Resource Type of that 966
Resource. Since a Resource could be defined by more than one Resource Type the Property 967
Value of the Resource Type Property may be used to declare more than one Resource Type 968
(see clause 7.4.4). See 7.3.2.3 for details. 969

– OCF Interface ("if") – this mandatory Property declares the OCF Interfaces supported by the 970
Resource. The Property Value of the OCF Interface Property may be multi-valued and lists all 971
the OCF Interfaces supported. See 7.3.2.4 for details. 972

– Name ("n") – this optional Property declares human-readable name assigned to the Resource. 973
See 7.3.2.5. 974

– Resource Identity ("id") – this optional Property Value shall be a unique (across the scope of 975
the host Server) identifier for a specific instance of the Resource. The encoding of this identifier 976
is Device and implementation dependent. See 7.3.2.6 for details. 977

An optional Common Property may be mandatory when explicitly specified in a particular Resource 978
Type definition (e.g., the "n" Common Property for the "oic.wk.d" Resource Type). 979

The name of a Common Property is unique and is not used by other Properties. When defining a 980
new Resource Type, its non-common Properties will not use the name of existing Common 981
Properties (e.g., "rt", "if", "n", and "id"). 982

The ability to UPDATE a Common Property (that supports write as an access mode) is restricted 983
to the "oic.if.rw" (read-write) OCF Interface; thus a Common Property shall be updatable using the 984
read-write OCF Interface if and only if the Property supports write access as defined by the Property 985
definition and the associated schema for the read-write OCF Interface. 986

7.3.2.2 Property Name and Property Value definitions 987

The Property Name and Property Value as used in this document: 988

– Property Name– the key in "key=value" pair. Property Name is case sensitive and its data type 989
is "string". Property names shall contain only letters A to Z, a to z, digits 0 to 9, hyphen, and 990
dot, and shall not begin with a digit. 991

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 19

– Property Value – the value in "key=value" pair. Property Value is case sensitive when its data 992
type is "string". 993

7.3.2.3 Resource Type 994

Resource Type Property is specified in 7.4. 995

7.3.2.4 OCF Interface 996

OCF Interface Property is specified in 7.6. 997

7.3.2.5 Name 998

A human friendly name for the Resource, i.e. a specific resource instance name (e.g., 999
MyLivingRoomLight), The Name Property is as defined in Table 2 1000

Table 2 – Name Property Definition 1001

Property
title

Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Name "n" "string" N/A N/A R, W No Human understandable name for
the Resource.

Note: This Property may be mandatory when specifically defined for a Resource Type (e.g., "oic.wk.d"). 1002

The Name Property is read-write unless otherwise restricted by the Resource Type (i.e. the 1003
Resource Type does not support UPDATE or does not support UPDATE using the read-write OCF 1004
Interface ("oic.if.rw")). 1005

7.3.2.6 Resource Identity 1006

The Resource Identity Property shall be a unique (across the scope of the host Server) instance 1007
identifier for a specific instance of the Resource. The encoding of this identifier is Device and 1008
implementation dependent as long as the uniqueness constraint is met, noting that an 1009
implementation may use a uuid as defined in 4.3. The Resource Identity Property is as defined in 1010
Table 3. 1011

Table 3 – Resource Identity Property Definition 1012

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Identity

"id" "string"
or uuid

Implementation
Dependent

N/A R No Unique identifier of the
Resource (over all
Resources in the
Device)

Note: This Property may be mandatory when specifically defined for a Resource Type. 1013

7.4 Resource Type 1014

7.4.1 Introduction 1015

Resource Type is a class or category of Resources and a Resource is an instance of one or more 1016
Resource Types. 1017

The Resource Types of a Resource is declared using the Resource Type Common Property as 1018
described in 7.3.2.3 or in a Link using the Resource Type Parameter. 1019

A Resource Type may either be pre-defined by OCF or in custom definitions by manufacturers, end 1020
users, or developers of Devices (vendor-defined Resource Types). Resource Types and their 1021
definition details may be communicated out of band (i.e. in documentation) or be defined explicitly 1022
using a meta-language which may be downloaded and used by APIs or applications. OCF has 1023

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 20

adopted OpenAPI 2.0 as the specification method for OCF’s RESTful interfaces and Resource 1024
definitions. 1025

Every Resource Type shall be identified with a Resource Type ID which shall be represented using 1026
the requirements and ABNF governing the Resource Type attribute in IETF RFC 6690 (clause 2 for 1027
ABNF and clause 3.1 for requirements) with the caveat that segments are separated by a "." 1028
(period). The entire string represents the Resource Type ID. When defining the ID each segment 1029
may represent any semantics that are appropriate to the Resource Type. For example, each 1030
segment could represent a namespace. Once the ID has been defined, the ID should be used 1031
opaquely and implementations should not infer any information from the individual segments. The 1032
string "oic", when used as the first segment in the definition of the Resource Type ID, is reserved 1033
for OCF-defined Resource Types. All OCF defined Resource Types are to be registered with the 1034
IANA Core Parameters registry as described also in IETF RFC 6690. 1035

7.4.2 Resource Type Property 1036

A Resource when instantiated or created shall have one or more Resource Types that are the 1037
template for that Resource. The Resource Types that the Resource conforms to shall be declared 1038
using the "rt" Common Property for the Resource as defined in Table 4. The Property Value for the 1039
"rt" Common Property shall be the list of Resource Type IDs for the Resource Types used as 1040
templates (i.e., "rt"=<list of Resource Type IDs>). 1041

Table 4 – Resource Type Common Property definition 1042

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Type

"rt" "array" Array of strings,
conveying
Resource Type
IDs

N/A R Yes The Property name rt
is as described in
IETF RFC 6690

 1043

Resource Types may be explicitly discovered or implicitly shared between the user (i.e. Client) and 1044
the host (i.e. Server) of the Resource. 1045

7.4.3 Resource Type definition 1046

Resource Type is specified as follows: 1047

– Pre-defined URI (optional) – a pre-defined URI may be specified for a specific Resource Type 1048
in an OCF specification. When a Resource Type has a pre-defined URI, all instances of that 1049
Resource Type shall use only the pre-defined URI. An instance of a different Resource Type 1050
shall not use the pre-defined URI. 1051

– Resource Type Title (optional) – a human friendly name to designate the Resource Type. 1052

– Resource Type ID – the value of "rt" Property which identifies the Resource Type, (e.g., 1053
"oic.wk.p"). 1054

– Resource Interfaces – list of the OCF Interfaces that may be supported by the Resource Type. 1055

– Properties – definition of all the Properties that apply to the Resource Type. The Resource Type 1056
definition shall define whether a property is mandatory, conditional mandatory, or optional. 1057

– Related Resource Types (optional) – the definition of other Resource Types that may be 1058
referenced as part of the Resource Type, applicable to Collections. 1059

– Mime Types (optional) – mime types supported by the Resource including serializations (e.g., 1060
application/cbor, application/json, application/xml). 1061

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 21

Table 5 and Table 6 provides an example description of an illustrative foobar Resource Type and 1062
its associated Properties. 1063

Table 5 – Example foobar Resource Type 1064

Pre-defined
URI

Resource
Type Title

Resource
Type ID ("rt"

value)

OCF
Interfaces

Description Related
Functional
Interaction

M/CR/O

none "foobar" "oic.r.foobar" "oic.if.a" Example
"foobar"
Resource

Actuation O

 1065

Table 6 – Example foobar Properties 1066

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Type

"rt" "array" N/A N/A R Yes Resource Type

OCF
Interface

"if" "array" N/A N/A R Yes OCF Interface

Foo value value "string" N/A N/A R Yes Foo value

 1067

For example, an instance of the foobar Resource Type. 1068

{ 1069
"rt": ["oic.r.foobar"], 1070
"if": ["oic.if.a"], 1071
"value": "foo value" 1072
} 1073

 1074

For example, a schema representation for the foobar Resource Type. 1075

{ 1076
 "$schema": "http://json-schema.org/draft-04/schema", 1077
 "type": "object", 1078
 "properties": { 1079
 "rt": { 1080
 "type": "array", 1081
 "items" : { 1082
 "type" : "string", 1083
 "maxLength": 64 1084
 }, 1085
 "minItems" : 1, 1086
 "readOnly": true, 1087
 "description": "Resource Type of the Resource" 1088
 }, 1089
 "if": { 1090
 "type": "array", 1091
 "items": { 1092
 "type" : "string", 1093
 "enum" : ["oic.if.baseline", "oic.if.ll", "oic.if.b", "oic.if.lb", "oic.if.rw", 1094
"oic.if.r", "oic.if.a", "oic.if.s"] 1095
 }, 1096
 "value": {"type": "string"} 1097
 }, 1098

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 22

 "required": ["rt", "if", "value"] 1099
} 1100

7.4.4 Multi-value "rt" Resource 1101

Multi-value "rt" Resource means a Resource with multiple Resource Types where none of the 1102
included Resource Types denote a well-known Resource Type (i.e. "oic.wk.<thing>"). Such a 1103
Resource is associated with multiple Resource Types and so has an "rt" Property Value of multiple 1104
Resource Type IDs (e.g. "rt": ["oic.r.switch.binary", "oic.r.light.brightness"]). The order of the 1105
Resource Type IDs in the "rt" Property Value is meaningless. For example, "rt": 1106
["oic.r.switch.binary", "oic.r.light.brightness"] and "rt": ["oic.r.light.brightness", "oic.r.switch.binary"] 1107
have the same meaning. 1108

Resource Types for multi-value "rt" Resources shall satisfy the following conditions: 1109

– Property Name – Property Names for each Resource Type shall be unique (within the scope of 1110
the multi-value "rt" Resource) with the exception of Common Properties, otherwise there will be 1111
conflicting Property semantics. If two Resource Types have a Property with the same Property 1112
"Name, a multi-value "rt" Resource shall not be composed of these Resource Types. 1113

A multi-value "rt" Resource satisfies all the requirements for each Resource Type and conforms to 1114
the OpenAPI 2.0 definitions for each component Resource Type. Thus the mandatory Properties 1115
of a multi-value "rt" Resource shall be the union of all the mandatory Properties of each Resource 1116
Type. For example, mandatory Properties of a Resource with "rt": ["oic.r.switch.binary", 1117
"oic.r.light.brightness"] are "value" and "brightness", where the former is mandatory for 1118
"oic.r.switch.binary" and the latter for "oic.r.light.brightness". 1119

The multi-value "rt" Resource Interface set shall be the union of the sets of OCF Interfaces from 1120
the component Resource Types. The Resource Representation in response to a CRUDN action on 1121
an OCF Interface shall be the union of the schemas that are defined for that OCF Interface. The 1122
Default OCF Interface for a multi-value "rt" Resource shall be the baseline OCF Interface 1123
("oic.if.baseline") as that is the only guaranteed common OCF Interface between the Resource 1124
Types. 1125

For clarity if each Resource Type supports the same set of OCF Interfaces, then the resultant multi-1126
value "rt" Resource has that same set of OCF Interfaces with a Default OCF Interface of baseline 1127
("oic.if.baseline"). 1128

See 7.9.3 for the handling of query parameters as applied to a multi-value "rt" Resource. 1129

7.5 Device Type 1130

A Device Type is a class of Device. Each Device Type defined will include a list of minimum 1131
Resource Types that a Device shall implement for that Device Type. A Device may expose 1132
additional standard and vendor defined Resource Types beyond the minimum list. The Device Type 1133
is used in Resource discovery as specified in 11.2.3. 1134

Like a Resource Type, a Device Type can be used in the Resource Type Common Property or in a 1135
Link using the Resource Type Parameter. 1136

A Device Type may either be pre-defined by an ecosystem that builds on this document, or in 1137
custom definitions by manufacturers, end users, or developers of Devices (vendor-defined Device 1138
Types). Device Types and their definition details may be communicated out of band (like in 1139
documentation). 1140

Every Device Type shall be identified with a Resource Type ID using the same syntax constraints 1141
as a Resource Type. 1142

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 23

7.6 OCF Interface 1143

7.6.1 Introduction 1144

An OCF Interface provides first a view into the Resource and then defines the requests and 1145
responses permissible on that view of the Resource. So this view provided by an OCF Interface 1146
defines the context for requests and responses on a Resource. Therefore, the same request to a 1147
Resource when targeted to different OCF Interfaces may result in different responses. Depending 1148
on the view requested (i.e., OCF Interface), the Resource representation may not include all 1149
mandatory Properties (e.g., the "rt" and "if" Common Properties). If Common Properties are desired 1150
in the view requested, use the "oic.if.baseline" OCF Interface (see clause 7.6.3.2) which every 1151
Resource Type shall implement. 1152

An OCF Interface may be defined by either this document (a Core OCF Interface), manufacturers, 1153
end users or developers of Devices (a vendor-defined OCF Interface). 1154

The OCF Interface Property lists all the OCF Interfaces the Resource support. All Resources shall 1155
have at least one OCF Interface. The Default OCF Interface shall be defined by the Resource Type 1156
definition. The Default OCF Interface associated with all OCF-defined Resource Types shall be the 1157
supported OCF Interface listed first within the applicable enumeration in the definition of the 1158
Resource Type (see Annex A for the OCF-defined Resource Types defined in this document). The 1159
applicable enumeration is in the "parameters" enumeration referenced from the first "get" method 1160
in the first "path" in the OpenAPI 2.0 file ("post" method if no "get" exists) for the Resource Type. 1161
All Default OCF Interfaces specified in an OCF specification shall be mandatory. 1162

In addition to any defined OCF Interface in this document, all Resources shall support the baseline 1163
OCF Interface ("oic.if.baseline") as defined in 7.6.3.2. 1164

See 7.9.4 for the use of queries to enable selection of a specific OCF Interface in a request. 1165

An OCF Interface may accept more than one media type. An OCF Interface may respond with more 1166
than one media type. The accepted media types may be different from the response media types. 1167
The media types are specified with the appropriate header parameters in the transfer protocol. 1168
(NOTE: This feature has to be used judiciously and is allowed to optimize representations on the 1169
wire) Each OCF Interface shall have at least one media type. 1170

7.6.2 OCF Interface Property 1171

The OCF Interfaces supported by a Resource shall be declared using the OCF Interface Common 1172
Property (Table 7), e.g., ""if": ["oic.if.ll", "oic.if.baseline"]". The Property Value of an OCF Interface 1173
Property shall be a lower case string with segments separated by a "." (dot). The string "oic", when 1174
used as the first segment in the OCF Interface Property Value, is reserved for OCF-defined OCF 1175
Interfaces. The OCF Interface Property Value may also be a reference to an authority similar to 1176
IANA that may be used to find the definition of an OCF Interface. A Resource Type shall support 1177
one or more of the OCF Interfaces defined in 7.6.3. 1178

Table 7 – Resource Interface Property definition 1179

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

OCF
Interface

"if" "array" Array of strings,
conveying OCF
Interfaces

N/A R Yes Property to declare the
OCF Interfaces
supported by a
Resource.

 1180

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 24

7.6.3 OCF Interface methods 1181

7.6.3.1 Overview 1182

OCF Interface methods shall not violate the defined OpenAPI 2.0 definitions for the Resources as 1183
defined in Annex A. 1184

The defined OCF Interfaces are listed in Table 8: 1185

Table 8 – OCF standard OCF Interfaces 1186

OCF
Interface

Name Applicable Operations Description

baseline "oic.if.baseline" RETRIEVE, NOTIFY,
UPDATE1

The baseline OCF Interface defines a view into all
Properties of a Resource including the Common
Properties. This OCF Interface is used to operate on the
full Representation of a Resource.

links list "oic.if.ll" RETRIEVE,
NOTIFY

The links list OCF Interface provides a view into Links in
a Collection (Resource).
Since Links represent relationships to other Resources,
the links list OCF Interfaces may be used to discover
Resources with respect to a context. The discovery is
done by retrieving Links to these Resources. For
example: the Core Resource "/oic/res" uses this OCF
Interface to allow discovery of Resource hosted on a
Device.

batch "oic.if.b" RETRIEVE, NOTIFY,
UPDATE

The batch OCF Interface is used to interact with a
Collection of Resources at the same time. This also
removes the need for the Client to first discover the
Resources it is manipulating – the Server forwards the
requests and aggregates the responses

read-only "oic.if.r" RETRIEVE NOTIFY The read-only OCF Interface exposes the Properties of a
Resource that may be read. This OCF Interface does not
provide methods to update Properties, so can only be
used to read Property Values.

read-
write

"oic.if.rw" RETRIEVE, NOTIFY,
UPDATE

The read-write OCF Interface exposes only those
Properties that may be read from a Resource during a
RETRIEVE operation and only those Properties that may
be written to a Resource during and UPDATE operation.

actuator "oic.if.a" RETRIEVE, NOTIFY,
UPDATE

The actuator OCF Interface is used to read or write the
Properties of an actuator Resource.

sensor "oic.if.s" RETRIEVE, NOTIFY The sensor OCF Interface is used to read the Properties
of a sensor Resource.

create "oic.if.create" CREATE The create OCF Interface is used to create new
Resources in a Collection. Both the Resource and the
Link pointing to it are created in a single atomic
operation.

 1187

7.6.3.2 Baseline OCF Interface 1188

7.6.3.2.1 Overview 1189

The Representation that is visible using the baseline OCF Interface includes all the Properties of 1190
the Resource including the mandatory and implemented optional Common Properties. The baseline 1191
OCF Interface shall be defined for all Resource Types. All Resources shall support the baseline 1192
OCF Interface. 1193

1 The use of UPDATE with the baseline OCF Interface is not recommended, see clause 7.6.3.2.3.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 25

7.6.3.2.2 Use of RETRIEVE 1194

The baseline OCF Interface is used when a Client wants to retrieve all Properties of a Resource; 1195
that is the Server shall respond with a Resource representation that includes all of the implemented 1196
Properties of the Resource. When the Server is unable to send back the whole Resource 1197
representation, it shall reply with an error message. The Server shall not return a partial Resource 1198
representation. 1199

An example response to a RETRIEVE request using the baseline OCF Interface: 1200

{ 1201
"rt": ["oic.r.temperature"], 1202
"if": ["oic.if.a","oic.if.baseline"], 1203
"temperature": 20, 1204
"units": "C", 1205
"range": [0,100] 1206
} 1207

7.6.3.2.3 Use of UPDATE 1208

Support for the UPDATE operation using the baseline OCF Interface should not be provided by a 1209
Resource Type. Where a Resource Type needs to support the ability to be UPDATED this should 1210
only be supported using one of the other OCF Interfaces defined in Table 8 that supports the 1211
UPDATE operation. 1212

If a Resource Type is required to support UPDATE using the baseline OCF Interface, then all 1213
Properties of a Resource with the exception of Common Properties may be modified using an 1214
UPDATE operation only if the Resource Type defines support for UPDATE using baseline in the 1215
applicable OpenAPI 2.0 schema for the Resource Type. If the OCF Interfaces exposed by a 1216
Resource in addition to the baseline OCF Interface do not support the UPDATE operation, then 1217
UPDATE using the baseline OCF Interface shall not be supported. 1218

7.6.3.3 Links list OCF Interface 1219

7.6.3.3.1 Overview 1220

The Links list OCF Interface is used to provide a view into a Collection, Atomic Measurement, or 1221
"/oic.res" Resource. This view shall be an array of all Links for those Resources subject to any 1222
applied filtering being applied. The Links list OCF Interface name is "oic.if.ll". 1223

7.6.3.3.2 Use with RETRIEVE 1224

The RETRIEVE operation is supported with the Links list OCF Interface. A successful RETRIEVE 1225
operation shall return a status code indicating success (i.e. "Content") with a payload with the 1226
Resource representation as an array of Links. If there are no Links present in a Resource 1227
representation, then an empty array list shall be returned in response to a RETRIEVE operation 1228
request. 1229

An example of a RETRIEVE operation request using the Links list OCF Interface for a Collection is 1230
as illustrated: 1231

RETRIEVE /scenes/scene1?if=oic.if.ll 1232

The RETRIEVE operation response will be the array of Links to all Resources in the Collection as 1233
illustrated: 1234

Response: Content 1235
Payload: 1236
[1237
 { 1238
 "href": "/the/light/1", 1239
 "rt": ["oic.r.switch.binary"], 1240
 "if": ["oic.if.a", "oic.if.baseline"], 1241

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 26

 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1242
 }, 1243
 { 1244
 "href": "/the/light/2", 1245
 "rt": ["oic.r.switch.binary"], 1246
 "if": ["oic.if.a", "oic.if.baseline"], 1247
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1248
 }, 1249
 { 1250
 "href": "/my/fan/1", 1251
 "rt": ["oic.r.switch.binary"], 1252
 "if": ["oic.if.a", "oic.if.baseline"], 1253
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1254
 }, 1255
 { 1256
 "href": "/his/fan/2", 1257
 "rt": ["oic.r.switch.binary"], 1258
 "if": ["oic.if.a", "oic.if.baseline"], 1259
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1260
 } 1261
] 1262
 1263

7.6.3.3.3 Use with NOTIFY 1264

The NOTIFY operation is supported with the Links list OCF Interface. A successful NOTIFY 1265
operation shall return a status code indicating success (i.e. "Content") with a payload with the 1266
Resource representation as an array of Links. If there are no Links present in a Resource 1267
representation, then an empty array list shall be returned in response to a NOTIFY operation 1268
request. Future events that change the Resource representation (e.g. UPDATE operation) shall 1269
return a status code indicating success (i.e. "Content") with a payload with the newly updated 1270
Resource representation as an array of Links. 1271

An example of a NOTIFY operation request using the Links list OCF Interface for a Collection is as 1272
illustrated: 1273

NOTIFY /scenes/scene1?if=oic.if.ll 1274

The NOTIFY operation response will be the array of Links to all Resources in the Collection as 1275
illustrated: 1276

Response: Content 1277
Payload: 1278
[1279
 { 1280
 "href": "/the/light/1", 1281
 "rt": ["oic.r.switch.binary"], 1282
 "if": ["oic.if.a", "oic.if.baseline"], 1283
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1284
 }, 1285
 { 1286
 "href": "/the/light/2", 1287
 "rt": ["oic.r.switch.binary"], 1288
 "if": ["oic.if.a", "oic.if.baseline"], 1289
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1290
 }, 1291
 { 1292
 "href": "/my/fan/1", 1293
 "rt": ["oic.r.switch.binary"], 1294
 "if": ["oic.if.a", "oic.if.baseline"], 1295
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1296
 }, 1297
 { 1298

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 27

 "href": "/his/fan/2", 1299
 "rt": ["oic.r.switch.binary"], 1300
 "if": ["oic.if.a", "oic.if.baseline"], 1301
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1302
 } 1303
] 1304
 1305

Later when the "/his/fan/2" Link is removed (e.g., UPDATE operation with the Link remove OCF 1306
Interface) the response to the NOTIFY operation request is as illustrated: 1307

Response: Content 1308
Payload: 1309
[1310
 { 1311
 "href": "/the/light/1", 1312
 "rt": ["oic.r.switch.binary"], 1313
 "if": ["oic.if.a", "oic.if.baseline"], 1314
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1315
 }, 1316
 { 1317
 "href": "/the/light/2", 1318
 "rt": ["oic.r.switch.binary"], 1319
 "if": ["oic.if.a", "oic.if.baseline"], 1320
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1321
 }, 1322
 { 1323
 "href": "/my/fan/1", 1324
 "rt": ["oic.r.switch.binary"], 1325
 "if": ["oic.if.a", "oic.if.baseline"], 1326
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1327
 } 1328
] 1329

If the result of removing a Link results in no Links being present, then an empty array list shall be 1330
sent in a notification. An example of a response with no Links being present is as illustrated: 1331

Response: Content 1332
Payload: 1333
[1334
] 1335

7.6.3.3.4 Use with CREATE, UPDATE, and DELETE 1336

The CREATE, UPDATE and DELETE operations are not allowed by the Links list OCF Interface. 1337
Attempts to perform CREATE, UPDATE or DELETE operations using the Links list OCF Interface 1338
shall return an appropriate error status code, for example "Method Not Allowed". 1339

7.6.3.4 Batch OCF Interface 1340

7.6.3.4.1 Overview 1341

The batch OCF Interface is used to interact with a Collection of Resources using a single/same 1342
Request. The batch OCF Interface can be used to RETRIEVE or UPDATE the Properties of the 1343
linked Resources with a single request. 1344

7.6.3.4.2 General requirements for realizations of the batch OCF Interface 1345

All realisations of the batch OCF Interface adhere to the following: 1346

– The batch OCF Interface name is "oic.if.b" 1347

– A Collection Resource has linked Resources that are represented as URIs. In the "href" 1348
Property of the batch payload the URI shall be fully qualified for remote Resources and a 1349
relative reference for local Resources. 1350

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 28

– The original request is modified to create new requests targeting each of the linked Resources 1351
in the Collection by substituting the URI in the original request with the URI of the linked 1352
Resource. The payload in the original request is replicated in the payload of the new requests. 1353

– The requests shall be forwarded assuming use of the Default OCF Interface of the linked 1354
Resources. 1355

– Requests shall only be forwarded to linked Resources that are identified by relation types "item" 1356
or "hosts" ("hosts" is the default relation type value should the "rel" Link Parameter not be 1357
present). Requests shall not be forwarded to linked Resources that do not contain the "item" or 1358
"hosts" relation type values. 1359

– Properties of the Collection Resource itself may be included in payloads using "oic.if.b" OCF 1360
Interface by exposing a single Link with the link relation "self" along with "item" within the 1361
Collection, and ensuring that Link resolution cannot become an infinite loop due to recursive 1362
references. For example, if the Default OCF Interface of the Collection is "oic.if.b", then the 1363
Server might recursively include its batch representation within its batch representation, in an 1364
endless loop. See 7.6.3.4.5 for an example of use of a Link containing "rel": ["self","item"] to 1365
include Properties of the Collection Resource, along with linked Resources, in "oic.if.b" 1366
payloads. 1367

– If the Default OCF Interface of a Collection Resource is exposed using the Link relation "self", 1368
and the Default OCF Interface contains Properties that expose any Links, those Properties shall 1369
not be included in a batch representation which includes the "self" Link. 1370

– Any request forwarded to a linked Resource that is a Collection (including a "self" Link reference) 1371
shall have the Default OCF Interface of the linked Collection Resource applied. 1372

– All the responses from the linked Resources shall be aggregated into a single Response to the 1373
Client. The Server may timeout the response to a time window, the Server may choose any 1374
appropriate window based on conditions. 1375

– If a linked Resource cannot process the request, an empty response, i.e. a JSON object with 1376
no content ("{}") as the representation for the "rep" Property, or error response should the linked 1377
Resource Type provide an error schema or diagnostic payload, shall be returned by the linked 1378
Resource. These empty or error responses for all linked Resources that exhibit an error shall 1379
be included in the aggregated response to the original Client request. See the example in 1380
7.6.3.4.5. 1381

– If any of the linked Resources returns an error response, the aggregated response sent to the 1382
Client shall also indicate an error (e.g. 4.xx in CoAP). If all of the linked Resources return 1383
successful responses, the aggregated response shall include the success response code. 1384

– The aggregated response shall be an array of objects representing the responses from each 1385
linked Resource. Each object in the response shall include at least two items: (1) the URI of 1386
the linked Resource (fully qualified for remote Resources, or a relative reference for local 1387
Resources) as "href": <URI> and (2) the individual response object or array of objects if the 1388
linked Resource is itself a Collection using "rep" as the key, e.g. "rep": { <representation of 1389
individual response> }. 1390

– The Client may specify the Resource Type(s) of the linked Resources to which the request is 1391
forwarded by including one or more "rt" query parameters in the request, each separated by an 1392
"&" as a delimiter (e.g. "?if=oic.if.b&rt=oic.r.switch.binary"). The Server shall then process such 1393
additional query parameters in a request that includes "oic.if.b", as selectors for the Linked 1394
Resources that are to be processed by the request. 1395

7.6.3.4.3 Observability of the batch OCF Interface 1396

When a Collection supports the ability to be observed using the batch OCF Interface the following 1397
apply: 1398

– If the Collection Resource is marked as Observable, linked Resources referenced in the 1399
Collection may be Observed using the batch OCF Interface. If the Collection Resource is not 1400

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 29

marked as Observable then the Collection cannot be Observed and Observe requests to the 1401
Collection shall be handled as defined for the case where request validation fails in clause 1402
11.3.2.4. The Observe mechanism shall work as defined in 11.3.2 with the Observe request 1403
forwarded to each of the linked Resources. All responses to the request shall be aggregated 1404
into a single response to the Client using the same representations and status codes as for 1405
RETRIEVE operations using the batch OCF Interface. 1406

– Should any one of the Observable linked Resources fail to honour the Observe request the 1407
response to the batch Observe request shall also indicate that the entire request was not 1408
honoured using the mechanism described in 11.3.2.4. 1409

– If any of the Observable Resources in a request to a Collection using the batch OCF Interface 1410
replies with an error or Observe Cancel, the Observations of all other linked Resources shall 1411
be cancelled and the error or Observe Cancel status shall be returned to the Observing Client. 1412

NOTE Behavior may be different for Links that do network requests vs. local Resources. 1413

– All notifications to the Client that initiated an Observe request using the batch OCF Interface 1414
shall use the batch representation for the Collection. This is the aggregation of any individual 1415
Observe notifications received by the Device hosting the Collection from the individual Observe 1416
requests that were forwarded to the linked Resources. 1417

– Linked Resources which are not marked Observable in the Links of a Collection shall not trigger 1418
Notifications, but may be included in the response to, and subsequent Notifications resulting 1419
from, an Observe request to the batch OCF Interface of a Collection. 1420

– Each notification shall contain the most current values for all of the Linked Resources that would 1421
be included if the original Observe request were processed again. The Server hosting the 1422
Collection may choose to RETRIEVE all of the linked Resources each time, or may choose to 1423
employ caching to avoid retrieving linked Resources on each Notification. 1424

– If a Linked Resource is Observable and has responded with a successful Observe response, 1425
the most recently reported value of that Resource is considered to be the most current value 1426
and may be reported in all subsequent Notifications. 1427

– Links in the Collection should be Observed by using the "oic.if.ll" OCF Interface. A notification 1428
shall be sent any time the contents of the "oic.if.ll" OCF Interface representation are changed; 1429
that is, if a Link is added, if a Link is removed, or if a Link is updated. Notifications on the 1430
"oic.if.ll" OCF Interface shall contain all of the Links in the "oic.if.ll" OCF Interface representation. 1431

– Other Properties of the Collection Resource, if present, may be Observed by using the OCF 1432
Interfaces defined in the definition for the Resource Type, including using the "oic.if.baseline" 1433
OCF Interface. 1434

7.6.3.4.4 UPDATE using the batch OCF Interface 1435

When a Collection supports the ability for the linked Resources to be the subject of the UPDATE 1436
operation using the batch OCF Interface the following apply: 1437

– A Client shall perform UPDATE operations using the batch OCF Interface by creating a payload 1438
that is similar to a RETRIEVE response payload from a batch OCF Interface request. The Server 1439
shall send a separate UPDATE request to each of the linked Resources according to each "href" 1440
Property and the corresponding value of the "rep" Property. 1441

– Items shall always contain a link-specific "href". 1442

– An UPDATE received by a Server with an empty "href" shall be rejected with a response 1443
indicating an appropriate error (e.g. bad request). 1444

– Each linked Resource shall follow the requirements for an UPDATE request may not be 1445
supported by the linked Resource. In such cases, writable Properties in the UPDATE operation 1446
as defined in clause 8.4. 1447

– The UPDATE response shall contain the updated values using the same payload schema as 1448
RETRIEVE operations if provided by the linked Resource, along with the appropriate status 1449

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 30

code. The aggregated response payload shall reflect the known state of the updated Properties 1450
after the batch update was completed. If no payload is provided by the updated Resource, then 1451
an empty response (i.e. "rep": {}) shall be provided for that Resource. 1452

– A Collection shall not support the use of the UPDATE operation to add, modify, or remove Links 1453
in an existing Collection using the "oic.if.baseline", "oic.if.rw" or "oic.if.a" OCF Interfaces. 1454

– A Collection shall not support the use of the UPDATE operation using the batch OCF Interface 1455
when the Collection contains Links that resolve to Resources that are not hosted on the Device 1456
that also hosts the Collection. If such a Collection receives an UPDATE operation, the operation 1457
shall be rejected with a response indicating an appropriate error (e.g. method not allowed). If 1458
the ability to UPDATE linked remote Resources is desired, the use of the optional scene feature 1459
(see clause 11.6 in [1]) to effect the UPDATE could be utilizied. 1460

7.6.3.4.5 Examples: Batch OCF Interface 1461

Note that the examples provided in Table 9 are illustrative and do not include all mandatory schema 1462
elements in all cases. It is assumed that the Default OCF Interface for the Resource Type 1463
"x.org.example.rt.room" is specified in its Resource Type definition file as "oic.if.rw", which exposes 1464
the Properties "x.org.example.colour" and "x.org.example.size". 1465

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 31

Table 9 – Batch OCF Interface Example 1466

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 32

Resources /a/room/1
{
 "rt": "x.org.example.rt.room"],
 "if": ["oic.if.rw","oic.if.baseline","oic.if.b","oic.if.ll"],
 "x.org.example.colour": "blue",
 "x.org.example.dimension": "15bx15wx10h",
 "links": [
 {"href": "/a/room/1", "rel": ["self", "item"], "rt":
["x.org.example.rt.room"], "if":
["oic.if.rw","oic.if.baseline","oic.if.b","oic.if.ll"],"p": {"bm": 2} },
 {"href": "/the/light/1", "rel": ["item"], "rt": ["oic.r.switch.binary"],
"if": ["oic.if.a","oic.if.baseline"], "ins": "11111", "p": {"bm": 2} },
 {"href": "/the/light/2", "rel": ["item"], "rt": ["oic.r.switch.binary"],
"if": ["oic.if.a" ,"oic.if.baseline"], "ins": "22222", "p": {"bm": 2} },
 {"href": "/my/fan/1", "rel": ["item"], "rt": ["oic.r.switch.binary"],
"if": ["oic.if.a", "oic.if.baseline"], "ins": "33333", "p": {"bm": 2} },
 {"href": "/his/fan/2", "rel": ["item"], "rt": ["oic.r.switch.binary"],
"if": ["oic.if.a", "oic.if.baseline"], "ins": "44444", "p": {"bm": 2} },
 {"href": "/the/presence/1", "rel": ["item"], "rt":
"oic.r.sensor.presence"], "if": ["oic.if.s", "oic.if.baseline"], "ins":
"55555", "p": {"bm": 2} },
 {"href": "/the/switches/1", "rel": ["item"], "rt": ["oic.wk.col"],
"if":["oic.if.ll", "oic.if.b", "oic.if.baseline"], "ins": "55555", "p": {"bm":
2} }
]
}

/the/light/1
{
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "value": false
}

/the/light/2
{
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "value": true
}

/my/fan/1
{
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "value": true
}

/his/fan/2
{
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "value": false
}

/the/presence/1
{
"rt": ["oic.r.sensor.presence"],
"if": ["oic.if.s","oic.if.baseline"],
"value": false

}

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 33

/the/switches/1
{
 "rt": ["oic.wk.col"],
 "if":["oic.if.ll", "oic.if.b", "oic.if.baseline"],
"links": [
 {
 "href": "/switch-1a",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a","oic.if.baseline"],
 "p": {"bm": 2}
 }
 {
 "href": "/switch-1b",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a","oic.if.baseline"],
 "p": {"bm": 2 }
 }
]
}

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 34

Use of batch,
successful
response

Request: GET /a/room/1?if=oic.if.b
Becomes the following individual request messages issued by the Device in the Client role

GET /a/room/1 (NOTE: uses the Default OCF Interface as specified for the
Collection Resource, in this example oic.if.rw)
GET /the/light/1 (NOTE: Uses the Default OCF Interface as specified for this
Resource)
GET /the/light/2 (NOTE: Uses the Default OCF Interface as specified for this
Resource)
GET /my/fan/1 (NOTE: Uses the Default OCF Interface as specified for this
Resource)
GET /his/fan/2 (NOTE: Uses the Default OCF Interface as specified for this
Resource)
GET /the/presence/1 (NOTE: Uses the Default OCF Interface as specified for
this Resource)
GET /the/switches/1 (NOTE: Uses the Default OCF Interface for the Collection
that is within the Collection)
Response:
[
 {
 "href": "/a/room/1",
 "rep": {"x.org.example.colour": "blue","x.org.example.dimension":
"15bx15wx10h"}
 },
 {
 "href": "/the/light/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/light/2",
 "rep": {"value": true}
 },
 {
 "href": "/my/fan/1",
 "rep": {"value": true}
 },
 {
 "href": "/his/fan/2",
 "rep": {"value": false}
 },
 {
 "href": "/the/presence/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/switches/1",
 "rep": [
 {
 "href": "/switch-1a",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a","oic.if.baseline"],
 "p": {"bm": 2},
 "eps":[
 {"ep": "coaps://[2001:db8:a::b1d4]:55555"}
]
 },
 {
 "href": "/switch-1b",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a","oic.if.baseline"],
 "p": {"bm": 2 },
 "eps":[
 {"ep": "coaps://[2001:db8:a::b1d4]:55555"}

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 35

]
 }]
 }
]

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 36

Use of batch,
error

response

Should any of the RETRIEVE requests in the previous example fail then the response includes an empty
payload for that Resource instance and an error code is sent. The following example assumes errors from
"/my/fan/1" and "/the/switches/1"

Error Response:

[
 {
 "href": "/a/room/1",
 "rep": {"x.org.example.colour": "blue","x.org.example.dimension":
"15bx15wx10h"}
 },
 {
 "href": "/the/light/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/light/2",
 "rep": {"value": true}
 },
 {
 "href": "/my/fan/1",
 "rep": {}
 },
 {
 "href": "/his/fan/2",
 "rep": {"value": false}
 },
 {
 "href": "/the/presence/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/switches/1",
 "rep": {}
 }
]

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 37

Use of batch
(UPDATE has

POST
semantics)

UPDATE /a/room/1?if=oic.if.b
[
 {
 "href": "/the/light/1",
 "rep": {
 "value": false
 }
 },
 {
 "href": "/the/light/2",
 "rep": {
 "value": true
 }
 },
 {
 "href": "/a/room/1",
 "rep": {
 "x.org.example.colour": "red"
 }
 }
]

This turns /the/light/1 off, turns /the/light/2 on, and sets the colour of /a/room/1 to "red".

The response will be same as response for GET /a/room/1?if=oic.if.b with the updated Property values as
shown.

[
 {
 "href": "/a/room/1",
 "rep":{"x.org.example.colour": "red",
 "x.org.example.dimension": "15bx15wx10h"}
 },
 {
 "href": "/the/light/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/light/2",
 "rep": {"value": true}
 }
]

Example use of additional query parameters to select items by matching Link Parameters.

Retrieving all items that are Presence Sensors ("oic.r.sensor.presence"):

RETRIEVE /a/room/1?if=oic.if.b&rt=oic.r.sensor.presence

Response payload:

[
 {
 "href": "/the/presence/1",
 "rep": {
 "value": false
 }
 }
]

 1467

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 38

7.6.3.5 Actuator OCF Interface 1468

The actuator OCF Interface is the OCF Interface for viewing Resources that may be actuated i.e. 1469
changes some value within or the state of the entity abstracted by the Resource: 1470

– The actuator OCF Interface name shall be "oic.if.a" 1471

– The actuator OCF Interface shall expose in the Resource Representation all mandatory 1472
Properties as defined by the applicable OpenAPI 2.0 schema; the actuator OCF Interface may 1473
also expose in the Resource Representation optional Properties as defined by the applicable 1474
OpenAPI 2.0 schema that are implemented by the target Device. 1475

For example, a "Heater" Resource (for illustration only): 1476

/a/act/heater 1477
{ 1478
 "rt": ["x.com.acme.gas"], 1479
 "if": ["oic.if.baseline", "oic.if.r", "oic.if.a", "oic.if.s"], 1480
 "x.com.acme.settemp": 10, 1481
 "x.com.acme.currenttemp" : 7 1482
} 1483

The actuator OCF Interface with respect to "Heater" Resource (for illustration only): 1484
 1485
a) Retrieving values of an actuator. 1486

Request: RETRIEVE /a/act/heater?if="oic.if.a" 1487
 1488
Response: Content 1489
Payload: 1490
{ 1491
 "x.com.acme.settemp": 10, 1492
 "x.com.acme.currenttemp" : 7 1493
} 1494

b) Correct use of actuator OCF Interface. 1495

 1496
Request: UPDATE /a/act/heater?if="oic.if.a" 1497
{ 1498
 "x.com.acme.settemp": 20 1499
} 1500
Response: Changed 1501
Payload: 1502
{ 1503
 "x.com.acme.settemp": 20 1504
} 1505

c) Incorrect use of actuator OCF Interface. 1506

 1507
Request: UPDATE /a/act/heater?if="oic.if.a" 1508
{ 1509
 "if": ["oic.if.s"] this is visible through baseline OCF Interface 1510
} 1511
Response:Bad Request 1512
Payload: 1513
{ 1514
} 1515

– A RETRIEVE request using this OCF Interface shall return the Representation for this Resource 1516
as defined by the applicable OpenAPI 2.0 schema, subject to any query parameters that may 1517
also be defined as part of the applicable OpenAPI 2.0 schema. 1518

– An UPDATE request using this OCF Interface shall provide a payload or body that contains the 1519
Properties that will be updated on the target Resource. 1520

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 39

7.6.3.6 Sensor OCF Interface 1521

The sensor OCF Interface is the OCF Interface for retrieving measured, sensed or capability 1522
specific information from a Resource that senses: 1523

– The sensor OCF Interface name shall be "oic.if.s". 1524

– The sensor OCF Interface shall expose in the Resource Representation all mandatory 1525
Properties as defined by the applicable OpenAPI 2.0 schema; the sensor OCF Interface may 1526
also expose in the Resource Representation optional Properties as defined by the applicable 1527
OpenAPI 2.0 schema that are implemented by the target Device. 1528

– A RETRIEVE request using this OCF Interface shall return this representation for the Resource 1529
as defined by the applicable OpenAPI 2.0 schema, subject to any query parameters that may 1530
also be defined as part of the applicable OpenAPI 2.0 schema. 1531

NOTE: The example here is with respect to retrieving values of a sensor 1532

 1533
Request: RETRIEVE /a/act/heater?if="oic.if.s" 1534
 1535
Response: Content 1536
Payload: 1537
{ 1538
 "x.com.acme.currenttemp": 7 1539
} 1540
 1541

Incorrect use of the sensor. 1542

Request: UPDATE /a/act/heater?if="oic.if.s" UPDATE is not allowed 1543
{ 1544
 "x.com.acme.settemp": 20 this is possible through actuator OCF Interface 1545
} 1546
Response: Bad Request 1547
Payload: 1548
{ 1549
} 1550
 1551

Another incorrect use of the sensor. 1552

Request: UPDATE /a/act/heater?if="oic.if.s" UPDATE is not allowed 1553
{ 1554
 "x.com.acme.currenttemp": 15 this is not possible to be updated 1555
} 1556
Response: Bad Request 1557
Payload: 1558
{ 1559
} 1560

7.6.3.7 Read-only OCF Interface 1561

The read-only OCF Interface exposes only the Properties that may be read. This includes 1562
Properties that may be read-only, read-write but not Properties that are write-only or set-only. The 1563
applicable operations that can be applied to a Resource are only RETRIEVE and NOTIFY. An 1564
attempt by a Client to apply a method other than RETRIEVE or NOTIFY to a Resource shall be 1565
rejected with an error response code. 1566

The read-only OCF Interface with respect to "Heater" Resource (for illustration only): 1567

Request: RETRIEVE /a/act/heater?if="oic.if.r" 1568
Response: Content 1569
Payload: 1570
{ 1571

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 40

 "x.com.acme.settemp": 10, 1572
 "x.com.acme.currenttemp" : 7 1573
} 1574

7.6.3.8 Read-write OCF Interface 1575

The read-write OCF Interface is a generic OCF Interface to support reading and setting Properties 1576
in a Resource. The applicable methods that can be applied to a Resource are only RETRIEVE, 1577
NOTIFY, and UPDATE. For the RETRIEVE and NOTIFY operations, the behaviour is the same as 1578
for the "oic.if.r" OCF Interface defined in 7.6.3.7. For the UPDATE operation, read-only Properties 1579
(i.e. Properties tagged with "readOnly=true" in the OpenAPI 2.0 definition) shall not be in the 1580
UPDATE payload. An attempt by a Client to apply a method other than RETRIEVE, NOTIFY, or 1581
UPDATE to a Resource shall be rejected with an error response code. 1582

For example, a "Grinder" Resource (for illustration only): 1583

/a/mygrinder 1584
{ 1585
 "rt": ["oic.r.grinder"], 1586
 "if": ["oic.if.rw", "oic.if.baseline"], 1587
 "coarseness": 10, 1588
 "remaining": 50 1589
} 1590

 1591

The read-write OCF Interface with respect to “Grinder" Resource (for illustration only): 1592

a) Retrieving the value with read-write OCF Interface 1593

 1594
Request: RETRIEVE /a/mygrinder?if="oic.if.rw" 1595
 1596
Response: Content 1597
Payload: 1598
{ 1599
 "coarseness": 10, 1600
 "remaining": 50 1601
} 1602
 1603

b) Updating the value with read-write OCF Interface 1604

 1605
Request: UPDATE /a/mygrinder?if="oic.if.rw" 1606
{ 1607
 "coarseness": 20 1608
} 1609
 1610
Response: Changed 1611
Payload: 1612
{ 1613
 "coarseness": 20 1614
} 1615

7.6.3.9 Create OCF Interface 1616

7.6.3.9.1 Overview 1617

The create OCF Interface is used to create Resource instances in a Collection. An instance of a 1618
Resource and the Link pointing to the Resource are created together, atomically, according to a 1619
Client-supplied representation. The create OCF Interface name is "oic.if.create". A Collection which 1620
exposes the "oic.if.create" OCF Interface shall expose the "rts" Property (see clause 7.8.2.8) with 1621
all Resource Types that can be hosted with the Collection. If a Client attempts to create a Resource 1622
Type which is not supported by the Collection, the Server shall return an appropriate error status 1623

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 41

code, for example "Bad Request". Successful CREATE operations shall return a success code, i.e. 1624
"Created". The IDD for all allowed Resource Types that may be created shall adhere to 1625
Introspection for dynamic Resources (see clause 11.4). 1626

7.6.3.9.2 Data format for CREATE 1627

The data format for the create OCF Interface is similar to the data format for the batch OCF 1628
Interface. The create OCF Interface format consists of a set of Link Parameters and a "rep" 1629
Parameter which contains a representation for the created Resource. 1630

The representation supplied for the Link pointing to the newly created Resource shall contain at 1631
least the "rt" and "if" Link Parameters. 1632

The Link Parameter "p" should be included in representations supplied for all created Resources. 1633
If the "Discoverable" bit is set, then the supplied Link representation shall be exposed in "/oic/res" 1634
of the Device on which the Resource is being created. The Link Parameters representation in the 1635
"/oic/res" Resource does not have to mirror the Link Parameters in the Collection of the created 1636
Resource (e.g., "ins" Parameter). 1637

Creating a discoverable Resource is the only way to add a Link to "/oic/res". 1638

If the "p" Parameter is not included, the Server shall create the Resource using the default settings 1639
of not discoverable, and not observable. 1640

The representation supplied for a created Resource in the value of the "rep" Parameter shall 1641
contain all mandatory Properties required by the Resource Type to be created excluding the 1642
Common Properties "rt" and "if" as they are already included in the create payload. 1643

Note that the "rt" and "if" Property Values are created from the supplied Link Parameters of the 1644
Resource creation payload. 1645

If the supplied representation does not contain all of the required Properties and Link Parameters, 1646
the Server shall return an appropriate error status code, for example "Bad Request". 1647

An example of the create OCF Interface payload is as illustrated: 1648

{ 1649
 "rt": ["oic.r.temperature"], 1650
 "if": ["oic.if.a","oic.if.baseline"], 1651
 "p": {"bm":3}, 1652
 "rep": { 1653
 "temperature": 20 1654
 } 1655
} 1656

The representation returned when a Resource is successfully created shall contain the "href", "if", 1657
and "rt" Link Parameters and all other Link Parameters that were included in the CREATE operation. 1658
In addition, the "rep" Link Parameter shall include all Resource Properties as well as the "rt" and 1659
"if" Link Parameters supplied in the CREATE operation. The Server may include additional Link 1660
Parameters and Properties in the created Resource as required by the application-specific 1661
Resource Type. The Server shall assign an "ins" value to each created Link and shall include the 1662
"ins" Parameter in the representation of each created Link as illustrated in the Collection that the 1663
Link of the created Resource was created within: 1664

{ 1665
 "href": "/3755f3ac", 1666
 "rt": ["oic.r.temperature"], 1667
 "if": ["oic.if.a","oic.if.baseline"], 1668
 "ins": 39724818, 1669
 "p": {"bm":3}, 1670

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 42

 "rep": { 1671
 "rt": ["oic.r.temperature"], 1672
 "if": ["oic.if.a","oic.if.baseline"], 1673
 "temperature": 20 1674
 } 1675
} 1676

The Link Parameters representation in the "/oic/res" Resource, if the created Resource is 1677
discoverable, may not mirror exactly all the Link Parameters added in the Collection; except it shall 1678
expose at a minimum the mandatory Properties of the Link (i.e., "rt", "if", and "href") of the created 1679
Resource. 1680

7.6.3.9.3 Use with CREATE 1681

The CREATE operation shall be sent to the URI of the Collection in which the Resource is to be 1682
created. The query string "?if=oic.if.create" shall be included in all CREATE operations. 1683

The Server shall generate a URI for the created Resource and include the URI in the "href" 1684
Parameter of the created Link. 1685

When a Server successfully completes a CREATE operation using the "oic.if.create" OCF Interface 1686
addressing a Collection, the Server shall automatically modify the ACL Resource to provide initial 1687
authorizations for accessing for the newly created Resource according to ISO/IEC 30118-2. 1688

An example performing a CREATE operation is as illustrated: 1689

CREATE /scenes/scene1?if=oic.if.create 1690
{ 1691
 "rt": ["oic.r.temperature"], 1692
 "if": ["oic.if.a","oic.if.baseline"], 1693
 "p": {"bm":3}, 1694
 "rep": { 1695
 "temperature": 20 1696
 } 1697
} 1698
Response: Created 1699
Payload: 1700
{ 1701
 "href": "/3755f3ac", 1702
 "ins": 39724818, 1703
 "rt": ["oic.r.temperature"], 1704
 "if": ["oic.if.a","oic.if.baseline"], 1705
 "p": {"bm":3}, 1706
 "rep": { 1707
 "rt": ["oic.r.temperature"], 1708
 "if": ["oic.if.a","oic.if.baseline"], 1709
 "temperature": 20 1710
 } 1711
} 1712

7.6.3.9.4 Use with UPDATE and DELETE 1713

The UPDATE and DELETE operations are not allowed by the create OCF Interface. Attempts to 1714
perform UPDATE or DELETE operations using the create OCF Interface shall return an appropriate 1715
error status code, for example "Method Not Allowed", unless the UPDATE and CREATE operations 1716
map to the same transport binding method (e.g., CoAP with the POST method). In that situation 1717
where the UPDATE and CREATE operations map to the same transport binding method, this shall 1718
be processed as a CREATE operation according to clause 7.6.3.9.3. 1719

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 43

7.7 Resource representation 1720

Resource representation captures the state of a Resource at a particular time. The Resource 1721
representation is exchanged in the request and response interactions with a Resource. A Resource 1722
representation may be used to retrieve or update the state of a Resource. 1723

The Resource representation shall not be manipulated by the data connectivity protocols and 1724
technologies (e.g., CoAP, UDP/IP or BLE). 1725

7.8 Structure 1726

7.8.1 Introduction 1727

In many scenarios and contexts, the Resources may have either an implicit or explicit structure 1728
between them. This may be achieved through the use of Collection (7.8.3) and Atomic 1729
Measurement (7.8.4) Resources. 1730

7.8.2 Resource relationships (Links) 1731

7.8.2.1 Introduction 1732

Resource relationships are expressed as Links. A Link is a hyperlink, which defines a typed 1733
connection between two Resources. Hyperlinks, or web links, have the following components as 1734
defined in IETF RFC 8288: 1735

– Link context (URI reference) as defined in 7.8.2.2 1736

– Link relation type as defined in 7.8.2.3 1737

– Link target (URI reference) as defined in 7.8.2.4 1738

– Link target attributes as defined in 7.8.2.5 1739

The Link context is the Resource with which the Link is associated. A Link is viewed as a statement 1740
of the form "(Link context) has a (Link relation type) to a Resource at (Link target), which has (Link 1741
target attributes)" as per IETF RFC 8288 clause 2. 1742

To paraphrase, the Link target is related to the Link context according to the Link relation type. 1743
Additionally, the Link target attributes make semantic statements about the Link target, to identify 1744
the content type, physical location, etc. 1745

Links conform to the definitions in IETF RFC 8288, with an example JSON serialization with 1746
associated Link Parameters as illustrated: 1747

{ 1748
 "anchor": "/some/ocf/resource", // Link context, optional 1749
 "rel": ["hosts"], // Link relation Type, optional 1750
 "href": "/some/other/ocf/resource", // Link target, required 1751
 "p": {"bm": 3}, // Link target attributes, optional 1752
 "if": ["oic.if.baseline"], // Link target attributes, required 1753
 "rt": ["oic.r.sensor"] // Link target attributes, required 1754
} 1755

 1756

Additional items in the Link may be made mandatory based on the use of the Links in different 1757
contexts (e.g. in Collections, in discovery, in bridging etc.). The OpenAPI 2.0 file for the Link 1758
payload is detailed in Annex A. 1759

Another example of a Link is as illustrated: 1760

{"href": "/switch", "rt": ["oic.r.switch.binary"], "if": ["oic.if.a", 1761
"oic.if.baseline"], "p": {"bm": 3}, "rel": "item"} 1762

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 44

7.8.2.2 Link context 1763

The Link context is defined in the Link using the "anchor" Parameter. If the Link doesn't contain an 1764
"anchor" Parameter, the Link context shall be the Resource from which the Link was retrieved. 1765

7.8.2.3 Link relation type 1766

The Link relation type conveys the semantics of the Link. The Link relation type is defined in the 1767
Link using the "rel" Parameter. If the Link doesn't contain a "rel" Parameter, the Link relation type 1768
shall be assumed to have the default value "hosts", which means that the Resource at the Link 1769
target is "hosted" by the Resource at the Link context. The set of Link relation types to be used to 1770
describe various relationships between Resources are as listed: 1771

– "hosts" 1772

– The Link target points to a Resource that is hosted at the Link context. This Link relation 1773
type indicates that the Resource is allowed to be included in the batch representations of 1774
the Link target. This Link relation type is defined by IETF RFC 6690. 1775

– "self" 1776

– The Link refers to the Link context, which allows a Link to describe the Resource at the Link 1777
context, which is to say that the Link can describe the Collection or Atomic Measurement 1778
Resource that the Link is retrieved from. The Link target points to the Link context, and the 1779
Link target attributes describe the Link context. This Link relation type is defined by 1780
IETF RFC 4287. 1781

– "item" 1782

– The Link target points to a Resource that is a member of the Collection or Atomic 1783
Measurement at the Link context, which might not specifically be hosted by the Collection 1784
or Atomic Measurement Resource, and is allowed to be contained in batch representations 1785
of the Collection or Atomic Measurement. An example is using "rel": "item" to declare that 1786
the Properties of the Collection or Atomic Measurement Resource itself should be included 1787
in a batch representation of the Collection or Atomic Measurement. This Link relation type 1788
is defined by IETF RFC 6573. 1789

All of these Link relation types are registered in the IANA Registry for Link relations types defined 1790
in IANA Link Relations. Other Link relation types may be included in Links, provided that they 1791
conform to the requirements in IETF RFC 8288. Other Link relation types may be defined for 1792
features contained in other specifications and may not be included in what is defined in this clause. 1793
The presence of Link relation types not defined in this document does not affect the processing of 1794
Link relation types defined in this document. 1795

When there is more than one Link relation type value in a Link, all of the values apply to describe 1796
the relationship between the Link context and the Link target. A Link with multiple Link relation type 1797
values is equivalent to a set of Links having the same Link context and Link target, each having 1798
one of the Link relation values. 1799

7.8.2.4 Link target 1800

The Link target is a URI reference to a Resource using the "href" Parameter. 1801

7.8.2.5 Parameters for Link target attributes 1802

7.8.2.5.1 Introduction 1803

Link target attributes are specialisations of Link Parameters. Table 10 lists all the Link target 1804
attributes defined in this document. 1805

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 45

Table 10 – Link target attributes list 1806

Parameter
title

Parameter
name

Mandatory Description

Device UUID "di" No Defined in clause 7.8.2.5.5

OCF Endpoint
information

"eps" No Defined in clause 7.8.2.5.6

OCF Interface "if" Yes Defined in clause 7.6

Link instance "ins" No Defined in clause 7.8.2.5.2

Policy "p" No Defined in clause 7.8.2.5.3

Resource Type "rt" Yes Defined in clause 7.4

Media type "type" No Defined in clause 7.8.2.5.4

Position
description
Semantic Tag

"tag-pos-desc" No Defined in clause 11.5.2.1.2

Relative
position
Semantic Tag

"tag-pos-rel" No Defined in clause 11.5.2.1.3

Function
description
Semantic Tag

"tag-func-desc" No Defined in clause 11.5.2.2.2

Location
description
Semantic Tag

"tag-locn" No Defined in clause 11.5.2.3.2

Note: Other Link target attributes may to defined for features in other specifications and may not be included in this table. 1807

7.8.2.5.2 "ins" or Link instance Parameter 1808

The "ins" Parameter identifies a particular Link instance in a list of Links. The "ins" Parameter may 1809
be used to modify or delete a specific Link in a list of Links. The value of the "ins" Parameter is set 1810
at instantiation of the Link by the OCF Device (Server) that is hosting the list of Links – once it has 1811
been set, the "ins" Parameter shall not be modified for as long as the Link is a member of that list. 1812

7.8.2.5.3 "p" or policy Parameter 1813

The policy Parameter defines various rules for correctly accessing a Resource referenced by a 1814
target URI. The policy rules are configured by a set of key-value pairs. 1815

The policy Parameter "p" is defined by: 1816

– "bm" key: The "bm" key corresponds to an integer value that is interpreted as an 8-bit bitmask. 1817
Each bit in the bitmask corresponds to a specific policy rule. The rules are specified for "bm" in 1818
Table 11: 1819

Table 11 – "bm" Property definition 1820

Bit Position Policy rule Comment

Bit 0 (the LSB) discoverable The discoverable rule defines whether the Link is to be
included in the Resource discovery message via "/oic/res".
If the Link is to be included in the Resource discovery
message, then "p" shall include the "bm" key and set the
discoverable bit to value 1.
If the Link is NOT to be included in the Resource discovery
message, then "p" shall either include the "bm" key and set
the discoverable bit to value 0 or omit the "bm" key entirely.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 46

Bit 1 (2nd LSB) observable The Observable rule defines whether the Resource
referenced by the target URI supports the NOTIFY operation.
With the self-link, i.e. the Link with "rel" value of "self",
"/oic/res" can have a Link with the target URI of "/oic/res" and
indicate itself Observable. The "self" is defined by
IETF RFC 4287 and registered in the IANA Registry for "rel"
value defined at IANA Link Relations.
If the Resource supports the NOTIFY operation, then "p" shall
include the "bm" key and set the Observable bit to value 1.
If the Resource does NOT support the NOTIFY operation,
then "p" shall either include the "bm" key and set the
Observable bit to value 0 or omit the "bm" key entirely.

Bits 2-7 -- Reserved for future use. All reserved bits in "bm" shall be set
to value 0.

 1821

NOTE If all the bits in "bm" are defined to value 0, then the "bm" key may be omitted entirely from "p" as an efficiency 1822
measure. However, if any bit is set to value 1, then "bm" shall be included in "p" and all the bits shall be defined 1823
appropriately. 1824

– In a payload sent in response to a request that includes an OCF-Accept-Content-Format-1825
Version option the "eps" Parameter shall provide the information for an encrypted connection. 1826

– Note that access to the Resource is controlled by the ACL for the Resource. A successful 1827
encrypted connection does not ensure that the requested action will succeed. See 1828
ISO/IEC 30118-2 clause 12 for more information. 1829

This shows the policy Parameter for a Resource that is discoverable but not Observable. 1830

"p": {"bm": 1} 1831

This shows a self-link, i.e. the "/oic/res" Link in itself that is discoverable and Observable. 1832

{ 1833
 "href": "/oic/res", 1834
 "rel": "self", 1835
 "rt": ["oic.wk.res"], 1836
 "if": ["oic.if.ll", "oic.if.baseline"], 1837
 "p": {"bm": 3} 1838
} 1839

7.8.2.5.4 "type" or media type Parameter 1840

The "type" Parameter may be used to specify the various media types that are supported by a 1841
specific target Resource. The default type of "application/vnd.ocf+cbor" shall be used when the 1842
"type" element is omitted. Once a Client discovers this information for each Resource, it may use 1843
one of the available representations in the appropriate header field of the Request or Response. 1844

7.8.2.5.5 "di" or Device UUID Parameter 1845

The "di" Parameter specifies the Device UUID of the Device that hosts the target Resource defined 1846
in the in the "href" Parameter. 1847

The Device UUID may be used to qualify a relative reference used in the "href" or to lookup OCF 1848
Endpoint information for the relative reference. 1849

7.8.2.5.6 "eps" Parameter 1850

The "eps" Parameter indicates the OCF Endpoint information of the target Resource. 1851

A Device shall populate all exposed "eps" Link Parameters with an array of items representing OCF 1852
Endpoint information as specified in 10.2. Each entry in that array shall include an "ep" Property, 1853
and may include the optional "pri" and "lat" Properties. 1854

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 47

This is an example of "eps" with multiple OCF Endpoints. 1855

"eps": [1856
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2, "lat": 240}, 1857
 {"ep": "coaps://[fe80::b1d6]:1122", "lat": 240}, 1858
 {"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri": 3} 1859
] 1860

When "eps" is present in a link, the OCF Endpoint information in "eps" can be used to access the 1861
target Resource referred by the "href" Parameter. 1862

Note that the type of OCF Endpoint – Secure or Unsecure – that a Resource exposes merely 1863
determines the connection type(s) guaranteed to be available for sending requests to the Resource. 1864
For example, if a Resource only exposes a single CoAP "ep", it does not guarantee that the 1865
Resource cannot also be accessed via a Secure OCF Endpoint (e.g. via a CoAPS "ep" from another 1866
Resource’s "eps information). Nor does exposing a given type of OCF Endpoint ensure that access 1867
to the Resource will be granted using the "ep" information. Whether requests to the Resource are 1868
granted or denied by the Access Control layer is separate from the "eps" information, and is 1869
determined by the configuration of the /acl2 Resource (see ISO/IEC 30118-2 clause 13.5.3 for 1870
details). 1871

When present, max-age information (e.g. Max-Age option for CoAP defined in IETF RFC 7252) 1872
determines the maximum time "eps" values may be cached before they are considered stale. 1873

7.8.2.6 Formatting 1874

When formatting in JSON, the list of Links shall be an array. 1875

7.8.2.7 List of Links in a Collection 1876

A Resource that exposes one or more Properties that are defined to be an array of Links where 1877
each Link can be discretely accessed is a Collection. The Property Name "links" is recommended 1878
for such an array of Links. 1879

This is an example of a Resource with a list of Links. 1880

/Room1 1881
{ 1882
 "rt": ["oic.wk.col"], 1883
 "if": ["oic.if.ll", "oic.if.baseline"], 1884
 "color": "blue", 1885
 "links": 1886
 [1887
 { 1888
 "href": "/switch", 1889
 "rt": ["oic.r.switch.binary"], 1890
 "if": ["oic.if.a", "oic.if.baseline"], 1891
 "p": {"bm": 3} 1892
 }, 1893
 { 1894
 "href": "/brightness", 1895
 "rt": ["oic.r.light.brightness"], 1896
 "if": ["oic.if.a", "oic.if.baseline"], 1897
 "p": {"bm": 3} 1898
 } 1899
] 1900
} 1901

7.8.2.8 Properties describing an array of Links 1902

If a Resource Type that defines an array of Links (e.g. Collections, Atomic Measurements) has 1903
restrictions on the "rt" values that can be within the array of Links, the Resource Type will define 1904
the "rts" Property. The "rts" Property as defined in Table 12 will include all "rt" values allowed for 1905

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 48

all Links in the array. If the Resource Type does not define the "rts" Property or the "rts" Property 1906
is an empty array, then any "rt" value is permitted in the array of Links. 1907

For all instances of a Resource Type that defines the "rts" Property, the "rt" Link Parameter in 1908
every Link in the array of Links shall be one of the "rt" values that is included in the "rts" 1909
Property. 1910

Table 12 – Resource Types Property definition 1911

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Types

"rts" "array" Array of strings,
conveying
Resource Type
IDs

N/A R No An array of Resource
Types that are
supported within an
array of Links exposed
by a Resource.

 1912

If a Resource Type that defines an array of Links has "rt" values which are required to be in the 1913
array, the Resource Type will define the "rts-m" Property, as defined in Table 13, which will contain 1914
all of the "rt" vaues that are required to be in the array of Links. If "rts-m" is defined, and "rts" is 1915
defined and is not an empty array, then the "rt" values present in "rts-m" will be part of the values 1916
present in "rts". Moreover, if the "rts-m" Property is defined, it shall be mandated (i.e. included in 1917
the "required" field of a JSON definition) in the Resource definition and Introspection Device Data 1918
(see 11.4). 1919

For all instances of a Resource Type that defines the "rts-m" Property, there shall be at least one 1920
Link in the array of Links corresponding to each one of the "rt" values in the "rts-m" Property; for 1921
all such Links the "rt" Link Parameter shall contain at least one of the "rt" values in the "rts-m" 1922
Property. 1923

Table 13 – Mandatory Resource Types Property definition 1924

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Mandatory
Resource
Types

"rts-m" "array" Array of strings,
conveying
Resource Type
IDs

N/A R No An array of Resource
Types that are
mandatory to be
exposed within an
array of Links exposed
by a Resource.

 1925

7.8.3 Collections 1926

7.8.3.1 Overview 1927

A Resource that contains one or more references (specified as Links) to other Resources is a 1928
Collection. These references may be related to each other or just be a list; the Collection provides 1929
a means to refer to this set of references with a single handle (i.e. the URI). A simple Resource is 1930
kept distinct from a Collection. Any Resource may be turned into a Collection by binding Resource 1931
references as Links. Collections may be used for creating, defining or specifying hierarchies, 1932
indexes, groups, and so on. 1933

A Collection shall have at least one Resource Type and at least one OCF Interface bound at all 1934
times during its lifetime. During creation time of a Collection the Resource Type and OCF Interfaces 1935
are specified. The initial defined Resource Types and OCF Interfaces may be updated during its 1936
life time. These initial values may be overridden using mechanism used for overriding in the case 1937

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 49

of a Resource. Additional Resource Types and OCF Interfaces may be bound to the Collection at 1938
creation or later during the lifecycle of the Collection. 1939

A Collection shall define a Property that is an array with zero or more Links. The target URIs in the 1940
Links may reference another Collection or another Resource. The referenced Collection or 1941
Resource may reside on the same Device as the Collection that includes that Link (called a local 1942
reference) or may reside on another Device (called a remote reference). The context URI of the 1943
Links in the array shall (implicitly) be the Collection that contains that Property. The (implicit) 1944
context URI may be overridden with explicit specification of the "anchor" Parameter in the Link 1945
where the value of "anchor" is the new base of the Link. 1946

A Resource may be referenced in more than one Collection, therefore, a unique parent-child 1947
relationship is not guaranteed. There is no pre-defined relationship between a Collection and the 1948
Resource referenced in the Collection, i.e., the application may use Collections to represent a 1949
relationship but none is automatically implied or defined. The lifecycles of the Collection and the 1950
referenced Resource are also independent of one another. 1951

In the following example a Property "links" represents the list of Links in a Collection. The "links" 1952
Property has, as its value, an array of items and each item is a Link. 1953

/my/house This is URI of the Resource 1954
{ 1955
 "rt": ["my.r.house"], This and the next 3 lines are the Properties of the 1956
Resource. 1957
 "color": "blue", 1958
 "n": "myhouse", 1959
 "links": [1960
 { This and the next 4 lines are the Parameters of a Link 1961
 "href": "/door", 1962
 "rt": ["oic.r.door"], 1963
 "if": ["oic.if.a", "oic.if.baseline"] 1964
 }, 1965
 1966
 { 1967
 "href": "/door/lock.status", 1968
 "rt": ["oic.r.lock"], 1969
 "if": ["oic.if.a", "oic.if.baseline"] 1970
 }, 1971
 1972
 { 1973
 "href": "/light", 1974
 "rt": ["oic.r.light"], 1975
 "if": ["oic.if.s", "oic.if.baseline"] 1976
 }, 1977
 1978
 { 1979
 "href": "/binarySwitch", 1980
 "rt": ["oic.r.switch.binary"], 1981
 "if": ["oic.if.a", "oic.if.baseline"] 1982
 } 1983
 1984
] 1985
} 1986

A Collection may be: 1987

– A pre-defined Collection where the Collection has been defined a priori and the Collection is 1988
static over its lifetime. Such Collections may be used to model, for example, an appliance that 1989
is composed of other Devices or fixed set of Resources representing fixed functions. 1990

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 50

– A Device local Collection where the Collection is used only on the Device that hosts the 1991
Collection. Such Collections may be used as a short-hand on a Client for referring to many 1992
Servers as one. 1993

– A centralized Collection where the Collection is hosted on a Device but other Devices may 1994
access or update the Collection. 1995

– A hosted Collection where the Collection is centralized but is managed by an authorized agent 1996
or party. 1997

7.8.3.2 Collection Properties 1998

A Collection shall define a Property that is an array of Links (the Property Name "links" is 1999
recommended). In addition, other Properties may be defined for the Collection by the Resource 2000
Type. The mandatory and recommended Common Properties for a Collection are shown in Table 14. 2001
This list of Common Properties is in addition to those defined for Resources in 7.3.2. 2002

Table 14 – Common Properties for Collections (in addition to Common Properties defined 2003
in 7.3.2) 2004

Property Description Property Name Value Type Mandatory

Links The array of Links in
the Collection

Per Resource Type
definition

json
Array of Links

Yes

Resource Types The list of allowed
Resource Types for
Links in the
Collection.
If this Property is not
defined or is null
string then any
Resource Type is
permitted

As defined in
Table 12

As defined in
Table 12

No

Mandatory
Resource Types

The list of Resource
Types for Links that
are mandatory in the
Collection.

As defined in
Table 13

As defined in
Table 13

No

 2005

7.8.3.3 Default Resource Type 2006

A default Resource Type, "oic.wk.col", is available for Collections. This Resource Type shall be 2007
used only when another type has not been defined on the Collection or when no Resource Type 2008
has been specified at the creation of the Collection. 2009

The default Resource Type provides support for the Common Properties including an array of Links 2010
with the Property Name "links". 2011

7.8.3.4 Default OCF Interface 2012

All instances of a Collection shall support the links list ("oic.if.ll") OCF Interface in addition to the 2013
baseline ("oic.if.baseline") OCF Interface. An instance of a Collection may optionally support 2014
additional OCF Interfaces that are defined within this document. The Default OCF Interface for a 2015
Collection shall be links list ("oic.if.ll") unless otherwise specified by the Resource Type definition. 2016

7.8.4 Atomic Measurement 2017

7.8.4.1 Overview 2018

Certain use cases require that the Properties of multiple Resources are only accessible as a group 2019
and individual access to those Properties of each Resource by a Client is prohibited. The Atomic 2020

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 51

Measurement Resource Type is defined to meet this requirement. This is accomplished through 2021
the use of the Batch OCF Interface. 2022

7.8.4.2 Atomic Measurement Properties 2023

An Atomic Measurement shall define a Property that is an array of Links (the Property Name "links" 2024
is recommended). In addition, other Properties may be defined for the Atomic Measurement by the 2025
Resource Type. The mandatory and recommended Common Properties for an Atomic 2026
Measurement are shown in Table 15. This list of Common Properties is in addition to those defined 2027
for Resources in 7.3.2. 2028

Table 15 – Common Properties for Atomic Measurement (in addition to Common Properties 2029
defined in 7.3.2) 2030

Property Description Property Name Value Type Mandatory

Links The array of Links in
the Atomic
Measurement

Per Resource Type
definition

json
Array of Links

Yes

Resource Types The list of allowed
Resource Types for
Links in the Atomic
Measurement.
If this Property is not
defined or is null
string then any
Resource Type is
permitted

As defined in
Table 12

As defined in
Table 12

No

Mandatory
Resource Types

The list of Resource
Types for Links that
are mandatory in the
Atomic
Measurement.

As defined in
Table 13

As defined in
Table 13

No

 2031

7.8.4.3 Normative behaviour 2032

The normative behaviour of an Atomic Measurement is as follows: 2033

– The behaviour of the Batch OCF Interface ("oic.if.b") on the Atomic Measurement is defined as 2034
follows: 2035

– Only RETRIEVE and NOTIFY operations are supported, for Batch OCF Interface, on Atomic 2036
Measurement; the behavior of the RETRIEVE and NOTIFY operations shall be the same as 2037
specified in 7.6.3.4, with exceptions as provided for in 7.8.4.3. 2038

– The UPDATE operation is not allowed, for Batch OCF Interface, on Atomic Measurement; if 2039
an UPDATE operation is received, it shall result in a method not allowed error code. 2040

– An error response shall not include any representation of a linked Resource (i.e. empty 2041
response for all linked Resources). 2042

– Any linked Resource within an Atomic Measurement (i.e. the target Resource of a Link in an 2043
Atomic Measurement) is subject to the following conditions: 2044

– Linked Resources within an Atomic Measurement and the Atomic Measurement itself shall 2045
exist on a single Server. 2046

– CRUDN operations shall not be allowed on linked Resources and shall result in a forbidden 2047
error code. 2048

– Linked Resources shall not expose the "oic.if.ll" OCF Interface. Since CRUDN operations 2049
are not allowed on linked Resources, the "oic.if.ll" OCF Interface would never be accessible. 2050

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 52

– Links to linked Resources in an Atomic Measurement shall only be accessible through the 2051
"oic.if.ll" or the "oic.if.baseline" OCF Interfaces of an Atomic Measurement. 2052

– The linked Resources shall not be listed in "/oic/res". 2053

– A linked Resource in an Atomic Measurement shall have defined one of "oic.if.a", "oic.if.s", 2054
"oic.if.r", or "oic.if.rw" as its Default OCF Interface. 2055

– Not all linked Resources in an Atomic Measurement are required to be Observable. If an Atomic 2056
Measurement is being Observed using the "oic.if.b" OCF Interface, notification responses shall 2057
not be generated when the linked Resources which are not marked Observable are updated or 2058
change state. 2059

– All linked Resources in an Atomic Measurement shall be included in every RETRIEVE and 2060
Observe response when using the "oic.if.b" OCF Interface. 2061

– An Atomic Measurement shall support the "oic.if.b" and the "oic.if.ll" OCF Interfaces. 2062

– Filtering of linked Resources in an Atomic Measurement is not allowed. Query parameters that 2063
select one or more individual linked Resources in a request to an Atomic Measurement shall 2064
result in a "forbidden" error code. 2065

– If the "rel" Link Parameter is included in a Link contained in an Atomic Measurement, it shall 2066
have either the "hosts" or the "item" value. 2067

– The Default OCF Interface of an Atomic Measurement is "oic.if.b". 2068

7.8.4.4 Security considerations 2069

Access rights to an Atomic Measurement Resource Type is as specified in clause 12.2.7.2 (ACL 2070
considerations for batch request to the Atomic Measurement Resource Type) of ISO/IEC 30118-2). 2071

7.8.4.5 Default Resource Type 2072

The Resource Type is defined as "oic.wk.atomicmeasurement" as defined in Table 16. 2073

Table 16 – Atomic Measurement Resource Type 2074

Pre-
defined

URI

Resource
Type Title

Resource Type
ID ("rt" value)

OCF Interfaces Description Related
Functional
Interaction

M/CR/O

none Atomic
Measurement

"oic.wk.atomicme
asurement"

"oic.if.ll"
"oic.if.baseline"
"oic.if.b"

A specialisation of
the Collection pattern
to ensure atomic
RETRIEVAL of its
referred Resources

RETRIEVE,
NOTIFY

O

 2075

The Properties for Atomic Measurement are as defined in Table 17. 2076

Table 17 – Properties for Atomic Measurement (in addition to Common Properties defined 2077
in 7.3.2) 2078

Property Description Property name Value Type Mandatory

Links The set of links that
point to the linked
Resources

Per Resource Type
definition

json
Array of Links

Yes

 2079

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 53

7.9 Query Parameters 2080

7.9.1 Introduction 2081

A query string is a fundamental part of the definition of a URI (see 6.2.2). The definition of a query 2082
may include Properties and Link Parameters by declaring the Property or Link Parameter (i.e. 2083
<Property name, Link Parameter name> = <desired Property value, Link Parameter value>) as one 2084
of the segments of the query. Only ASCII strings are permitted in queries, and NULL characters 2085
are disallowed in queries. This means that only Property and Link Parameter values with ASCII 2086
characters may be matched in a query. 2087

When a query is defined as a selector, a Resource is selected when all the declared Properties or 2088
Link Parameters in the query match the corresponding Properties or Link Parameters in the target. 2089

The processing of any query parameter by a Server is as specified in this document or other OCF 2090
specifications. For any query parameters that are not explicitly specified, the Server may ignore 2091
those query parameters and the request is processed as if the query parameter did not exist in the 2092
request. 2093

7.9.2 Use of multiple parameters within a query 2094

When a query contains multiple separate query parameters these are delimited by an "&" as 2095
described in 6.2.2. Multiple query parameters are only applicable to Collections or Resources with 2096
a multi-value "rt". 2097

A Client may select a specific Resource type using separate query parameters, for 2098
example "?if=oic.if.b&rt=oic.r.switch.binary". If such queries are supported by the Server this shall 2099
be accomplished by matching "all of" the different query parameter types received (i.e. "rt", "if") 2100
against the target of the query. In the example, this resolves to a batch response that includes only 2101
instances of oic.r.switch.binary. There is no significance applied to the order of the query 2102
parameters. 2103

A Client may select more than one Resource Type using repeated query parameters, for example 2104
"?rt=oic.r.switch.binary&rt=oic.r.ramptime". If such queries are supported by the Server, this shall 2105
be accomplished by matching "any of" the repeated query parameters against the target of the 2106
query. In the example, any instances of "oic.r.switch.binary" and/or "oic.r.ramptime" that may exist 2107
are selected. 2108

A Client may select multiple Resource Types using multiple repeated "rt" parameters in addition to 2109
a separate "if" parameter in a single query, for example 2110
"?if=oic.if.b&rt=oic.r.switch.binary&rt=oic.r.ramptime". If such queries are supported by the Server, 2111
this shall be accomplished by matching "any of" the repeated query parameters and then matching 2112
"all of" the different query parameter types. In the example any instances of "oic.r.switch.binary" 2113
and/or "oic.r.ramptime" that may exist are selected in a batch response. 2114

NOTE The parameters within a query string are represented within the actual messaging protocol as defined in clause 2115
12.2.2. 2116

7.9.3 Application to multi-value "rt" Resources 2117

An "rt" query for a multi-value "rt" Resource with the Default OCF Interface of "oic.if.a", "oic.if.s", 2118
"oic.if.r", "oic.if.rw" or "oic.if.baseline" is an extension of a generic "rt" query. 2119

When a Server receives a RETRIEVE request for a multi-value "rt" Resource with an "rt" query, 2120
(i.e. GET /ResExample?rt=oic.r.foo), the Server should respond only when the query value is an 2121
item of the "rt" Property Value of the target Resource and should send back only the Properties 2122
associated with the query value(s). For example, upon receiving GET 2123
/ResExample?rt=oic.r.switch.binary targeting a Resource with "rt": ["oic.r.switch.binary", 2124
"oic.r.light.brightness"], the Server responds with only the Properties of oic.r.switch.binary. 2125

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 54

When a Server receives an UPDATE request for a multi-value "rt" Resource with an "rt" query, 2126
(e.g.POST /ResExample?rt=oic.r.foo), the Server should only apply the payload received to the 2127
Properties that are part of the "oic.r.foo" Resource. 2128

7.9.4 OCF Interface specific considerations for queries 2129

7.9.4.1 OCF Interface selection 2130

When an OCF Interface is to be selected for a request, it shall be specified as a query parameter 2131
in the URI of the Resource in the request message. If no query parameter is specified, then the 2132
Default OCF Interface shall be used. If the selected OCF Interface is not one of the permitted OCF 2133
Interfaces on the Resource, then selecting that OCF Interface is an error and the Server shall 2134
respond with an error response code. A Client shall not include more than one OCF Interface in a 2135
query parameter. If a Server receives a request that has more than one OCF Interface included in 2136
a query parameter (e.g. "?if=oic.if.ll&if=oic.if.rw") then the Server may either reject the request with 2137
an appropriate non-success path response, or the Server may attempt to process the request using 2138
the first "if" received 2139

For example, the baseline OCF Interface may be selected by adding "if=oic.if.baseline" to the list 2140
of query parameters in the URI of the target Resource. For example: "GET 2141
/oic/res?if=oic.if.baseline". 2142

7.9.4.2 Batch OCF Interface 2143

See 7.6.3.4 for details on the batch OCF Interface itself. Query parameters may be used with the 2144
batch OCF Interface in order to select particular Resources in a Collection for retrieval or update; 2145
these parameters are used to select items in the Collection by matching Link Parameter Values. 2146

When Link selection query parameters are used with RETRIEVE operations applied using the batch 2147
OCF Interface, only the Resources in the Collection with matching Link Parameters should be 2148
returned. 2149

When Link selection query parameters are used with UPDATE operations applied using the batch 2150
OCF Interface, only the Resources having matching Link Parameters should be updated. 2151

See 7.6.3.4.5 for examples of RETRIEVE and UPDATE operations that use Link selection query 2152
parameters. 2153

7.10 Error response payload 2154

7.10.1 Overview 2155

Clause 7.10 describes a mechanism and payload to signal additional error information that may be 2156
provided in addition to the response code when an error response is sent. The transport specific 2157
response for a transport binding (e.g., CoAP) returns a status code that does not always provide 2158
enough information on what has gone wrong. 2159

7.10.2 Error response payload content 2160

The error response payload shall be an ASCII string that contains a brief, human-readable 2161
diagnostic description as a string describing the details of the transport specific error response 2162
code. Standardized messages for the error response payload are defined in Table 26. Vendors 2163
may use these standardized messages or define their own messages. The messages contained 2164
within an error response payload may be included with any transport specific response code. 2165
English text is the only language supported for the message. If the error response payload is not 2166
present in the response, a Client deals with the error based on only the transport specific response 2167
code. 2168

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 55

Table 18 – Standardized error message 2169

Category Message

Error due to Client "Invalid parameter"

"The mandatory parameter is missing"

"The parameter is not allowed"

"The token syntax is invalid"

"The message id syntax is invalid"

"Invalid permission"

"The service key is invalid"

"The token is not issued"

"The token user is not issued"

"Terms of service are not agreed"

"The API is not permitted"

"The API call count is exceeded"

"The country is not supported"

"The Device is inaccessible"

"The token is invalid"

"The count of subscription has exceeded the limit"

"Invalid resource access"

"The admin is not registered"

"The user is not registered"

"The service is not registered"

"The event is not subscribed"

"The Device is not registered"

"The admin is already registered.

"Internal Server operation error"

"Device profile error"

"The model is not supported"

"Undefined enumeration"

"The value is out of range"

"Feature is not supported in the model"

"Integration Server error"

"The product is not supported for interworking with other companies"

"The Device status is abnormal"

"The Device is not connected (offline)"

"The Device control failed"

"The request is required to retry"

"Time out occurred"

Error due to Server "Internal Server operation error"

"Device profile error"

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 56

"The model is not supported"

"Undefined enumeration"

"The value is out of range"

"Feature is not supported in the model"

"Integration Server error"

"The product is not supported for interworking with other companies"

"The Device status is abnormal"

"The Device is not connected (offline)"

"The Device control failed"

"The request is required to retry"

"Time out occurred"

 2170

7.10.3 Example of use 2171

The following example shows an example message exchange for a RETRIEVE operation sent from 2172
a proximal Device to an OCF Cloud, with a target URI of: 2173
"coaps+tcp://exampleCloudEndPoint//deviceId_001/somehref". 2174

Client request: 2175

Target URI: /deviceId_001/somehref 2176
Operation: RETRIEVE 2177
Host: coaps://exampleCloudEndPoint 2178
Accept: application/vnd.ocf+cbor 2179

Server response: 2180

Status code: 4.04 (Not Found) 2181
Response Body: { 2182
 "The device is not registered" 2183
} 2184

With the error response payload, the Client can recognize that the Device it tried to discover is not 2185
registered on the OCF Cloud. 2186

8 CRUDN 2187

8.1 Overview 2188

CREATE, RETRIEVE, UPDATE, DELETE, and NOTIFY (CRUDN) are operations defined for 2189
manipulating Resources. These operations are performed by a Client on the Resources contained 2190
in a Server. All required Properties shall be present in the payloads for which they are defined for 2191
the operations for which those payloads apply (see clause 7.1 regarding OpenAPI 2.0 definitions 2192
requirement). 2193

On reception of a valid CRUDN operation a Server hosting the Resource that is the target of the 2194
request shall generate a response depending on the OCF Interface included in the request; or 2195
based on the Default OCF Interface for the Resource Type if no OCF Interface is included. 2196

CRUDN operations utilize a set of parameters that are carried in the messages and are defined in 2197
Table 19. A Device shall use CBOR as the default payload (content) encoding scheme for Resource 2198
representations included in CRUDN operations and operation responses; a Device may negotiate 2199
a different payload encoding scheme (e.g, see in 12.2.4 for CoAP messaging). Clauses 8.2 through 2200

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 57

8.6 respectively specify the CRUDN operations and use of the parameters. The type definitions for 2201
these terms will be mapped in the clause 12 for each protocol. 2202

Table 19 – Parameters of CRUDN messages 2203

Applicability Name Denotation Definition

All messages

fr From The URI of the message originator.

to To The URI of the recipient of the message.

ri Request Identifier The identifier that uniquely identifies the message in the
originator and the recipient.

cn Content Information specific to the operation.

Requests
op Operation Specific operation requested to be performed by the

Server.

obs Observe Indicator for an Observe request.

Responses
rs Response Code

Indicator of the result of the request; whether it was
accepted and what the conclusion of the operation was.
The values of the response code for CRUDN operations
shall conform to those as defined in clause 5.9 and 12.1.2
in IETF RFC 7252.

obs Observe Indicator for an Observe response.

8.2 CREATE 2204

8.2.1 Overview 2205

The CREATE operation is used to request the creation of new Resources on the Server. The 2206
CREATE operation is initiated by the Client and consists of three steps, as depicted in Figure 5. 2207

 2208

Figure 5 – CREATE operation 2209

8.2.2 CREATE request 2210

The CREATE request message is transmitted by the Client to the Server to create a new Resource 2211
by the Server. The CREATE request message will carry the following parameters: 2212

– fr: Unique identifier of the Client 2213

– to: URI of the target Resource responsible for creation of the new Resource. 2214

– ri: Identifier of the CREATE request. 2215

– cn: Information of the Resource to be created by the Server. 2216

– cn will include the URI and Resource Type Property of the Resource to be created. 2217

– cn may include additional Properties of the Resource to be created. 2218

– op: CREATE 2219

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 58

8.2.3 Processing by the Server 2220

Following the receipt of a CREATE request, the Server may validate if the Client has the 2221
appropriate rights for creating the requested Resource. If the validation is successful, the Server 2222
creates the requested Resource. The Server caches the value of ri parameter in the CREATE 2223
request for inclusion in the CREATE response message. 2224

8.2.4 CREATE response 2225

The Server shall transmit a CREATE response message in response to a CREATE request 2226
message from a Client. The CREATE response message will include the following parameters: 2227

– fr: Unique identifier of the Server 2228

– to: Unique identifier of the Client 2229

– ri: Identifier included in the CREATE request 2230

– cn: Information of the Resource as created by the Server. 2231

– cn will include the URI of the created Resource. 2232

– cn will include the Resource representation of the created Resource. 2233

– rs: The result of the CREATE operation. 2234

8.3 RETRIEVE 2235

8.3.1 Overview 2236

The RETRIEVE operation is used to request the current state or representation of a Resource. The 2237
RETRIEVE operation is initiated by the Client and consists of three steps, as depicted in Figure 6. 2238

 2239

Figure 6 – RETRIEVE operation 2240

8.3.2 RETRIEVE request 2241

RETRIEVE request message is transmitted by the Client to the Server to request the representation 2242
of a Resource from a Server. The RETRIEVE request message will carry the following parameters: 2243

– fr: Unique identifier of the Client. 2244

– to: URI of the Resource the Client is targeting. 2245

– ri: Identifier of the RETRIEVE request. 2246

– op: RETRIEVE. 2247

8.3.3 Processing by the Server 2248

Following the receipt of a RETRIEVE request, the Server may validate if the Client has the 2249
appropriate rights for retrieving the requested data and the Properties are readable. The Server 2250
caches the value of ri parameter in the RETRIEVE request for use in the response 2251

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 59

8.3.4 RETRIEVE response 2252

The Server shall transmit a RETRIEVE response message in response to a RETRIEVE request 2253
message from a Client. The RETRIEVE response message will include the following parameters: 2254

– fr: Unique identifier of the Server. 2255

– to: Unique identifier of the Client. 2256

– ri: Identifier included in the RETRIEVE request. 2257

– cn: Information of the Resource as requested by the Client. 2258

– cn should include the URI of the Resource targeted in the RETRIEVE request. 2259

– rs: The result of the RETRIEVE operation. 2260

8.4 UPDATE 2261

8.4.1 Overview 2262

The UPDATE operation is either a Partial UPDATE or a complete replacement of the information 2263
in a Resource in conjunction with the OCF Interface that is also applied to the operation. The 2264
UPDATE operation is initiated by the Client and consists of three steps, as depicted in Figure 7. 2265

 2266

Figure 7 – UPDATE operation 2267

8.4.2 UPDATE request 2268

The UPDATE request message is transmitted by the Client to the Server to request the update of 2269
information of a Resource on the Server. The UPDATE request message, as indicated in 8.1, 2270
contains all required Properties whether changed or not. The UPDATE request message will carry 2271
the following parameters: 2272

– fr: Unique identifier of the Client. 2273

– to: URI of the Resource targeted for the information update. 2274

– ri: Identifier of the UPDATE request. 2275

– op: UPDATE. 2276

– cn: Information, including Properties, of the Resource to be updated at the target Resource. 2277

8.4.3 Processing by the Server 2278

8.4.3.1 Overview 2279

Following the receipt of an UPDATE request, the Server may validate if the Client has the 2280
appropriate rights for updating the requested data. If the validation is successful the Server updates 2281
the target Resource information according to the information carried in cn parameter of the 2282
UPDATE request message. The Server caches the value of ri parameter in the UPDATE request 2283
for use in the response. 2284

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 60

An UPDATE request that includes Properties that are read-only shall be rejected by the Server with 2285
an rs indicating a bad request. 2286

An UPDATE request shall be applied only to the Properties in the target Resource visible via the 2287
applied OCF Interface that support the operation. An UPDATE of non-existent Properties is ignored. 2288

An UPDATE request shall be applied to the Properties in the target Resource even if those Property 2289
Values are the same as the values currently exposed by the target Resource. 2290

8.4.3.2 Resource monitoring by the Server 2291

The Server shall monitor the state the Resource identified in the Observe request from the Client. 2292
Anytime there is a change in the state of the Observed Resource or an UPDATE operation applied 2293
to the Resource, the Server sends another RETRIEVE response with the Observe indication. The 2294
mechanism does not allow the Client to specify any bounds or limits which trigger a notification, 2295
the decision is left entirely to the Server. 2296

8.4.3.3 Additional RETRIEVE responses with Observe indication 2297

The Server shall transmit updated RETRIEVE response messages following Observed changes in 2298
the state of the Resources requested by the Client. The RETRIEVE response message shall include 2299
the parameters listed in 11.3.2.4. 2300

8.4.4 UPDATE response 2301

The UPDATE response message will include the following parameters: 2302

– fr: Unique identifier of the Server. 2303

– to: Unique identifier of the Client. 2304

– ri: Identifier included in the UPDATE request. 2305

– rs: The result of the UPDATE request. 2306

The UPDATE response message may also include the following parameters: 2307

– cn: The Resource representation following processing of the UPDATE request. 2308

8.5 DELETE 2309

8.5.1 Overview 2310

The DELETE operation is used to request the removal of a Resource. The DELETE operation is 2311
initiated by the Client and consists of three steps, as depicted in Figure 8. 2312

 2313

Figure 8 – DELETE operation 2314

8.5.2 DELETE request 2315

DELETE request message is transmitted by the Client to the Server to delete a Resource on the 2316
Server. The DELETE request message will carry the following parameters: 2317

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 61

– fr: Unique identifier of the Client. 2318

– to: URI of the target Resource which is the target of deletion. 2319

– ri: Identifier of the DELETE request. 2320

– op: DELETE. 2321

8.5.3 Processing by the Server 2322

Following the receipt of a DELETE request, the Server may validate if the Client has the appropriate 2323
rights for deleting the identified Resource, and whether the identified Resource exists. If the 2324
validation is successful, the Server removes the requested Resource and deletes all the associated 2325
information. The Server caches the value of ri parameter in the DELETE request for use in the 2326
response. 2327

8.5.4 DELETE response 2328

The Server shall transmit a DELETE response message in response to a DELETE request message 2329
from a Client. The DELETE response message will include the following parameters: 2330

– fr: Unique identifier of the Server. 2331

– to: Unique identifier of the Client. 2332

– ri: Identifier included in the DELETE request. 2333

– rs: The result of the DELETE operation. 2334

8.6 NOTIFY 2335

8.6.1 Overview 2336

The NOTIFY operation is used to request asynchronous notification of state changes. Complete 2337
description of the NOTIFY operation is provided in 0. The NOTIFY operation uses the 2338
NOTIFICATION response message which is defined here. 2339

8.6.2 NOTIFICATION response 2340

The NOTIFICATION response message is sent by a Server to notify the URLs identified by the 2341
Client of a state change. The NOTIFICATION response message carries the following parameters: 2342

– fr: Unique identifier of the Server. 2343

– to: URI of the Resource target of the NOTIFICATION message. 2344

– ri: Identifier included in the CREATE request. 2345

– op: NOTIFY. 2346

– cn: The updated state of the Resource. 2347

9 Network and connectivity 2348

9.1 Introduction 2349

The Internet of Things is comprised of a wide range of applications which sense and actuate the 2350
physical world with a broad spectrum of device and network capabilities: from battery powered 2351
nodes transmitting 100 bytes per day and able to last 10 years on a coin cell battery, to mains 2352
powered nodes able to maintain Megabit video streams. It is estimated that many 10s of billions of 2353
IoT devices will be deployed over the coming years. 2354

It is desirable that the connectivity options be adapted to the IP layer. To that end, IETF has 2355
completed considerable work to adapt Bluetooth®, Wi-Fi, 802.15.4, LPWAN, etc. to IPv6. These 2356
adaptations, plus the larger address space and improved address management capabilities, make 2357
IPv6 the clear choice for the OCF network layer technology. 2358

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 62

9.2 Architecture 2359

While the aging IPv4 centric network has evolved to support complex topologies, its deployment 2360
was primarily provisioned by a single Internet Service Provider (ISP) as a single network. More 2361
complex network topologies, often seen in residential home, are mostly introduced through the 2362
acquisition of additional home network devices, which rely on technologies like private Network 2363
Address Translation (NAT). These technologies require expert assistance to set up correctly and 2364
should be avoided in a home network as they most often result in breakage of constructs like 2365
routing, naming and discovery services. 2366

The multi-segment ecosystem OCF addresses will not only cause a proliferation of new devices 2367
and associated routers, but also new services introducing additional edge routers. All these new 2368
requirements require advance architectural constructs to address complex network topologies like 2369
the one shown in Figure 9. 2370

 2371

Figure 9 – High Level Network & Connectivity Architecture 2372

In terms of IETF RFC 6434, IPv6 nodes assume either a router or host role. Nodes may further 2373
implement various specializations of those roles: 2374

– A Router may implement Customer Edge Router capabilities as defined in IETF RFC 7084. 2375

– Nodes limited in processing power, memory, non-volatile storage or transmission capacity 2376
requires special IP adaptation layers (6LoWPAN) and/or dedicated routing protocols (RPL). 2377
Examples include devices transmitting over low power physical layer like IEEE 802.14.5, ITU 2378
G9959, Bluetooth Low Energy, DECT Ultra Low Energy, and Near Field Communication (NFC). 2379

Sensor Network
(6LowPan)

/
Subnets

IPv6 Local Network

IPv4-only or Legacy
(Zigbee, …)

Border
Router

Gateway
(iotivity+
plugins)

IPv6 + IPv4

Internet
Core

IPv6 Sensor Network

Non-IPv6 Network

IPv6 Local
Network

User
Interface

Monitoring

Intrusion
detection

Private
VPN Service

Internet
Services

SP CE
Router

Private
Proxy

Smart
Grid)

SP CE
Router

Smart Grid
(Energy segment)

Power Grid

Legend:

OCF
OCF aware
OCF plugged-in
Infrastructure

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 63

– A node may translate and route messaging between IPv6 and non-IPv6 networks. 2380

9.3 IPv6 network layer requirements 2381

9.3.1 Introduction 2382

Projections indicate that many 10s of billions of new IoT endpoints and related services will be 2383
brought online in the next few years. These endpoint’s capabilities will span from battery powered 2384
nodes with limited compute, storage, and bandwidth to more richly resourced devices operating 2385
over Ethernet and WiFi links. 2386

Internet Protocol version 4 (IPv4), deployed some 30 years ago, has matured to support a wide 2387
variety of applications such as Web browsing, email, voice, video, and critical system monitoring 2388
and control. However, the capabilities of IPv4 are at the point of exhaustion, not the least of which 2389
is that available address space has been consumed. 2390

The IETF long ago saw the need for a successor to IPv4, thus the development of IPv6. OCF 2391
recommends IPv6 at the network layer. Amongst the reasons for IPv6 recommendations are: 2392

– Larger address space. Side-effect: greatly reduce the need for NATs. 2393

– More flexible addressing architecture. Multiple addresses and types per interface: Link-local, 2394
ULA, GUA, variously scoped Multicast addresses, etc. Better ability to support multi-homed 2395
networks, better re-numbering capability, etc. 2396

– More capable auto configuration capabilities: DHCPv6, SLAAC, Router Discovery, etc. 2397

– Technologies enabling IP connectivity on constrained nodes are based upon IPv6. 2398

– All major consumer operating systems (IoS, Android, Windows, Linux) are already IPv6 enabled. 2399

– Major Service Providers around the globe are deploying IPv6. 2400

9.3.2 IPv6 node requirements 2401

9.3.2.1 Introduction 2402

In order to ensure network layer services interoperability from node to node, mandating a common 2403
network layer across all nodes is vital. The protocol should enable the network to be: secure, 2404
manageable, and scalable and to include constrained and self-organizing meshed nodes. OCF 2405
mandates IPv6 as the common network layer protocol to ensure interoperability across all Devices. 2406
More capable Devices may also include additional protocols creating multiple-stack Devices. The 2407
remainder of this clause will focus on interoperability requirements for IPv6 hosts, IPv6 constrained 2408
hosts and IPv6 routers. The various protocol translation permutations included in multi-stack 2409
gateway devices may be addresses in subsequent addendums of this document. 2410

9.3.2.2 IP Layer 2411

An IPv6 node shall support IPv6 and it shall conform to the requirements as specified in 2412
IETF RFC 6434. 2413

10 OCF Endpoint 2414

10.1 OCF Endpoint definition 2415

The specific definition of an OCF Endpoint depends on the Transport Protocol Suite being used. 2416
For the example of CoAP over UDP over IPv6, the OCF Endpoint is identified by an IPv6 address 2417
and UDP port number. 2418

Each Device shall associate with at least one OCF Endpoint with which it can exchange request 2419
and response messages. When a message is sent to an OCF Endpoint, it shall be delivered to the 2420
Device which is associated with the OCF Endpoint. When a request message is delivered to an 2421
OCF Endpoint, path component is enough to locate the target Resource. 2422

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 64

A Device can be associated with multiple OCF Endpoints. For example, n Device can have several 2423
IP addresses or port numbers or support both CoAP and HTTP transfer protocol. Different 2424
Resources in n Device may be accessed with the same OCF Endpoint or need different ones. Some 2425
Resources may use one OCF Endpoint and others a different one. It depends on an implementation. 2426

On the other hand, an OCF Endpoint can be shared among multiple Devices, only when there is a 2427
way to clearly designate the target Resource with request URI. For example, when multiple CoAP 2428
servers use uniquely different URI paths for all their hosted Resources, and the CoAP 2429
implementation demultiplexes by path, they can share the same CoAP OCF Endpoint. However, 2430
this is not possible in this version of the document, because a pre-determined URI (e.g. "/oic/d") is 2431
mandatory for some mandatory Resources (e.g. "oic.wk.d"). 2432

10.2 OCF Endpoint information 2433

10.2.1 Introduction 2434

OCF Endpoint is represented by OCF Endpoint information which consists of items of key-value 2435
pair, "ep", "pri", and "lat". 2436

10.2.2 "ep" 2437

"ep" represents Transport Protocol Suite and OCF Endpoint Locator specified as follows: 2438

– Transport Protocol Suite - a combination of protocols (e.g. CoAP + UDP + IPv6) with which 2439
request and response messages can be exchanged for RESTful transaction (i.e. CRUDN). A 2440
Transport Protocol Suite shall be indicated by a URI scheme name. All scheme names 2441
supported by this document are IANA registered, these are listed in Table 20. A vendor may 2442
also make use of a non-IANA registered scheme name for their own use (e.g. 2443
"com.example.foo"), this shall follow the syntax for such scheme names defined by 2444
IETF RFC 7595. The behaviour of a vendor-defined scheme name is undefined by this 2445
document. All OCF defined Resource Types when exposing OCF Endpoint Information in an 2446
"eps" (see 10.2.4) shall include at least one "ep" with a Transport Protocol Suite as defined in 2447
Table 20. 2448

– OCF Endpoint Locator – an address (e.g. IPv6 address + Port number) or an indirect identifier 2449
(e.g., DNS name) resolvable to an IP address, through which a message can be sent to the 2450
OCF Endpoint and in turn associated Device. The OCF Endpoint Locator for "coap" and "coaps" 2451
shall be specified as "IP address: port number". The OCF Endpoint Locator for "coap+tcp" or 2452
"coaps+tcp" shall be specified as "IP address: port number" or "DNS name: port number" or 2453
"DNS name" such that the DNS name shall be resolved to a valid IP address for the target 2454
Resource with a name resolution service (i.e., DNS). For the 3rd case, when the port number 2455
is omitted, the default port "5683" (and "5684") shall be assumed for "coap+tcp" (and for 2456
"coaps+tcp") scheme respectively as defined in IETF RFC 8323.Temporary addresses should 2457
not be used because OCF Endpoint Locators are for the purpose of accepting incoming 2458
sessions, whereas temporary addresses are for initiating outgoing sessions (IETF RFC 4941). 2459
Moreover, its inclusion in "/oic/res" can cause a privacy concern (IETF RFC 7721). 2460

– OCF Latency – the maximum latency in seconds [sec] that the Server may take to respond to 2461
a request. 2462

"ep" shall have as its value a URI (as specified in IETF RFC 3986) with the scheme component 2463
indicating Transport Protocol Suite and the authority component indicating the OCF Endpoint 2464
Locator. 2465

An "ep" example for "coap" and "coaps" is as illustrated: 2466

"ep": "coap://[fe80::b1d6]:1111"

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 65

An "ep" example for "coap+tcp" and "coaps+tcp" is as illustrated: 2467

"ep": "coap+tcp://[2001:db8:a::123]:2222"
"ep": "coap+tcp://foo.bar.com:2222"
"ep": "coap+tcp://foo.bar.com"

The current list of "ep" with corresponding Transport Protocol Suite is shown in Table 20: 2468

Table 20 – "ep" value for Transport Protocol Suite 2469

Transport Protocol
Suite

scheme OCF Endpoint
Locator

"ep" Value example

coap+udp+ip "coap" IP address + port
number

"coap://[fe80::b1d6]:1111"

coaps + udp + ip "coaps" IP address + port
number

"coaps://[fe80::b1d6]:1122"

coap + tcp + ip "coap+tcp" IP address + port
number
DNS name: port
number
DNS name

"coap+tcp://[2001:db8:a::123]:2222"
"coap+tcp://foo.bar.com:2222"
"coap+tcp://foo.bar.com"

coaps + tcp + ip "coaps+tcp" IP address + port
number
DNS name: port
number
DNS name

"coaps+tcp://[2001:db8:a::123]:2233"
"coaps+tcp://[2001:db8:a::123]:2233"
"coaps+tcp://foo.bar.com:2233"

 2470

10.2.3 "pri" 2471

When there are multiple OCF Endpoints, "pri" indicates the priority among them. 2472

"pri" shall be represented as a positive integer (e.g. "pri": 1) and the lower the value, the higher the 2473
priority. 2474

The default "pri" value is 1, i.e. when "pri" is not present, it shall be equivalent to "pri": 1. 2475

10.2.4 "lat" 2476

"lat" indicates the expected delay of the response. For example, when a Server implements a mode 2477
to improve battery performance; the Server can expose this value, thereby providing a Client with 2478
the ability to use this for the timeout on the connection. For example, the Thread "rx-off-when-idle" 2479
link mode is an implementation of a battery performance improvement mechanism. 2480

"lat" shall be represented as a positive integer (e.g. "lat": 240), and the value is specified in seconds. 2481

10.2.5 OCF Endpoint information in "eps" Parameter 2482

To carry OCF Endpoint information, a new Link Parameter "eps" is defined in 7.8.2.5.6. "eps" has 2483
an array of items as its value and each item represents OCF Endpoint information with key-value 2484
pairs, "ep", "pri", and "lat", of which "ep" is mandatory and "pri" and "lat" are optional. 2485

OCF Endpoint Information in an "eps" Parameter is valid for the target Resource of the Link, i.e., 2486
the Resource referred by "href" Parameter. OCF Endpoint information in an "eps" Parameter may 2487
be used to access other Resources on the Device, but such access is not guaranteed. 2488

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 66

A Client may resolve the "ep" value to an IP address for the target Resource, i.e., the address to 2489
access the Device which hosts the target Resource. A valid (transfer protocol) URI for the target 2490
Resource can be constructed with the scheme, host and port components from the "ep" value and 2491
the "path" component from the "href" value. 2492

Links with an "eps": 2493

{ 2494
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9 ", 2495
 "href": "/myLightSwitch", 2496
 "rt": ["oic.r.switch.binary"], 2497
 "if": ["oic.if.a", "oic.if.baseline"], 2498
 "p": {"bm": 3}, 2499
 "eps": [2500
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2, "lat": 240}, 2501
 {"ep": "coaps://[fe80::b1d6]:1122"} 2502
] 2503
} 2504
 2505
{ 2506
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 2507
 "href": "/myTemperature", 2508
 "rt": ["oic.r.temperature"], 2509
 "if": ["oic.if.a", "oic.if.baseline"], 2510
 "p": {"bm": 3}, 2511
 "eps": [2512
 {"ep": "coap+tcp://foo.bar.com", "pri": 2, "lat": 240}, 2513
 {"ep": "coaps+tcp://foo.bar.com:1122"} 2514
] 2515
} 2516

In the previous example, "anchor" represents the hosting Device, "href", target Resource and "eps" 2517
the two OCF Endpoints for the target Resource. The (fully-qualified) URIs for the target Resource 2518
are as illustrated: 2519

coap://[fe80::b1d6]:1111/myLightSwitch 2520
coaps://[fe80::b1d6]:1122/myLightSwitch 2521
coap+tcp://foo.bar.com:5683/myTemperature 2522

coaps+tcp://foo.bar.com:1122/myTemperatureIf the target Resource of a Link requires a secure 2523
connection (e.g. CoAPS), "eps" Parameter shall be used to indicate the necessary information (e.g. 2524
port number) in OCF 1.0 payload. For optional backward compatibility with OIC 1.1, the "sec" and 2525
"port" shall only be used in OIC 1.1 payload. 2526

10.3 OCF Endpoint discovery 2527

10.3.1 Introduction 2528

 OCF Endpoint discovery is defined as the process for a Client to acquire the OCF Endpoint 2529
information for Device or Resource. 2530

10.3.2 Implicit discovery 2531

If a Device is the source of a CoAP message (e.g. "/oic/res" response), the source IP address and 2532
port number may be combined to form the OCF Endpoint Locator for the Device. Along with a 2533
"coap" scheme and default "pri" value, OCF Endpoint information for the Device may be constructed. 2534

In other words, a "/oic/res" response message with CoAP may implicitly carry the OCF Endpoint 2535
information of the responding Device and in turn all the hosted Resources, which may be accessed 2536
with the same transfer protocol of CoAP. In the absence of an "eps" Parameter, a Client shall be 2537
able to utilize implicit discovery to access the target Resource. 2538

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 67

10.3.3 Explicit discovery with "/oic/res" response 2539

OCF Endpoint information may be explicitly indicated with the "eps" Parameter of the Links in 2540
"/oic/res". 2541

As in 10.3.2, an "/oic/res" response may implicitly indicate the OCF Endpoint information for some 2542
Resources hosted by the responding Device. However implicit discovery, i.e., inference of OCF 2543
Endpoint information from CoAP response message, may not work for some Resources on the 2544
same Device. For example, some Resources may allow only secure access via CoAPS which 2545
requires the "eps" Parameter to indicate the port number. Moreover "/oic/res" may expose a target 2546
Resource which belongs to another Device. 2547

When the OCF Endpoint for a target Resource of a Link cannot be implicitly inferred, the "eps" 2548
Parameter shall be included to provide explicit OCF Endpoint information with which a Client can 2549
access the target Resource. In the presence of the "eps" Parameter, a Client shall be able to utilize 2550
it to access the target Resource. For "coap" and "coaps", a Client may use the IP address in the 2551
"ep" value in the "eps" Parameter to access the target Resource. For "coap+tcp" and "coaps+tcp", 2552
a Client may use the IP address in the "eps" Parameter or resolve the DNS name in the "eps" 2553
Parameter to acquire a valid IP address for the target Resource. If "eps" Parameter omits the port 2554
number, then the default port "5683" (and "5684") shall be assumed for "coap+tcp" (and 2555
"coaps+tcp") scheme as defined in IETF RFC 8323.To access the target Resource of a Link, a 2556
Client may use the "eps" Parameter in the Link, if it is present and fall back on implicit discovery if 2557
not. 2558

This is an example of an "/oic/res" response from a Device having the "eps" Parameter in Links. 2559

 2560
[2561
 { 2562
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2563
 "href": "/oic/res", 2564
 "rel": "self", 2565
 "rt": ["oic.wk.res"], 2566
 "if": ["oic.if.ll", "oic.if.baseline"], 2567
 "p": {"bm": 3}, 2568
 "eps": [2569
 {"ep": "coap://[2001:db8:a::b1d4]:55555"}, 2570
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2571
] 2572
 }, 2573
 { 2574
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2575
 "href": "/oic/d", 2576
 "rt": ["oic.wk.d"], 2577
 "if": ["oic.if.r", "oic.if.baseline"], 2578
 "p": {"bm": 3}, 2579
 "eps": [2580
 {"ep": "coap://[2001:db8:a::b1d4]:55555"}, 2581
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2582
] 2583
 }, 2584
 { 2585
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2586
 "href": "/oic/p", 2587
 "rt": ["oic.wk.p"], 2588
 "if": ["oic.if.r", "oic.if.baseline"], 2589
 "p": {"bm": 3}, 2590
 "eps": [2591
 {"ep": "coap://[2001:db8:a::b1d4]:55555"}, 2592
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2593
] 2594

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 68

 }, 2595
 { 2596
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2597
 "href": "/oic/sec/doxm", 2598
 "rt": ["oic.r.doxm"], 2599
 "if": ["oic.if.baseline"], 2600
 "p": {"bm": 1}, 2601
 "eps": [2602
 {"ep": "coap://[2001:db8:a::b1d4]:55555"}, 2603
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2604
] 2605
 }, 2606
 { 2607
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2608
 "href": "/oic/sec/pstat", 2609
 "rt": ["oic.r.pstat"], 2610
 "if": ["oic.if.baseline"], 2611
 "p": {"bm": 1}, 2612
 "eps": [2613
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2614
] 2615
 }, 2616
 { 2617
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2618
 "href": "/oic/sec/cred", 2619
 "rt": ["oic.r.cred"], 2620
 "if": ["oic.if.baseline"], 2621
 "p": {"bm": 1}, 2622
 "eps": [2623
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2624
] 2625
 }, 2626
 { 2627
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2628
 "href": "/oic/sec/acl2", 2629
 "rt": ["oic.r.acl2"], 2630
 "if": ["oic.if.baseline"], 2631
 "p": {"bm": 1}, 2632
 "eps": [2633
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2634
] 2635
 }, 2636
 { 2637
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2638
 "href": "/myIntrospection", 2639
 "rt": ["oic.wk.introspection"], 2640
 "if": ["oic.if.r", "oic.if.baseline"], 2641
 "p": {"bm": 3}, 2642
 "eps": [2643
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2644
] 2645
 }, 2646
 { 2647
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 2648
 "href": "/myLight", 2649
 "rt": ["oic.r.switch.binary"], 2650
 "if": ["oic.if.a", "oic.if.baseline"], 2651
 "p": {"bm": 3}, 2652
 "eps": [2653
 {"ep": "coaps://[2001:db8:a::b1d4]:22222"} 2654
] 2655
 } 2656
] 2657

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 69

 2658

The exact format of the "/oic/res" response and a way for a Client to acquire a "/oic/res" response 2659
message is specified in Annex A and 11.2.4 respectively. 2660

11 Functional interactions 2661

11.1 Introduction 2662

The functional interactions between a Client and a Server are described in 11.1 through 11.4 2663
respectively. The functional interactions use CRUDN messages (clause 8) and include Discovery, 2664
Notification, and Device management. These functions require support of core defined Resources 2665
as defined in Table 21. 2666

Table 21 – List of Core Resources 2667

Pre-defined URI Resource Name Resource Type Related Functional
Interaction

Mandatory

"/oic/res" Default "oic.wk.res" Discovery Yes

"/oic/p" Platform "oic.wk.p" Discovery Yes

"/oic/d" Device "oic.wk.d" Discovery Yes

Implementation
defined

Introspection "oic.wk.introspection" Introspection Yes

 2668

11.2 Resource discovery 2669

11.2.1 Introduction 2670

Discovery is a function which enables OCF Endpoint discovery as well as Resource based 2671
discovery. OCF Endpoint discovery is described in detail in clause 10. This clause mainly describes 2672
the Resource based discovery. 2673

11.2.2 Resource based discovery: mechanisms 2674

11.2.2.1 Overview 2675

As part of discovery, a Client may find appropriate information about other OCF peers. This 2676
information could be instances of Resources, Resource Types or any other information represented 2677
in the Resource model that an OCF peer would want another OCF peer to discover. 2678

At the minimum, Resource based discovery uses the following: 2679

– A Resource to enable discovery shall be defined. The representation of that Resource shall 2680
contain the information that can be discovered. 2681

– The Resource to enable discovery shall be specified and commonly known a-priori. A Device 2682
for hosting the Resource to enable discovery shall be identified. 2683

– A mechanism and process to publish the information that needs to be discovered with the 2684
Resource to enable discovery. 2685

– A mechanism and process to access and obtain the information from the Resource to enable 2686
discovery. A query may be used in the request to limit the returned information. 2687

– A scope for the publication. 2688

– A scope for the access. 2689

– A policy for visibility of the information. 2690

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 70

Depending on the choice of the base aspects, the Framework defines three Resource based 2691
discovery mechanisms: 2692

– Direct discovery, where the Resources are published locally at the Device hosting the 2693
Resources and are discovered through peer inquiry. 2694

– Indirect discovery, where Resources are published at a third party assisting with the discovery 2695
and peers publish and perform discovery against the Resource to enable discovery on the 2696
assisting 3rd party. 2697

– Advertisement discovery, where the Resource to enable discovery is hosted local to the initiator 2698
of the discovery inquiry but remote to the Devices that are publishing discovery information. 2699

A Device shall support direct discovery. 2700

11.2.2.2 Direct discovery 2701

In direct discovery, 2702

– The Device that is providing the information shall host the Resource to enable discovery. 2703

– The Device publishes the information available for discovery with the local Resource to enable 2704
discovery (i.e. local scope). 2705

– Clients interested in discovering information about this Device shall issue RETRIEVE requests 2706
directly to the Resource. The request may be made as a unicast or multicast. The request may 2707
be generic or may be qualified or limited by using appropriate queries in the request. 2708

– The Server Device that receives the request shall send a response with the discovered 2709
information directly back to the requesting Client Device. 2710

– The information that is included in the request is determined by the policies set for the Resource 2711
to be discovered locally on the responding Device. 2712

11.2.3 Resource based discovery: Finding information 2713

The discovery process (Figure 10) is initiated as a RETRIEVE request to the Resource to enable 2714
discovery. The request may be sent to a single Device (as in a Unicast) or to multiple Devices (as 2715
in Multicast). The specific mechanisms used to do Unicast or Multicast are determined by the 2716
support in the data connectivity layer. The response to the request has the information to be 2717
discovered based on the policies for that information. The policies can determine which information 2718
is shared, when and to which requesting agent. The information that can be discovered can be 2719
Resources, types, configuration and many other standards or custom aspects depending on the 2720
request to appropriate Resource and the form of request. Optionally the requester may narrow the 2721
information to be returned in the request using query parameters in the URI query. 2722

 2723

Figure 10 – Resource based discovery: Finding information 2724

 2725

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 71

Discovery Resources 2726

The following Core Resources shall be implemented on all Devices to support discovery: 2727

– "/oic/res" for discovery of Resources. 2728

– "/oic/p" for discovery of Platform. 2729

– "/oic/d" for discovery of Device information. 2730

Devices shall expose each of "/oic/res", "/oic/d", and "/oic/p" via an unsecured OCF Endpoint. 2731
Further details for these mandatory Core Resources are described in Table 22. 2732

Platform Resource 2733

The OCF recognizes that more than one instance of Device may be hosted on a single Platform. 2734
Clients need a way to discover and access the information on the Platform. The Core Resource, 2735
"/oic/p" exposes Platform specific Properties. All instances of Device on the same Platform shall 2736
have the same values of any Properties exposed (i.e. a Device may choose to expose optional 2737
Properties within "/oic/p" but when exposed the value of that Property should be the same as the 2738
value of that Property on all other Devices on that Platform). 2739

Device Resource 2740

The Device Resource shall have the pre-defined URI "/oic/d", the Device Resource shall expose 2741
the Properties pertaining to a Device as defined in Table 25. The Device Resource shall have a 2742
default Resource Type that helps in bootstrapping the interactions with the Device (the default type 2743
is described in Table 22).The Device Resource may have one or more Resource Type(s) that are 2744
specific to the Device in addition to the default Resource Type or if present overriding the default 2745
Resource Type. The base Resource Type "oic.wk.d" defines the Properties that shall be exposed 2746
by all Devices. The Device specific Resource Type(s) exposed are dependent on the class of 2747
Device (e.g. air conditioner, smoke alarm, etc. Since all the Resource Types of "/oic/d" are not 2748
known a priori, the Resource Type(s) of "/oic/d" are determined by discovery through the Core 2749
Resource "/oic/res". 2750

Table 22 – Mandatory discovery Core Resources 2751

Pre-defined
URI

Resource
Type Title

Resource
Type ID

("rt" value)

OCF Interfaces Description Related
Functional
Interaction

"/oic/res" Default "oic.wk.res"

"oic.if.ll",
"oic.if.b",
"oic.if.baseline"

The Resource through which the
corresponding Server is
discovered and introspected for
available Resources.
"/oic/res" shall expose the
Resources that are discoverable
on a Device. When a Server
receives a RETRIEVE request
targeting "/oic/res" (e.g., "GET
/oic/res"), it shall respond with the
links list of all the Discoverable
Resources of itself. The "/oic/d"
and "/oic/p" are Discoverable
Resources, hence their links are
included in "/oic/res" response.
The Properties exposed by
"/oic/res" are listed in Table 23.

Discovery

"/oic/p" Platform "oic.wk.p" "oic.if.r" The Discoverable Resource
through which Platform specific
information is discovered.

Discovery

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 72

The Properties exposed by
"/oic/p" are listed in Table 26

"/oic/d" Device "oic.wk.d"
and/or one or
more Device
Specific
Resource Type
ID(s)

"oic.if.r" The discoverable via "/oic/res"
Resource which exposes
Properties specific to the Device
instance.
The Properties exposed by
"/oic/d" are listed in Table 25.

Discovery

Table 23 defines "oic.wk.res" Resource Type. 2752

Table 23 – "oic.wk.res" Resource Type definition 2753

Property
title

Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Name "n" string N/A N/A R No Human-friendly name
defined by the vendor

Links "links" array See
7.8.2

N/A R Yes The array of Links
describes the URI,
supported Resource
Types and OCF
Interfaces, and access
policy.

Security
Domin
UUID

"sduuid" string uuid N/A R No Unique identifier for the
Security Domain. This
value shall be the same
value (i.e. mirror) as the
"sdi.uuid" Property as
defined in
ISO/IEC 30118-2. It
shall be exposed if the
"sdi.priv" Property is set
to "false", and shall not
be exposed if the
"sdi.priv" Property is set
to "true".

Security
Domain
Name

"sdname" string N/A N/A R No Human-friendly name
for the Security
Domain. This value
shall be the same value
(i.e. mirror) as the
"sdi.name" Property as
defined in
ISO/IEC 30118-2. It
shall be exposed if the
"sdi.priv" Property is set
to "false", and shall not
be exposed if the
"sdi.priv" Property is set
to "true".

Note: The "n", "sduuid", and "sdname" Property values for the "oic.wk.res" Resource Type are only in the response 2754
payload when used with the "oic.if.baseline" OCF Interface (i.e., RETRIEVE /oic/res?if="oic.if.baseline"). 2755

A Device shall support CoAP based discovery as the baseline discovery mechanism (see 11.2.5). 2756

The "/oic/res" shall list all Resources that are indicated as discoverable (see 11.2). Also the 2757
following architecture Resource Types shall be listed: 2758

– Introspection Resource indicated with an "rt" value of "oic.wk.introspection". 2759

– "/oic/p" indicated with an "rt" value of "oic.wk.p". 2760

– "/oic/d" indicated with an "rt" value of "oic.wk.d" 2761

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 73

– "/oic/sec/doxm" indicated with an "rt" value of "oic.r.doxm" as defined in ISO/IEC 30118-2. 2762

– "/oic/sec/pstat" indicated with an "rt" value of "oic.r.pstat" as defined in ISO/IEC 30118-2. 2763

– "/oic/sec/acl2" indicated with an "rt" value of "oic.r.acl2" as defined in ISO/IEC 30118-2. 2764

– "/oic/sec/cred" indicated with an "rt" value of "oic.r.cred" as defined in ISO/IEC 30118-2. 2765

Conditionally required: 2766

– "/oic/res" with an "rt" value of "oic.wk.res" as self-reference, on the condition that "oic/res" has 2767
to signal that it is Observable by a Client. 2768

– if the Device supports batch retrieval of "/oic/res" then "oic.if.b" shall be included in the "if" 2769
Property of "/oic/res". 2770

– if the Device supports batch retrieval there shall be a self-reference that includes an "if" Link 2771
Parameter containing "oic.if.b"; the self-reference shall expose a secure OCF Endpoint. 2772

The Introspection Resource is only applicable for Devices that host Vertical Resource Types (e.g. 2773
"oic.r.switch.binary") or vendor-defined Resource Types. Devices that only host Resources 2774
required to onboard the Device as a Client do not have to implement the Introspection Resource. 2775

Table 24 provides an OCF registry for protocol schemes. 2776

Table 24 – Protocol scheme registry 2777

SI Number Protocol

1 "coap"

2 "coaps"

3 "http"

4 "https"

5 "coap+tcp"

6 "coaps+tcp"

 2778

NOTE The discovery of an OCF Endpoint used by a specific protocol is out of scope. The mechanism used by a Client 2779
to form requests in a different messaging protocol other than discovery is out of scope. 2780

The following applies to the use of "/oic/d": 2781

– A vertical may choose to extend the list of Properties defined by the Resource Type "oic.wk.d". 2782
In that case, the vertical shall assign a new Device Type specific Resource Type ID. The 2783
mandatory Properties defined in Table 25 shall always be present. 2784

– A Device may choose to expose a separate, Discoverable Resource with its Resource Type ID 2785
set to a Device Type. In this case the Resource is equivalent to an instance of "oic.wk.d" and 2786
adheres to the definition thereof. As such the Resource shall at a minimum expose the 2787
mandatory Properties of "oic.wk.d". In the case where the Resource tagged in this manner is 2788
defined to be an instance of a Collection in accordance with 7.8.3 then the Resources that are 2789
part of that Collection shall at a minimum include the Resource Types mandated for the Device 2790
Type. 2791

Table 25 "oic.wk.d" Resource Type definition defines the base Resource Type for the "/oic/d" 2792
Resource. 2793

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 74

Table 25 – "oic.wk.d" Resource Type definition 2794

Property
title

Property
name

Value
type

Valu
e

rule

Uni
t

Acces
s

mode

Mandator
y

Description

(Device)
Name

"n" "string: N/A N/A R Yes Human friendly name defined by
the vendor. In the presence of "n"
Property of "/oic/con", both have
the same Property Value. When "n"
Property Value of "/oic/con" is
modified, it shall be reflected to "n"
Property Value of "/oic/d".

Spec
Version

"icv" "string
"

N/A N/A R Yes The specification version of this
document that a Device is
implemented to. The syntax shall
be "ocf.<major>.<minor>.<sub-
version>" where <major>, <minor,
and <sub-version> are the major,
minor and sub-version numbers of
this document respectively. The
specification version number (i.e.,
<major>.<minor>.<sub-version>)
shall be obtained from the title page
of this document (e.g. "2.0.5"). An
example of the string value for this
Property is "ocf.2.0.5".

Device UUID "di" "uuid" N/A N/A R Yes Unique identifier for Device. This
value shall be the same value (i.e.
mirror) as the "doxm.deviceuuid"
Property as defined in
ISO/IEC 30118-2. Handling privacy-
sensitivity for the "di" Property,
refer to clause 13.16 in
ISO/IEC 30118-2.

Data Model
Version

"dmv" "csv" N/A N/A R Yes Spec version of the Resource
specification to which this Device
data model is implemented; if
implemented against a Vertical
specific Device specification(s),
then the Spec version of the vertical
specification this Device model is
implemented to. The syntax is a
comma separated list of
<res>.<major>.<minor>.<sub-
version> or
<vertical>.<major>.<minor>.<sub-
version>. <res> is the string
"ocf.res" and <vertical> is the name
of the vertical defined in the
Vertical specific Resource
specification. The <major>,
<minor>, and <sub-version> are the
major, minor and sub-version
numbers of the specification
respectively. One entry in the csv
string shall be the applicable
version of the Resource Type
Specification for the Device (e.g.
"ocf.res.1.0.0"). If applicable,
additional entry(-ies) in the csv
shall be the vertical(s) being
realized (e.g. "ocf.sh.1.0.0"). This
value may be extended by the
vendor. The syntax for extending
this value, as a comma separated

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 75

entry, by the vendor shall be by
adding
x.<Domain_Name>.<vendor_string>
. For example, "ocf.res.1.0.0,
ocf.sh.1.0.0, x.com.example.string",
The order of the values in the
comma separated string can be in
any order (i.e. no prescribed order).
This Property shall not exceed 256
octets.

Permanent
Immutable
ID

"piid" "uuid" N/A N/A R Yes A unique and immutable Device
identifier. A Client can detect that a
single Device supports multiple
communication protocols if it
discovers that the Device uses a
single Permanent Immutable ID
value for all the protocols it
supports. Handling privacy-
sensitivity for the "piid" Property,
refer to clause 13.16 in
ISO/IEC 30118-2.

Localized
Descriptions

"ld" "array" N/A N/A R No Detailed description of the Device,
in one or more languages. This
Property is an array of objects
where each object has a "language"
field (containing an IETF RFC 5646
language tag) and a "value" field
containing the Device description in
the indicated language.

Software
Version

"sv" "string
"

N/A N/A R No Version of the Device software.

Manufacture
r Name

"dmn" "array" N/A N/A R No Name of manufacturer of the
Device, in one or more languages.
This Property is an array of objects
where each object has a "language"
field (containing an IETF RFC 5646
language tag) and a "value" field
containing the manufacturer name
in the indicated language.

Model
Number

"dmno" "string
"

N/A N/A R No Model number as designated by
manufacturer.

Ecosystem
Name

"econame" “string
”

enum N/A R No This is the name of ecosystem that
a Bridged Device belongs to. If a
Device has "oic.d.virtual" as one of
Resource Type values ("rt") the
Device shall contain this Property,
otherwise this Property shall not be
included.
This Property has enumeration
values: ["BLE", "oneM2M", "UPlus",
"Zigbee", "Z-Wave"].

Version of
Ecosystem

"ecoversion
"

“string
”

N/A N/A R No This is the version of ecosystem
that a Bridged Device belongs to. If
a Device has "oic.d.virtual" as one
of its Resource Type values ("rt")
the Device should contain this
Property, otherwise this Property
shall not be included.

Table 26 defines "oic.wk.p" Resource Type. 2795

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 76

Table 26 – "oic.wk.p" Resource Type definition 2796

Property title Property
name

Value type Value
rule

Unit Access
mode

Mandatory Description

Platform ID "pi" "uuid" N/A N/A R Yes Unique identifier for the
physical Platform
(UUID); this shall be a
UUID in accordance
with IETF RFC 4122. It
is recommended that
the UUID be created
using the random
generation scheme
(version 4 UUID)
specific in the RFC.
Handling privacy-
sensitivity for the "pi"
Property, refer to clause
13.16 in ISO/IEC 30118-
2.

Manufacturer
Name

"mnmn" "string" N/A N/A R Yes Name of manufacturer.

Manufacturer
Details Link

"mnml" "uri" N/A N/A R No Reference to
manufacturer,
represented as a URI.

Model
Number

"mnmo" "string" N/A N/A R No Model number as
designated by
manufacturer.

Date of
Manufacture

"mndt" "date" N/A Time R No Manufacturing date of
Platform.

Serial
number

"mnsel "string" N/A s R No Serial number of the
Platform, may be unique
for each Platform of the
same model number.

Platform
Version

"mnpv" "string" N/A N/A R No Version of Platform –
string (defined by
manufacturer).

OS Version "mnos" "string" N/A N/A R No Version of Platform
resident OS – string
(defined by
manufacturer).

Hardware
Version

"mnhw" "string" N/A N/A R No Version of Platform
hardware.

Firmware
version

"mnfv" "string" N/A N/A R No Version of Platform
firmware.

Support link "mnsl" "uri" N/A N/A R No URI that points to
support information from
manufacturer.

SystemTime "st" "date-time" N/A N/A R No Reference time for the
Platform.

Vendor ID "vid" "string" N/A N/A R No Vendor defined string
for the Platform. The
string is freeform and up
to the vendor on what
text to populate it.

Network
Connectivity
Type

"mnnct" "array" array
of
integer

 R No An array of integer
where each integer
indicates the network
connectivity type based

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 77

on IANAIfType value as
defined by IANA ifType-
MIB Definitions, e.g.,
[71, 259] which
represents Wi-Fi and
Zigbee.

11.2.4 Resource discovery using "/oic/res" 2797

11.2.4.1 General Requirements 2798

Discovery using "/oic/res" is the default discovery mechanism that shall be supported by all Devices. 2799
General requirements for use of this mechanism are as follows: 2800

– Every Device updates its local "/oic/res" with the Resources that are discoverable (see 7.3.2.2). 2801
Every time a new Resource is instantiated on the Device and if that Resource is discoverable 2802
by a remote Device then that Resource is published with the "/oic/res" Resource that is local to 2803
the Device (as the instantiated Resource). 2804

After performing discovery using "/oic/res", Clients may discover additional details about the Device 2805
by performing discovery using "/oic/p", "/oic/d", etc. If a Client already knows about the Device it 2806
may discover using other Resources without going through the discovery of "/oic/res" 2807

11.2.4.2 Discovery using "oic.if.ll" (Default OCF Interfgace for "/oic/res") 2808

If a Client does not explicitly include an OCF Interface as a query parameter in the request to 2809
"/oic/res" then the OCF Interface is taken to be "oic.if.ll" as that is the Default OCF Interface for 2810
"/oic/res". The requirements in this clause are thus applied. The requirements in this clause also 2811
apply if an OCF Interface of "oic.if.ll" is explicitly requested by inclusion as a query parameter in 2812
the RETRIEVE operation. 2813

– A Device wanting to discover Resources or Resource Types on one or more remote Devices 2814
makes a RETRIEVE request to the "/oic/res" on the remote Devices. This request may be sent 2815
multicast (default) or unicast if only a specific host is to be probed. The RETRIEVE request may 2816
optionally be restricted using appropriate clauses in the query portion of the request. Queries 2817
may select based on Resource Types, OCF Interfaces, or Properties. 2818

– The query applies to the representation of the Resources. "/oic/res" is the only Resource whose 2819
representation has "rt". So "/oic/res" is the only Resource that can be used for Multicast 2820
discovery at the transport protocol layer. 2821

– The Device receiving the RETRIEVE request responds with a list of Resources, the Resource 2822
Type of each of the Resources and the OCF Interfaces that each Resource supports. 2823
Additionally, information on the policies active on the Resource can also be sent. The policy 2824
supported includes Observability and discoverability. 2825

– The receiving Device may do a deeper discovery based on the Resources returned in the 2826
request to "/oic/res". 2827

The information that is returned on discovery against "/oic/res" is at the minimum: 2828

– The URI (relative or fully qualified URL) of the Resource. 2829

– The Resource Type(s) of each Resource. More than one Resource Type may be returned if the 2830
Resource enables more than one type. To access Resources of multiple types, the specific 2831
Resource Type that is targeted shall be specified in the request. 2832

– The OCF Interfaces supported by that Resource. Multiple OCF Interfaces may be returned. To 2833
access a specific OCF Interface that OCF Interface shall be specified in the request. If the OCF 2834
Interface is not specified, then the Default OCF Interface is assumed. 2835

For Clients that do include the OCF-Accept-Content-Format-Version option, an "/oic/res" response 2836
includes an array of Links to conform to IETF RFC 6690. Each Link shall use an "eps" Parameter 2837

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 78

to provide the information for an encrypted connection and carry "anchor" of the value OCF URI 2838
where the authority component of <deviceID> indicates the Device hosting the target Resource. 2839

The OpenAPI 2.0 file for discovery using "/oic/res" is described in Annex A. Also refer to clause 10 2840
(OCF Endpoint discovery) for details of Multicast discovery using "/oic/res" on a CoAP transport. 2841

An example Device might return the following to Clients that request with the Content Format of 2842
"application/vnd.ocf+cbor" in Accept Option: 2843

[2844
 { 2845
 "href": "/oic/res", 2846
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989/oic/res", 2847
 "rel": "self", 2848
 "rt": ["oic.wk.res"], 2849
 "if": ["oic.if.ll", "oic.if.baseline"], 2850
 "p": {"bm": 3}, 2851
 "eps": [{"ep": "coap://[fe80::b1d6]:44444"}] 2852
 }, 2853
 { 2854
 "href": "/oic/p", 2855
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989, 2856
 "rt": ["oic.wk.p"], 2857
 "if": ["oic.if.r", "oic.if.baseline"], 2858
 "p": {"bm": 3}, 2859
 "eps": [{"ep": "coap://[fe80::b1d6]:44444"}, 2860
 {"ep": "coaps://[fe80::b1d6]:11111"} 2861
] 2862
 }, 2863
 { 2864
 "href": "/oic/d", 2865
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989, 2866
 "rt": ["oic.wk.d"], 2867
 "if": ["oic.if.r", "oic.if.baseline"], 2868
 "p": {"bm": 3}, 2869
 "eps": [{"ep": "coap://[fe80::b1d6]:44444"}, 2870
 {"ep": "coaps://[fe80::b1d6]:11111"} 2871
] 2872
 }, 2873
 { 2874
 "href": "/myLightSwitch", 2875
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989, 2876
 "rt": ["oic.r.switch.binary"], 2877
 "if": ["oic.if.a", "oic.if.baseline"], 2878
 "p": {"bm": 3}, 2879
 "eps": [{"ep": "coap://[fe80::b1d6]:44444"}, 2880
 {"ep": "coaps://[fe80::b1d6]:11111"} 2881
] 2882
 } 2883
] 2884

11.2.5 Multicast discovery using "/oic/res" 2885

Generic requirements for use of CoAP multicast are provided in clause 12.2.9. Devices shall 2886
support use of CoAP multicast to allow retrieving the "/oic/res" Resource from an unsecured OCF 2887
Endpoint on the Device. Clients may support use of CoAP multicast to retrieve the "/oic/res" 2888
Resource from other Devices. The CoAP multicast retrieval of "/oic/res" supports filtering Links 2889
based on the "rt" Property in the Links: 2890

– If the discovery request is intended for a specific Resource Type including as part of a multi-2891
value Resource Type, the query parameter "rt" shall be included in the request (see 6.2.2) with 2892

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 79

its value set to the desired Resource Type. Only Devices hosting the Resource Type shall 2893
respond to the discovery request. 2894

– When the "rt" query parameter is omitted, all Devices shall respond to the discovery request. 2895

11.2.6 Multicast discovery using "/.well-known/core" 2896

Generic requirements for use of CoAP multicast are provided in clause 12.2.9. Devices that join 2897
the All CoAP Nodes multicast group as optionally defined in clause 12.2.9 may also support 2898
multicast retrieval from "/.well-known/core" (see IETF RFC 7252). A Server node shall join at 2899
least both the link-local scoped address FF02::FD and the site-local scoped address 2900
FF05::FD. IPv6 addresses of other scopes may also be enabled.A Device responding to a 2901
request received on "/.well-known/core" shall encode the payload using the Core link format, which 2902
is a Content-Format of "40" (application/link-format) as defined in IETF RFC 6690. Core links in 2903
the response payload shall have a Content-Format code ("ct" attribute) of "10000" 2904
("application/vnd.ocf+cbor"). This Content-Format code shall be used in subsequent requests and 2905
responses to obtain further Device Resource information. 2906

A Client may send a multicast request to "/.well-known/core" to discover Devices that have joined 2907
the All CoAP Nodes multicast group. However, non-OCF Devices may also respond to this request. 2908
In order to filter out these non-OCF Devices, a Client may use "rt" query parameters so that only 2909
OCF Devices respond. A Server shall support querying for the "oic.wk.res" Resource Type as an 2910
"rt" query parameter value. A Client issuing such a request is equivalent to searching for all 2911
Devices. The Server shall also support querying for a Device Type as an "rt" query parameter value 2912
and respond when the Device Type matches the "rt" query parameter value. 2913

Devices that support this optional discovery mechanism shall return as a minimum the Core link to 2914
the "/oic/res" Resource so that discovery of further Resources may be performed with a RETRIEVE 2915
operation to the URL of the discovered "/oic/res" Resource. The returned URL shall be fully 2916
qualified. 2917

The "rt" and "if" attribute shall also be included in the response. The "rt" attribute shall include 2918
"oic.wk.res" and the "rt" value of the Device Type. The "if" attribute shall include the OCF Interfaces 2919
exposed by "/oic/res". 2920

Example of a query for all Devices: 2921

Req: GET coap://[FF02::FD]:5683/.well-known/core?rt=oic.wk.res 2922
Res: 2.05 Content, Content-Format: 40 2923
<coap://[fe80::b1d6]:1111/oic/res>;ct=10000;rt="oic.wk.res oic.d.sensor";if="oic.if.11 2924
oic.if.baseline"; 2925

Example of a query for a specific Device Type: 2926

Req: GET coap://[FF02::FD]:5683/.well-known/core?rt=oic.d.sensor 2927
Res: 2.05 Content, Content-Format: 40 2928
<coap://[fe80::b1d6]:1111/oic/res>;ct=10000;rt="oic.wk.res oic.d.sensor"; if="oic.if.ll 2929
oic.if.baseline" 2930

11.3 Notification 2931

11.3.1 Overview 2932

A Server shall support NOTIFY operation to enable a Client to request and be notified of desired 2933
states of one or more Resources in an asynchronous manner. 11.3.2 specifies the Observe 2934
mechanism in which updates are delivered to the requester. 2935

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 80

11.3.2 Observe 2936

11.3.2.1 Overview 2937

In the Observe mechanism the Client utilizes the RETRIEVE operation to require the Server for 2938
updates in case of Resource state changes. The Observe mechanism consists of five steps which 2939
are depicted in Figure 11. 2940

NOTE the Observe mechanism can only be used for a resource with a Property of Observable (see 7.3.2.2). 2941

 2942

 2943

 2944

Figure 11 – Observe Mechanism 2945

11.3.2.2 RETRIEVE request with Observe indication 2946

The Client transmits a RETRIEVE request message to the Server to request updates for the 2947
Resource on the Server if there is a state change. The RETRIEVE request message carries the 2948
following parameters: 2949

– fr: Unique identifier of the Client. 2950

– to: Resource that the Client is requesting to Observe. 2951

– ri: Identifier of the RETRIEVE operation. 2952

– op: RETRIEVE. 2953

– obs: Indication for Observe operation. 2954

11.3.2.3 Processing by the Server 2955

Following the receipt of the RETRIEVE request, the Server may validate if the Client has the 2956
appropriate rights for the requested operation and the Properties are readable and Observable. If 2957
the validation is successful, the Server caches the information related to the Observe request. The 2958
Server caches the value of the ri parameter from the RETRIEVE request for use in the initial 2959
response and future responses in case of a change of state. 2960

11.3.2.4 RETRIEVE response with Observe indication 2961

The Server shall transmit a RETRIEVE response message in response to a RETRIEVE request 2962
message from a Client. If validation succeeded, the response includes an Observe indication. If 2963

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 81

not, the Observe indication is omitted from the response which signals to the requesting Client that 2964
registration for notification was not allowed. 2965

The RETRIEVE response message shall include the following parameters: 2966

– fr: Unique identifier of the Server. 2967

– to: Unique identifier of the Client. 2968

– ri: Identifier included in the RETRIEVE operation. 2969

– cn: Information Resource representation as requested by the Client. 2970

– rs: The result of the RETRIEVE operation. 2971

– obs: Indication that the response is made to an Observe operation. 2972

11.3.2.5 Resource monitoring by the Server 2973

The Server shall monitor the state the Resource identified in the Observe request from the Client. 2974
Anytime there is a change in the state of the Observed Resource, the Server sends another 2975
RETRIEVE response with the Observe indication. The mechanism does not allow the client to 2976
specify any bounds or limits which trigger a notification, the decision is left entirely to the server. 2977

11.3.2.6 Additional RETRIEVE responses with Observe indication 2978

The Server shall transmit updated RETRIEVE response messages following Observed changes in 2979
the state of the Resources indicated by the Client. The RETRIEVE response message shall include 2980
the parameters listed in 11.3.2.4. 2981

11.3.2.7 Cancelling Observe 2982

The Client can explicitly cancel Observe by sending a RETRIEVE request without the Observe 2983
indication field to the same Resource on the Server which it was Observing. For certain protocol 2984
mappings, the Client may also be able to cancel an Observe by ceasing to respond to the 2985
RETRIEVE responses. 2986

11.4 Introspection 2987

11.4.1 Overview 2988

Introspection is a mechanism to announce the capabilities of Resources hosted on the Device. 2989

The intended usage of the Introspection Device Data (IDD) is to enable dynamic Clients e.g. Clients 2990
that can use the IDD) to generate dynamically a UI or dynamically create translations of the hosted 2991
Resources to another eco-system. Other usages of Introspection is that the information can be 2992
used to generate Client code. The IDD is designed to augment the existing data already on the 2993
wire. This means that existing mechanisms need to be used to get a full overview of what is 2994
implemented in the Device. For example, the IDD does not convey information about Observability, 2995
since that is already conveyed with the "p" Property on the Links in "/oic/res" (see 7.8.2.5.3). 2996

The IDD is recommended to be conveyed as static data. Meaning that the data does not change 2997
during the uptime of a Device. However, when the IDD is not static, the Introspection Resource 2998
shall be Observable and the url Property Value of "oic.wk.introspection" Resource shall change to 2999
indicate that the IDD is changed. 3000

The IDD describes the Resources that make up the Device. For the complete list of included 3001
Resources see Table 21. The IDD is described as a OpenAPI 2.0 in JSON format file. The text in 3002
the following bulleted list contains OpenAPI 2.0 terms, such as paths, methods etc. The OpenAPI 3003
2.0 file shall contain the description of the Resources: 3004

– The IDD will use the HTTP syntax, e.g., define the CRUDN operation as HTTP methods and 3005
use the HTTP status codes. 3006

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 82

– The IDD does not have to define all the status codes that indicate an error situation. 3007

– The IDD does not have to define a schema when the status code indicates that there is no 3008
payload (see HTTP status code 204 as an example). 3009

– The paths (URLs) of the Resources in the IDD shall be without the OCF Endpoint description, 3010
e.g. it shall not be a fully-qualified URL but only the relative path from the OCF Endpoint, aka 3011
the "href". The relative path may include a query parameter (e.g. "?if=oic.if.ll"), in such cases 3012
the text following (and including) the "?" delimiter shall be removed before equating to the "href" 3013
that is conveyed by "/oic/res". 3014

– The following Resources shall be excluded in the IDD: 3015

– Resource with Resource Type: "oic.wk.res" unless 3rd party defined or optional Properties 3016
are implemented. 3017

– Resource with Resource Type: "oic.wk.introspection". 3018

– Resources explicitly identified within other specifications working in conjuction with this 3019
document (e.g. Resources that handle Wi-Fi Easy Setup, see [2]). 3020

– The following Resources shall be included in the IDD when optional or 3rd party defined 3021
Properties are implemented: 3022

– Resources with type: "oic.wk.p" and "oic.wk.d" (e.g. discovery related Resources). 3023

– Security Virtual Resources from ISO/IEC 30118-2. 3024

– When the Device does not expose instances of Vertical Resource Types, and does not have 3025
any 3rd party defined Resources (see 7.8.4.4), and does not need to include Resources in the 3026
IDD due to other clauses in this clause, then the IDD shall be an empty OpenAPI 2.0 file. An 3027
example of an empty OpenAPI 2.0 file can be found in found in Annex B.2. 3028

– All other Resources that are individually addressable by a Client (i.e. the "href" can be resolved 3029
and at least one operation is supported with a success path response) shall be listed in the IDD. 3030

– Per Resource the IDD shall include: 3031

– All implemented methods 3032

– For an OCF defined Resource Type, only the methods that are listed in the OpenAPI 2.0 3033
definition are allowed to exist in the IDD. For an OCF defined Resource Type, methods 3034
not listed in the OpenAPI 2.0 definition shall not exist in the IDD. The supported methods 3035
contained in the IDD shall comply with the listed OCF Interfaces. For example, if the 3036
POST method is listed in the IDD, then an OCF Interface that allows UPDATE will be 3037
listed in the IDD. 3038

– Per supported method: 3039

– Implemented query parameters per method. 3040

– This includes the supported OCF Interfaces ("if") as enum values. 3041

– Schemas of the payload for the request and response bodies of the method. 3042

– Where the schema provides the representation of a batch request or response ("oic.if.b") 3043
the schema shall contain the representations for all Resource Types that may be 3044
included within the batch representation. The representations shall be provided within 3045
the IDD itself. 3046

– The schema data shall be conveyed by the OpenAPI 2.0 schema. 3047

– The OpenAPI 2.0 schema object shall comply with: 3048

– The schemas shall be fully resolved, e.g. no references shall exist outside the 3049
OpenAPI 2.0 file. 3050

– The schemas shall list which OCF Interfaces are supported on the method. 3051

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 83

– The schemas shall list if a Property is optional or required. 3052

– The schemas shall include all Property validation keywords. Where an enum is 3053
defined the enum shall contain the values supported by the Device. When vendor 3054
defined extensions exist to the enum (defined in accordance to 7.8.4.4) these shall 3055
be included in the enum. 3056

– The schemas shall indicate if an Property is read only or read-write. 3057

– By means of the readOnly schema tag belonging to the Property. 3058

– Default value of readOnly is false as defined by OpenAPI 2.0. 3059

– The default value of the "rt" Property shall be used to indicate the supported 3060
Resource Types. 3061

– oneOf and anyOf constructs are allowed to be used as part of a OpenAPI 2.0 schema 3062
object. The OpenAPI 2.0 schema with oneOf and anyOf constructs can be found in 3063
Annex B.1. 3064

– For Atomic Measurements (see clause 7.8.4), the following apply: 3065

– The "rts" Property Value in the IDD shall include only the Resource Types the instance 3066
contains and not the theoretical maximal set allowed by the schema definition. 3067

– The Resources that are part of an Atomic Measurement, excluding the Atomic Measurement 3068
Resource itself, shall not be added to their own individual path in the IDD, as they are not 3069
individually addressable; however, the schemas for the composed Resource Types shall be 3070
provided in the IDD as part of the batch response definition along with the "href" for the 3071
Resource. 3072

Dynamic Resources (e.g. Resources that can be created on a request by a Client) shall have a 3073
URL definition which contains a URL identifier (e.g. using the {} syntax). A URL with {} identifies 3074
that the Resource definition applies to the whole group of Resources that may be created. The 3075
actual path may contain the Collection node that links to the Resource. 3076

Example of a URL with identifiers: 3077

/SceneListResURI/{SceneCollectionResURI}/{SceneMemberResURI}: 3078

When different Resource Types are allowed to be created in a Collection, then the different 3079
schemas for the CREATE method shall define all possible Resource Types that may be created. 3080
The schema construct oneOf allows the definition of a schema with selectable Resources. The 3081
oneOf construct allows the integration of all schemas and that only one existing sub schema shall 3082
be used to indicate the definition of the Resource that may be created. 3083

Example usage of oneOf JSON schema construct is shown in Figure 12: 3084

{ 3085
 "oneOf": [3086
 { <<subschema 1 definition>> }, 3087
 { << sub schema 2 definition >> } 3088
… 3089
] 3090
} 3091

Figure 12 – Example usage of oneOf JSON schema 3092

A Client using the IDD of a Device should check the version of the supported IDD of the Device. 3093
The OpenAPI 2.0 version is indicated in each file with the tag "swagger". Example of the 2.0 3094
supported version of the tag is: "swagger": "2.0". Later versions of this document may reference 3095
newer versions of the OpenAPI specification, for example 3.0. 3096

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 84

A Device shall support one Resource with a Resource Type of "oic.wk.introspection" as defined in 3097
Table 27. The Resource with a Resource Type of "oic.wk.introspection" shall be included in the 3098
Resource "/oic/res". 3099

An empty IDD file, e.g. no URLs are exposed, shall still have the mandatory OpenAPI 2.0 fields. 3100
See OpenAPI specification. An example of an empty OpenAPI 2.0 file can be found in found in 3101
Annex B.2. 3102

Table 27 – Introspection Resource 3103

Pre-defined
URI

Resource
Type Title

Resource Type ID
("rt" value)

OCF
Interfaces

Description Related
Functional
Interaction

none Introspection "oic.wk.introspection"

"oic.if.r" The Resource that
announces the URL of
the Introspection file.

Introspection

 3104

Table 28 defines "oic.wk.introspection" Resource Type. 3105

Table 28 – "oic.wk.introspection" Resource Type definition 3106

Property
title

Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

urlInfo "urlInfo" "array" N/A N/A R Yes array of objects

url "url" "string" "uri" N/A R Yes URL to the hosted payload

protocol "protocol" "string" "enum" N/A R Yes Protocol definition to retrieve
the Introspection Device
Data from the url.

content-
type

"content-
type"

"string" "enum" N/A R No content type of the url.

version "version" "integer" "enum" N/A R No Version of the Introspection
protocol, indicates which
rules are applied on the
Introspection Device Data
regarding the content of the
OpenAPI 2.0 file.
Current value is 1.

 3107

11.4.2 Usage of Introspection 3108

The Introspection Device Data is retrieved in the following steps and as depicted in Figure 13: 3109

– Check if the Introspection Resource is supported and retrieve the URL of the Resource. 3110

– Retrieve the contents of the Introspection Resource 3111

– Download the Introspection Device Data from the URL specified the Introspection Resource. 3112

– Usage of the Introspection Device Data by the Client 3113

 3114

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 85

 3115

Figure 13 – Interactions to check Introspection support and download the Introspection 3116
Device Data. 3117

11.5 Semantic Tags 3118

11.5.1 Introduction 3119

Semantic Tags are meta-information associated with a specific Resource instance that are 3120
represented as both Link Parameters and Resource Properties that provide a mechanism whereby 3121
the Resource be annotated with additional contextual metadata that helps describe the Resource. 3122

When a Semantic Tag is defined for a Resource, it shall be present as a Link Parameter in all Links 3123
that are present that target the Resource, including Links in "/oic/res" if the Resource is a 3124
Discoverable Resource. The Semantic Tag is further treated as a Common Property associated 3125
with the Resource and so shall be returned as part of the "baseline" response for the Resource if 3126
a Semantic Tag has been populated. 3127

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 86

11.5.2 Semantic Tag definitions 3128

11.5.2.1 Relative and descriptive position Semantic Tags 3129

11.5.2.1.1 Introduction 3130

Consider where there may be multiple instances of the same Resource Type exposed by a Device; 3131
or a case where there may be potentially ambiguity with regard to the physical attribute that a 3132
Resource is representing. In such a case the ability to annotate the Links to the Resource with 3133
information pertaining to the relative position of the Resource within the Physical Device becomes 3134
useful. 3135

11.5.2.1.2 "tag-pos-desc" or position description Semantic Tag 3136

The "tag-pos-desc" Semantic Tag as defined in Table 29 describes the position of the Resource as 3137
a descriptive position. If the tag is not exposed it conveys the same meaning as if the tag is exposed 3138
with a value of "unknown". The value for the "tag-pos-desc" Semantic Tag if exposed, shall be a 3139
string containing a value from the enumeration detailed in Annex C. The population of the Semantic 3140
Tag is defined by the Device vendor and shall not be mutable by a Client. 3141

Table 29 – "tag-pos-desc" Semantic Tag definition 3142

Link Parameter
name

Type Contents Value example

"tag-pos-desc" enum See Annex C "tag-pos-desc": "topleft"

 3143

11.5.2.1.3 "tag-pos-rel" or relative position Semantic Tag 3144

The "tag-pos-rel" Semantic Tag describes the position of the Resource as a relative position in 3D 3145
space against a known point defined by the Device vendor. The known point is defined using [x,y,z] 3146
form as [0.0,0.0,0.0]. The position itself is then represented by the x-, y-, and z- plane relative 3147
position from this known point using a bounded box of size +1.0/-1.0 in each plane. 3148

Figure 14 illustrates the definition of "tag-pos-rel". 3149

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 87

[1.0,1.0,1.0]

[-1.0,-1.0,1.0] [1.0,-1.0,1.0]

[1.0,-1.0,-1.0]

[1.0,1.0,-1.0]

[-1.0,1.0,1.0]

[-1.0,1.0,-1.0]

x-Plane

y-Plane

z-Plane 3150

Figure 14 – "tag-pos-rel" definition 3151

The "tag-pos-rel" Semantic Tag value is defined by the Device vendor and shall not be mutable by 3152
a Client. This is detailed in Table 30. 3153

Table 30 – "tag-pos-rel" Semantic Tag definition 3154

Link Parameter
name

Type Contents Value example

"tag-pos-rel" array Three element array of numbers defining
the position relative to a known [0,0,0]
point within the context of an abstract box
[-1,-1,-1],[1,1,1].

"tag-pos-rel": [0.5,0.5,0.5]

 3155

11.5.2.2 Functional behaviour Semantic Tags 3156

11.5.2.2.1 Introduction 3157

Consider, for example, the case of a Device that supports two target temperatures simultaneously 3158
for different modes of operation, for example a temperature for heating and a separate temperature 3159
for cooling. 3160

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 88

There is then an ambiguity with respect to the target mode of the specific temperature Resource; 3161
it isn't explicit which instance of temperature is associated with which Device function. In such a 3162
case the ability to annotate the Links to the Resource with information pertaining to the function of 3163
the Resource within the Physical Device becomes useful. 3164

11.5.2.2.2 "tag-func-desc" or function description Semantic Tag 3165

The "tag-func-desc" Semantic Tag describes the function of the Resource, if exposed it shall be 3166
populated with a value from the currently supported set of standardized enumeration values defined 3167
by the Device ecosystem specifications. If the tag is not exposed it conveys the same meaning as 3168
if the tag is exposed with a value of "unknown". The value for the "tag-func-desc" Semantic Tag, if 3169
exposed, is defined by the Device vendor and shall not be mutable by a Client. 3170

This "tag-func-desc" Semantic Tag is detailed in Table 31. 3171

Table 31 – "tag-func-desc" Semantic Tag definition 3172

Link Parameter
name

Type Contents Value example

"tag-func-rel" enum Defined by Device ecosystem "tag-func-desc": "cool"

11.5.2.3 Location Semantic Tags 3173

11.5.2.3.1 Introduction 3174

Consider a Bridge, Resource Directory or other similar concept whereby the Link to the Device 3175
Resource ("oic.wk.d") that is exposed may reference or relate to a physically separate Device. In 3176
such a case the ability to annotate the Link to the Device Resource with location information 3177
becomes useful. Additionally, in a deployment of multiple similar or identical Devices, the ability to 3178
annotate the Device with where it is deployed assists in disambiguation. 3179

11.5.2.3.2 "tag-locn" or location description Semantic Tag 3180

The “tag-locn” Semantic Tag may be exposed as a Link Parameter for the Device Resource, it 3181
describes the physical location of the target Device, it shall not be exposed as a Link Parameter 3182
for any other Resource Type. If the tag is not exposed it conveys the same meaning as if the tag 3183
is exposed with a value of “unknown”. The initial value for the “tag-locn” Semantic Tag if exposed 3184
shall be “unknown”. This Link Parameter shall not contain any 3rd party defined values. 3185

The "tag-locn" shall be exposed as string containing a value from the enumeration ("locn-3186
descriptions") defined in Annex C. The tag is detailed in Table 32. 3187

An instance of "tag-locn" may be updated by a Client by modifying the reflected instance of this 3188
value that is present in the Configuration Resource, see [1]. 3189

Table 32 – "tag-locn" Semantic Tag definition 3190

Semantic Tag Name Type Contents Value example

tag-locn Enumeration See Annex C “tag-locn”: “familyroom”

 3191

12 Messaging 3192

12.1 Introduction 3193

This clause specifies the protocol messaging mapping to the CRUDN messaging operations (clause 3194
8) for each messaging protocol specified (e.g., CoAP.). Mapping to additional protocols is expected 3195
in later version of this document. All the Property information from the Resource model shall be 3196
carried within the message payload. This payload shall be generated in the Resource model layer 3197

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 89

and shall be encapsulated in the data connectivity layer. The message header shall only be used 3198
to describe the message payload (e.g., verb, mime-type, message payload format), in addition to 3199
the mandatory header fields defined in a messaging protocol (e.g., CoAP) specification. If the 3200
message header does not support this, then this information shall also be carried in the message 3201
payload. Resource model information shall not be included in the message header structure unless 3202
the message header field is mandatory in the messaging protocol specification. 3203

When a Resource is specified with a RESTful description language like OpenAPI 2.0 then the HTTP 3204
syntax definitions are used in the description (e.g., HTTP syntax for the CRUDN operations, status 3205
codes, etc). The HTTP syntax will be mapped to the actual used web transfer protocol (e.g., CoAP). 3206

The communication is largely based on UDP and UDP has defined the Maximum Transmission Unit 3207
(MTU). All UDP payload size communications shall not exceed the MTU size as per by the 3208
IETF RFC 8085 clause 3.2. This is to avoid being dependent on package reassembly by the 3209
operating systems. 3210

12.2 Mapping of CRUDN to CoAP 3211

12.2.1 Overview 3212

A Device implementing CoAP shall conform to IETF RFC 7252 for the methods specified in clause 3213
12.2.3. A Device implementing CoAP shall conform to IETF RFC 7641 to implement the CoAP 3214
Observe option. Support for CoAP block transfer when the payload is larger than the MTU is defined 3215
in 12.2.8. 3216

12.2.2 URIs 3217

An OCF: URI is mapped to a coap: URI by replacing the scheme name "ocf" with "coap" if unsecure 3218
or "coaps" if secure before sending over the network by the requestor. Similarly on the receiver 3219
side, the scheme name is replaced with "ocf". 3220

Any query string that is present within the URI is encoded as one or more URI-Query Options as 3221
defined in IETF RFC 7252 clause 6.4. 3222

12.2.3 CoAP method with request and response 3223

12.2.3.1 Overview 3224

Every request has a CoAP method that realizes the request. The primary methods and their 3225
meanings are shown in Table 33, which provides the mapping of GET/POST/DELETE methods to 3226
CREATE, RETRIEVE, UPDATE, and DELETE operations. The associated text provides the generic 3227
behaviours when using these methods, however Resource OCF Interfaces may modify these 3228
generic semantics. The HTTP codes in the RESTful descriptions will be translated as described in 3229
IETF RFC 8075 clause 7 Response Code Mapping. CoAP methods not listed in Table 33 are not 3230
supported. 3231

Table 33 – CoAP request and response 3232

Method for CRUDN (mandatory) Request data (mandatory) Response data

GET for RETRIEVE - Method code: GET (0.01).
- Request URI: an existing URI for
the Resource to be retrieved

- Response code: success (2.xx) or
error (4.xx or 5.xx).
- Payload: Resource representation
of the target Resource (when
successful).

POST for CREATE - Method code: POST (0.02).
- Request URI: an existing URI for
the Resource responsible for the
creation.
- Payload: Resource presentation of
the Resource to be created.

- Response code: success (2.xx) or
error (4.xx or 5.xx).
- Payload: the URI of the newly
created Resource (when successful).

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 90

POST for UPDATE - Method code: POST (0.02).
- Request URI: an existing URI for
the Resource to be updated.
- Payload: representation of the
Resource to be updated.

- Response Code: success (2.xx) or
error (4.xx or 5.xx).

DELETE for DELETE - Method code: DELETE (0.04).
- Request URI: an existing URI for
the Resource to be deleted.

- Response code: success (2.xx) or
error (4.xx or 5.xx).

 3233

 3234

12.2.3.2 CREATE with POST 3235

POST with the "oic.if.create" OCF Interface query parameter (i.e., "POST ?if=oic.if.create") shall 3236
be used only in situations where the request URI is valid, that is it is the URI of an existing Resource 3237
on the Server that is processing the request. If no such Resource is present, the Server shall 3238
respond with an error response code of 4.xx. The use of POST for CREATE shall use an existing 3239
request URI which identifies the Resource on the Server responsible for creation. The URI of the 3240
created Resource is determined by the Server and provided to the Client in the response. 3241

A Client shall include the representation of the new Resource in the request payload. The new 3242
resource representation in the payload shall have all the necessary Properties to create a valid 3243
Resource instance, i.e. the created Resource should be able to properly respond to the valid 3244
Request with mandatory OCF Interface (e.g., "GET with ?if=oic.if.baseline"). 3245

Upon receiving the POST request, the Server shall either: 3246

– Create the new Resource with a new URI, respond with the new URI for the newly created 3247
Resource and a success response code (2.xx); or 3248

– respond with an error response code (4.xx or 5.xx). 3249

12.2.3.3 RETRIEVE with GET 3250

GET shall be used for the RETRIEVE operation. The GET method retrieves the representation of 3251
the target Resource identified by the request URI. 3252

Upon receiving the GET request, the Server shall either: 3253

– Send back the response with the representation of the target Resource with a success response 3254
code (2.xx); or 3255

– respond with an error response code (4.xx or 5.xx) or ignore it (e.g. non-applicable multicast 3256
GET). 3257

GET is a safe method and is idempotent. 3258

12.2.3.4 UPDATE with POST 3259

POST shall be used only in situations where the request URI is valid, that is it is the URI of an 3260
existing Resource on the Server that is processing the request. If no such Resource is present, the 3261
Server shall respond with an error response code of 4.xx. A client shall use POST to UPDATE 3262
Property values of an existing Resource. 3263

Upon receiving the request, the Server shall either: 3264

– Apply the request to the Resource identified by the request URI in accordance with the applied 3265
OCF Interface (i.e. POST for non-existent Properties is ignored) and send back a response with 3266
a success response code (2.xx); or 3267

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 91

– respond with an error response code (4.xx or 5.xx). Note that if the representation in the payload 3268
is incompatible with the target Resource for POST using the applied OCF Interface (i.e. the 3269
overwrite semantic cannot be honored because of read-only Property in the payload), then the 3270
error response code 4.xx shall be returned. 3271

12.2.3.5 DELETE with DELETE 3272

DELETE shall be used for DELETE operation. The DELETE method requests that the Resource 3273
identified by the request URI be deleted. 3274

Upon receiving the DELETE request, the Server shall either: 3275

– Delete the target Resource and send back a response with a success response code (2.xx); or 3276

– respond with an error response code (4.xx or 5.xx). 3277

DELETE is unsafe but idempotent (unless URIs are recycled for new instances). 3278

12.2.4 Content-Format negotiation 3279

The Framework mandates support of CBOR, however it allows for negotiation of the payload body 3280
if more than one Content-Format (e.g. CBOR and JSON) is supported by an implementation. In this 3281
case the Accept Option defined in clause 5.10.4 of IETF RFC 7252 shall be used to indicate which 3282
Content–Format (e.g. JSON) is requested by the Client. 3283

The Content-Formats supported are shown in Table 34. 3284

Table 34 – OCF Content-Formats 3285

Media Type ID

"application/vnd.ocf+cbor" 10000

 3286

Clients shall include a Content-Format Option in every message that contains a payload. Servers 3287
shall include a Content-Format Option for all success (2.xx) responses with a payload body. Per 3288
IETF RFC 7252 clause 5.5.1, Servers shall include a Content-Format Option for all error (4.xx or 3289
5.xx) responses with a payload body unless they include a Diagnostic Payload; error responses 3290
with a Diagnostic Payload do not include a Content-Format Option. The Content-Format Option 3291
shall use the ID column numeric value from Table 34. An OCF vertical may mandate a specific 3292
Content-Format Option. 3293

Clients shall also include an Accept Option in every request message. The Accept Option shall 3294
indicate the required Content-Format as defined in Table 34 for response messages. The Server 3295
shall return the required Content-Format if available. If the required Content-Format cannot be 3296
returned, then the Server shall respond with an appropriate error message. 3297

12.2.5 OCF-Content-Format-Version information 3298

Servers and Clients shall include the OCF-Content-Format-Version Option in both request and 3299
response messages with a payload. Clients shall include the OCF-Accept-Content-Format-Version 3300
Option in request messages. The OCF-Content-Format-Version Option and OCF-Accept-Content-3301
Format-Version Option are specified as Option Numbers in the CoAP header as shown in Table 35. 3302

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 92

Table 35 – OCF-Content-Format-Version and OCF-Accept-Content-Format-Version Option 3303
Numbers 3304

CoAP Option Number Name Format Length
(bytes)

2049 OCF-Accept-Content-
Format-Version

uint 2

2053 OCF-Content-Format-
Version

uint 2

 3305

The value of both the OCF-Accept-Content-Format-Version Option and the OCF-Content-Format-3306
Version Option is a two-byte unsigned integer that is used to define the major, minor and sub 3307
versions. The major and minor versions are represented by 5 bits and the sub version is 3308
represented by 6 bits as shown in Table 36. 3309

Table 36 – OCF-Accept-Content-Format-Version and OCF-Content-Format-Version 3310
Representation 3311

 Major Version Minor Version Sub Version

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 3312

Table 37 illustrates several examples: 3313

Table 37 – Examples of OCF-Content-Format-Version and OCF-Accept-Content-Format-3314
Version Representation 3315

OCF version Binary representation Integer value

"1.0.0" "0000 1000 0000 0000" 2048

"1.1.0" "0000 1000 0100 0000" 2112

 3316

The OCF-Accept-Content-Format-Version Option and OCF-Content-Format-Version Option for this 3317
version of the document shall be "1.0.0" (i.e. "0b0000 1000 0000 0000"). 3318

12.2.6 Content-Format policy 3319

All Devices shall support the current Content-Format Option, "application/vnd.ocf+cbor", and OCF-3320
Content-Format-Version "1.0.0". 3321

For backward compatibility with previous OCF-Content-Format-Version Options: 3322

– All Client Devices shall support OCF-Content-Format-Version Option set to "1.0.0" and higher. 3323

– All Client Devices shall support OCF-Accept-Content-Format-Version Option set to "1.0.0" and 3324
higher. 3325

– A Client shall send a discovery request message with its Accept Option set to 3326
"application/vnd.ocf+cbor", and its OCF-Accept-Content-Format-Version Option matching its 3327
highest supported version. 3328

– A Server shall respond to a Client's discovery request that is higher than its OCF-Content-3329
Format-Version by responding with its Content-Format Option set to "application/vnd.ocf+cbor", 3330
and OCF-Content-Format-Version matching its highest supported version. The response 3331

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 93

representation shall be encoded with the OCF-Content-Format-Version matching the Server's 3332
highest supported version. 3333

– A Server may support previous Content-Formats and OCF-Content-Format-Versions to support 3334
backward compatibility with previous versions. 3335

– For a Server that supports multiple OCF-Content-Format-Version Options, the Server should 3336
attempt to respond with an OCF-Content-Format-Version that matches the OCF-Accept-3337
Content-Format-Version of the request. 3338

To maintain compatibility between Devices implemented to different versions of this document, 3339
Devices should follow the policy as described in Figure 15. 3340

The OCF Clients in Figure 15 support sending Content-Format Option set to 3341
"application/vnd.ocf+cbor", Accept Option set to "application/vnd.ocf+cbor", OCF-Content-Format-3342
Version Option set to "1.0.0", and OCF-Accept-Content-Format-Version Option set to "1.0.0" 3343
(representing OCF 1.0 and later Clients). The OCF Servers in Figure 15 support sending Content-3344
Format Option set to "application/vnd.ocf+cbor" and OCF-Content-Format-Version Option set to 3345
"1.0.0" (representing OCF 1.0 and later Servers). 3346

 3347

 3348

Figure 15 – Content-Format Policy for backward compatible OCF Clients negotiating lower 3349
OCF Content-Format-Version 3350

12.2.7 CRUDN to CoAP response codes 3351

The mapping of CRUDN operations response codes to CoAP response codes are identical to the 3352
response codes defined in IETF RFC 7252. 3353

12.2.8 CoAP block transfer 3354

Basic CoAP messages work well for the small payloads typical of light-weight, constrained IoT 3355
devices. However scenarios can be envisioned in which an application needs to transfer larger 3356
payloads. 3357

CoAP block-wise transfer as defined in IETF RFC 7959 shall be used by all Servers which generate 3358
a content payload that would exceed the size of a CoAP datagram as the result of handling any 3359
defined CRUDN operation. 3360

Similarly, CoAP block-wise transfer as defined in IETF RFC 7959 shall be supported by all Clients. 3361
The use of block-wise transfer is applied to both the reception of payloads as well as transmission 3362
of payloads that would exceed the size of a CoAP datagram. 3363

A Client may support both the block1 (as descriptive) and block2 (as control) options as described 3364
by IETF RFC 7959. A Server may support both the block1 (as control) and block2 (as descriptive) 3365
options as described by IETF RFC 7959. 3366

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 94

12.2.9 Generic requirements for CoAP multicast 3367

A Client may use CoAP multicast to retrieve a target Resource with a fixed local path from multiple 3368
other Devices. This clause provides generic requirements for this mechanism. 3369

– Devices shall join the All OCF Nodes multicast groups (as defined in [IANA IPv6 Multicast 3370
Address Space Registry]) with scopes 2, 3, and 5 (i.e., ff02::158, ff03::158 and ff05::158) and 3371
shall listen on the port 5683. For compliance to IETF RFC 7252 a Device may additionally join 3372
the All CoAP Nodes multicast groups. 3373

– Clients intending to discover Resources shall join the multicast groups as defined in the first 3374
bullet. 3375

– Clients shall send multicast requests to the All OCF Nodes multicast group address with scope 3376
2 ("ff02::158") or with scope 5 ("ff05::158") at port "5683". The requested URI shall be the fixed 3377
local path of the target Resource optionally followed by query parameters. For compliance to 3378
IETF RFC 7252 a Client may additionally send to the All CoAP Nodes multicast groups. 3379

– To discover Devices on a low-rate wireless personal area network (LR-WPAN) [see 3380
IETF RFC 7346], Clients should send additional discovery requests (GET request) to the All 3381
OCF Nodes multicast group address with REALM_LOCAL scope 3 ("ff03::158") at port "5683". 3382
The set of replying Devices then can be used to distinguish if the Device is SITE_LOCAL or 3383
REALM_LOCAL to the Client discovering the Devices. Such request shall use the IPv6 hop limit 3384
with a value of 255. If the Client sends discovery requests to All OCF Nodes, then for 3385
compliance to IETF RFC 7252 a Client may additionally send to the All CoAP Nodes multicast 3386
groups with the same REALM_LOCAL scope with the IPv6 hop limit value of 255. 3387

– Clients should send discovery requests (GET request) to the All OCF Nodes multicast group 3388
address with SITE_LOCAL scope 5 ("ff05::158") at port "5683". Such request shall use the IPv6 3389
hop limit with a value of 255. If the Client sends discovery requests to All OCF Nodes, then for 3390
compliance to IETF RFC 7252 a Client may additionally send to the All CoAP Nodes multicast 3391
groups with the same SITE_LOCAL scope with the IPv6 hop limit value of 255. 3392

– The multicast request shall be permitted by matching the request to an ACE which permits 3393
unauthenticated access to the target Resource as described in ISO/IEC 30118-2. 3394

– Handling of multicast requests shall be as described in clause 8 of IETF RFC 7252 and clause 3395
4.1 in IETF RFC 6690. 3396

– Devices which receive the request shall respond, subject to query parameter processing 3397
specific to the requested Resource. 3398

12.2.10 Setting timeout on response to a confirmable request 3399

The timeout specified by "oic.wk.res:eps[]:lat", when present, should only be taken into account by 3400
the Client when the Server is in the "ready for normal operation state" [see clause 8.5 in 3401
ISO/IEC 30118-2] and the request made is a confirmable request. The Server should only enable 3402
the state that will cause latency when in "ready for normal operation state" [see clause 8.5 in 3403
ISO/IEC 30118-2]. In all other states the Server should respond with timeouts as identified in 3404
IETF RFC 7252. 3405

12.2.11 Mapping the error response payload 3406

The error response payload as defined in clause 7.10 shall be included as a diagnostic payload as 3407
described in IETF RFC 7252 clause 5.5.2. The diagnostic payload shall be encoded in ASCII. 3408

12.3 Mapping of CRUDN to CoAP serialization over TCP 3409

12.3.1 Overview 3410

In environments where TCP is already available, CoAP can take advantage of it to provide reliability. 3411
Also in some environments UDP traffic is blocked, so deployments may use TCP. For example, 3412
consider a cloud application acting as a Client and the Server is located at the user’s home. A 3413
Server which already support CoAP as a messaging protocol could easily support CoAP 3414

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 95

serialization over TCP rather than utilizing another messaging protocol. A Device implementing 3415
CoAP Serialization over TCP shall conform to IETF RFC 8323. 3416

12.3.2 URIs 3417

When UDP is blocked, Clients are dependent on pre-configured details of the Device to determine 3418
if the Device supports CoAP serialization over TCP. When UDP is not-blocked, a Device which 3419
supports CoAP serialization over TCP shall populate the "eps" Parameter in the "/oic/res" response, 3420
as defined in 10.2, with the URI scheme(s) as defined in clause 8.1 or 8.2 of IETF RFC 8323. For 3421
the "coaps+tcp" URI scheme, as defined in clause 8.2 of IETF RFC 8323, IETF RFC 7301 shall be 3422
used. In addition, the URIs used for CoAP serialization over TCP shall conform to 12.2.2 by 3423
substituting the scheme names with the scheme names defined in clauses 8.1 and 8.2 of 3424
IETF RFC 8323 respectively. 3425

12.3.3 CoAP method with request and response 3426

The CoAP methods used for CoAP serialization over TCP shall conform to 12.2.3. 3427

12.3.4 Content-Format negotiation 3428

The Content Format negotiation used for CoAP serialization over TCP shall conform to 12.2.4. 3429

12.3.5 OCF-Content-Format-Version information 3430

The OCF Content Format Version information used for CoAP serialization over TCP shall conform 3431
to 12.2.5. 3432

12.3.6 Content-Format policy 3433

The Content Format policy used for CoAP serialization over TCP shall conform to 12.2.6. 3434

12.3.7 CRUDN to CoAP response codes 3435

The CRUDN to CoAP response codes for CoAP serialization over TCP shall conform to 12.2.7. 3436

12.3.8 CoAP block transfer 3437

The CoAP block transfer for CoAP serialization over TCP shall conform to clause 6 of 3438
IETF RFC 8323. 3439

12.3.9 Keep alive (connection health) 3440

The Device that initiated the CoAP over TCP connection shall send a Ping message as described 3441
in clause 5.4 in IETF RFC 8323. The Device to which the connection was made may send a Ping 3442
message. The recipient of any Ping message shall send a Pong message as described in clause 3443
5.4 in IETF RFC 8323. 3444

Both sides of an established CoAP over TCP connection may send subsequent Ping (and 3445
corresponding Pong) messages. 3446

12.3.10 CoAP using a proxy 3447

In cases that a request is made to a forwarding proxy, the option proxy-uri (clause 5.10.2 of 3448
IETF RFC 7252) shall be used. The format of the information in the proxy-uri option includes the 3449
OCF Device information. The proxi-uri shall have the format of an OCF URI as described in clause 3450
6.2.2. The authority will have the same value as "oic.wk.d:uuid" of the targeted Device. 3451

12.3.11 Mapping the error response payload 3452

The mapping of the error response payload for CoAP serialization over TCP shall conform to clasue 3453
12.2.11. 3454

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 96

12.4 Payload Encoding in CBOR 3455

OCF implementations shall perform the conversion to CBOR from JSON defined schemas and to 3456
JSON from CBOR in accordance with IETF RFC 7049 clause 4 unless otherwise specified in this 3457
clause. 3458

Properties defined as a JSON integer shall be encoded in CBOR as an integer (CBOR major types 3459
0 and 1). Properties defined as a JSON number shall be encoded as an integer, single- or double-3460
precision floating point (CBOR major type 7, sub-types 26 and 27); the choice is implementation 3461
dependent. Half-precision floating point (CBOR major 7, sub-type 25) shall not be used. Integer 3462
numbers shall be within the closed interval [-2^53, 2^53]. Properties defined as a JSON number 3463
should be encoded as integers whenever possible; if this is not possible Properties defined as a 3464
JSON number should use single-precision if the loss of precision does not affect the quality of 3465
service, otherwise the Property shall use double-precision. 3466

On receipt of a CBOR payload, an implementation shall be able to interpret CBOR integer values 3467
in any position. If a Property defined as a JSON integer is received encoded other than as an 3468
integer, the implementation may reject this encoding using a final response as appropriate for the 3469
underlying transport (e.g. 4.00 for CoAP) and thus optimise for the integer case. If a Property is 3470
defined as a JSON number an implementation shall accept integers, single- and double-precision 3471
floating point. 3472

13 Security 3473

The details for handling security and privacy are specified in ISO/IEC 30118-2. 3474

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 97

 3475

(normative) 3476

 3477

Resource Type definitions 3478

A.1 List of Resource Type definitions 3479

All the clauses in Annex A describe the Resource Types with a RESTful API definition language. 3480
The Resource Type definitions presented in Annex A are formatted for readability, and so may 3481
appear to have extra line breaks. Table A.1 contains the list of defined Core Common Resources 3482
in this document. 3483

Table A.1 – Alphabetized list of Core Resources 3484

Friendly Name (informative) Resource Type (rt) Clause

Atomic Measurement "oic.wk.atomicmeasurement" A.2

Collections "oic.wk.col" A.3

Device "oic.wk.d" A.4

Discoverable Resource "oic.wk.res" A.7

Introspection "oic.wk.introspection" A.5

Platform "oic.wk.p" A.6

A.2 Atomic Measurement links list representation 3485

A.2.1 Introduction 3486

The oic.if.baseline OCF Interface exposes a representation of the links and 3487
the Common Properties of the Atomic Measurement Resource. 3488
 3489

A.2.2 Example URI 3490

/AtomicMeasurementResURI 3491

A.2.3 Resource type 3492

The Resource Type is defined as: "oic.wk.atomicmeasurement". 3493

A.2.4 OpenAPI 2.0 definition 3494

{ 3495
 "swagger": "2.0", 3496
 "info": { 3497
 "title": "Atomic Measurement links list representation", 3498
 "version": "2019-03-04", 3499
 "license": { 3500
 "name": "OCF Data Model License", 3501
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 3502
 "x-copyright": "Copyright 2018-2019 Open Connectivity Foundation, Inc. All rights reserved." 3503
 }, 3504
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 3505
 }, 3506
 "schemes": ["http"], 3507
 "consumes": ["application/json"], 3508
 "produces": ["application/json"], 3509
 "paths": { 3510
 "/AtomicMeasurementResURI?if=oic.if.ll": { 3511
 "get": { 3512
 "description": "The oic.if.ll OCF Interface exposes a representation 3513
of the Links", 3514

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 98

 "parameters": [3515
 { 3516
 "$ref": "#/parameters/interface-all" 3517
 } 3518
], 3519
 "responses": { 3520
 "200": { 3521
 "description": "", 3522
 "x-example": [{ 3523
 "href": "/temperature", 3524
 "rt": ["oic.r.temperature"], 3525
 "if": ["oic.if.s", "oic.if.baseline"] 3526
 }, 3527
 { 3528
 "href": "/bodylocation", 3529
 "rt": ["oic.r.body.location.temperature"], 3530
 "if": ["oic.if.s", "oic.if.baseline"] 3531
 }, 3532
 { 3533
 "href": "/timestamp", 3534
 "rt": ["oic.r.time.stamp"], 3535
 "if": ["oic.if.s", "oic.if.baseline"] 3536
 }], 3537
 "schema": { 3538
 "$ref": "#/definitions/links" 3539
 } 3540
 } 3541
 } 3542
 } 3543
 }, 3544
 "/AtomicMeasurementResURI?if=oic.if.b": { 3545
 "get": { 3546
 "description": "The oic.if.b OCF Interface returns data items 3547
retrieved from Resources pointed to by the Links.\n", 3548
 "parameters": [3549
 { 3550
 "$ref": "#/parameters/interface-all" 3551
 } 3552
], 3553
 "responses": { 3554
 "200": { 3555
 "description": "Normal response, no errors, all 3556
Properties are returned correctly\n", 3557
 "x-example": [{ 3558
 "href": "/temperature", 3559
 "rep": { 3560
 "temperature": 38, 3561
 "units": "C", 3562
 "range": [25, 45] 3563
 } 3564
 }, 3565
 { 3566
 "href": "/bodylocation", 3567
 "rep": { 3568
 "bloc": "ear" 3569
 } 3570
 }, 3571
 { 3572
 "href": "/timestamp", 3573
 "rep": { 3574
 "timestamp": "2007-04-05T14:30+09:00" 3575
 } 3576
 }], 3577
 "schema": { 3578
 "$ref": "#/definitions/batch-retrieve" 3579
 } 3580
 } 3581
 } 3582
 } 3583
 }, 3584
 "/AtomicMeasurementResURI?if=oic.if.baseline": { 3585

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 99

 "get": { 3586
 "description": "The oic.if.baseline OCF Interface exposes a 3587
representation of the links and\nthe Common Properties of the Atomic Measurement Resource.\n", 3588
 "parameters": [3589
 { 3590
 "$ref": "#/parameters/interface-all" 3591
 } 3592
], 3593
 "responses": { 3594
 "200": { 3595
 "description": "", 3596
 "x-example": { 3597
 "rt": ["oic.wk.atomicmeasurement"], 3598
 "if": ["oic.if.b", "oic.if.ll",3599
 "oic.if.baseline"], 3600
 "rts": ["oic.r.temperature", 3601
"oic.r.body.location.temperature", "oic.r.time.stamp"], 3602
 "rts-m": ["oic.r.temperature", 3603
"oic.r.body.location.temperature", "oic.r.time.stamp"], 3604
 "links": [{ 3605
 "href": "/temperature", 3606
 "rt": ["oic.r.temperature"], 3607
 "if": ["oic.if.s", "oic.if.baseline"] 3608
 }, 3609
 { 3610
 "href": "/bodylocation", 3611
 "rt": 3612
["oic.r.body.location.temperature"], 3613
 "if": ["oic.if.s", "oic.if.baseline"] 3614
 }, 3615
 { 3616
 "href": "/timestamp", 3617
 "rt": ["oic.r.time.stamp"], 3618
 "if": ["oic.if.s", "oic.if.baseline"] 3619
 }] 3620
 }, 3621
 "schema": { 3622
 "$ref": "#/definitions/baseline" 3623
 } 3624
 } 3625
 } 3626
 } 3627
 } 3628
 }, 3629
 "parameters": { 3630
 "interface-all": { 3631
 "in": "query", 3632
 "name": "if", 3633
 "type": "string", 3634
 "enum": ["oic.if.b", "oic.if.ll", "oic.if.baseline"] 3635
 } 3636
 }, 3637
 "definitions": { 3638
 "links": { 3639
 "type": "array", 3640
 "items": { 3641
 "$ref": "#/definitions/oic.oic-link" 3642
 } 3643
 }, 3644
 "batch-retrieve": { 3645
 "title": "Collection Batch Retrieve Format (auto merged)", 3646
 "minItems": 1, 3647
 "items": { 3648
 "additionalProperties": true, 3649
 "properties": { 3650
 "href": { 3651
 "$ref": 3652
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3653
schema.json#/definitions/href" 3654
 }, 3655
 "rep": { 3656

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 100

 "oneOf": [{ 3657
 "description": "The response payload from a 3658
single Resource", 3659
 "type": "object" 3660
 }, 3661
 { 3662
 "description": " The response payload from a 3663
Collection (batch) Resource", 3664
 "items": { 3665
 "properties": { 3666
 "anchor": { 3667
 "$ref": 3668
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3669
schema.json#/definitions/anchor" 3670
 }, 3671
 "di": { 3672
 "$ref": 3673
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3674
schema.json#/definitions/di" 3675
 }, 3676
 "eps": { 3677
 "$ref": 3678
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3679
schema.json#/definitions/eps" 3680
 }, 3681
 "href": { 3682
 "$ref": 3683
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3684
schema.json#/definitions/href" 3685
 }, 3686
 "if": { 3687
 "description": "The OCF 3688
Interface set supported by this Resource", 3689
 "items": { 3690
 "enum": [3691
 3692
 "oic.if.baseline", 3693
 "oic.if.ll", 3694
 "oic.if.b", 3695
 "oic.if.rw", 3696
 "oic.if.r", 3697
 "oic.if.a", 3698
 "oic.if.s"], 3699
 "type": 3700
"string" 3701
 }, 3702
 "minItems": 1, 3703
 "uniqueItems": true, 3704
 "type": "array" 3705
 }, 3706
 "ins": { 3707
 "$ref": 3708
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3709
schema.json#/definitions/ins" 3710
 }, 3711
 "p": { 3712
 "$ref": 3713
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3714
schema.json#/definitions/p" 3715
 }, 3716
 "rel": { 3717
 "description": "The relation of the target URI 3718
referenced by the Link to the context URI", 3719
 "oneOf": [3720
 { 3721
 "$ref": 3722
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3723
schema.json#/definitions/rel_array" 3724
 }, 3725
 { 3726
 "$ref": 3727

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 101

"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3728
schema.json#/definitions/rel_string" 3729
 } 3730
] 3731
 }, 3732
 "rt": { 3733
 "description": 3734
"Resource Type of the Resource", 3735
 "items": { 3736
 "maxLength": 3737
64, 3738
 "type": 3739
"string" 3740
 }, 3741
 "minItems": 1, 3742
 "uniqueItems": true, 3743
 "type": "array" 3744
 }, 3745
 "title": { 3746
 "$ref": 3747
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3748
schema.json#/definitions/title" 3749
 }, 3750
 "type": { 3751
 "$ref": 3752
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3753
schema.json#/definitions/type" 3754
 } 3755
 }, 3756
 "required": [3757
 "href", 3758
 "rt", 3759
 "if" 3760
], 3761
 "type": "object" 3762
 }, 3763
 "type": "array" 3764
 }] 3765
 } 3766
 }, 3767
 "required": [3768
 "href", 3769
 "rep" 3770
], 3771
 "type": "object" 3772
 }, 3773
 "type": "array" 3774
 }, 3775
 "baseline": { 3776
 "properties": { 3777
 "links": { 3778
 "description": "A set of simple or individual Links.", 3779
 "items": { 3780
 "$ref": "#/definitions/oic.oic-link" 3781
 }, 3782
 "type": "array" 3783
 }, 3784
 "n": { "$ref" : 3785
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-3786
schema.json#/definitions/n"}, 3787
 "id": { "$ref" : 3788
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-3789
schema.json#/definitions/id"}, 3790
 "rt": { 3791
 "description": "Resource Type of this Resource", 3792
 "items": { 3793
 "enum": ["oic.wk.atomicmeasurement"], 3794
 "type": "string", 3795
 "maxLength": 64 3796
 }, 3797
 "minItems": 1, 3798

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 102

 "readOnly": true, 3799
 "uniqueItems": true, 3800
 "type": "array" 3801
 }, 3802
 "rts": { 3803
 "description": "An array of Resource Types that are supported 3804
within an array of Links exposed by the Resource", 3805
 "items": { 3806
 "maxLength": 64, 3807
 "type": "string" 3808
 }, 3809
 "minItems": 1, 3810
 "readOnly": true, 3811
 "uniqueItems": true, 3812
 "type": "array" 3813
 }, 3814
 "rts-m": { 3815
 "description": "An array of Resource Types that are mandatory 3816
to be exposed within an array of Links exposed by the Resource", 3817
 "items": { 3818
 "maxLength": 64, 3819
 "type": "string" 3820
 }, 3821
 "minItems": 1, 3822
 "readOnly": true, 3823
 "uniqueItems": true, 3824
 "type": "array" 3825
 }, 3826
 "if": { 3827
 "description": "The OCF Interface set supported by this 3828
Resource", 3829
 "items": { 3830
 "enum": ["oic.if.b", "oic.if.ll", "oic.if.baseline"], 3831
 "type": "string" 3832
 }, 3833
 "minItems": 3, 3834
 "readOnly": true, 3835
 "uniqueItems": true, 3836
 "type": "array" 3837
 } 3838
 }, 3839
 "type": "object", 3840
 "required": [3841
 "rt", 3842
 "if", 3843
 "links" 3844
] 3845
 }, 3846
 "oic.oic-link": { 3847
 "properties": { 3848
 "anchor": { 3849
 "$ref": 3850
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3851
schema.json#/definitions/anchor" 3852
 }, 3853
 "di": { 3854
 "$ref": 3855
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3856
schema.json#/definitions/di" 3857
 }, 3858
 "eps": { 3859
 "$ref": 3860
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3861
schema.json#/definitions/eps" 3862
 }, 3863
 "href": { 3864
 "$ref": 3865
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3866
schema.json#/definitions/href" 3867
 }, 3868
 "if": { 3869

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 103

 "description": "The OCF Interface set supported by this 3870
Resource", 3871
 "items": { 3872
 "enum": [3873
 "oic.if.baseline", 3874
 "oic.if.ll", 3875
 "oic.if.b", 3876
 "oic.if.rw", 3877
 "oic.if.r", 3878
 "oic.if.a", 3879
 "oic.if.s"], 3880
 "type": "string" 3881
 }, 3882
 "minItems": 1, 3883
 "uniqueItems": true, 3884
 "type": "array" 3885
 }, 3886
 "ins": { 3887
 "$ref": 3888
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3889
schema.json#/definitions/ins" 3890
 }, 3891
 "p": { 3892
 "$ref": 3893
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3894
schema.json#/definitions/p" 3895
 }, 3896
 "rel": { 3897
 "description": "The relation of the target URI referenced by the Link to the context URI", 3898
 "oneOf": [3899
 { 3900
 "$ref": 3901
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3902
schema.json#/definitions/rel_array" 3903
 }, 3904
 { 3905
 "$ref": 3906
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3907
schema.json#/definitions/rel_string" 3908
 } 3909
] 3910
 }, 3911
 "rt": { 3912
 "description": "Resource Type of the Resource", 3913
 "items": { 3914
 "maxLength": 64, 3915
 "type": "string" 3916
 }, 3917
 "minItems": 1, 3918
 "uniqueItems": true, 3919
 "type": "array" 3920
 }, 3921
 "title": { 3922
 "$ref": 3923
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3924
schema.json#/definitions/title" 3925
 }, 3926
 "type": { 3927
 "$ref": 3928
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3929
schema.json#/definitions/type" 3930
 } 3931
 }, 3932
 "required": [3933
 "href", 3934
 "rt", 3935
 "if" 3936
], 3937
 "type": "object" 3938
 } 3939
 } 3940

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 104

} 3941
 3942

A.2.5 Property definition 3943

Table A.2 defines the Properties that are part of the "oic.wk.atomicmeasurement" Resource Type. 3944

Table A.2 – The Property definitions of the Resource with type "rt" = 3945
"oic.wk.atomicmeasurement". 3946

Property name Value type Mandatory Access mode Description

href multiple types: see
schema

Yes Read Write

rep multiple types: see
schema

Yes Read Write

links array: see schema Yes Read Write A set of simple or
individual Links.

n multiple types: see
schema

No Read Write

id multiple types: see
schema

No Read Write

rt array: see schema Yes Read Only Resource Type of
this Resource

rts array: see schema No Read Only An array of
Resource Types that
are supported within
an array of Links
exposed by the
Resource

rts-m array: see schema No Read Only An array of
Resource Types that
are mandatory to be
exposed within an
array of Links
exposed by the
Resource

if array: see schema Yes Read Only The OCF Interface
set supported by this
Resource

anchor multiple types: see
schema

No Read Write

di multiple types: see
schema

No Read Write

eps multiple types: see
schema

No Read Write

href multiple types: see
schema

Yes Read Write

if array: see schema Yes Read Write The OCF Interface
set supported by this
Resource

ins multiple types: see
schema

No Read Write

p multiple types: see
schema

No Read Write

rel multiple types: see
schema

No Read Write The relation of the
target URI
referenced by the

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 105

Link to the context
URI

rt array: see schema Yes Read Write Resource Type of
the Resource

title multiple types: see
schema

No Read Write

type multiple types: see
schema

No Read Write

A.2.6 CRUDN behaviour 3947

Table A.3 defines the CRUDN operations that are supported on the "oic.wk.atomicmeasurement" 3948
Resource Type. 3949

Table A.3 – The CRUDN operations of the Resource with type "rt" = 3950
"oic.wk.atomicmeasurement". 3951

Create Read Update Delete Notify

 get observe

A.3 Collection 3952

A.3.1 Introduction 3953

Collection Resource Type contains Properties and Links. 3954
The oic.if.baseline OCF Interface exposes a representation of 3955
the Links and the Properties of the Collection Resource itself 3956
 3957

A.3.2 Example URI 3958

/CollectionResURI 3959

A.3.3 Resource type 3960

The Resource Type is defined as: "oic.wk.col". 3961

A.3.4 OpenAPI 2.0 definition 3962

{ 3963
 "swagger": "2.0", 3964
 "info": { 3965
 "title": "Collection", 3966
 "version": "2019-03-04", 3967
 "license": { 3968
 "name": "OCF Data Model License", 3969
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 3970
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 3971
 }, 3972
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 3973
 }, 3974
 "schemes": [3975
 "http" 3976
], 3977
 "consumes": [3978
 "application/json" 3979
], 3980
 "produces": [3981
 "application/json" 3982
], 3983
 "paths": { 3984
 "/CollectionResURI?if=oic.if.ll" : { 3985
 "get": { 3986
 "description": "Collection Resource Type contains Properties and Links.\nThe oic.if.ll OCF 3987

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 106

Interface exposes a representation of the Links\n", 3988
 "parameters": [3989
 { 3990
 "$ref": "#/parameters/interface-all" 3991
 } 3992
], 3993
 "responses": { 3994
 "200": { 3995
 "description" : "", 3996
 "x-example": [3997
 { 3998
 "href": "/switch", 3999
 "rt": ["oic.r.switch.binary"], 4000
 "if": ["oic.if.a", "oic.if.baseline"], 4001
 "eps": [4002
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 4003
 {"ep": "coaps://[fe80::b1d6]:1122"}, 4004
 {"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri": 3} 4005
] 4006
 }, 4007
 { 4008
 "href": "/airFlow", 4009
 "rt": ["oic.r.airflow"], 4010
 "if": ["oic.if.a", "oic.if.baseline"], 4011
 "eps": [4012
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 4013
 {"ep": "coaps://[fe80::b1d6]:1122"}, 4014
 {"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri": 3} 4015
] 4016
 } 4017
], 4018
 "schema": { 4019
 "$ref": "#/definitions/slinks" 4020
 } 4021
 } 4022
 } 4023
 } 4024
 }, 4025
 "/CollectionResURI?if=oic.if.baseline" : { 4026
 "get": { 4027
 "description": "Collection Resource Type contains Properties and Links.\nThe oic.if.baseline 4028
OCF Interface exposes a representation of\nthe Links and the Properties of the Collection Resource 4029
itself\n", 4030
 "parameters": [4031
 { 4032
 "$ref": "#/parameters/interface-all" 4033
 } 4034
], 4035
 "responses": { 4036
 "200": { 4037
 "description" : "", 4038
 "x-example": { 4039
 "rt": ["oic.wk.col"], 4040
 "if": ["oic.if.ll", "oic.if.b", "oic.if.baseline"], 4041
 "rts": ["oic.r.switch.binary", "oic.r.airflow"], 4042
 "rts-m": ["oic.r.switch.binary"], 4043
 "links": [4044
 { 4045
 "href": "/switch", 4046
 "rt": ["oic.r.switch.binary"], 4047
 "if": ["oic.if.a", "oic.if.baseline"], 4048
 "eps": [4049
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 4050
 {"ep": "coaps://[fe80::b1d6]:1122"}, 4051
 {"ep": "coaps+tcp://[2001:db8:a::123]:2222", "pri": 3} 4052
] 4053
 }, 4054
 { 4055
 "href": "/airFlow", 4056
 "rt": ["oic.r.airflow"], 4057
 "if": ["oic.if.a", "oic.if.baseline"], 4058

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 107

 "eps": [4059
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 4060
 {"ep": "coaps://[fe80::b1d6]:1122"}, 4061
 {"ep": "coaps+tcp://[2001:db8:a::123]:2222", "pri": 3} 4062
] 4063
 } 4064
] 4065
 }, 4066
 "schema": { 4067
 "$ref": "#/definitions/sbaseline" 4068
 } 4069
 } 4070
 } 4071
 }, 4072
 "post": { 4073
 "description": "Update on Baseline OCF Interface\n", 4074
 "parameters": [4075
 { 4076
 "$ref": "#/parameters/interface-update" 4077
 }, 4078
 { 4079
 "name": "body", 4080
 "in": "body", 4081
 "required": true, 4082
 "schema": { 4083
 "$ref": "#/definitions/sbaseline-update" 4084
 } 4085
 } 4086
], 4087
 "responses": { 4088
 "200": { 4089
 "description" : "", 4090
 "schema": { 4091
 "$ref": "#/definitions/sbaseline" 4092
 } 4093
 } 4094
 } 4095
 } 4096
 }, 4097
 "/CollectionResURI?if=oic.if.b" : { 4098
 "get": { 4099
 "description": "Collection Resource Type contains Properties and Links.\nThe oic.if.b OCF 4100
Interfacce exposes a composite representation of the\nResources pointed to by the Links\n", 4101
 "parameters": [4102
 { 4103
 "$ref": "#/parameters/interface-all" 4104
 } 4105
], 4106
 "responses": { 4107
 "200": { 4108
 "description" : "All targets returned OK status", 4109
 "x-example": [4110
 { 4111
 "href": "/switch", 4112
 "rep": { 4113
 "value": true 4114
 } 4115
 }, 4116
 { 4117
 "href": "/airFlow", 4118
 "rep": { 4119
 "direction": "floor", 4120
 "speed": 3 4121
 } 4122
 } 4123
], 4124
 "schema": { 4125
 "$ref": "#/definitions/sbatch-retrieve" 4126
 } 4127
 }, 4128
 "404": { 4129

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 108

 "description" : "One or more targets did not return an OK status, return a 4130
representation containing returned Properties from the targets that returned OK", 4131
 "x-example": [4132
 { 4133
 "href": "/switch", 4134
 "rep": { 4135
 "value": true 4136
 } 4137
 } 4138
], 4139
 "schema": { 4140
 "$ref": "#/definitions/sbatch-retrieve" 4141
 } 4142
 } 4143
 } 4144
 }, 4145
 "post": { 4146
 "description": "Update on Batch OCF Interface\n", 4147
 "parameters": [4148
 { 4149
 "$ref": "#/parameters/interface-update" 4150
 }, 4151
 { 4152
 "name": "body", 4153
 "in": "body", 4154
 "required": true, 4155
 "schema": { 4156
 "$ref": "#/definitions/sbatch-update" 4157
 }, 4158
 "x-example": [4159
 { 4160
 "href": "/switch", 4161
 "rep": { 4162
 "value": true 4163
 } 4164
 }, 4165
 { 4166
 "href": "/airFlow", 4167
 "rep": { 4168
 "direction": "floor", 4169
 "speed": 3 4170
 } 4171
 } 4172
] 4173
 } 4174
], 4175
 "responses": { 4176
 "200": { 4177
 "description" : "All targets returned OK status, return a representation of the current 4178
state of all targets", 4179
 "x-example": [4180
 { 4181
 "href": "/switch", 4182
 "rep": { 4183
 "value": true 4184
 } 4185
 }, 4186
 { 4187
 "href": "/airFlow", 4188
 "rep": { 4189
 "direction": "demist", 4190
 "speed": 5 4191
 } 4192
 } 4193
], 4194
 "schema": { 4195
 "$ref": "#/definitions/sbatch-retrieve" 4196
 } 4197
 }, 4198
 "403": { 4199
 "description" : "One or more targets did not return OK status; return a retrieve 4200

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 109

representation of the current state of all targets in the batch", 4201
 "x-example": [4202
 { 4203
 "href": "/switch", 4204
 "rep": { 4205
 "value": true 4206
 } 4207
 }, 4208
 { 4209
 "href": "/airFlow", 4210
 "rep": { 4211
 "direction": "floor", 4212
 "speed": 3 4213
 } 4214
 } 4215
], 4216
 "schema": { 4217
 "$ref": "#/definitions/sbatch-retrieve" 4218
 } 4219
 } 4220
 } 4221
 } 4222
 } 4223
 }, 4224
 "parameters": { 4225
 "interface-all" : { 4226
 "in" : "query", 4227
 "name" : "if", 4228
 "type" : "string", 4229
 "enum" : ["oic.if.ll", "oic.if.b", "oic.if.baseline"] 4230
 }, 4231
 "interface-update" : { 4232
 "in" : "query", 4233
 "name" : "if", 4234
 "type" : "string", 4235
 "enum" : ["oic.if.b", "oic.if.baseline"] 4236
 } 4237
 }, 4238
 "definitions": { 4239
 "sbaseline" : { 4240
 "properties": { 4241
 "links" : { 4242
 "description": "A set of simple or individual Links.", 4243
 "items": { 4244
 "$ref": "#/definitions/oic.oic-link" 4245
 }, 4246
 "type": "array" 4247
 }, 4248
 "n": { 4249
 "$ref" : 4250
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4251
schema.json#/definitions/n" 4252
 }, 4253
 "id": { 4254
 "$ref" : 4255
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4256
schema.json#/definitions/id" 4257
 }, 4258
 "rt": { 4259
 "$ref": "#/definitions/oic.core.rt-col" 4260
 }, 4261
 "rts": { 4262
 "$ref": "#/definitions/oic.core.rt" 4263
 }, 4264
 "rts-m": { 4265
 "$ref": "#/definitions/oic.core.rt" 4266
 }, 4267
 "if": { 4268
 "description": "The OCF Interfaces supported by this Resource", 4269
 "items": { 4270
 "enum": [4271

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 110

 "oic.if.ll", 4272
 "oic.if.baseline", 4273
 "oic.if.b" 4274
], 4275
 "type": "string", 4276
 "maxLength": 64 4277
 }, 4278
 "minItems": 2, 4279
 "uniqueItems": true, 4280
 "readOnly": true, 4281
 "type": "array" 4282
 } 4283
 }, 4284
 "additionalProperties": true, 4285
 "type" : "object", 4286
 "required": [4287
 "rt", 4288
 "if", 4289
 "links" 4290
] 4291
 }, 4292
 "sbaseline-update": { 4293
 "additionalProperties": true 4294
 }, 4295
 "oic.core.rt-col": { 4296
 "description": "Resource Type of the Resource", 4297
 "items": { 4298
 "enum": ["oic.wk.col"], 4299
 "type": "string", 4300
 "maxLength": 64 4301
 }, 4302
 "minItems": 1, 4303
 "uniqueItems": true, 4304
 "readOnly": true, 4305
 "type": "array" 4306
 }, 4307
 "oic.core.rt": { 4308
 "description": "Resource Type or set of Resource Types", 4309
 "items": { 4310
 "type": "string", 4311
 "maxLength": 64 4312
 }, 4313
 "minItems": 1, 4314
 "uniqueItems": true, 4315
 "readOnly": true, 4316
 "type": "array" 4317
 }, 4318
 "sbatch-retrieve" : { 4319
 "minItems" : 1, 4320
 "items" : { 4321
 "additionalProperties": true, 4322
 "properties": { 4323
 "href": { 4324
 "$ref": 4325
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4326
schema.json#/definitions/href" 4327
 }, 4328
 "rep": { 4329
 "oneOf": [4330
 { 4331
 "description": "The response payload from a single Resource", 4332
 "type": "object" 4333
 }, 4334
 { 4335
 "description": " The response payload from a Collection (batch) Resource", 4336
 "items": { 4337
 "$ref": "#/definitions/oic.oic-link" 4338
 }, 4339
 "type": "array" 4340
 } 4341
] 4342

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 111

 } 4343
 }, 4344
 "required": [4345
 "href", 4346
 "rep" 4347
], 4348
 "type": "object" 4349
 }, 4350
 "type" : "array" 4351
 }, 4352
 "sbatch-update" : { 4353
 "title" : "Collection Batch Update Format", 4354
 "minItems" : 1, 4355
 "items" : { 4356
 "$ref": "#/definitions/sbatch-update.item" 4357
 }, 4358
 "type" : "array" 4359
 }, 4360
 "sbatch-update.item" : { 4361
 "additionalProperties": true, 4362
 "description": "Array of Resource representations to apply to the batch Collection, using href 4363
to indicate which Resource(s) in the batch to update. If the href Property is empty, effectively 4364
making the URI reference to the Collection itself, the representation is to be applied to all 4365
Resources in the batch", 4366
 "properties": { 4367
 "href": { 4368
 "$ref": 4369
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4370
schema.json#/definitions/href" 4371
 }, 4372
 "rep": { 4373
 "oneOf": [4374
 { 4375
 "description": "The payload for a single Resource", 4376
 "type": "object" 4377
 }, 4378
 { 4379
 "description": " The payload for a Collection (batch) Resource", 4380
 "items": { 4381
 "$ref": "#/definitions/oic.oic-link" 4382
 }, 4383
 "type": "array" 4384
 } 4385
] 4386
 } 4387
 }, 4388
 "required": [4389
 "href", 4390
 "rep" 4391
], 4392
 "type": "object" 4393
 }, 4394
 "slinks" : { 4395
 "type" : "array", 4396
 "items" : { 4397
 "$ref": "#/definitions/oic.oic-link" 4398
 } 4399
 }, 4400
 "oic.oic-link": { 4401
 "properties": { 4402
 "if": { 4403
 "description": "The OCF Interfaces supported by the Linked target", 4404
 "items": { 4405
 "enum": [4406
 "oic.if.baseline", 4407
 "oic.if.ll", 4408
 "oic.if.b", 4409
 "oic.if.rw", 4410
 "oic.if.r", 4411
 "oic.if.a", 4412
 "oic.if.s" 4413

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 112

], 4414
 "type": "string", 4415
 "maxLength": 64 4416
 }, 4417
 "minItems": 1, 4418
 "uniqueItems": true, 4419
 "readOnly": true, 4420
 "type": "array" 4421
 }, 4422
 "rt": { 4423
 "$ref": "#/definitions/oic.core.rt" 4424
 }, 4425
 "anchor": { 4426
 "$ref": 4427
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4428
schema.json#/definitions/anchor" 4429
 }, 4430
 "di": { 4431
 "$ref": 4432
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4433
schema.json#/definitions/di" 4434
 }, 4435
 "eps": { 4436
 "$ref": 4437
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4438
schema.json#/definitions/eps" 4439
 }, 4440
 "href": { 4441
 "$ref": 4442
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4443
schema.json#/definitions/href" 4444
 }, 4445
 "ins": { 4446
 "$ref": 4447
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4448
schema.json#/definitions/ins" 4449
 }, 4450
 "p": { 4451
 "$ref": 4452
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4453
schema.json#/definitions/p" 4454
 }, 4455
 "rel": { 4456
 "$ref": 4457
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4458
schema.json#/definitions/rel_array" 4459
 }, 4460
 "title": { 4461
 "$ref": 4462
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4463
schema.json#/definitions/title" 4464
 }, 4465
 "type": { 4466
 "$ref": 4467
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4468
schema.json#/definitions/type" 4469
 }, 4470
 "tag-pos-desc": { 4471
 "$ref": 4472
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4473
schema.json#/definitions/tag-pos-desc" 4474
 }, 4475
 "tag-pos-rel": { 4476
 "$ref": 4477
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4478
schema.json#/definitions/tag-pos-rel" 4479
 }, 4480
 "tag-func-desc": { 4481
 "$ref": 4482
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4483
schema.json#/definitions/tag-func-desc" 4484

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 113

 } 4485
 }, 4486
 "required": [4487
 "href", 4488
 "rt", 4489
 "if" 4490
], 4491
 "type": "object" 4492
 } 4493
 } 4494
} 4495
 4496

A.3.5 Property definition 4497

Table A.4 defines the Properties that are part of the "oic.wk.col" Resource Type. 4498

Table A.4 – The Property definitions of the Resource with type "rt" = "oic.wk.col". 4499

Property name Value type Mandatory Access mode Description

links array: see schema Yes Read Write A set of simple or
individual Links.

n multiple types: see
schema

No Read Write

id multiple types: see
schema

No Read Write

rt multiple types: see
schema

Yes Read Write

rts multiple types: see
schema

No Read Write

rts-m multiple types: see
schema

No Read Write

if array: see schema Yes Read Only The OCF Interfaces
supported by this
Resource

href multiple types: see
schema

Yes Read Write

rep multiple types: see
schema

Yes Read Write

href multiple types: see
schema

Yes Read Write

rep multiple types: see
schema

Yes Read Write

if array: see schema Yes Read Only The OCF Interfaces
supported by the
Linked target

rt multiple types: see
schema

Yes Read Write

anchor multiple types: see
schema

No Read Write

di multiple types: see
schema

No Read Write

eps multiple types: see
schema

No Read Write

href multiple types: see
schema

Yes Read Write

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 114

ins multiple types: see
schema

No Read Write

p multiple types: see
schema

No Read Write

rel multiple types: see
schema

No Read Write

title multiple types: see
schema

No Read Write

type multiple types: see
schema

No Read Write

tag-pos-desc multiple types: see
schema

No Read Write

tag-pos-rel multiple types: see
schema

No Read Write

tag-func-desc multiple types: see
schema

No Read Write

A.3.6 CRUDN behaviour 4500

Table A.5 defines the CRUDN operations that are supported on the "oic.wk.col" Resource Type. 4501

Table A.5 – The CRUDN operations of the Resource with type "rt" = "oic.wk.col". 4502

Create Read Update Delete Notify

 get post observe

A.4 Device 4503

A.4.1 Introduction 4504

Known Resource that is hosted by every Server. 4505
Allows for logical Device specific information to be discovered. 4506
 4507

A.4.2 Well-known URI 4508

/oic/d 4509

A.4.3 Resource type 4510

The Resource Type is defined as: "oic.wk.d". 4511

A.4.4 OpenAPI 2.0 definition 4512

{ 4513
 "swagger": "2.0", 4514
 "info": { 4515
 "title": "Device", 4516
 "version": "2019-03-13", 4517
 "license": { 4518
 "name": "OCF Data Model License", 4519
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 4520
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 4521
 }, 4522
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 4523
 }, 4524
 "schemes": [4525
 "http" 4526
], 4527
 "consumes": [4528
 "application/json" 4529
], 4530

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 115

 "produces": [4531
 "application/json" 4532
], 4533
 "paths": { 4534
 "/oic/d" : { 4535
 "get": { 4536
 "description": "Known Resource that is hosted by every Server.\nAllows for logical Device 4537
specific information to be discovered.\n", 4538
 "parameters": [4539
 { 4540
 "$ref": "#/parameters/interface" 4541
 } 4542
], 4543
 "responses": { 4544
 "200": { 4545
 "description": "", 4546
 "x-example": 4547
 { 4548
 "n": "Device 1", 4549
 "rt": ["oic.wk.d"], 4550
 "di": "54919CA5-4101-4AE4-595B-353C51AA983C", 4551
 "icv": "ocf.2.0.2", 4552
 "dmv": "ocf.res.1.0.0, ocf.sh.1.0.0", 4553
 "piid": "6F0AAC04-2BB0-468D-B57C-16570A26AE48" 4554
 }, 4555
 "schema": { 4556
 "$ref": "#/definitions/Device" 4557
 } 4558
 } 4559
 } 4560
 } 4561
 } 4562
 }, 4563
 "parameters": { 4564
 "interface" : { 4565
 "in": "query", 4566
 "name": "if", 4567
 "type": "string", 4568
 "enum": ["oic.if.r", "oic.if.baseline"] 4569
 } 4570
 }, 4571
 "definitions": { 4572
 "Device": { 4573
 "properties": { 4574
 "rt": { 4575
 "description": "Resource Type of the Resource", 4576
 "items": { 4577
 "type": "string", 4578
 "maxLength": 64 4579
 }, 4580
 "minItems": 1, 4581
 "readOnly": true, 4582
 "uniqueItems": true, 4583
 "type": "array" 4584
 }, 4585
 "ld": { 4586
 "description": "Localized Descriptions.", 4587
 "items": { 4588
 "properties": { 4589
 "language": { 4590
 "allOf": [4591
 { 4592
 "$ref" : "http://openconnectivityfoundation.github.io/core/schemas/oic.types-4593
schema.json#/definitions/language-tag" 4594
 }, 4595
 { 4596
 "description": "An RFC 5646 language tag.", 4597
 "readOnly": true 4598
 } 4599
] 4600
 }, 4601

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 116

 "value": { 4602
 "description": "Device description in the indicated language.", 4603
 "maxLength": 64, 4604
 "readOnly": true, 4605
 "type": "string" 4606
 } 4607
 }, 4608
 "type": "object" 4609
 }, 4610
 "minItems": 1, 4611
 "readOnly": true, 4612
 "type": "array" 4613
 }, 4614
 "piid": { 4615
 "allOf": [4616
 { 4617
 "$ref" : "http://openconnectivityfoundation.github.io/core/schemas/oic.types-4618
schema.json#/definitions/uuid" 4619
 }, 4620
 { 4621
 "description": "Protocol independent unique identifier for the Device that is 4622
immutable.", 4623
 "readOnly": true 4624
 } 4625
] 4626
 }, 4627
 "di": { 4628
 "allOf": [4629
 { 4630
 "$ref" : "http://openconnectivityfoundation.github.io/core/schemas/oic.types-4631
schema.json#/definitions/uuid" 4632
 }, 4633
 { 4634
 "description": "Unique identifier for the Device", 4635
 "readOnly": true 4636
 } 4637
] 4638
 }, 4639
 "dmno": { 4640
 "description": "Model number as designated by manufacturer.", 4641
 "maxLength": 64, 4642
 "readOnly": true, 4643
 "type": "string" 4644
 }, 4645
 "sv": { 4646
 "description": "Software version.", 4647
 "maxLength": 64, 4648
 "readOnly": true, 4649
 "type": "string" 4650
 }, 4651
 "dmn": { 4652
 "description": "Manufacturer Name.", 4653
 "items": { 4654
 "properties": { 4655
 "language": { 4656
 "allOf": [4657
 { 4658
 "$ref" : "http://openconnectivityfoundation.github.io/core/schemas/oic.types-4659
schema.json#/definitions/language-tag" 4660
 }, 4661
 { 4662
 "description": "An RFC 5646 language tag.", 4663
 "readOnly": true 4664
 } 4665
] 4666
 }, 4667
 "value": { 4668
 "description": "Manufacturer name in the indicated language.", 4669
 "maxLength": 64, 4670
 "readOnly": true, 4671
 "type": "string" 4672

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 117

 } 4673
 }, 4674
 "type": "object" 4675
 }, 4676
 "minItems": 1, 4677
 "readOnly": true, 4678
 "type": "array" 4679
 }, 4680
 "icv": { 4681
 "description": "The version of the Device", 4682
 "maxLength": 64, 4683
 "readOnly": true, 4684
 "type": "string" 4685
 }, 4686
 "dmv": { 4687
 "description": "Specification versions of the Resource and Device Specifications to which 4688
this device data model is implemented", 4689
 "maxLength": 256, 4690
 "readOnly": true, 4691
 "type": "string" 4692
 }, 4693
 "n": { 4694
 "$ref" : 4695
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4696
schema.json#/definitions/n" 4697
 }, 4698
 "id": { 4699
 "$ref" : 4700
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4701
schema.json#/definitions/id" 4702
 }, 4703
 "if": { 4704
 "description": "The OCF Interfacces supported by this Resource", 4705
 "items": { 4706
 "enum": [4707
 "oic.if.r", 4708
 "oic.if.baseline" 4709
], 4710
 "type": "string", 4711
 "maxLength": 64 4712
 }, 4713
 "minItems": 2, 4714
 "uniqueItems": true, 4715
 "readOnly": true, 4716
 "type": "array" 4717
 }, 4718
 "econame" : { 4719
 "description": "Ecosystem Name of the Bridged Device which is exposed by this VOD.", 4720
 "type": "string", 4721
 "enum": ["BLE", "oneM2M", "UPlus", "Zigbee", "Z-Wave"], 4722
 "readOnly": true 4723
 }, 4724
 "ecoversion" : { 4725
 "description": "Version of ecosystem that a Bridged Device belongs to. Typical version 4726
string format is like n.n (e.g. 5.0).", 4727
 "type": "string", 4728
 "maxLength": 64, 4729
 "readOnly": true 4730
 } 4731
 }, 4732
 "type": "object", 4733
 "required": ["n", "di", "icv", "dmv", "piid"] 4734
 } 4735
 } 4736
} 4737
 4738

A.4.5 Property definition 4739

Table A.6 defines the Properties that are part of the "oic.wk.d" Resource Type. 4740

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 118

Table A.6 – The Property definitions of the Resource with type "rt" = "oic.wk.d". 4741

Property name Value type Mandatory Access mode Description

rt array: see schema No Read Only Resource Type of
the Resource

ld array: see schema No Read Only Localized
Descriptions.

piid multiple types: see
schema

Yes Read Write

di multiple types: see
schema

Yes Read Write

dmno string No Read Only Model number as
designated by
manufacturer.

sv string No Read Only Software version.

dmn array: see schema No Read Only Manufacturer Name.

icv string Yes Read Only The version of the
Device

dmv string Yes Read Only Specification
versions of the
Resource and
Device
Specifications to
which this device
data model is
implemented

n multiple types: see
schema

Yes Read Write

id multiple types: see
schema

No Read Write

if array: see schema No Read Only The OCF Interfacces
supported by this
Resource

econame string No Read Only Ecosystem Name of
the Bridged Device
which is exposed by
this VOD.

ecoversion string No Read Only Version of
ecosystem that a
Bridged Device
belongs to. Typical
version string format
is like n.n (e.g. 5.0).

A.4.6 CRUDN behaviour 4742

Table A.7 defines the CRUDN operations that are supported on the "oic.wk.d" Resource Type. 4743

Table A.7 – The CRUDN operations of the Resource with type "rt" = "oic.wk.d". 4744

Create Read Update Delete Notify

 get observe

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 119

A.5 Introspection Resource 4745

A.5.1 Introduction 4746

This Resource provides the means to get the Introspection Device Data (IDD) specifying all the 4747
OCF Endpoints of the Device. 4748
The url hosted by this Resource is either a local or an external url. 4749
 4750

A.5.2 Well-known URI 4751

/IntrospectionResURI 4752

A.5.3 Resource type 4753

The Resource Type is defined as: "oic.wk.introspection". 4754

A.5.4 OpenAPI 2.0 definition 4755

{ 4756
 "swagger": "2.0", 4757
 "info": { 4758
 "title": "Introspection Resource", 4759
 "version": "2019-03-04", 4760
 "license": { 4761
 "name": "OCF Data Model License", 4762
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 4763
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 4764
 }, 4765
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 4766
 }, 4767
 "schemes": [4768
 "http" 4769
], 4770
 "consumes": [4771
 "application/json" 4772
], 4773
 "produces": [4774
 "application/json" 4775
], 4776
 "paths": { 4777
 "/IntrospectionResURI": { 4778
 "get": { 4779
 "description": "This Resource provides the means to get the Introspection Device Data (IDD) 4780
specifying all the OCF Endpoints of the Device.\nThe url hosted by this Resource is either a local 4781
or an external url.\n", 4782
 "parameters": [4783
 { 4784
 "$ref": "#/parameters/interface" 4785
 } 4786
], 4787
 "responses": { 4788
 "200": { 4789
 "description": "", 4790
 "x-example": { 4791
 "rt": ["oic.wk.introspection"], 4792
 "urlInfo": [4793
 { 4794
 "content-type": "application/cbor", 4795
 "protocol": "coap", 4796
 "url": "coap://[fe80::1]:1234/IntrospectionExampleURI" 4797
 } 4798
] 4799
 }, 4800
 "schema": { 4801
 "$ref": "#/definitions/oic.wk.introspectionInfo" 4802
 } 4803
 } 4804
 } 4805

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 120

 } 4806
 } 4807
 }, 4808
 "parameters": { 4809
 "interface": { 4810
 "in": "query", 4811
 "name": "if", 4812
 "type": "string", 4813
 "enum": ["oic.if.r", "oic.if.baseline"] 4814
 } 4815
 }, 4816
 "definitions": { 4817
 "oic.wk.introspectionInfo": { 4818
 "properties": { 4819
 "rt": { 4820
 "description": "Resource Type of the Resource", 4821
 "items": { 4822
 "enum": ["oic.wk.introspection"], 4823
 "type": "string", 4824
 "maxLength": 64 4825
 }, 4826
 "minItems": 1, 4827
 "readOnly": true, 4828
 "uniqueItems": true, 4829
 "type": "array" 4830
 }, 4831
 "n": { 4832
 "$ref": 4833
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4834
schema.json#/definitions/n" 4835
 }, 4836
 "urlInfo": { 4837
 "description": "Information on the location of the Introspection Device Data (IDD).", 4838
 "items": { 4839
 "properties": { 4840
 "content-type": { 4841
 "default": "application/cbor", 4842
 "description": "content-type of the Introspection Device Data", 4843
 "enum": [4844
 "application/json", 4845
 "application/cbor" 4846
], 4847
 "type": "string" 4848
 }, 4849
 "protocol": { 4850
 "description": "Identifier for the protocol to be used to obtain the Introspection 4851
Device Data", 4852
 "enum": [4853
 "coap", 4854
 "coaps", 4855
 "http", 4856
 "https", 4857
 "coap+tcp", 4858
 "coaps+tcp" 4859
], 4860
 "type": "string" 4861
 }, 4862
 "url": { 4863
 "description": "The URL of the Introspection Device Data.", 4864
 "format": "uri", 4865
 "type": "string" 4866
 }, 4867
 "version": { 4868
 "default": 1, 4869
 "description": "The version of the Introspection Device Data that can be 4870
downloaded", 4871
 "enum": [4872
 1 4873
], 4874
 "type": "integer" 4875
 } 4876

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 121

 }, 4877
 "required": [4878
 "url", 4879
 "protocol" 4880
], 4881
 "type": "object" 4882
 }, 4883
 "minItems": 1, 4884
 "readOnly": true, 4885
 "type": "array" 4886
 }, 4887
 "id": { 4888
 "$ref": 4889
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4890
schema.json#/definitions/id" 4891
 }, 4892
 "if": { 4893
 "description": "The OCF Interfaces supported by this Resource", 4894
 "items": { 4895
 "enum": [4896
 "oic.if.r", 4897
 "oic.if.baseline" 4898
], 4899
 "type": "string", 4900
 "maxLength": 64 4901
 }, 4902
 "minItems": 2, 4903
 "readOnly": true, 4904
 "uniqueItems": true, 4905
 "type": "array" 4906
 } 4907
 }, 4908
 "type" : "object", 4909
 "required": ["urlInfo"] 4910
 } 4911
 } 4912
} 4913
 4914

A.5.5 Property definition 4915

Table A.8 defines the Properties that are part of the "oic.wk.introspection" Resource Type. 4916

Table A.8 – The Property definitions of the Resource with type "rt" = 4917
"oic.wk.introspection". 4918

Property name Value type Mandatory Access mode Description

rt array: see schema No Read Only Resource Type of
the Resource

n multiple types: see
schema

No Read Write

urlInfo array: see schema Yes Read Only Information on the
location of the
Introspection Device
Data (IDD).

id multiple types: see
schema

No Read Write

if array: see schema No Read Only The OCF Interfaces
supported by this
Resource

A.5.6 CRUDN behaviour 4919

Table A.9 defines the CRUDN operations that are supported on the "oic.wk.introspection" Resource 4920
Type. 4921

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 122

Table A.9 – The CRUDN operations of the Resource with type "rt" = "oic.wk.introspection". 4922

Create Read Update Delete Notify

 get observe

A.6 Platform 4923

A.6.1 Introduction 4924

Known Resource that is defines the Platform on which an Server is hosted. 4925
Allows for Platform specific information to be discovered. 4926
 4927

A.6.2 Well-known URI 4928

/oic/p 4929

A.6.3 Resource type 4930

The Resource Type is defined as: "oic.wk.p". 4931

A.6.4 OpenAPI 2.0 definition 4932

{ 4933
 "swagger": "2.0", 4934
 "info": { 4935
 "title": "Platform", 4936
 "version": "2019-03-04", 4937
 "license": { 4938
 "name": "OCF Data Model License", 4939
 "url": 4940
"https://github.com/openconnectivityfoundation/core/blob/e28a9e0a92e17042ba3e83661e4c0fbce8bdc4ba/LI4941
CENSE.md", 4942
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 4943
 }, 4944
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 4945
 }, 4946
 "schemes": ["http"], 4947
 "consumes": ["application/json"], 4948
 "produces": ["application/json"], 4949
 "paths": { 4950
 "/oic/p" : { 4951
 "get": { 4952
 "description": "Known Resource that is defines the Platform on which an Server is 4953
hosted.\nAllows for Platform specific information to be discovered.\n", 4954
 "parameters": [4955
 {"$ref": "#/parameters/interface"} 4956
], 4957
 "responses": { 4958
 "200": { 4959
 "description" : "", 4960
 "x-example": { 4961
 "pi": "54919CA5-4101-4AE4-595B-353C51AA983C", 4962
 "rt": ["oic.wk.p"], 4963
 "mnmn": "Acme, Inc" 4964
 }, 4965
 "schema": { "$ref": "#/definitions/Platform" } 4966
 } 4967
 } 4968
 } 4969
 } 4970
 }, 4971
 "parameters": { 4972
 "interface" : { 4973
 "in" : "query", 4974
 "name" : "if", 4975
 "type" : "string", 4976
 "enum" : ["oic.if.r", "oic.if.baseline"] 4977

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 123

 } 4978
 }, 4979
 "definitions": { 4980
 "Platform" : { 4981
 "properties": { 4982
 "rt" : { 4983
 "description": "Resource Type of the Resource", 4984
 "items": { 4985
 "enum": ["oic.wk.p"], 4986
 "type": "string", 4987
 "maxLength": 64 4988
 }, 4989
 "minItems": 1, 4990
 "uniqueItems": true, 4991
 "readOnly": true, 4992
 "type": "array" 4993
 }, 4994
 "pi" : { 4995
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-4996
9]{12}$", 4997
 "type": "string", 4998
 "description": "Platform Identifier", 4999
 "readOnly": true 5000
 }, 5001
 "mnfv" : { 5002
 "description": "Manufacturer's firmware version", 5003
 "maxLength": 64, 5004
 "readOnly": true, 5005
 "type": "string" 5006
 }, 5007
 "vid" : { 5008
 "description": "Manufacturer's defined information for the Platform. The content is 5009
freeform, with population rules up to the manufacturer", 5010
 "maxLength": 64, 5011
 "readOnly": true, 5012
 "type": "string" 5013
 }, 5014
 "mnmn" : { 5015
 "description": "Manufacturer name", 5016
 "maxLength": 64, 5017
 "readOnly": true, 5018
 "type": "string" 5019
 }, 5020
 "mnmo" : { 5021
 "description": "Model number as designated by the manufacturer", 5022
 "maxLength": 64, 5023
 "readOnly": true, 5024
 "type": "string" 5025
 }, 5026
 "mnhw" : { 5027
 "description": "Platform Hardware Version", 5028
 "maxLength": 64, 5029
 "readOnly": true, 5030
 "type": "string" 5031
 }, 5032
 "mnos" : { 5033
 "description": "Platform Resident OS Version", 5034
 "maxLength": 64, 5035
 "readOnly": true, 5036
 "type": "string" 5037
 }, 5038
 "mndt" : { 5039
 "pattern": "^([0-9]{4})-(1[0-2]|0[1-9])-(3[0-1]|2[0-9]|1[0-9]|0[1-9])$", 5040
 "type": "string", 5041
 "description": "Manufacturing Date.", 5042
 "readOnly": true 5043
 }, 5044
 "id" : { 5045
 "$ref": 5046
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-5047
schema.json#/definitions/id" 5048

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 124

 }, 5049
 "mnsl" : { 5050
 "description": "Manufacturer's Support Information URL", 5051
 "format": "uri", 5052
 "maxLength": 256, 5053
 "readOnly": true, 5054
 "type": "string" 5055
 }, 5056
 "mnpv" : { 5057
 "description": "Platform Version", 5058
 "maxLength": 64, 5059
 "readOnly": true, 5060
 "type": "string" 5061
 }, 5062
 "st" : { 5063
 "description": "The date-time format pattern according to IETF RFC 3339.", 5064
 "format": "date-time", 5065
 "readOnly": true, 5066
 "type": "string" 5067
 }, 5068
 "n" : { 5069
 "$ref": 5070
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-5071
schema.json#/definitions/n" 5072
 }, 5073
 "mnml" : { 5074
 "description": "Manufacturer's URL", 5075
 "format": "uri", 5076
 "maxLength": 256, 5077
 "readOnly": true, 5078
 "type": "string" 5079
 }, 5080
 "mnsel" : { 5081
 "description": "Serial number as designated by the manufacturer", 5082
 "maxLength": 64, 5083
 "readOnly": true, 5084
 "type": "string" 5085
 }, 5086
 "if" : { 5087
 "description": "The OCF Interfaces supported by this Resource", 5088
 "items": { 5089
 "enum": [5090
 "oic.if.r", 5091
 "oic.if.baseline" 5092
], 5093
 "type": "string", 5094
 "maxLength": 64 5095
 }, 5096
 "minItems": 2, 5097
 "readOnly": true, 5098
 "uniqueItems": true, 5099
 "type": "array" 5100
 }, 5101
 "mnnct" : { 5102
 "description": "An array of integers and each integer indicates the network connectivity 5103
type based on IANAIfType value as defined by: https://www.iana.org/assignments/ianaiftype-5104
mib/ianaiftype-mib, e.g., [71, 259] which represents Wi-Fi and Zigbee.", 5105
 "items": { 5106
 "type": "integer", 5107
 "minimum": 1, 5108
 "description": "The network connectivity type based on IANAIfType value as defined by: 5109
https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib." 5110
 }, 5111
 "minItems": 1, 5112
 "readOnly": true, 5113
 "type": "array" 5114
 } 5115
 }, 5116
 "type" : "object", 5117
 "required": ["pi", "mnmn"] 5118
 } 5119

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 125

 } 5120
} 5121
 5122

A.6.5 Property definition 5123

Table A.10 defines the Properties that are part of the "oic.wk.p" Resource Type. 5124

Table A.10 – The Property definitions of the Resource with type "rt" = "oic.wk.p". 5125

Property
name

Value type Mandatory Access mode Description

rt array: see
schema

No Read Only Resource Type of the Resource

pi string Yes Read Only Platform Identifier

mnfv string No Read Only Manufacturer's firmware version

vid string No Read Only Manufacturer's defined information for the
Platform. The content is freeform, with
population rules up to the manufacturer

mnmn string Yes Read Only Manufacturer name

mnmo string No Read Only Model number as designated by the
manufacturer

mnhw string No Read Only Platform Hardware Version

mnos string No Read Only Platform Resident OS Version

mndt string No Read Only Manufacturing Date.

id multiple types:
see schema

No Read Write

mnsl string No Read Only Manufacturer's Support Information URL

mnpv string No Read Only Platform Version

st string No Read Only The date-time format pattern according to
IETF RFC 3339.

n multiple types:
see schema

No Read Write

mnml string No Read Only Manufacturer's URL

mnsel string No Read Only Serial number as designated by the
manufacturer

if array: see
schema

No Read Only The OCF Interfaces supported by this
Resource

mnnct array: see
schema

No Read Only An array of integers and each integer
indicates the network connectivity type
based on IANAIfType value as defined by:
https://www.iana.org/assignments/ianaiftype-
mib/ianaiftype-mib, e.g., [71, 259] which
represents Wi-Fi and Zigbee.

A.6.6 CRUDN behaviour 5126

Table A.11 defines the CRUDN operations that are supported on the "oic.wk.p" Resource Type. 5127

Table A.11 – The CRUDN operations of the Resource with type "rt" = "oic.wk.p". 5128

Create Read Update Delete Notify

 get observe

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 126

A.7 Discoverable Resources 5129

A.7.1 Introduction 5130

Baseline representation of /oic/res; list of discoverable Resources 5131
 5132

A.7.2 Well-known URI 5133

/oic/res 5134

A.7.3 Resource type 5135

The Resource Type is defined as: "oic.wk.res". 5136

A.7.4 OpenAPI 2.0 definition 5137

{ 5138
 "swagger": "2.0", 5139
 "info": { 5140
 "title": "Discoverable Resources", 5141
 "version": "2019-04-22", 5142
 "license": { 5143
 "name": "OCF Data Model License", 5144
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 5145
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 5146
 }, 5147
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 5148
 }, 5149
 "schemes": [5150
 "http" 5151
], 5152
 "consumes": [5153
 "application/json" 5154
], 5155
 "produces": [5156
 "application/json" 5157
], 5158
 "paths": { 5159
 "/oic/res?if=oic.if.ll": { 5160
 "get": { 5161
 "description": "Links list representation of /oic/res; list of discoverable Resources\n", 5162
 "parameters": [5163
 { 5164
 "$ref": "#/parameters/interface-all" 5165
 } 5166
], 5167
 "responses": { 5168
 "200": { 5169
 "description" : "", 5170
 "x-example": [5171
 { 5172
 "href": "/oic/res", 5173
 "rt": ["oic.wk.res"], 5174
 "if": ["oic.if.ll", "oic.if.b", "oic.if.baseline"], 5175
 "rel": ["self"], 5176
 "p": {"bm": 3}, 5177
 "eps": [5178
 {"ep": "coaps://[fe80::b1d6]:1122"}] 5179
 }, 5180
 { 5181
 "href": "/humidity", 5182
 "rt": ["oic.r.humidity"], 5183
 "if": ["oic.if.s", "oic.if.baseline"], 5184
 "p": {"bm": 3}, 5185
 "eps": [5186
 {"ep": "coaps://[fe80::b1d6]:1111", "pri": 2}, 5187
 {"ep": "coaps://[fe80::b1d6]:1122"}, 5188
 {"ep": "coaps+tcp://[2001:db8:a::123]:2222", "pri": 3} 5189
] 5190

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 127

 }, 5191
 { 5192
 "href": "/temperature", 5193
 "rt": ["oic.r.temperature"], 5194
 "if": ["oic.if.s", "oic.if.baseline"], 5195
 "p": {"bm": 3}, 5196
 "eps": [5197
 {"ep": "coaps://[[2001:db8:a::123]:2222"} 5198
] 5199
 } 5200
], 5201
 "schema": { 5202
 "$ref": "#/definitions/slinklist" 5203
 } 5204
 } 5205
 } 5206
 } 5207
 }, 5208
 "/oic/res?if=oic.if.b" : { 5209
 "get": { 5210
 "description": "Batch representation of /oic/res; list of discoverable Resources\n", 5211
 "parameters": [5212
 {"$ref": "#/parameters/interface-all"} 5213
], 5214
 "responses": { 5215
 "200": { 5216
 "description" : "", 5217
 "x-example": [5218
 { 5219
 "href": "/humidity", 5220
 "rep":{ 5221
 "rt": ["oic.r.humidity"], 5222
 "humidity": 40, 5223
 "desiredHumidity": 40 5224
 } 5225
 }, 5226
 { 5227
 "href": "/temperature", 5228
 "rep":{ 5229
 "rt": ["oic.r.temperature"], 5230
 "temperature": 20.0, 5231
 "units": "C" 5232
 } 5233
 } 5234
], 5235
 "schema": { "$ref": "#/definitions/sbatch" } 5236
 } 5237
 } 5238
 } 5239
 }, 5240
 "/oic/res?if=oic.if.baseline": { 5241
 "get": { 5242
 "description": "Baseline representation of /oic/res; list of discoverable Resources\n", 5243
 "parameters": [5244
 { 5245
 "$ref": "#/parameters/interface-all" 5246
 } 5247
], 5248
 "responses": { 5249
 "200": { 5250
 "description": "", 5251
 "x-example": [5252
 { 5253
 "rt": ["oic.wk.res"], 5254
 "if": ["oic.if.ll", "oic.if.b", "oic.if.baseline"], 5255
 "links": [5256
 { 5257
 "href": "/humidity", 5258
 "rt": ["oic.r.humidity"], 5259
 "if": ["oic.if.s", "oic.if.baseline"], 5260
 "p": {"bm": 3}, 5261

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 128

 "eps": [5262
 {"ep": "coaps://[fe80::b1d6]:1111", "pri": 2}, 5263
 {"ep": "coaps://[fe80::b1d6]:1122"}, 5264
 {"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri": 3} 5265
] 5266
 }, 5267
 { 5268
 "href": "/temperature", 5269
 "rt": ["oic.r.temperature"], 5270
 "if": ["oic.if.s", "oic.if.baseline"], 5271
 "p": {"bm": 3}, 5272
 "eps": [5273
 {"ep": "coaps://[[2001:db8:a::123]:2222"} 5274
] 5275
 } 5276
] 5277
 } 5278
], 5279
 "schema": { 5280
 "$ref": "#/definitions/sbaseline" 5281
 } 5282
 } 5283
 } 5284
 } 5285
 } 5286
 }, 5287
 "parameters": { 5288
 "interface-all": { 5289
 "in": "query", 5290
 "name": "if", 5291
 "type": "string", 5292
 "enum": ["oic.if.ll", "oic.if.b", "oic.if.baseline"] 5293
 } 5294
 }, 5295
 "definitions": { 5296
 "oic.oic-link": { 5297
 "type": "object", 5298
 "properties": { 5299
 "anchor": { 5300
 "$ref": 5301
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5302
schema.json#/definitions/anchor" 5303
 }, 5304
 "di": { 5305
 "$ref": 5306
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5307
schema.json#/definitions/di" 5308
 }, 5309
 "eps": { 5310
 "$ref": 5311
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5312
schema.json#/definitions/eps" 5313
 }, 5314
 "href": { 5315
 "$ref": 5316
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5317
schema.json#/definitions/href" 5318
 }, 5319
 "if": { 5320
 "description": "The OCF Interfaces supported by the Linked Resource", 5321
 "items": { 5322
 "enum": [5323
 "oic.if.baseline", 5324
 "oic.if.ll", 5325
 "oic.if.b", 5326
 "oic.if.rw", 5327
 "oic.if.r", 5328
 "oic.if.a", 5329
 "oic.if.s" 5330
], 5331
 "type": "string", 5332

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 129

 "maxLength": 64 5333
 }, 5334
 "minItems": 1, 5335
 "uniqueItems": true, 5336
 "type": "array" 5337
 }, 5338
 "ins": { 5339
 "$ref": 5340
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5341
schema.json#/definitions/ins" 5342
 }, 5343
 "p": { 5344
 "$ref": 5345
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5346
schema.json#/definitions/p" 5347
 }, 5348
 "rel": { 5349
 "description": "The relation of the target URI referenced by the Link to the context URI", 5350
 "oneOf": [5351
 { 5352
 "$ref": 5353
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5354
schema.json#/definitions/rel_array" 5355
 }, 5356
 { 5357
 "$ref": 5358
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5359
schema.json#/definitions/rel_string" 5360
 } 5361
] 5362
 }, 5363
 "rt": { 5364
 "description": "Resource Type of the Linked Resource", 5365
 "items": { 5366
 "maxLength": 64, 5367
 "type": "string" 5368
 }, 5369
 "minItems": 1, 5370
 "uniqueItems": true, 5371
 "type": "array" 5372
 }, 5373
 "title": { 5374
 "$ref": 5375
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5376
schema.json#/definitions/title" 5377
 }, 5378
 "type": { 5379
 "$ref": 5380
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5381
schema.json#/definitions/type" 5382
 }, 5383
 "tag-pos-desc": { 5384
 "$ref": 5385
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5386
schema.json#/definitions/tag-pos-desc" 5387
 }, 5388
 "tag-pos-rel": { 5389
 "$ref": 5390
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5391
schema.json#/definitions/tag-pos-rel" 5392
 }, 5393
 "tag-func-desc": { 5394
 "$ref": 5395
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5396
schema.json#/definitions/tag-func-desc" 5397
 } 5398
 }, 5399
 "required": [5400
 "href", 5401
 "rt", 5402
 "if" 5403

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 130

] 5404
 }, 5405
 "slinklist": { 5406
 "type" : "array", 5407
 "readOnly": true, 5408
 "items": { 5409
 "$ref": "#/definitions/oic.oic-link" 5410
 } 5411
 }, 5412
 "sbaseline": { 5413
 "type": "array", 5414
 "minItems": 1, 5415
 "maxItems": 1, 5416
 "items": { 5417
 "type": "object", 5418
 "properties": { 5419
 "n": { 5420
 "$ref": 5421
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-5422
schema.json#/definitions/n" 5423
 }, 5424
 "id": { 5425
 "$ref": 5426
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-5427
schema.json#/definitions/id" 5428
 }, 5429
 "rt": { 5430
 "description": "Resource Type of this Resource", 5431
 "items": { 5432
 "enum": ["oic.wk.res"], 5433
 "type": "string", 5434
 "maxLength": 64 5435
 }, 5436
 "minItems": 1, 5437
 "readOnly": true, 5438
 "uniqueItems": true, 5439
 "type": "array" 5440
 }, 5441
 "if": { 5442
 "description": "The OCF Interfaces supported by this Resource", 5443
 "items": { 5444
 "enum": [5445
 "oic.if.ll", 5446
 "oic.if.b", 5447
 "oic.if.baseline" 5448
], 5449
 "type": "string", 5450
 "maxLength": 64 5451
 }, 5452
 "minItems": 2, 5453
 "readOnly": true, 5454
 "uniqueItems": true, 5455
 "type": "array" 5456
 }, 5457
 "links": { 5458
 "type": "array", 5459
 "items": { 5460
 "$ref": "#/definitions/oic.oic-link" 5461
 } 5462
 }, 5463
 "sduuid": { 5464
 "description": "A UUID that identifies the Security Domain.", 5465
 "type": "string", 5466
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-5467
9]{12}$", 5468
 "readOnly": true 5469
 }, 5470
 "sdname": { 5471
 "description": "Human-friendly name for the Security Domain.", 5472
 "type": "string", 5473
 "readOnly": true 5474

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 131

 } 5475
 }, 5476
 "required": [5477
 "rt", 5478
 "if", 5479
 "links" 5480
] 5481
 } 5482
 }, 5483
 "sbatch" : { 5484
 "type" : "array", 5485
 "minItems" : 1, 5486
 "items" : { 5487
 "type": "object", 5488
 "additionalProperties": true, 5489
 "properties": { 5490
 "href": { 5491
 "$ref": 5492
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5493
schema.json#/definitions/href" 5494
 }, 5495
 "rep": { 5496
 "oneOf": [5497
 { 5498
 "description": "The response payload from a single Resource", 5499
 "type": "object" 5500
 }, 5501
 { 5502
 "description": " The response payload from a Collection (batch) Resource", 5503
 "items": { 5504
 "$ref": "#/definitions/oic.oic-link" 5505
 }, 5506
 "type": "array" 5507
 } 5508
] 5509
 } 5510
 }, 5511
 "required": [5512
 "href", 5513
 "rep" 5514
] 5515
 } 5516
 } 5517
 } 5518
} 5519
 5520

A.7.5 Property definition 5521

Table A.12 defines the Properties that are part of the "oic.wk.res" Resource Type. 5522

Table A.12 – The Property definitions of the Resource with type "rt" = "oic.wk.res". 5523

Property name Value type Mandatory Access mode Description

anchor multiple types: see
schema

No Read Write

di multiple types: see
schema

No Read Write

eps multiple types: see
schema

No Read Write

href multiple types: see
schema

Yes Read Write

if array: see schema Yes Read Write The OCF Interfaces
supported by the
Linked Resource

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 132

ins multiple types: see
schema

No Read Write

p multiple types: see
schema

No Read Write

rel multiple types: see
schema

No Read Write The relation of the
target URI
referenced by the
Link to the context
URI

rt array: see schema Yes Read Write Resource Type of
the Linked Resource

title multiple types: see
schema

No Read Write

type multiple types: see
schema

No Read Write

tag-pos-desc multiple types: see
schema

No Read Write

tag-pos-rel multiple types: see
schema

No Read Write

tag-func-desc multiple types: see
schema

No Read Write

n multiple types: see
schema

No Read Write

id multiple types: see
schema

No Read Write

rt array: see schema Yes Read Only Resource Type of
this Resource

if array: see schema Yes Read Only The OCF Interfaces
supported by this
Resource

links array: see schema Yes Read Write

sduuid string No Read Only A UUID that
identifies the
Security Domain.

sdname string No Read Only Human-friendly
name for the
Security Domain.

href multiple types: see
schema

Yes Read Write

rep multiple types: see
schema

Yes Read Write

A.7.6 CRUDN behaviour 5524

Table A.13 defines the CRUDN operations that are supported on the "oic.wk.res" Resource Type. 5525

Table A.13 – The CRUDN operations of the Resource with type "rt" = "oic.wk.res". 5526

Create Read Update Delete Notify

 get observe

 5527
 5528

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 133

 5529

(informative) 5530

 5531

OpenAPI 2.0 Schema Extension 5532

B.1 OpenAPI 2.0 Schema Reference 5533

OpenAPI 2.0 does not support allOf and anyOf JSON schema valiation constructs; this document 5534
has extended the underlying OpenAPI 2.0 schema to enable these, all OpenAPI 2.0 files are valid 5535
against the extended schema. Reference the following location for a copy of the extended schema: 5536

– https://github.com/openconnectivityfoundation/OCFswagger2.0-schema 5537

B.2 OpenAPI 2.0 Introspection empty file 5538

Reference the following location for a copy of an empty OpenAPI 2.0 file: 5539

– https://github.com/openconnectivityfoundation/DeviceBuilder/blob/master/introspection-5540
examples/introspection-empty.txt 5541

https://github.com/openconnectivityfoundation/OCFswagger2.0-schema
https://github.com/openconnectivityfoundation/DeviceBuilder/blob/master/introspection-examples/introspection-empty.txt
https://github.com/openconnectivityfoundation/DeviceBuilder/blob/master/introspection-examples/introspection-empty.txt

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 134

 5542

(normative) 5543

 5544

Semantic Tag enumeration support 5545

C.1 Introduction 5546

This Annex defines the enumerations that are applicable to defined Semantic Tags. 5547

C.2 "tag-pos-desc" supported enumeration 5548

Figure C.1 defines the enumeration from which a value populated within an instance of the "tag-5549
pos-desc" Semantic Tag is taken. 5550

"pos-descriptions": {
"enum":
["unknown","top","bottom","left","right","centre","topleft","bottomleft","centreleft"
,"centreright","bottomright","topright","topcentre","bottomcentre"]
}

Figure C.1 – Enumeration for "tag-pos-desc" Semantic Tag 5551

Figure C.2 provides an illustrative representation of the definition of the values that can be 5552
represented within an instance of "tag-pos-desc". 5553

topleft topcentre topright

centreleft centre centreright

bottomrightbottomcentrebottomleft

bottom

top

left right

 5554

Figure C.2 – Definition of "tag-pos-desc" Semantic Tag values 5555

C.3 "tag-loc" supported enumeration 5556

Figure C.3 defines the enumeration from which a value populated within an instance of the "tag-5557
locn" Semantic Tag is taken. 5558

"locn-descriptions": {

"enum":
["unknown","attic","balcony","ballroom","bathroom","bedroom","border","boxroom","cellar","cloakr
oom","conservatory","corridor","deck","den","diningroom","drawingroom","driveway","dungeon","ens

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 135

uite","entrance","familyroom","garage","garden","guestroom","hall","indoor","kitchen","larder","
lawn","library","livingroom","lounge","mancave","masterbedroom","musicroom","office","outdoor","
pantry","parkinglot","parlour","patio","receiptionroom","restroom","roof","roofterrace","sauna",
"scullery","shed","sittingroom","snug","spa","studio","suite","swimmingpool","terrace","toilet",
"utilityroom","vegetableplot","ward","yard"]

}

Figure C.3 – Enumeration for "tag-locn" Semantic Tag 5559

 5560

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 136

Bibliography 5561

[1] OCF Core - Optional, Information technology – Open Connectivity Foundation (OCF) 5562
Specification – Part X: Core - Optional specification 5563
Latest version available at: 5564
https://openconnectivity.org/specs/OCF_Core_Optional_Specification.pdf 5565

[2] OCF Easy Wi-Fi Setup, Information technology – Open Connectivity Foundation (OCF) 5566
Specification – Part 7: Wi-Fi Easy Setup specification 5567
Latest version available at: https://openconnectivity.org/specs/OCF_Wi-5568
Fi_Easy_Setup_Specification.pdf 5569

 5570

	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions, and abbreviated terms
	3.1 Terms and definitions
	3.2 Symbols and abbreviated terms

	4 Document conventions and organization
	4.1 Conventions
	4.2 Notation
	4.3 Data types
	4.4 Resource notation syntax

	5 Architecture
	5.1 Overview
	5.2 Principle
	5.3 Functional block diagram
	5.4 Framework

	6 Identification and addressing
	6.1 Introduction
	6.2 Identification
	6.2.1 Device and Platform identification
	6.2.2 Resource identification and addressing

	6.3 Namespace:
	6.4 Network addressing

	7 Resource model
	7.1 Introduction
	7.2 Resource
	7.3 Property
	7.3.1 Introduction
	7.3.2 Common Properties
	7.3.2.1 Introduction
	7.3.2.2 Property Name and Property Value definitions
	7.3.2.3 Resource Type
	7.3.2.4 OCF Interface
	7.3.2.5 Name
	7.3.2.6 Resource Identity

	7.4 Resource Type
	7.4.1 Introduction
	7.4.2 Resource Type Property
	7.4.3 Resource Type definition
	7.4.4 Multi-value "rt" Resource

	7.5 Device Type
	7.6 OCF Interface
	7.6.1 Introduction
	7.6.2 OCF Interface Property
	7.6.3 OCF Interface methods
	7.6.3.1 Overview
	7.6.3.2 Baseline OCF Interface
	7.6.3.2.1 Overview
	7.6.3.2.2 Use of RETRIEVE
	7.6.3.2.3 Use of UPDATE

	7.6.3.3 Links list OCF Interface
	7.6.3.3.1 Overview
	7.6.3.3.2 Use with RETRIEVE
	7.6.3.3.3 Use with NOTIFY
	7.6.3.3.4 Use with CREATE, UPDATE, and DELETE

	7.6.3.4 Batch OCF Interface
	7.6.3.4.1 Overview
	7.6.3.4.2 General requirements for realizations of the batch OCF Interface
	7.6.3.4.3 Observability of the batch OCF Interface
	7.6.3.4.4 UPDATE using the batch OCF Interface
	7.6.3.4.5 Examples: Batch OCF Interface

	7.6.3.5 Actuator OCF Interface
	7.6.3.6 Sensor OCF Interface
	7.6.3.7 Read-only OCF Interface
	7.6.3.8 Read-write OCF Interface
	7.6.3.9 Create OCF Interface
	7.6.3.9.1 Overview
	7.6.3.9.2 Data format for CREATE
	7.6.3.9.3 Use with CREATE
	7.6.3.9.4 Use with UPDATE and DELETE

	7.7 Resource representation
	7.8 Structure
	7.8.1 Introduction
	7.8.2 Resource relationships (Links)
	7.8.2.1 Introduction
	7.8.2.2 Link context
	7.8.2.3 Link relation type
	7.8.2.4 Link target
	7.8.2.5 Parameters for Link target attributes
	7.8.2.5.1 Introduction
	7.8.2.5.2 "ins" or Link instance Parameter
	7.8.2.5.3 "p" or policy Parameter
	7.8.2.5.4 "type" or media type Parameter
	7.8.2.5.5 "di" or Device UUID Parameter
	7.8.2.5.6 "eps" Parameter

	7.8.2.6 Formatting
	7.8.2.7 List of Links in a Collection
	7.8.2.8 Properties describing an array of Links

	7.8.3 Collections
	7.8.3.1 Overview
	7.8.3.2 Collection Properties
	7.8.3.3 Default Resource Type
	7.8.3.4 Default OCF Interface

	7.8.4 Atomic Measurement
	7.8.4.1 Overview
	7.8.4.2 Atomic Measurement Properties
	7.8.4.3 Normative behaviour
	7.8.4.4 Security considerations
	7.8.4.5 Default Resource Type

	7.9 Query Parameters
	7.9.1 Introduction
	7.9.2 Use of multiple parameters within a query
	7.9.3 Application to multi-value "rt" Resources
	7.9.4 OCF Interface specific considerations for queries
	7.9.4.1 OCF Interface selection
	7.9.4.2 Batch OCF Interface

	7.10 Error response payload
	7.10.1 Overview
	7.10.2 Error response payload content
	7.10.3 Example of use

	8 CRUDN
	8.1 Overview
	8.2 CREATE
	8.2.1 Overview
	8.2.2 CREATE request
	8.2.3 Processing by the Server
	8.2.4 CREATE response

	8.3 RETRIEVE
	8.3.1 Overview
	8.3.2 RETRIEVE request
	8.3.3 Processing by the Server
	8.3.4 RETRIEVE response

	8.4 UPDATE
	8.4.1 Overview
	8.4.2 UPDATE request
	8.4.3 Processing by the Server
	8.4.3.1 Overview
	8.4.3.2 Resource monitoring by the Server
	8.4.3.3 Additional RETRIEVE responses with Observe indication

	8.4.4 UPDATE response

	8.5 DELETE
	8.5.1 Overview
	8.5.2 DELETE request
	8.5.3 Processing by the Server
	8.5.4 DELETE response

	8.6 NOTIFY
	8.6.1 Overview
	8.6.2 NOTIFICATION response

	9 Network and connectivity
	9.1 Introduction
	9.2 Architecture
	9.3 IPv6 network layer requirements
	9.3.1 Introduction
	9.3.2 IPv6 node requirements
	9.3.2.1 Introduction
	9.3.2.2 IP Layer

	10 OCF Endpoint
	10.1 OCF Endpoint definition
	10.2 OCF Endpoint information
	10.2.1 Introduction
	10.2.2 "ep"
	10.2.3 "pri"
	10.2.4 "lat"
	10.2.5 OCF Endpoint information in "eps" Parameter

	10.3 OCF Endpoint discovery
	10.3.1 Introduction
	10.3.2 Implicit discovery
	10.3.3 Explicit discovery with "/oic/res" response

	11 Functional interactions
	11.1 Introduction
	11.2 Resource discovery
	11.2.1 Introduction
	11.2.2 Resource based discovery: mechanisms
	11.2.2.1 Overview
	11.2.2.2 Direct discovery

	11.2.3 Resource based discovery: Finding information
	11.2.4 Resource discovery using "/oic/res"
	11.2.4.1 General Requirements
	11.2.4.2 Discovery using "oic.if.ll" (Default OCF Interfgace for "/oic/res")

	11.2.5 Multicast discovery using "/oic/res"
	11.2.6 Multicast discovery using "/.well-known/core"

	11.3 Notification
	11.3.1 Overview
	11.3.2 Observe
	11.3.2.1 Overview
	11.3.2.2 RETRIEVE request with Observe indication
	11.3.2.3 Processing by the Server
	11.3.2.4 RETRIEVE response with Observe indication
	11.3.2.5 Resource monitoring by the Server
	11.3.2.6 Additional RETRIEVE responses with Observe indication
	11.3.2.7 Cancelling Observe

	11.4 Introspection
	11.4.1 Overview
	11.4.2 Usage of Introspection

	11.5 Semantic Tags
	11.5.1 Introduction
	11.5.2 Semantic Tag definitions
	11.5.2.1 Relative and descriptive position Semantic Tags
	11.5.2.1.1 Introduction
	11.5.2.1.2 "tag-pos-desc" or position description Semantic Tag
	11.5.2.1.3 "tag-pos-rel" or relative position Semantic Tag

	11.5.2.2 Functional behaviour Semantic Tags
	11.5.2.2.1 Introduction
	11.5.2.2.2 "tag-func-desc" or function description Semantic Tag

	11.5.2.3 Location Semantic Tags
	11.5.2.3.1 Introduction
	11.5.2.3.2 "tag-locn" or location description Semantic Tag

	12 Messaging
	12.1 Introduction
	12.2 Mapping of CRUDN to CoAP
	12.2.1 Overview
	12.2.2 URIs
	12.2.3 CoAP method with request and response
	12.2.3.1 Overview
	12.2.3.2 CREATE with POST
	12.2.3.3 RETRIEVE with GET
	12.2.3.4 UPDATE with POST
	12.2.3.5 DELETE with DELETE

	12.2.4 Content-Format negotiation
	12.2.5 OCF-Content-Format-Version information
	12.2.6 Content-Format policy
	12.2.7 CRUDN to CoAP response codes
	12.2.8 CoAP block transfer
	12.2.9 Generic requirements for CoAP multicast
	12.2.10 Setting timeout on response to a confirmable request
	12.2.11 Mapping the error response payload

	12.3 Mapping of CRUDN to CoAP serialization over TCP
	12.3.1 Overview
	12.3.2 URIs
	12.3.3 CoAP method with request and response
	12.3.4 Content-Format negotiation
	12.3.5 OCF-Content-Format-Version information
	12.3.6 Content-Format policy
	12.3.7 CRUDN to CoAP response codes
	12.3.8 CoAP block transfer
	12.3.9 Keep alive (connection health)
	12.3.10 CoAP using a proxy
	12.3.11 Mapping the error response payload

	12.4 Payload Encoding in CBOR

	13 Security
	Annex A (normative) Resource Type definitions
	A.1 List of Resource Type definitions
	A.2 Atomic Measurement links list representation
	A.2.1 Introduction
	A.2.2 Example URI
	A.2.3 Resource type
	A.2.4 OpenAPI 2.0 definition
	A.2.5 Property definition
	A.2.6 CRUDN behaviour

	A.3 Collection
	A.3.1 Introduction
	A.3.2 Example URI
	A.3.3 Resource type
	A.3.4 OpenAPI 2.0 definition
	A.3.5 Property definition
	A.3.6 CRUDN behaviour

	A.4 Device
	A.4.1 Introduction
	A.4.2 Well-known URI
	A.4.3 Resource type
	A.4.4 OpenAPI 2.0 definition
	A.4.5 Property definition
	A.4.6 CRUDN behaviour

	A.5 Introspection Resource
	A.5.1 Introduction
	A.5.2 Well-known URI
	A.5.3 Resource type
	A.5.4 OpenAPI 2.0 definition
	A.5.5 Property definition
	A.5.6 CRUDN behaviour

	A.6 Platform
	A.6.1 Introduction
	A.6.2 Well-known URI
	A.6.3 Resource type
	A.6.4 OpenAPI 2.0 definition
	A.6.5 Property definition
	A.6.6 CRUDN behaviour

	A.7 Discoverable Resources
	A.7.1 Introduction
	A.7.2 Well-known URI
	A.7.3 Resource type
	A.7.4 OpenAPI 2.0 definition
	A.7.5 Property definition
	A.7.6 CRUDN behaviour
	Annex B (informative) OpenAPI 2.0 Schema Extension

	B.1 OpenAPI 2.0 Schema Reference
	B.2 OpenAPI 2.0 Introspection empty file
	Annex C (normative) Semantic Tag enumeration support

	C.1 Introduction
	C.2 "tag-pos-desc" supported enumeration
	C.3 "tag-loc" supported enumeration

	Bibliography

