
Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 1

F 1
 2
1.1. 3

OIC CORE
SPECIFICATION

V1.1.1
Part 1

Open Connectivity Foundation (OCF)
admin@openconnectivity.org

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 2

Legal Disclaimer 4
 5

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY 6
KIND OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY 7
INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR 8
DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN IS PROVIDED 9
ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, 10
THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY DISCLAIM ALL OTHER 11
WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT 12
COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF 13
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN CONNECTIVITY 14
FOUNDATION, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF NON-15
INFRINGEMENT, ACCURACY OR LACK OF VIRUSES. 16

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or other 17
countries. *Other names and brands may be claimed as the property of others. 18

Copyright © 2016 Open Connectivity Foundation, Inc. All rights reserved. 19

Copying or other form of reproduction and/or distribution of these works are strictly prohibited. 20
 21

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 3

CONTENTS 22

 23

1 Scope ... 11 24

2 Normative references .. 11 25

3 Terms, definitions, symbols and abbreviations .. 14 26

3.1 Terms and definitions ... 14 27

3.2 Symbols and abbreviations ... 16 28

3.3 Conventions ... 17 29

3.4 Data types .. 17 30

4 Document conventions and organization ... 18 31

5 Architecture... 19 32

5.1 Overview .. 19 33

5.2 Principle ... 19 34

5.3 Functional block diagram .. 21 35

5.3.1 Framework .. 22 36

5.4 Example Scenario with roles ... 22 37

5.5 Example Scenario: Bridging to Non- OCF ecosystem.. 23 38

6 Identification and addressing ... 24 39

6.1 Introduction .. 24 40

6.2 Identification ... 25 41

6.2.1 Resource identification and addressing ... 25 42

6.3 Namespace: ... 26 43

6.4 Network addressing .. 26 44

7 Resource model .. 26 45

7.1 Introduction .. 26 46

7.2 Resource .. 27 47

7.3 Property ... 28 48

 Introduction ... 28 49

 Common Properties ... 29 50

7.4 Resource Type ... 30 51

 Introduction ... 30 52

 Resource Type Property .. 31 53

 Resource Type definition ... 31 54

7.5 Device Type ... 32 55

7.6 Interface ... 33 56

 Introduction ... 33 57

 Interface Property ... 33 58

 Interface methods ... 34 59

7.7 Resource representation .. 42 60

7.8 Structure .. 42 61

 Introduction ... 42 62

 Resource Relationships ... 42 63

 Collections .. 48 64

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 4

8 CRUDN ... 51 65

8.1 Overview .. 51 66

8.2 CREATE ... 52 67

8.2.1 CREATE request ... 53 68

8.2.2 Processing by the Server .. 53 69

8.2.3 CREATE response .. 53 70

8.3 RETRIEVE ... 53 71

8.3.1 RETRIEVE request .. 54 72

8.3.2 Processing by the Server .. 54 73

8.3.3 RETRIEVE response ... 54 74

8.4 UPDATE ... 54 75

8.4.1 UPDATE request ... 55 76

8.4.2 Processing by the Server .. 55 77

8.4.3 UPDATE response .. 55 78

8.5 DELETE ... 55 79

8.5.1 DELETE request ... 56 80

8.5.2 Processing by the Server .. 56 81

8.5.3 DELETE response ... 56 82

8.6 NOTIFY .. 56 83

9 Network and connectivity .. 56 84

9.1 Introduction .. 56 85

9.2 Architecture .. 57 86

9.3 • A node may translate and route messaging between IPv6 and non-IPv6 87
networks.IPv6 network layer requirements .. 58 88

 Introduction ... 58 89

 IPv6 node requirements .. 58 90

 IPv6 constrained nodes ... 59 91

10 Endpoint discovery .. 60 92

10.1 Introduction .. 60 93

10.2 CoAP based Endpoint discovery ... 60 94

11 Functional interactions .. 61 95

11.1 Introduction .. 61 96

11.2 Provisioning.. 61 97

11.3 Resource discovery .. 65 98

 Introduction ... 65 99

 Resource based discovery: mechanisms ... 65 100

 Resource based discovery: Information publication process 67 101

 Resource based discovery: Finding information ... 68 102

 Resource discovery using /oic/res ... 73 103

 Resource directory (RD) based discovery .. 74 104

11.4 Notification ... 81 105

 Overview ... 81 106

 Observe .. 81 107

11.5 Device management ... 83 108

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 5

 Diagnostics and maintenance .. 83 109

11.6 Scenes ... 84 110

 Introduction ... 84 111

 Scenes .. 85 112

 Security considerations ... 88 113

12 Messaging... 89 114

12.1 Introduction .. 89 115

12.2 Mapping of CRUDN to CoAP .. 89 116

 Overview ... 89 117

 URIs .. 89 118

 CoAP method with request and response .. 89 119

 Content Type negotiation .. 91 120

 CRUDN to CoAP response codes .. 92 121

 CoAP block transfer .. 92 122

 CoAP serialization over TCP ... 92 123

12.3 Payload Encoding in CBOR .. 94 124

13 Security ... 94 125

14 Multi resource model support .. 94 126

14.1 Interoperability issue .. 94 127

14.1.1 Multiple IoT Standards .. 94 128

14.1.2 Different resource models ... 95 129

14.2 A scheme to exchange resource model information .. 97 130

14.2.1 A scheme to exchange resource model information 97 131

Annex A (informative) Operation Examples .. 98 132

A.1 Introduction .. 98 133

A.2 When at home: From smartphone turn on a single light .. 98 134

A.3 GroupAction execution ... 99 135

A.4 When garage door opens, turn on lights in hall; also notify smartphone 99 136

A.5 Device management ... 99 137

Annex B (informative) OCF interaction scenarios and deployment models 101 138

B.1 OCF interaction scenarios .. 101 139

B.2 Deployment model .. 102 140

Annex C (informative) Other Resource Models and OCF Mapping 104 141

C.1 Multiple resource models .. 104 142

C.2 OCF approach for support of multiple resource models....................................... 104 143

C.3 Resource model indication.. 105 144

C.4 An Example Profile (IPSO profile) ... 105 145

C.4.1 Conceptual equivalence .. 105 146

Annex D (normative) Resource Type definitions .. 108 147

D.1 List of resource type definitions .. 108 148

D.2 OCF Collection ... 108 149

D.2.1 Introduction ... 108 150

D.2.2 Fixed URI .. 108 151

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 6

D.2.3 Resource Type .. 108 152

D.2.4 RAML Definition .. 109 153

D.2.5 Property Definition .. 116 154

D.2.6 CRUDN Behaviour .. 118 155

D.2.7 Referenced JSON schemas ... 118 156

D.2.8 oic.oic-link-schema.json .. 118 157

D.3 OIC Configuration ... 120 158

D.3.1 Introduction ... 120 159

D.3.2 Fixed URI .. 120 160

D.3.3 Resource Type .. 120 161

D.3.4 RAML Definition .. 120 162

D.3.5 Property Definition .. 123 163

D.3.6 CRUDN Behaviour .. 123 164

D.4 Device .. 124 165

D.4.1 Introduction ... 124 166

D.4.2 Fixed URI .. 124 167

D.4.3 Resource Type .. 124 168

D.4.4 RAML Definition .. 124 169

D.4.5 Property Definition .. 125 170

D.4.6 CRUDN Behaviour .. 125 171

D.5 Maintenance ... 125 172

D.5.1 Introduction ... 125 173

D.5.2 Fixed URI .. 125 174

D.5.3 Resource Type .. 126 175

D.5.4 RAML Definition .. 126 176

D.5.5 Property Definition .. 128 177

D.5.6 CRUDN Behaviour .. 128 178

D.6 Platform .. 129 179

D.6.1 Introduction ... 129 180

D.6.2 Fixed URI .. 129 181

D.6.3 Resource Type .. 129 182

D.6.4 RAML Definition .. 129 183

D.6.5 Property Definition .. 131 184

D.6.6 CRUDN Behaviour .. 131 185

D.7 Ping .. 132 186

D.7.1 Introduction ... 132 187

D.7.2 Fixed URI .. 132 188

D.7.3 Resource Type .. 132 189

D.7.4 RAML Definition .. 132 190

D.7.5 Property Definition .. 133 191

D.7.6 CRUDN Behaviour .. 133 192

D.8 Discoverable Resources ... 133 193

D.8.1 Introduction ... 133 194

D.8.2 Fixed URI .. 133 195

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 7

D.8.3 Resource Type .. 133 196

D.8.4 RAML Definition .. 133 197

D.8.5 Property Definition .. 135 198

D.8.6 CRUDN Behaviour .. 135 199

D.9 Scenes (Top level) ... 135 200

D.9.1 Introduction ... 135 201

D.9.2 Fixed URI .. 135 202

D.9.3 Resource Type .. 135 203

D.9.4 RAML Definition .. 135 204

D.9.5 Property Definition .. 138 205

D.9.6 CRUDN Behaviour .. 139 206

D.10 Scene Collections ... 139 207

D.10.1 Introduction ... 139 208

D.10.2 Fixed URI .. 139 209

D.10.3 Resource Type .. 139 210

D.10.4 RAML Definition .. 139 211

D.10.5 Property Definition .. 143 212

D.10.6 CRUDN Behaviour .. 144 213

D.11 Scene Member ... 144 214

D.11.1 Introduction ... 144 215

D.11.2 Fixed URI .. 144 216

D.11.3 Resource Type .. 144 217

D.11.4 RAML Definition .. 144 218

D.11.5 Property Definition .. 146 219

D.11.6 CRUDN Behaviour .. 146 220

D.12 Resource directory resource ... 146 221

D.12.1 Introduction ... 146 222

D.12.2 Fixed URI .. 146 223

D.12.3 Resource Type .. 146 224

D.12.4 RAML Definition .. 146 225

D.12.5 Property Definition .. 151 226

D.12.6 CRUDN Behaviour .. 151 227

 228

 229

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 8

 230

Figures 231
 232

Figure 1: Architecture - concepts .. 20 233

Figure 2: Functional block diagram ... 21 234

Figure 3: Communication layering model .. 22 235

Figure 4: Example illustrating the Roles .. 23 236

Figure 5: Framework - Architecture Detail ... 23 237

Figure 6: Server bridging to Non- OCF device .. 24 238

Figure 7: Example of a Resource .. 28 239

Figure 8: Example - "Heater" Resource (for illustration only) .. 40 240

Figure 9: Example - Actuator Interface ... 40 241

Figure 10: Example of a Link .. 42 242

Figure 11: Example of distinct Links ... 42 243

Figure 12: Example of use of anchor in Link ... 43 244

Figure 13: Example “list of Links” ... 47 245

Figure 14: List of Links in a Resource ... 47 246

Figure 15: Example showing parts of Collection and Links .. 49 247

Figure 16: Example Collection with simple links (JSON) ... 49 248

Figure 17: Example Collection with tagged Links (JSON).. 50 249

Figure 18. CREATE operation .. 53 250

Figure 19. RETRIEVE operation ... 54 251

Figure 20. UPDATE operation .. 54 252

Figure 21. DELETE operation ... 55 253

Figure 22. High Level Network & Connectivity Architecture ... 57 254

Figure 23. Provisioning State Changes .. 62 255

Figure 24. Interactions initiated by the Device to retrieve its configuration from a 256
configuration source ... 63 257

Figure 25. Interactions for retrieving the configuration state of an Device. 64 258

Figure 26. Update of and Device configuration .. 64 259

Figure 27. Resource based discovery: Information publication process................................. 68 260

Figure 28. Resource based discovery: Finding information .. 68 261

Figure 29. Indirect discovery of resource by resource directory .. 75 262

Figure 30. RD discovery and RD supported query of resources support 76 263

Figure 31. Resource Direction Deployment Scenarios .. 77 264

Figure 32. Observe Mechanism .. 82 265

Figure 33 Generic scene resource structure ... 85 266

Figure 34 Interactions to check Scene support and setup of specific scenes 86 267

Figure 35 Client interactions on a specific scene .. 87 268

Figure 36 Interaction overview due to a Scene change ... 88 269

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 9

Figure 37. When at home: from smartphone turn on a single light ... 99 270

Figure 38. Device management (maintenance) ... 100 271

Figure 39. Direct interaction between Server and Client ... 101 272

Figure 40. Interaction between Client and Server using another Server 101 273

Figure 41. Interaction between Client and Server using Intermediary 101 274

Figure 42. Interaction between Client and Server using support from multiple Servers and 275
Intermediary ... 102 276

Figure 43. Example of Devices ... 102 277

 278

 279

 280

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 10

Tables 281
 282

Table 1. Data type definition ... 17 283

Table 2. Name Property Definition .. 30 284

Table 3. Resource Identity Property Definition .. 30 285

Table 4. Resource Type Common Property definition ... 31 286

Table 5. Example foobar Resource Type .. 32 287

Table 6. Example foobar properties .. 32 288

Table 7. Resource Interface Property definition .. 33 289

Table 8. OCF standard Interfaces ... 34 290

Table 9: Common Properties for Collections (in addition to Common Properties defined in 291
section 7.3.2) ... 51 292

Table 10. Parameters of CRUDN messages ... 52 293

Table 11. List of Core Resources ... 61 294

Table 12. Configuration Resources ... 65 295

Table 13. oic.wk.con resource type definition ... 65 296

Table 14. Mandatory discovery Core Resources ... 69 297

Table 15. oic.wk.res resource type definition .. 70 298

Table 16. Protocol scheme registry ... 70 299

Table 17. oic.wk.d resource type definition ... 71 300

Table 18. oic.wk.p resource type definition ... 72 301

Table 19: Selection parameters .. 78 302

Table 20. Optional diagnostics and maintenance device management Core Resources 83 303

Table 21. oic.wk.mnt resource type definition ... 83 304

Table 22 list of resource types for Scenes .. 88 305

Table 23. CoAP request and response ... 89 306

Table 24. Content Types and Content Formats ... 91 307

Table 25. Ping resource ... 93 308

Table 26. oic.wk.ping resource type definition .. 93 309

Table 27. oic.example.light resource type definition .. 98 310

Table 28. oic.example.garagedoor resource type definition .. 98 311

Table 29. Light control resource type definition... 106 312

Table 30. Light control resource type definition... 106 313

Table 31. Alphabetized list of core resources ... 108 314

 315
 316

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 11

1 Scope 317

The OCF specifications are divided into two sets of documents: 318

• Core Specification documents: The Core Specification documents specify the Framework, i.e., 319
the OCF core architecture, interfaces, protocols and services to enable OCF profiles 320
implementation for Internet of Things (IoT) usages and ecosystems. 321

• Vertical Profiles Specification documents: The Vertical Profiles Specification documents 322
specify the OCF profiles to enable IoT usages for different market segments such as smart 323
home, industrial, healthcare, and automotive. The Application Profiles Specification is built 324
upon the interfaces and network security of the OCF core architecture defined in the Core 325
Specification. 326

This document is the OCF Core specification which specifies the Framework and core architecture. 327

 328

2 Normative references 329

The following documents, in whole or in part, are normatively referenced in this document and are 330
indispensable for its application. For dated references, only the edition cited applies. For undated 331
references, the latest edition of the referenced document (including any amendments) applies. 332

ISO 8601, Data elements and interchange formats – Information interchange –Representation of 333
dates and times, International Standards Organization, December 3, 2004 334

IEEE 754, IEEE Standard for Floating-Point Arithmetic, August 2008 335

IETF RFC 1981, Path MTU Discovery for IP version 6, August 1996 336
https://tools.ietf.org/rfc/rfc1981.txt 337

IETF RFC 2460, Internet Protocol, version 6 (IPv6), December, 1998 338
https://tools.ietf.org/rfc/rfc2460.txt 339

IETF RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, June 1999. 340
http://www.ietf.org/rfc/rfc2616.txt 341

IETF RFC 3810, Multicast Listener Discovery Version 2 (MLDv2) for IPv6, June 2004 342
http://www.ietf.org/rfc/rfc3810.txt 343

IETF RFC 3986, Uniform Resource Identifier (URI): General Syntax, January 2005. 344
http://www.ietf.org/rfc/rfc3986.txt 345

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005 346
http://www.ietf.org/rfc/rfc4122.txt 347

IETF RFC 4193, Unique Local IPv6 Unicast Addresses, October 2005 348
http://www.ietf.org/rfc/rfc4193.txt 349

IETF RFC 4291, IP Version 6 Addressing Architecture, February 2006 350
http://www.ietf.org/rfc/rfc4291.txt 351

IETF RFC 4443, Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 352
(IPv6) Specification, March 2006 353
http://www.ietf.org/rfc/rfc4443.txt 354

IETF RFC 4861, Neighbor Discovery for IP version 6 (IPv6), September 2007 355
http://www.ietf.org/rfc/rfc4861.txt 356

https://tools.ietf.org/rfc/rfc1981.txt
https://tools.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3810.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4193.txt
http://www.ietf.org/rfc/rfc4291.txt
http://www.ietf.org/rfc/rfc4443.txt
http://www.ietf.org/rfc/rfc4861.txt

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 12

IETF RFC 4862, IPv6 Stateless Address Autoconfiguration, September 2007 357
http://www.ietf.org/rfc/rfc4862.txt 358

IETF RFC 4944, Transmission of IPv6 Packets over IEEE 802.15.4 Networks, September 2007 359
http://www.ietf.org/rfc/rfc4944.txt 360

IETF RFC 5988, Web Linking: General Syntax, October 2010 361
http://www.ietf.org/rfc/rfc5988.txt 362

IETF RFC 6434, IPv6 Node Requirements, December 2011 363
http://www.ietf.org/rfc/rfc6434.txt 364

IETF RFC 6455, The WebSocket Protocol, December 2011 365
https://www/ietf.org/rfc/rfc6455.txt 366

IETF RFC 6690, Constrained RESTful Environments (CoRE) Link Format, August 2012 367
http://www.ietf.org/rfc/rfc6690.txt 368

IETF RFC 6762, Multicast DNS February 2013 369
http://www.ietf.org/rfc/rfc6762.txt 370

IETF RFC 6763, DNS-Based Service Discovery, February 2013 371
http://www.ietf.org/rfc/rfc6763.txt 372

IETF RFC 6775, Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal 373
Area Networks (6LoWPANs), November 2012 374
http://www.ietf.org/rfc/rfc6775.txt 375

IETF RFC 7049, Concise Binary Object Representation (CBOR), October 2013 376
http://www.ietf.org/rfc/rfc7049.txt 377

IETF RFC 7084, Basic Requirements for IPv6 Customer Edge Routers, November 2013 378
http://www.ietf.org/rfc/rfc7084.txt 379

IETF RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format, March 2014 380
http://www/ietf.org/rfc/rfc7159.txt 381

IETF RFC 7252, The Constrained Application Protocol (CoAP), June 2014 382
http://tools.ietf.org/html/rfc7252.txt 383

IETF RFC 7301, Transport Layer Security (TLS) Application-Layer Protocol Negotiation 384
Extension, July 2014 385
https://tools.ietf.org/html/rfc7301 386

IETF RFC 7428, Transmission of IPv6 Packets over ITU-T G.9959 Networks, February 2015 387
http://www.ietf.org/rfc/rfc7428.txt 388

IETF RFC 7668, IPv6 over BLUETOOTH(r) Low Energy, October 2015 389
https://tools.ietf.org/html/rfc7668 390

IETF draft-ietf-core-resource-directory-02, CoRE Resource Directory, November 9, 2014 391
http://www.ietf.org/id/draft-ietf-core-resource-directory-02.txt 392

IETF draft-ietf-core-observe-16, Observing Resources in CoAP, December 30, 2014 393
http://www.ietf.org/id/draft-ietf-core-observe-16.txt 394

IETF draft-ietf-core-block-18, Block-wise transfers in CoAP, September 14, 2015 395
http://www.ietf.org/id/draft-ietf-core-block-18.txt 396

http://www.ietf.org/rfc/rfc4862.txt
http://www.ietf.org/rfc/rfc4944.txt
http://www.ietf.org/rfc/rfc6434.txt
http://www/ietf.org/rfc/rfc6455.txt
http://www.ietf.org/rfc/rfc6690.txt
http://www.ietf.org/rfc/rfc6762.txt
http://www.ietf.org/rfc/rfc6763.txt
http://www.ietf.org/rfc/rfc6775.txt
http://www.ietf.org/rfc/rfc7049.txt
http://www.ietf.org/rfc/rfc7084.txt
http://www/ietf.org/rfc/rfc7159.txt
http://tools.ietf.org/html/rfc7252.txt
https://tools.ietf.org/html/rfc7301
http://www.ietf.org/rfc/rfc7428.txt
https://tools.ietf.org/html/rfc7668
http://www.ietf.org/id/draft-ietf-core-resource-directory-02.txt
http://www.ietf.org/id/draft-ietf-core-observe-16.txt
http://www.ietf.org/id/draft-ietf-core-block-18.txt

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 13

IETF draft-ietf-core-interfaces-02, CoRE Interfaces, November 9, 2014 397
http://www.ietf.org/id/draft-ietf-core-interfaces-02.txt 398

IETF draft-tschofenig-core-coap-tcp-tls-04, A TCP and TLS Transport for the Constrained 399
Application Protocol (CoAP), June 10 2015 400
https://www.ietf.org/id/draft-tschofenig-core-coap-tcp-tls-04.txt 401

IETF draft-ietf-homenet-hybrid-proxy-zeroconf-00, Auto-Configuration of a Network of Hybrid 402
Unicast/Multicast DNS-Based Service Discovery Proxy Nodes, March 5 2015 403
https://tools.ietf.org/html/draft-ietf-homenet-hybrid-proxy-zeroconf-00 404

ECMA-4-4, The JSON Data Interchange Format, October 2013. 405
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf 406

OCF Security, Open Connectivity Foundation Security Capabilities, Version 1.0, 407

IANA IPv6 Multicast Address Space Registry 408
http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml 409

 410

http://www.ietf.org/id/draft-ietf-core-interfaces-02.txt
https://www.ietf.org/id/draft-tschofenig-core-coap-tcp-tls-04.txt
https://tools.ietf.org/html/draft-ietf-homenet-hybrid-proxy-zeroconf-00
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 14

3 Terms, definitions, symbols and abbreviations 411

3.1 Terms and definitions 412

3.1.1 413
Client 414
a logical entity that accesses a Resource on a Server 415

3.1.2 416
Collection 417
a Resource that contains zero or more Links 418

3.1.3 419
Configuration Source 420

a Cloud or Service Network or a local read-only file which contains and provides configuration 421
related information to the Devices 422

3.1.4 423
Core Resources 424
those Resources that are defined in this specification 425

3.1.5 426
Default Interface 427
an Interface used to generate the response when an Interface is omitted in a request 428

3.1.6 429
Device 430
a logical entity that assumes one or more Roles (e.g., Client, Server) 431

Note 1 to entry: More than one Device can exist on a physical platform. 432

3.1.7 433
Device Type 434
a uniquely named definition indicating a minimum set of Resource Types that a Device supports 435

Note 1 to entry: A Device Type provides a hint about what the Device is, such as a light or a fan, for use during 436
Resource discovery. 437

3.1.8 438
Entity 439

an element of the physical world that is exposed through a Device 440

Note 1 to entry: Example of an entity is an LED. 441

3.1.9 442
Framework 443
a set of related functionalities and interactions defined in this specification, which enable 444
interoperability across a wide range of networked devices, including IoT 445

3.1.10 446
Links 447
extends typed web links as specified in IETF RFC 5988 448

3.1.11 449
Non-OCF Device 450
A device which does not comply with the OCF Device requirements 451

3.1.12 452
Notification 453
the mechanism to make a Client aware of resource state changes in a Resource 454

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 15

3.1.13 455
Observe 456
the act of monitoring a Resource by sending a RETRIEVE request which is cached by the Server 457
hosting the Resource and reprocessed on every change to that Resource 458

3.1.14 459
Parameter 460
an element that provides metadata about a Resource referenced by the target URI of a Link 461

3.1.15 462
Partial UPDATE 463
an UPDATE request to a Resource that includes a subset of the Properties that are visible via the 464
Interface being applied for the Resource Type 465

3.1.16 466
Platform 467
a physical device containing one or more Devices 468

3.1.17 469
Remote Access Endpoint (RAE) Client 470
a Client which supports XMPP functionality in order to access a Server from a remote location 471

3.1.18 472
Remote Access Endpoint (RAE) Server 473
a Server which supports XMPP and can publish its resource(s) to an XMPP server in the Cloud, 474
thus becoming remotely addressable and accessible 475

Note 1 to entry: An RAE Server also supports ICE/STUN/TURN. 476

3.1.19 477
Resource 478
represents an Entity modelled and exposed by the Framework 479

3.1.20 480
Resource Directory 481
a set of descriptions of resources where the actual resources are held on Servers external to the 482
Device hosting the Resource Directory, allowing lookups to be performed for those resources 483

Note 1 to entry: This functionality can be used by sleeping Servers or Servers that choose not to listen/respond to 484
multicast requests directly. 485

3.1.21 486
Resource Interface 487
a qualification of the permitted requests on a Resource 488

3.1.22 489
Resource Property 490
a significant aspect or parameter of a resource, including metadata, that is exposed through the 491
Resource 492

3.1.23 493
Resource Type 494
a uniquely named definition of a class of Resource Properties and the interactions that are 495
supported by that class 496

Note 1 to entry: Each Resource has a Property “rt” whose value is the unique name of the Resource Type. 497

3.1.24 498
Scene 499
a static entity that stores a set of defined Resource property values for a collection of Resources 500

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 16

Note 1 to entry: A Scene is a prescribed setting of a set of resources with each having a predetermined value for the 501
property that has to change. 502

3.1.25 503
Scene Collection 504
a collection Resource that contains an enumeration of possible Scene Values and the current 505
Scene Value 506

Note 1 to entry: The member values of the Scene collection Resource are Scene Members. 507

3.1.26 508
Scene Member 509
a Resource that contains mappings of Scene Values to values of a property in the resource 510

3.1.27 511
Scene Value 512
a Scene enumerator representing the state in which a Resource can be 513

3.1.28 514
Server 515
a Device with the role of providing resource state information and facilitating remote interaction 516
with its resources 517

Note 1 to entry: A Server can be implemented to expose non-OCF Device resources to Clients (section 5.5) 518

3.2 Symbols and abbreviations 519

3.2.1 520
ACL 521
Access Control List 522

Note 1 to entry: The details are defined in OCF Security. 523

3.2.2 524
CBOR 525
Concise Binary Object Representation 526

3.2.3 527
CoAP 528
Constrained Application Protocol 529

3.2.4 530
EXI 531
Efficient XML Interchange 532

3.2.5 533
IRI 534
Internationalized Resource Identifiers 535

3.2.6 536
ISP 537
Internet Service Provider 538

3.2.7 539
JSON 540
JavaScript Object Notation 541

3.2.8 542
mDNS 543
Multicast Domain Name Service 544

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 17

3.2.9 545
MTU 546
Maximum Transmission Unit 547

3.2.10 548
NAT 549
Network Address Translation 550

3.2.11 551
OCF 552
Open Connectivity Foundation 553

the organization that created this specification 554

3.2.12 555
URI 556
Uniform Resource Identifier 557

3.2.13 558
URN 559
Uniform Resource Name 560

3.2.14 561
UTC 562
Coordinated Universal Time 563

3.2.15 564
UUID 565
Universal Unique Identifier 566

3.2.16 567
XML 568
Extensible Markup Language 569

3.3 Conventions 570

In this specification a number of terms, conditions, mechanisms, sequences, parameters, events, 571
states, or similar terms are printed with the first letter of each word in uppercase and the rest 572
lowercase (e.g., Network Architecture). Any lowercase uses of these words have the normal 573
technical English meaning. 574

3.4 Data types 575

Table 1 contains the definitions of data types used to describe a Resource. The data types are 576
derived from JSON values as defined in ECMA-4-4. However a Resource can overload a JSON 577
defined value to specify a particular subset of the JSON value. These specific data types are 578
defined in Table 1. The data types can be adapted for a particular usage, for example the length 579
of a string can be changed for a specific usage. 580

Table 1. Data type definition 581

Name JSON
value

JSON
format
value

Description

boolean false true n/a Binary-value {0, 1}.
BSV string bsv A blank (i.e. space) separated list of values encoded within a

string. The value type in the BSV is described by the property
where the BSV is used. For example a BSV of integers.

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 18

CSV string csv A comma separated list of values encoded within a string. The
value type in the CSV is described by the property where the
CSV is used. For example a CSV of integers.

date string date-time As defined in ISO 8601. The format is restricted to [yyyy]-
[mm]-[dd].

datetime string date-time As defined in ISO 8601.
enum enum n/a Enumerated type.
float number float Signed IEEE 754 single precision float value.
integer number integer Signed 32 bit integer.
json object/array n/a A data represented using a JSON element which could be an

object or array as defined in ECMA-4-4. The JSON object or
array needs to be described by means of a JSON schema.

string string n/a UTF-8 character string shall not exceed a max length of 64
octets unless otherwise specified for a Property value in
this specification.

time string time As defined in ISO 8601 but restricted to UTC with a trailing “Z”.
The format is [hh]:[mm]:[ss]Z.

URI string uri A uniform resource identifier (URI) is a string of characters used
to identify a resource according to IETF RFC 3986. The URI
value shall not exceed a max length of 256 octets (bytes).

UUID string uuid An identifier formatted according to IETF RFC 4122.

 582

4 Document conventions and organization 583

In this document, features are described as required, recommended, allowed or DEPRECATED as 584
follows: 585

Required (or shall or mandatory)(M). 586

• These basic features shall be implemented to comply with Core Architecture. The phrases 587
“shall not”, and “PROHIBITED” indicate behavior that is prohibited, i.e. that if performed means 588
the implementation is not in compliance. 589

Recommended (or should)(S). 590

• These features add functionality supported by Core Architecture and should be implemented. 591
Recommended features take advantage of the capabilities Core Architecture, usually without 592
imposing major increase of complexity. Notice that for compliance testing, if a recommended 593
feature is implemented, it shall meet the specified requirements to be in compliance with these 594
guidelines. Some recommended features could become requirements in the future. The phrase 595
“should not” indicates behavior that is permitted but not recommended. 596

Allowed (may or allowed)(O). 597

• These features are neither required nor recommended by Core Architecture, but if the feature 598
is implemented, it shall meet the specified requirements to be in compliance with these 599
guidelines. 600

DEPRECATED. 601

• Although these features are still described in this specification, they should not be implemented 602
except for backward compatibility. The occurrence of a deprecated feature during operation of 603
an implementation compliant with the current specification has no effect on the 604
implementation’s operation and does not produce any error conditions. Backward compatibility 605

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 19

may require that a feature is implemented and functions as specified but it shall never be used 606
by implementations compliant with this specification. 607

Conditionally allowed (CA) 608

• The definition or behaviour depends on a condition. If the specified condition is met, then the 609
definition or behaviour is allowed, otherwise it is not allowed. 610

Conditionally required (CR) 611

• The definition or behaviour depends on a condition. If the specified condition is met, then the 612
definition or behaviour is required. Otherwise the definition or behaviour is allowed as default 613
unless specifically defined as not allowed. 614

 615

Strings that are to be taken literally are enclosed in “double quotes”. 616

Words that are emphasized are printed in italic. 617

5 Architecture 618

5.1 Overview 619

The architecture enables resource based interactions among IoT artefacts, i.e. physical devices 620
or applications. The architecture leverages existing industry standards and technologies and 621
provides solutions for establishing connections (either wireless or wired) and managing the flow of 622
information among devices, regardless of their form factors, operating systems or service providers. 623

Specifically, the architecture provides: 624

• A communication and interoperability framework for multiple market segments (Consumer, 625
Enterprise, Industrial, Automotive, Health, etc.), OSs, platforms, modes of communication, 626
transports and use cases 627

• A common and consistent model for describing the environment and enabling information 628
and semantic interoperability 629

• Common communication protocols for discovery and connectivity 630

• Common security and identification mechanisms 631

• Opportunity for innovation and product differentiation 632

• A scalable solution addressing different device capabilities, applicable to smart devices as 633
well as the smallest connected things and wearable devices 634

The architecture is based on the Resource Oriented Architecture design principles and described 635
in the sections 5.2 through 5.5 respectively. Section 5.2 presents the guiding principles for OCF 636
operations. Section 5.3 defines the functional block diagram and Framework. Section 5.4 provides 637
an example scenario with roles. Section 5.5 provides an example scenario of bridging to non- OCF 638
ecosystem. 639

5.2 Principle 640

In the architecture, Entities in the physical world (e.g., temperature sensor, an electric light or a 641
home appliance) are represented as resources. Interactions with an Entity are achieved through 642
its resource representations (section 7.7) using operations that adhere to Representational State 643
Transfer (REST) architectural style, i.e., RESTful interactions. 644

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 20

The architecture defines the overall structure of the Framework as an information system and the 645
interrelationships of the Entities that make up OCF. Entities are exposed as Resources, with their 646
unique identifiers (URIs) and support interfaces that enable RESTful operations on the Resources. 647
Every RESTful operation has an initiator of the operation (the client) and a responder to the 648
operation (the server). In the Framework, the notion of the client and server is realized through 649
roles (section 5.4). Any Device can act as a Client and initiate a RESTful operation on any Device 650
acting as a Server. Likewise, any Device that exposes Entities as Resources acts as a Server. 651
Conformant to the REST architectural style, each RESTful operation contains all the information 652
necessary to understand the context of the interaction and is driven using a small set of generic 653
operations, i.e., Create, Read, Update, Delete, Notify (CRUDN) defined in section 8, which include 654
representations of Resources. 655

Figure 1 depicts the architecture. 656

OIC Device

OIC Client

Protocol specific
Implementation of
CRUDN Operations

(e.g. CoAP, HTTP, XMPP)

OIC Device

OIC Server

Protocol specific
implementation of

Server

OIC Resource

CRUDN OperationsOIC RESTful
Resource Model

Layer

Specific
Implementation of

Data Protocol/
Messaging

OIC Roles

Pr
ot

oc
ol

 M
ap

pi
ng

Entity
(e.g. light bulb,

Heart rate
monitor)

Resource Mapping

OIC
Abstractions

COAP Request
E.g. GET /s/data

{ “bulb”: “on” }
COAP Response

657
 658

Figure 1: Architecture - concepts 659

 660

The architecture is organized conceptually into three major aspects that provide overall separation 661
of concern: resource model, RESTful operations and abstractions. 662

• Resource model: The resource model provides the abstractions and concepts required to 663
logically model, and logically operate on the application and its environment. The core resource 664
model is common and agnostic to any specific application domain such as smart home, 665
industrial or automotive. For example, the resource model defines a Resource which abstracts 666
an Entity and the representation of a Resource maps the Entity’s state. Other resource model 667
concepts can be used to model other aspects, for example behavior. 668

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 21

• RESTful operations: The generic CRUDN operations are defined using the RESTful paradigm 669
to model the interactions with a Resource in a protocol and technology agnostic way. The 670
specific communication or messaging protocols are part of the protocol abstraction and 671
mapping of Resources to specific protocols is provided in section 12. 672

• Abstraction: The abstractions in the resource model and the RESTful operations are mapped 673
to concrete elements using abstraction primitives. An entity handler is used to map an Entity 674
to a Resource and connectivity abstraction primitives are used to map logical RESTful 675
operations to data connectivity protocols or technologies. Entity handlers may also be used to 676
map Resources to Entities that are reached over protocols that are not natively supported by 677
OCF. 678

 679

5.3 Functional block diagram 680

The functional block diagram encompasses all the functionalities required for operation. These 681
functionalities are categorized as L2 connectivity, networking, transport, Framework, and 682
application profiles. The functional blocks are depicted in Figure 2 and listed below. 683

 684

Figure 2: Functional block diagram 685

• L2 connectivity: Provides the functionalities required for establishing physical and data 686
link layer connections (e.g., Wi-FiTM or Bluetooth® connection) to the network. 687

• Networking: Provides functionalities required for Devices to exchange data among 688
themselves over the network (e.g., Internet). 689

• Transport: Provides end-to-end flow transport with specific QoS constraints. Examples of 690
a transport protocol include TCP and UDP or new Transport protocols under development 691
in the IETF, e.g., Delay Tolerant Networking (DTN). 692

• Framework: Provides the core functionalities as defined in this specification. The 693
functional block is the source of requests and responses that are the content of the 694
communication between two Devices. 695

• Application profile: Provides market segment specific data model and functionalities, e.g., 696
smart home data model and functions for the smart home market segment. 697

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 22

When two Devices communicate with each other, each functional block in a Device interacts with 698
its counterpart in the peer Device as shown in Figure 3. 699

 700

Figure 3: Communication layering model 701

5.3.1 Framework 702

Framework consists of functions which provide core functionalities for operation. 703

1) Identification and addressing. Defines the identifier and addressing capability. The 704
Identification and addressing function is defined in section 6. 705

2) Discovery. Defines the process for discovering available 706

a) Devices (Endpoint Discovery in section 10) and 707

b) Resources (Resource discovery in section 11.3) 708

3) Resource model. Specifies the capability for representation of Entities in terms of resources 709
and defines mechanisms for manipulating the resources. The resource model function is 710
defined in section 7. 711

4) CRUDN. Provides a generic scheme for the interactions between a Client and Server as 712
defined in section 8. 713

5) Messaging. Provides specific message protocols for RESTful operation, i.e. CRUDN. For 714
example, CoAP is a primary messaging protocol. The messaging function is defined in section 715
12. 716

6) Device management. Specifies the discipline of managing the capabilities of a Device, and 717
includes device provisioning and initial setup as well as device monitoring and diagnostics. 718
The device management function is defined in section 11.5. 719

7) Security. Includes authentication, authorization, and access control mechanisms required for 720
secure access to Entities. The security function is defined in section 13. 721

5.4 Example Scenario with roles 722

Interactions are defined between logical entities known as Roles. Three roles are defined: Client, 723
Server and Intermediary. 724

Figure 4 illustrates an example of the Roles in a scenario where a smart phone sends a request 725
message to a thermostat; the original request is sent over HTTP, but is translated into a CoAP 726
request message by a gateway in between, and then delivered to the thermostat. In this example, 727
the smart phone takes the role of a Client, the gateway takes the role of an Intermediary and the 728
thermostat takes the role of a Server. 729

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 23

 730

Figure 4: Example illustrating the Roles 731

5.5 Example Scenario: Bridging to Non- OCF ecosystem 732

The use case for this scenario is a display (like a wrist watch) that is used to monitor a heart rate 733
sensor that implements a protocol that is not OCF supported. 734

Figure 5 provides a detailed logical view of the concepts described in Figure 1. 735

 736

Figure 5: Framework - Architecture Detail 737

 738

The details may be implemented in many ways, for example, by using a Server with an entity 739
handler to interface directly to a non- OCF device as shown in Figure 6. 740

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 24

OIC Device
(as OIC Client)

OIC Device
(as OIC Server)

Heart Rate
Sensor
Device

OIC Framework OIC Framework Non-OIC ecosystem

OIC
Non-OIC
Protocol

741
 742

Figure 6: Server bridging to Non- OCF device 743

On start-up the Server runs the entity handlers which discover the non- OCF systems (e.g., Heart 744
Rate Sensor Device) and create resources for each device or functionality discovered. The entity 745
handler creates a Resource for each discovered device or functionality and binds itself to that 746
Resource. These resources are made discoverable by the Server. 747

Once the resources are created and made discoverable, then the Display Device can discover 748
these resources and operate on them using the mechanisms described in this specification. The 749
requests to a resource on the Server are then interpreted by the entity handler and forwarded to 750
the non- OCF device using the protocol supported by the non-OCF device. The returned 751
information from the non- OCF device is then mapped to the appropriate response for that resource. 752

6 Identification and addressing 753

6.1 Introduction 754

Facilitating proper and efficient interactions between elements in the Framework, requires a means 755
to identify, name and address these elements. 756

The identifier shall unambiguously and uniquely identify an element in a context or domain. The 757
context or domain may be determined by the use or the application. The identifier should be 758
immutable over the lifecycle of that element and shall be unique within a context or domain. 759

The address is used to define a place, way or means of reaching or accessing the element in order 760
to interact with it. An address may be mutable based on the context. 761

The name is a handle that distinguishes the element from other elements in the framework. The 762
name may be changed over the lifecycle of that element. 763

There may be methods or resolution schemes that allow determining any of these based on the 764
knowledge of one or more of others (e.g., determine name from address or address from name). 765

Each of these aspects may be defined separately for multiple contexts (e.g., a context could be a 766
layer in a stack). So an address may be a URL for addressing resource and an IP address for 767
addressing at the connectivity layer. In some situations, both these addresses would be required. 768
For example, to do RETRIEVE (section 8.3) operation on a particular resource representation, the 769
client needs to know the address of the target resource and the address of the server through 770
which the resource is exposed. 771

In a context or domain of use, a name or address could be used as identifier or vice versa. For 772
example, a URL could be used as an identifier for a resource and designated as a URI. 773

The remainder of this section discusses the identifier, address and naming from the point of view 774
of the resource model and the interactions to be supported by the resource model. Examples of 775
interactions are the RESTful interactions, i.e. CRUDN operation (section 8) on a resource. Also 776
the mapping of these to transport protocols, e.g., CoAP is described. 777

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 25

6.2 Identification 778

An identifier shall be unique within the context or domain of use. There are many schemes that 779
may be used to generate an identifier that has the required properties. The identifier may be 780
context-specific in that the identifier is expected to be and guaranteed to be unique only within that 781
context or domain. Identifier may also be context- independent where these identifiers are 782
guaranteed to be unique across all contexts and domains both spatially and temporally. The 783
context-specific identifiers could be defined by simple schemes like monotonic enumeration or may 784
be defined by overloading an address or name, for example an IP address may be an identifier 785
within the private domain behind a gateway in a smart home. On the other hand, context-786
independent identifiers require a stronger scheme that derives universally unique identities, for 787
example any one of the versions of Universally Unique Identifiers (UUIDs). Context independent 788
identifier may also be generated using hierarchy of domains where the root of the hierarchy is 789
identified with a UUID and sub-domains may generate context independent identifier by 790
concatenating context-specific identifiers for that domain to the context-independent identifier of 791
their parent. 792

6.2.1 Resource identification and addressing 793

A resource may be identified using a URI and addressed by the same URI if the URI is a URL. In 794
some cases a resource may need an identifier that is different from a URI; in this case, the resource 795
may have a property whose value is the identifier. When the URI is in the form of a URL, then the 796
URI may be used to address the resource. 797

An OCF URI is based on the general form of a URI as defined in IETF RFC 3986 as follows: 798

<scheme>://<Authority>/<Path>?<Query> 799

Specifically the OCF URI is specified in the following form: 800

oic://<Authority>/<Path>?<Query> 801

A description of values that each component takes is given below. 802

The scheme for the URI is ‘oic’. The ‘oic’ scheme represents the semantics, definitions and use as 803
defined in this document. If a URI has the portion preceding the ‘//’ (double slash) omitted, then 804
the ‘oic’ scheme shall be assumed. 805

Each transport binding is responsible for specifying how an OCF URI is converted to a transport 806
protocol URI before sending over the network by the requestor. Similarly on the receiver side, each 807
transport binding is responsible for specifying how to convert from a transport protocol URI to an 808
OCF URI before handing over to the resource model layer on the receiver. 809

If the authority is the local Device, then ‘oic’ may be used as the authority. 810

The usual form of the authority is 811

<host>:<port>, where <host> is the name or endpoint network address and <port> is the network 812
port number. The <host> may be provided as follows: 813

• For IP networks, the hostname or IP address of <authority> 814

• For non-IP networks, the name or appropriate identifier. 815

• If the <authority> is the Device that hosts the resource then the keyword ‘oic ‘ may be used 816
for the <host>. 817

The path shall be unique string that unambiguously identifies or references a resource within the 818
context of the Server. In this version of the specification, a path shall not include pct-encoded non-819

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 26

ASCII characters or NUL characters. A path shall be preceded by a ‘/’ (slash). The path may have 820
‘/’ (slash) separated segments for human readability reasons. In the OCF context, the ‘/’ (slash) 821
separated segments are treated as a single string that directly references the resources (i.e. a flat 822
structure) and not parsed as a hierarchy. On the Server, the path or some substring in the path 823
may be shortened by using hashing or some other scheme provided the resulting reference is 824
unique within the context of the host. 825

Once a path is generated, a client accessing the resource or recipient of the URI shall use that 826
path as an opaque string and shall NOT parse to infer a structure, organization or semantic. 827

A query string shall contain a list of <name>=<value> segments (aka “name-value pair”) each 828
separated by a ‘;’ (semicolon). The query string will be mapped to the appropriate syntax of the 829
protocol used for messaging. (e.g., CoAP). 830

A URI may be either 831

• Fully qualified or 832

• Relative 833

Generation of URI: 834

A URI may be defined by the Client which is the creator of that resource. Such a URI may be 835
relative or absolute (fully qualified). A relative URI shall be relative to the Device on which it is 836
hosted. Alternatively, a URI may be generated by the Server of that resource automatically based 837
on a pre-defined convention or organization of the resources, based on an interface, based on 838
some rules or with respect to different roots or bases. 839

Use of URI: 840

The absolute path reference of a URI is to be treated as an opaque string and a client shall not 841
infer any explicit or implied structure in the URI – the URI is simply an address. It is also 842
recommended that Devices hosting a resource treat the URI of each resource as an opaque string 843
that addresses only that resource. (e.g., URI's /a and /a/b are considered as distinct addresses 844
and resource b cannot be construed as a child of resource a). 845

6.3 Namespace: 846

The relative URI prefix “/oic/” is reserved as a namespace for URIs defined in OCF specifications 847
and shall not be used for URIs that are not defined in OCF specifications. 848

6.4 Network addressing 849

The following are the addresses used in this specification: 850

• IP address 851

An IP address is used when the device is using an IP configured interface. 852

When a Device only has the identity information of its peer, a resolution mechanism is needed to 853
map the identifier to the corresponding address. 854

7 Resource model 855

7.1 Introduction 856

The Resource Model defines concepts and mechanisms that provide consistency and core 857
interoperability between devices in the OCF ecosystems. The Resource Model concepts and 858
mechanisms are then mapped to the transport protocols to enable communication between the 859

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 27

devices – each transport provides the communication protocol interoperability. The Resource 860
Model, therefore, allows for interoperability to be defined independent of the transports. 861

In addition, the concepts in the Resource Model support modelling of the primary artefacts and 862
their relationships to one and another and capture the semantic information required for 863
interoperability in a context. In this way, OCF goes beyond simple protocol interoperability to 864
capture the rich semantics required for true interoperability in Wearable and Internet of Things 865
ecosystems. 866

The primary concepts in the Resource Model are: Entity, Resources, Uniform Resource Identifiers 867
(URI), Resource Types, Properties, Representations, Interfaces, Collections and Links. In addition, 868
the general mechanisms are Create, Update, Retrieve, Delete and Notify. These concepts and 869
mechanisms may be composed in various ways to define the rich semantics and interoperability 870
needed for a diverse set of use cases that the OCF framework is applied to. 871

In the OCF Resource Model framework, an Entity needs to be visible, interacted with or 872
manipulated, it is represented by an abstraction called a Resource. A Resource encapsulates and 873
represents the state of an Entity. A Resource is identified, addressed and named using URIs. 874

Properties are "key=value" pairs and represent state of the Resource. A snapshot of these 875
Properties is the Representation of the Resource. A specific view of the Representation and the 876
mechanisms applicable in that view are specified as Interfaces. Interactions with a Resource are 877
done as Requests and Responses containing Representations. 878

A resource instance is derived from a Resource Type. The uni-directional relationship between 879
one Resource and another Resource is defined as a Link. A Resource that has Properties and 880
Links is a Collection. 881

A set of Properties can be used to define a state of a Resource. This state may be retrieved or 882
updated using appropriate Representations respectively in the response from and request to that 883
Resource. 884

A Resource (and Resource Type) could represent and be used to expose a capability. Interactions 885
with that Resource can be used to exercise or use that capability. Such capabilities can be used 886
to define processes like discovery, management, advertisement etc. For example: “discovery of 887
resources on a device” can be defined as the retrieval of a representation of a specific resource 888
where a property or properties have values that describe or reference the resources on the device. 889

The information for Request or Response with the Representation may be communicated “on the 890
wire” by serializing using a transfer protocol or encapsulated in the payload of the transport 891
protocol – the specific method is determined by the normative mapping of the Request or Response 892
to the transport protocol. See section 12 for transport protocols supported. 893

The RAML definitions used in this document are normative. This also includes that all defined 894
JSON payloads shall comply with the indicated JSON schema. See Annex D for Resource Types 895
defined in this specification. 896

7.2 Resource 897

A Resource shall be defined by one or more Resource Type(s) – see Annex D for Resource Type. 898
A request to CREATE a Resource shall specify one or more Resource Types that define that 899
Resource. 900

A Resource is hosted in a Device. A Resource shall have a URI as defined in section 6. The URI 901
may be assigned by the Authority at the creation of the Resource or may be pre-defined by the 902

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 28

specification of the Resource Type.903

 904

Figure 7: Example of a Resource 905

 906

Core Resources are the Resources defined in this specification to enable functional interactions 907
as defined in section 10 (e.g., Discovery, Device Management, etc). Among the Core Resources, 908
/oic/res, /oic/p, and oic/d shall be supported on all Devices. Devices may support other Core 909
Resources depending on the functional interactions they support. 910

7.3 Property 911

 Introduction 912

A Property describes an aspect that is exposed through a Resource including meta-information 913
related to that resource. 914

A Property shall have a name i.e. Property Name and a value i.e. Property Value. The Property is 915
expressed as a key-value pair where key is the Property Name and value the Property Value like 916
<Property Name> = <Property Value>. For example if the “temperature” Property has a Property 917
Name “temp” and a Property Value “30F”, then the Property is expressed as “temp=30F”. The 918
specific format of the Property depends on the encoding scheme. For example, in JSON, Property 919
is represented as "key": value (e.g., "temp": 30). 920

In addition, the Property definition shall have a 921

• Value Type – the Value Type defines the values that a Property Value may take. The Value 922
Type may be a simple data type (e.g. string, Boolean) as defined in section 3.4 or may be a 923
complex data type defined with a schema. The Value Type may define 924

o Value Rules define the rules for the set of values that the Property Value may take. 925
Such rules may define the range of values, the min-max, formulas, set of 926
enumerated values, patterns, conditional values and even dependencies on values 927
of other Properties. The rules may be used to validate the specific values in a 928
Property Value and flag errors. 929

• Mandatory – specifies if the Property is mandatory or not for a given Resource Type. 930

• Access modes – specifies whether the Property may be read, written or both. Updates are 931
equivalent to a write. “r” is used for read and “w” is used for write – both may be specified. 932
Write does not automatically imply read. 933

The definition of a Property may include the following additional information – these items are 934
informative: 935

• Property Title - a human-friendly name to designate the Property; usually not sent over the 936
wire 937

• Description – descriptive text defining the purpose and expected use of this Property. 938

/my/resource/example
{
"rt": "oic.r.foobar",
"if": "oic.if.a",
"value": "foo value"
}

Properties

URI

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 29

A Property may be used in the query part of an URI as one criterion for selection of a particular 939
Resource. This is done by declaring the Property (i.e. <Property Name> = <desired Property 940
Value>) as one of the segments of the query. In this version of the specification, only ASCII strings 941
are permitted in query filters, and NUL characters are disallowed in query filters. This means that 942
only property values with ASCII characters can be matched in a query filter. The Resource is 943
selected when all the declared Properties in the query match the corresponding Properties in the 944
full Representation of the target Resource. The full Representation is the snapshot that includes 945
the union of all Properties in all Resource Types that define the target Resource. If the Property is 946
declared in the “filter” segment of the query then the declared Property is matched to the 947
Representation defined by the Interface to isolate certain parts of that Representation. 948

In general, a property is meaningful only within the resource to which it is associated. However a 949
base set of properties that may be supported by all Resources, known as Common Properties, 950
keep their semantics intact across Resources i.e. their “key=value” pair means the same in any 951
Resource. Detailed tables with the above fields for all common properties are defined in section 952
7.3.2. 953

 Common Properties 954

7.3.2.1 Introduction 955

The Common Properties defined in this section may be specified for all Resources. The following 956
Properties are defined as Common Properties: “Resource Type”, “Resource Interface”, “Name”, 957
and “Resource Identity”. 958

The name of a Common Property shall be unique and shall not be used by other properties. When 959
defining a new Resource Type, its non-common properties shall not use the name of existing 960
Common Properties (e.g., "rt", "if", "n", “id”). When defining a new "Common Property", it should 961
be ensured that its name has not been used by any other properties. The uniqueness of a new 962
Common Property name can be verified by checking all the Properties of all the existing OCF 963
defined Resource Types. However, this may become cumbersome as the number of Resource 964
Types grow. To prevent such name conflicts in the future, OCF may reserve a certain name space 965
for common property. Potential approaches are (1) a specific prefix (e.g. "oic") may be designated 966
and the name preceded by the prefix (e.g. "oic.psize") is only for Common Property; (2) the names 967
consisting of one or two letters are reserved for Common Property and all other Properties shall 968
have the name with the length larger than the 2 letters; (3) Common Properties may be nested 969
under specific object to distinguish themselves. 970

The following Common Properties for all Resources are specified in section 7.3.2.2 through section 971
7.3.2.6 and summarized as follows: 972

• Resource Type ("rt") – this Property is used to declare the Resource Type of that Resource. 973
Since a Resource could be define by more than one Resource Type the Property Value of the 974
Resource Type Property can be used to declare more than one Resource type. For example: 975
“rt”: [“oic.wk.d”, “oic.d.airConditioner”] declares that the Resource containing this Property is 976
defined by either the “oic.wk.d” Resource Type or the “oic.d.airConditioner” Resource Type. 977
See section 7.3.2.3 for details. 978

• Interface ("if") – this Property declares the Interfaces supported by the Resource. The Property 979
Value of the Interface Property can be multi-valued and lists all the Interfaces supported. See 980
section 7.3.2.4 for details. 981

• Name ("n") – the Property declares “human-readable” name assigned to the Resource. See 982
section 7.3.2.5. 983

• Resource Identity ("id"): its Property Value shall be a unique (across the scope of the host 984
Server) instance identifier for a specific instance of the Resource. The encoding of this identifier 985
is device and implementation dependent. See section 7.3.2.6 for details. 986

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 30

7.3.2.2 Property Name and Property Value definitions 987

The Property Name and Property Value as used in this specification: 988

• Property Name– the key in "key=value” pair. Property Name is case sensitive and its data type 989
is “string” but only ASCII characters are permitted, and embedded NUL characters are not 990
permitted. 991

• Property Value – the value in "key=value” pair. Property Value is case sensitive when its data 992
type is “string”. Any enum values shall be ASCII only. 993

7.3.2.3 Resource Type 994

Resource Type Property is specified in Section 7.4. 995

7.3.2.4 Interface 996

Interface Property is specified in Section 7.5. 997

7.3.2.5 Name 998

A human friendly name for the resource, i.e. a specific resource instance name (e.g., 999
MyLivingRoomLight), The Name Property is as defined in Table 2 1000

Table 2. Name Property Definition 1001

Property title Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Name n string R no Human understandable name for
the resource; may be set locally or
remotely (e.g., by a user)

 1002

7.3.2.6 Resource Identity 1003

The Resource Identity Property shall be a unique (across the scope of the host Server) instance 1004
identifier for a specific instance of the Resource. The encoding of this identifier is device and 1005
implementation dependent. The Resource Identity Property is as defined in Table 3. 1006

Table 3. Resource Identity Property Definition 1007

 1008

Property title Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Identity

id string Implementation
Dependent

 R No Unique identifier of the
Resource (over all
Resources in the
Device)

 1009

7.4 Resource Type 1010

 Introduction 1011

Resource Type is a class or category of Resources and a Resource is an instance of one or more 1012
Resource Types. 1013

The Resource Types of a Resource is declared using the Resource Type Common Property as 1014
described in Section 7.3.2.3 or in a Link using the Resource Type Parameter. 1015

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 31

A Resource Type may either be pre-defined (Core Resource Types in this specification and vertical 1016
Resource Types in vertical domain specifications) or in custom definitions by manufacturers, end 1017
users, or developers of Devices (vendor-defined Resource Types). Resource Types and their 1018
definition details may be communicated out of band (like in documentation) or be defined explicitly 1019
using a meta-language which may be downloaded and used by APIs or applications. OCF has 1020
adopted RAML and JSON Schema as the specification method for OCF’s RESTful interfaces and 1021
Resource definitions. OCF defined Interfaces and Resource Types are specified using RAML and 1022
JSON schema (respectively). 1023

Every Resource Type shall be identified with a Resource Type ID which shall be a lower case 1024
string with segments separated by a "." (dot). The entire string represents the Resource Type ID. 1025
When defining the ID each segment may represent any semantics that are appropriate to the 1026
Resource Type. For example, each segment could represent a namespace. Once the ID has been 1027
defined, the ID should be used opaquely and an implementations should not infer any information 1028
from the individual segments. The string "oic", when used as the first segment in the definition 1029
of the Resource Type ID, is reserved for OCF-defined Resource Types. The Resource Type ID 1030
may also be a reference to an authority similar to IANA that may be used to find the definition of a 1031
Resource Type. 1032

 Resource Type Property 1033

A Resource when instantiated or created shall have one or more Resource Types that are the 1034
template for that Resource. The Resource Types that the Resource conforms to shall be declared 1035
using the “rt” Common Property for the Resource. The Property Value for the “rt” Common Property 1036
shall be the list of Resource Type IDs for the Resource Types used as templates (i.e., “rt”=<list of 1037
Resource Type IDs>). 1038

Table 4. Resource Type Common Property definition 1039

Property title Property
name

Value type Value rule Unit Access
mode

Mandatory Description

Resource type rt json Array of
Resource
Type IDs

 R yes The property name rt is as
described in IETF RFC 6690

Resource Types may be explicitly discovered or implicitly shared between the user (i.e. Client) and 1040
the host (i.e. Server) of the Resource. 1041

 Resource Type definition 1042

Resource Type is specified as follows: 1043

• Pre-defined URI (optional) – a pre-defined URI may be specified for a specific Resource Type 1044
in an OCF specification. When a Resource Type has a pre-defined URI, all instances of that 1045
Resource Type shall use only the pre-defined URI. An instance of a different Resource Type 1046
shall not use the pre-defined URI. 1047

• Resource Type Title (optional) – a human friendly name to designate the resource type. 1048

• Resource Type ID – the value of "rt" property which identifies the Resource Type, (e.g., 1049
oic.wk.p). A lower case string that has segments separated by a ‘.’ (dot); each segment may 1050
represent a name space and in that case later segments (L -> R) would represent sub-name 1051
spaces; Implementations shall use these opaquely and use case sensitive string matches. 1052

• Resource Interfaces – list of the interfaces that may be supported by the resource type. 1053

• Resource Properties – definition of all the properties that apply to the resource type. The 1054
resource type definition shall define whether a property is mandatory, conditional mandatory, 1055
or optional. 1056

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 32

• Related Resource Types (optional) – the specification of other resource types that may be 1057
referenced as part of the resource type, applicable to collections. 1058

• Mime Types (optional) – mime types supported by the resource including serializations (e.g., 1059
application/cbor, application/json, application/xml). 1060

Table 5 and Table 6 provide an example description of an illustrative foobar Resource Type and 1061
its associated Properties. 1062

Table 5. Example foobar Resource Type 1063

Pre-
defined

URI

Resource
Type Title

Resource Type ID
(“rt” value)

interfaces Description Related
Functional
Interaction

M/CR/O

none foobar oic.r.foobar oic.if.a Example
"foobar"
resource

Actuation O

 Table 6. Example foobar properties 1064

Property title Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Resource type rt array R yes Resource type

Interface if array R yes Interface

Foo value value string R yes Foo value

 1065

An instance of the foobar resource type is as shown below 1066

 1067

 1068

 1069

 1070

An example schema for the foobar resource type is shown below 1071

 1072

 1073

 1074

 1075

 1076

 1077

 1078

7.5 Device Type 1079

A Device Type is a class of Device. Each Device Type defined will include a list of minimum 1080
Resource Types that a device shall implement for that Device Type. A device may expose 1081

{
"rt": "oic.r.foobar",
"if": "oic.if.a",
"value": "foo value"
}

{
 "$schema": "http://json-schema.org/draft-04/schema",
 "type": "object",
 "properties": {
 "rt": {"type": "string"},
 "if": {"type": "string"},
 "value": {"type": "string"}
 },
 "required": ["rt", "if", "value"]
}

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 33

additional standard and vendor defined Resource Types beyond the minimum list. The Device 1082
Type is used in Resource discovery as specified in section 11.3.4. 1083

Like a Resource Type, a Device Type can be used in the Resource Type Common Property or in 1084
a Link using the Resource Type Parameter. 1085

A Device Type may either be pre-defined (in vertical domain specifications) or in custom definitions 1086
by manufacturers, end users, or developers of Devices (vendor-defined Device Types). Device 1087
Types and their definition details may be communicated out of band (like in documentation). 1088

Every Device Type shall be identified with a Resource Type ID using the same syntax constraints 1089
as a Resource Type. 1090

7.6 Interface 1091

 Introduction 1092

An Interface provides first a view into the Resource and then defines the requests and responses 1093
permissible on that view of the Resource. So this view provided by an Interface defines the context 1094
for requests and responses on a Resource. Therefore, the same request to a Resource when 1095
targeted to different Interfaces may result in different responses. 1096

An Interface may be defined by either this specification (a Core Interface), the OCF vertical domain 1097
specifications (a “vertical Interface) or manufacturers, end users or developers of Devices (a 1098
“vendor-defined Interface”). 1099

The Interface Property lists all the Interfaces the Resource support. All resources shall have at 1100
least one Interface. The Default Interface shall be defined by an OCF specification and inherited 1101
from the resource type definition. The Default Interface associated with all Resource Types defined 1102
in this specification shall be the supported Interface listed first within the applicable enumeration 1103
in the definition of the Resource Type (see Annex D). All Default Interfaces specified in an OCF 1104
specification shall be mandatory. 1105

In addition to any OCF specification defined interface, all Resources shall support the Baseline 1106
Interface (oic.if.baseline) as defined in section 7.6.3.2. 1107

When an Interface is to be selected for a Request, it shall be specified as query parameter in the 1108
URI of the Resource in the Request message. If no query parameter is specified, then the Default 1109
Interface shall be used. If the selected Interface is not one of the permitted Interfaces on the 1110
Resource then selecting that Interface is an error. 1111

An Interface may accept more than one media type. An Interface may respond with more than one 1112
media type. The accepted media types may be different from the response media types. The media 1113
types are specified with the appropriate header parameters in the transfer protocol. (NOTE: This 1114
feature has to be used judiciously and is allowed to optimize representations on the wire) Each 1115
Interface shall have at least one media type. 1116

 1117

 Interface Property 1118

Table 7. Resource Interface Property definition 1119

Property title Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Interface if json Array of
Dot
separated
strings

 R yes Property to declare the
Interfaces supported by a
Resource.

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 34

The Interfaces supported by a Resource shall be declared using the Interface Common Property 1120
(Table 7) as "if=<array of Interfaces>". The Property Value of an Interface Property shall be a 1121
lower case string with segments separated by a "." (dot). The string "oic", when used as the first 1122
segment in the Interface Property Value, is reserved for OCF-defined Interfaces. The Interface 1123
Property Value may also be a reference to an authority similar to IANA that may be used to find 1124
the definition of an Interface. A Resource Type shall support one or more of the Interfaces defined 1125
in section 7.6.3. 1126

 Interface methods 1127

7.6.3.1 Overview 1128

The OCF -defined Interfaces are listed in the table below: 1129

Table 8. OCF standard Interfaces 1130

Interface Name Applicable
Methods

Description

baseline oic.if.baseline RETRIEVE,
UPDATE

The baseline Interface defines a view into all Properties of a
Resource including the Meta Properties. This Interface is used to
operate on the full Representation of a Resource.

links list oic.if.ll RETRIEVE

The ‘links list’ Interface provides a view into Links in a Collection
(Resource).
Since Links represent relationships to other Resources, the links
list interfaces may be used to discover Resources with respect to a
context. The discovery is done by retrieving Links to these
Resources. For example: the Core Resource /oic/res uses this
Interface to allow discovery of Resource “hosted” on a Device.

batch oic.if.b RETRIEVE,
UPDATE

The batch Interface is used to interact with a collection of
Resources at the same time. This also removes the need for the
Client to first discover the Resources it is manipulating – the
Server forwards the requests and aggregates the responses

read-only oic.if.r RETRIEVE The read-only Interface exposes the Properties of a Resource that
may be ‘read’. This Interface does not provide methods to update
Properties or a Resource and so can only be used to ‘read’
Property Values.

read-write oic.if.rw RETRIEVE,
UPDATE

The read-write Interface exposes only those Properties that may
be both ‘read’ and “written” and provides methods to read and
write the Properties of a Resource.

actuator oic.if.a CREATE,
RETRIEVE,
UPDATE

The actuator Interface is used to read or write the Properties of an
actuator Resource.

sensor oic.if.s RETRIEVE The sensor Interface is used to read the Properties of a sensor
Resource.

 1131

 1132

7.6.3.2 Baseline Interface 1133

7.6.3.2.1 Overview 1134

The Representation that is visible using the “baseline” Interface includes all the Properties of the 1135
Resource including the Common Properties. The “baseline” Interface shall be defined for all 1136
Resource Types. All Resources shall support the “baseline” Interface. 1137

The “baseline” Interface is selected by adding if=oic.if.baseline to the list of query parameters in 1138
the URI of the target Resource. For example: GET /oic/res?if=oic.if.baseline. 1139

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 35

7.6.3.2.2 Use of RETRIEVE 1140

The “baseline” Interface is used when a Client wants to retrieve all Properties of a Resource. The 1141
Client includes the URI query parameter definition "?if=oic.if.baseline" in a RETRIEVE request. 1142
When this query parameter definition is included the Server shall respond with a Resource 1143
representation that includes all of the implemented Properties of the Resource. When the Server 1144
is unable to send back the whole Resource representation, it shall reply with an error message. 1145
The Server shall not return a partial Resource representation. 1146

An example response to a RETRIEVE request using the baseline Interface is shown below: 1147

{
"rt": ["oic.r.temperature"],
"if": ["oic.if.a","oic.if.baseline"],
"temperature": 20,
"units": "C",
"range": [0,100]
}

 1148

7.6.3.2.3 Use of UPDATE 1149

Using the baseline Interface, all Properties of a Resource may be modified using an UPDATE 1150
request with a list of Properties and their desired values. 1151

7.6.3.3 Link List Interface 1152

7.6.3.3.1 Overview 1153

The links list Interface provides a view into the list of Links in a Collection (Resource). The 1154
Representation visible through this Interface has only the Links defined in the Property Value of 1155
the “links” Property – so this Interface is used to manipulate or interact with the list of Links in a 1156
Collection. The Links list may be RETRIEVEd using this Interface. 1157

The Interface definition and semantics are given as follows: 1158

• The links list Interface name shall be “oic.if.ll”. 1159

• If specified in a request (usually in the request header), the serialization in the response shall 1160
be in the format expected in the request. 1161

• In response to a RETRIEVE request on the “links list” Interface, the URIs of the referenced 1162
Resources shall be returned as a URI reference. 1163

• If there are no links present in a Resource, then an empty list shall be returned. 1164

• The Representation determined by this Interface view only includes the Property Value of the 1165
“links” Property. 1166

7.6.3.3.2 Example: “links list” Interface 1167

Example: Request to a Collection 1168

Request to RETRIEVE
the Links in room

(the Links could be
referencing lights, fans,
electric sockets etc)

GET oic://<devID>/a/room/1?if=oic.if.ll

 1169

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 36

7.6.3.4 Batch Interface 1170

7.6.3.4.1 Overview 1171

The batch Interface is used to interact with a collection of Resources using a single/same Request. 1172
The batch Interface supports methods of Resources in the Links of the Collection, and can be used 1173
to RETRIEVE or UPDATE the Properties of the “linked” Resources with a single Resource 1174
representation. 1175

The batch Interface selects a view into the Links in a Collection – the Request is sent to all the 1176
Links in this view with potential modifications defined in the Parameters of the Link 1177

The batch Interface is defined as follows: 1178

• The batch Interface name shall be “oic.if.b” 1179

• A Resource with a batch Interface has Links that have Resource references that may be URIs 1180
(fully qualified for remote Resources) or relative references (for local Resources). 1181

• If the Link to a Resource does not specify an Interface to use (using the “bp” Link parameter), 1182
then the Request shall be forwarded to the Default Interface of the referenced Resource. If the 1183
“bp” specifies a query using the “q” key then that query shall be used in the query parameter 1184
of the URI formed from the Reference so as to select that Interface in the target Resource. 1185
(See “Link” section for more information on “bp” Parameter) 1186

• The original request is modified to create new requests targeting each of the targets in the 1187
Resource Links by substituting the URI in the original request with the URI of the target 1188
Resource in the Link. The payload in the original request is replicated in the payload of the 1189
new Requests. 1190

• All the Responses from the “linked” Resources shall be aggregated into single Response to 1191
the Client. The Server may timeout the Response to a time window (if a time window has been 1192
negotiated with the Client then the Server shall not timeout within that window; in the absence 1193
of negotiated window, the Server may choose any appropriate window based on conditions). If 1194
the target Resources cannot process the new request, an empty response or error response 1195
shall be returned. These empty/error Responses shall be included in aggregated Response to 1196
the original Client Request. 1197

• The aggregate Response is an array of objects with individual responses. Each response in 1198
the aggregate shall include at least two items: (1) the URI (fully qualified) as “href”: <URI> and 1199
(2) the Representation in the Response declared using the keyword “rep” as the key i.e. “rep”: 1200
{ <Representation in individual Response> }. 1201

• The Client may choose to restrict the list of Links to which the Request is forwarded by providing 1202
a “filter” in the URI of the Collection to which this original ‘batch’ Interface Request is made. 1203

• The Representation in the Link-specific Request may not match the Representation from the 1204
view exposed by the Interface on the target Resource. In such cases, UPDATE using ‘PUT’ 1205
method will usually fail and so UPDATE using ‘POST’ method would be appropriate – in this 1206
case the ‘subset’ semantics apply where Properties in the Request which match Properties in 1207
the Resource view exposed shall be modified in the target Resource if the Property is writeable. 1208

• A Device that supports the ‘batch’ Interface shall implement both the Client and Server Roles. 1209

7.6.3.4.2 Examples: Batch Interface 1210

Example 1 1211

Resources /a/room/1
{
 "rt": ["acme.room"],
 "if": ["oic.if.baseline", "oic.if.b"],

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 37

 "color": "blue",
 "dimension": "15bx15wx10h",
 "links": [
 {"href": "/the/light/1", "rt": ["acme.light"], "if":
["oic.if.a", "oic.if.baseline"], "p": {"bm": 2, "sec": true, "port": 33270},
"ins": 1},
 {"href": "/the/light/2", "rt": ["mycorp.light"], if:
["oic.if.a" , "oic.if.baseline"], "p": {"bm": 2, "sec": true, "port": 33270},
"ins": 2},
 {"href": "/my/fan/1", "rt": ["hiscorp.fan"], if:
["oic.if.baseline", "oic.if.a"], "p": {"bm": 2, "sec": true, "port": 33270},
"ins": 3 },
 {"href": "/his/fan/2", "rt": ["hiscorp.fan"], if:
["oic.if.baseline", "oic.if.a"], "p": {"bm": 2, "sec": true, "port": 33270},
"ins": 4, "bp": {"q": "if=oic.if.a"}}
]
}

/the/light/1
{
 "rt": ["acme.light"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "state": 0,
 "colourtemp": "2700K"
}

/the/light/2
{
 "rt": ["mycorp.light"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "state": 1,
 "color": "red"
}

/my/fan/1
{
 "rt": ["hiscorp.fan"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "state": 0,
 "speed": 10
}

/his/fan/2
{
 "rt": ["hiscorp.fan"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "state": 0,
 "speed": 20
}

Use of
batch

Request: GET /a/room/1?if=oic.if.b

Becomes the following individual responses issued by the Device in the Client role

GET /the/light/1 (NOTE: Uses the default Interface: ‘sensor’)

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 38

GET /the/light/2 (NOTE: Uses the default Interface: ‘sensor’)

GET /my/fan/1 (NOTE: Uses the default Interface: ‘baseline’)

GET /his/fan/2?if=oic.if.a (NOTE: Interface from “bp” Link parameter:
‘actuator’)

Response:

[
 {
 "href": "oic://<devID>/the/light/1",
 "rep": {"state": 0, "colortemp": "2700K"}
 },
 {
 "href": "oic://<devID>/the/light/2",
 "rep": {"state": 1, "color": "red" }
 },
 {
 "href": "oic://<devID>/my/fan/1",
 "rep": { "rt": ["hiscorp.fan"], "if": ["oic.if.a",
"oic.if.baseline"], "state": 0, "speed": "10" }
 },
 {
 "href": "oic://<devID>/his/fan/2",
 "rep": { "state": 0, "speed": "20" }
 }
]

Use of
batch

(UPDATE
has POST
semantics)

UPDATE /a/room/1?if=oic.if.b
{
 "state": 1
}

becomes

UPDATE /the/light/1 { "state": 1 }
UPDATE /my/fan/1 { "state": 1 }
UPDATE /his/fan/2?if=oic.if.a { "state": 1 }

This turns on all the lights (except /the/light/1 Resource) and fans on in the room since
all the Resources have “state” as a Property. /the/light/1 has the ‘sensor’ interface as
default and so POST is not supported for ‘sensor’ Interface (the Device hosting /a/room/1
does not send this Request)

Use of
batch

(UPDATE
has POST
semantics)

UPDATE /a/room/1?if=oic.if.b
{
 "state": 1,
 "color": "blue"
}

This turns on all the lights (except /the/light/1 Resource) and fans in the room but also
sets the color of /the/light/2 to “blue”

 1212

Example that further shows the “links list” and “batch” interface 1213

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 39

Example /myexample
{
 "rt": ["oic.r.foo"],
 "if": ["oic.if.baseline", "oic.if.ll"],
 "links": [
 {"href": "/acme/switch", "di": "<deviceID1>", "rt":
["oic.r.switch.binary"], "if": ["oic.if.a"]},
 {"href": "oic://<deviceID1>/acme/fan", "rt":
["oic.r.fan"], "if": ["oic.if.a"] }
]
}

Use of
Baseline

GET /myexample?if=oic.if.baseline will return

{
 "rt": ["oic.r.foo"],
 "if": ["oic.if.baseline", "oic.if.ll"],
 "links": [
 {"href": "/acme/switch", "di": "<deviceID1>", "rt":
["oic.r.switch.binary"], "if": ["oic.if.a"]},
 {"href": "oic://<deviceID1>/acme/fan", "rt":
"oic.r.fan", "if”: "oic.if.a"}
]
}

Use of
Links List

GET /myexample?if=oic.if.ll. will return

 [
 {"href": "/acme/switch", "di": "<deviceID1>", "rt":
["oic.r.switch.binary"], "if": ["oic.if.a"]},
 {"href": "oic://<deviceID1>/acme/fan", “rt”:
["oic.r.fan"], "if": ["oic.if.a"]}
]

 1214

7.6.3.5 Actuator Interface 1215

The actuator Interface is the Interface for viewing Resources that may be actuated i.e. changes 1216
some value within or the state of the entity abstracted by the Resource: 1217

• The actuator Interface name shall be “oic.if.a” 1218

• The actuator Interface shall expose in the Resource Representation all mandatory Properties 1219
as defined by the applicable JSON; the actuator interface may also expose in the Resource 1220
Representation optional Properties as defined by the applicable JSON schema that are 1221
implemented by the target Device. 1222

For the following Resource

NOTE: “prm” is the Property name for ‘parameters’ Property

/a/act/heater
{
 "rt": ["acme.gas"],
 "if": ["oic.if.baseline", "oic.if.r", "oic.if.a", "oic.if.s"],
 "prm": {"sensitivity": 5, "units": "C", "range": "0 .. 10"},
 "settemp": 10,
 "currenttemp" : 7

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 40

}

Figure 8: Example - "Heater" Resource (for illustration only) 1223

 1224

NOTE: The example here is with respect to Figure 8

1. Retrieving values of an actuator

Request: GET /a/act/heater?if="oic.if.a"

Response:

{
 "prm": {"sensitivity": 5, "units": "C", "range": "0 .. 10"},
 "settemp": 10,
 "currenttemp" : 7

}

2. Correct use of actuator:

Request: POST /a/act/heater?if="oic.if.a"

{
 "settemp": 20
}

Response:
 {
 Ok
 }

3. Incorrect use of actuator

Request: POST /a/act/heater?if="oic.if.a"
 {
 "if": "oic.if.s"  this is visible through baseline
Interface
 }
Response:
 {
 Error
 }

Figure 9: Example - Actuator Interface 1225

• A RETRIEVE request using this Interface shall return the Representation for this Resource 1226
subject to any query and filter parameters that may also exist 1227

• An UPDATE request using this Interface shall provide a payload or body that contains the 1228
Properties that will be updated on the target Resource. 1229

7.6.3.6 Sensor Interface 1230

The sensor Interface is the Interface for retrieving measured, sensed or capability specific 1231
information from a Resource that senses: 1232

• The sensor Interface name shall be “oic.if.s” 1233

• The sensor Interface shall expose in the Resource Representation all mandatory Properties as 1234
defined by the applicable JSON; the sensor interface may also expose in the Resource 1235

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 41

Representation optional Properties as defined by the applicable JSON schema that are 1236
implemented by the target Device. 1237

• A RETRIEVE request using this Interface shall return this Representation for the Resource 1238
subject to any query and filter parameters that may also exist 1239

• 1240

NOTE: The example here is with respect to Figure 8

1. Retrieving values of sensor

Request: GET /a/act/heater?if="oic.if.s"

Response:

{
 "currenttemp": 7
}

2. Incorrect use of sensor

Request: PUT /a/act/heater?if="oic.if.s"  PUT is not allowed

{
 "settemp": 20  this is possible through actuator Interface
}

Response:
 {
 Error
 }

3. Incorrect use of sensor

Request: POST /a/act/heater?if="oic.if.s"  POST is not allowed
 {
 "currenttemp": 15  this is possible through actuator
Interface
 }
Response:
 {
 Error
 }

 1241

7.6.3.7 Read-only Interface 1242

The read-only Interface exposes only the Properties that may be “read”. This includes Properties 1243
that may be “read-only”, “read-write” but not Properties that are “write-only” or “set-only”. The 1244
applicable methods that can be applied to a Resource is RETRIEVE only. An attempt by a Client 1245
to apply a method other than RETRIEVE to a Resource shall be rejected with an error response 1246
code. 1247

7.6.3.8 Read-write Interface 1248

The read-write Interface exposes only the Properties that may be “read” and “written”. The “read-1249
only” Properties shall not be included in Representation for the “read-write” Interface. This is a 1250
generic Interface to support “reading” and “setting” Properties in a Resource. The applicable 1251
methods that can be applied to a Resource are RETRIEVE and UPDATE only. An attempt by a 1252

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 42

Client to apply a method other than RETRIEVE or UPDATE to a Resource shall be rejected with 1253
an error response code. 1254

7.7 Resource representation 1255

Resource representation captures the state of a Resource at a particular time. The resource 1256
representation is exchanged in the request and response interactions with a Resource. A Resource 1257
representation may be used to retrieve or update the state of a resource. 1258

The resource representation shall not be manipulated by the data connectivity protocols and 1259
technologies (e.g., CoAP, UDP/IP or BLE). 1260

7.8 Structure 1261

 Introduction 1262

In many scenarios and contexts, the Resources may have either an implicit or explicit structure 1263
between them. A structure can, for example, be a tree, a mesh, a fan-out or a fan-in. The 1264
Framework provides the means to model and map these structures and the relationships among 1265
Resources. The primary building block for resource structures in Framework is the collection. A 1266
collection represents a container, which is extensible to model complex structures. 1267

 Resource Relationships 1268

Resource relationships are expressed as Links. A Link embraces and extends typed web links 1269
concept as a means of expressing relationships between Resources. A Link consists of a set of 1270
Parameters that define: 1271

• a context URI, 1272

• a target URI, 1273

• a relation from the context URI to the target URI 1274

• elements that provide metadata about the target URI, the relationship or the context of the Link. 1275

The target URI is mandatory and the other items in a Link are optional. Additional items in the Link 1276
may be made mandatory based on the use of the links in different contexts (e.g. in collections, in 1277
discovery, in bridging etc.). Schema for the Link payload is provided in Annex D. 1278

An example of a Link is shown in 1279

{"href": "/switch", "rt": ["oic.r.switch.binary"], "if": ["oic.if.a", /room2"oic.if.baseline"], "p":
{"bm": 3, "sec": true, "port": 33275}, "rel": "contains"}

Figure 10: Example of a Link 1280

Two Links are distinct from each other when at least one parameter is different. For example the 1281
two Links shown in Figure 11 are distinct and can appear in the same list of Links. 1282

{"href": "/switch", "rt": ["oic.r.switch.binary"], "if": ["oic.if.a", "oic.if.baseline"], "p": {"bm":
2, "sec": true, "port": 33275}, "rel": "contains"}

{"href": "/switch", "rt": ["oic.r.switch.binary"], "if": ["oic.if.a", "oic.if.baseline"], "p": {"bm":
2, "sec": true, "port": 33275}, "rel": "activates"}

Figure 11: Example of distinct Links 1283

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 43

The specification may mandate Parameters and Parameter values as required for certain 1284
capabilities. For all Links returned in a response to a RETRIEVE on /oic/res, if a Link does not 1285
explicitly include the “rel” Parameter, a value of “rel”=”hosts” shall be assumed . The relation value 1286
of “hosts” is defined by IETF RFC 6690 and registered in the IANA Registry for Link Relations at 1287
[http://www.iana.org/assignments/link-relations/link-relations.xhtml] 1288

As shown in D.2.8 the relation between the context URI and target URI in a Link is specified using 1289
the “rel” JSON element and the value of this element specifies the particular relation. 1290

The context URI of the Link shall implicitly be the URI of the Resource (or specifically a Collection) 1291
that contains the Link unless the Link specifies the anchor parameter. The anchor parameter is 1292
used to change the context URI of a Link – the relationship with the target URI is based off the 1293
anchor URI when the anchor is specified. An example of using anchors in the context of Collections 1294
– a floor has rooms and rooms have lights – the lights may be defined in floor as Links but the 1295
Links will have the anchor set to the URI of the rooms that contain the lights (the relation is 1296
contains). This allows all lights in a floor to be turned on or off together while still having the lights 1297
defined with respect to the rooms that contain them (lights may also be turned on by using the 1298
room URI too). 1299

/a/floor {
 "links": [
 {
 "href": "/x/light1",
 "anchor": "/a/room1", ** Note: /a/room1 has the “contains” relationship with
/x/light1; not /a/floor **
 "rel": "contains"
 }
]
}

/a/room1 {
 "links": [
 {
 ** Note: /a/room1 “contains” the /x/light since /a/room1 is the implicit context URI **
"href": "/x/light1",
 "rel": "contains"
 }
]
}

Figure 12: Example of use of anchor in Link 1300

7.8.2.1 Parameters 1301

7.8.2.1.1 “ins” or Link Instance Parameter 1302

The “ins” parameter identifies a particular Link instance in a list of Links. The "ins" parameter may 1303
be used to modify or delete a specific Link in a list of Links. The value of the “ins” parameter is set 1304
at instantiation of the Link by the OCF Device (Server) that is hosting the list of Links – once it has 1305
been set, the “ins” parameter shall not be modified for as long as the Link is a member of that list. 1306

7.8.2.1.2 “p” or Policy Parameter 1307

The Policy Parameter defines various rules for correctly accessing a Resource referenced by a 1308
target URI. The Policy rules are configured by a set of key-value pairs as defined below. 1309

The policy Parameter "p" is defined by: 1310

http://www.iana.org/assignments/link-relations/link-relations.xhtml

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 44

• “bm” key: The “bm” key corresponds to an integer value that is interpreted as an 8-bit bitmask. 1311
Each bit in the bitmask corresponds to a specific Policy rule. The following rules are specified 1312
for “bm”: 1313
 1314

Bit Position Policy rule Comment

Bit 0 (the LSB) discoverable The discoverable rule defines whether the Link is to
be included in the Resource discovery message via
/oic/res.

• If the Link is to be included in the Resource
discovery message, then “p” shall include the
“bm” key and set the discoverable bit to value
1.

• If the Link is NOT to be included in the
Resource discovery message, then “p” shall
either include the “bm” key and set the
discoverable bit to value 0 or omit the “bm” key
entirely.

Bit 1 (2nd LSB) observable The observable rule defines whether the Resource
referenced by the target URI supports the NOTIFY
operation.

• If the Resource supports the NOTIFY
operation, then ”p” shall include the “bm” key
and set the observable bit to value 1.

• If the Resource does NOT support the NOTIFY
operation, then “p” shall either include the
“bm” key and set the observable bit to value 0
or omit the “bm” key entirely.

Bits 2-7 -- Reserved for future use. All reserved bits in “bm”
shall be set to value 0.

 1315

Note that if all the bits in “bm” are defined to value 0, then the “bm” key may be omitted entirely 1316
from “p” as an efficiency measure. However, if any bit is set to value 1, then “bm” shall be 1317
included in “p” and all the bits shall be defined appropriately. 1318

• "sec" key: The “sec” key corresponds to a Boolean value that indicates whether the Resource 1319
referenced by the target URI is accessed via an encrypted connection. If “sec” is true, the 1320
resource is accessed via an encrypted connection, using the “port” specified (see below). If 1321
“sec” is false, the resource is accessed via an unencrypted connection, or via an encrypted 1322
connection (if such a connection is made using the “port” settings for another Resource, for 1323
which “sec” is true). 1324

• "port" key: The “port” key corresponds to an integer value that is used to indicate the port 1325
number where the Resource referenced by the target URI may be accessed via an encrypted 1326
connection. 1327

• If the Resource is only available via an encrypted connection (i.e. DTLS over IP), then 1328

o "p" shall include the "sec" key and its value shall be true. 1329

o "p" shall include the "port" key and its value shall be the port number where the 1330
encrypted connection may be established. 1331

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 45

• If the Resource is not available via an encrypted connection, then 1332

o "p" shall include the "sec" key and its value shall be false or "p" shall omit the "sec" 1333
key; the default value of "sec" is false. 1334

o "p" shall omit the "port" key. 1335

o A Resource that is available via either an encrypted or unencrypted connection 1336
follows the population scheme defined in this clause. 1337

• Access to the Resource on the port specified by the “port” key shall be made by an encrypted 1338
connection (e.g. coaps://). (Note that unencrypted connection to the Resource may be possible 1339
on a separate port discovered thru multicast discovery). 1340

• Note that access to the Resource is controlled by the ACL for the Resource. A successful 1341
encrypted connection does not ensure that the requested action will succeed. See 1342
OCF Security – Access Control section for more information. 1343

Example 1: below shows the Policy Parameter for a Resource that is discoverable but not 1344
observable, and for which authenticated accesses shall be done via CoAPS port 33275:: 1345

 1346

 1347

7.8.2.1.3 “type” or Media Type Parameter 1348

The “type” Parameter may be used to specify the various media types that are supported by a 1349
specific target Resource. The default type of "application/cbor" shall be used when the “type” 1350
element is omitted. Once a Client discovers this information for each Resource, it may use one of 1351
the available representations in the appropriate header field of the Request or Response. 1352

7.8.2.1.4 “bp” or the Batch Interface Parameter 1353

The “batch” Parameter "bp" is used to specify the modifications to the target URI as the "batch" 1354
Request is forwarded through this Link. The "q" element in the value defines the query string that 1355
shall be appended to the "href" to make the target URI. The "q" query string may contain Property 1356
strings that are valid in that context. For example: Given a Collection as follows 1357

/room2
{
 "if": "oic.if.b",

 "colour": "blue",

 "links": [

 {"href": "/switch", "rt": ["oic.r.switch.binary"], "if": ["oic.if.a", "oic.if.baseline"], "p":
{"bm": 2, "sec": true, "port": 33277}, "rel": "contains", "bp": { "q": "if=oic.if.baseline"} }

]

}

The following is the sequence for batch request to /room2 1358

1. GET /room2?if=oic.if.b

2. This request is transformed to: GET /switch?if=oic.if.baseline when the batch
request is propagated through the Link to the target /switch

"p": { "bm": 2, "sec": true,
"port": 33275 }

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 46

See the Interfaces section 7.5 for more details on the "batch" Interface. 1359

7.8.2.1.5 “di” or Device ID parameter 1360

The “di” Parameter specifies the device ID of the Device that hosts the target Resource defined in 1361
the in the “href” Parameter. 1362

The device ID may be used to qualify a relative reference used in the “href” or to lookup endpoint 1363
information for the relative reference. 1364

7.8.2.1.6 “buri” or base URI Parameter 1365

The “buri” Parameter is the base URI to which the relative reference in “href” is resolved to. The 1366
base URI and relative reference may be used to construct the URI to the target for the Link. The 1367
base URI shall use the OCF Scheme for the URI defined in section 6. 1368

7.8.2.2 Formatting 1369

When formatting in JSON, the list of Links shall be an array. The first element of the array shall be 1370
a JSON object called the “tags block”. This object may be empty or have keys that are the 1371
Parameters from the list of Parameters for the Link. The “href” parameter shall not appear in the 1372
“tags block”. The second element of this array shall be a list of Links. 1373

For each list of Links the Parameters that appear in the “tags block” shall apply to each of the links 1374
in the list of Links array associated with this tags block. 1375

A null list of Links shall have a null “tags block” and both shall not be included. 1376

NOTE: By this organization the list of Links is recursive and the “tags block” allows for a compact representation where 1377
Parameters shared by multiple Links don’t need to be repeated in each Links and can be factored into the “tags block”. 1378

For example a list of Links with “tags” block. 1379

[
 {
 "di": "0685B960-736F-46F7-BEC0-9E6CBD61ADC1"
 },
 [
 {
 "href": "/oic/d",
 "rt": ["oic.d.light", "oic.wk.d"],
 "if": ["oic.if.r", "oic.if.baseline"],
 "p": {"bm": 1, "sec": true, "port": 33854}

 },
 {
 "href": "/oic/p",
 "rt": ["oic.wk.p"],
 "if": ["oic.if.r", "oic.if.baseline"],
 "p": {"bm": 1, "sec": true, "port": 33854}

 },
 {
 "href": "/switch",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "p": {"bm": 3, "sec": true, "port": 33854},
 "mt": ["application/cbor", "application/exi+xml"]
 },
 {
 "href": "/brightness",
 "rt": ["oic.r.light.brightness"],
 "if": ["oic.if.a", "oic.if.baseline"],

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 47

 "p": {"bm": 3, "sec": true, "port": 33854}
 }
]
]

Figure 13: Example “list of Links” 1380

7.8.2.3 List of Links in a Collection 1381

A list of Links in a Resource shall be included in that Resource as the value of the “links” Property 1382
of that Resource. A Resource that contains Links is a Collection. 1383

A Resource with a list of Links 1384

/Room1
{
 "rt": "my.room",
 "if": ["oic.if.ll", "oic.if.baseline"],
 "color": "blue"
 "links":
 [
 {
 "di": "0685B960-736F-46F7-BEC0-9E6CBD61ADC1"
 },
 [
 {
 "href": "/oic/d",
 "rt": ["oic.d.light", "oic.wk.d"],
 "if": ["oic.if.r", "oic.if.baseline"],
 "p": {"bm": 1, "sec": true, "port": 33822}

 },
 {
 "href": "/oic/p",
 "rt": ["oic.wk.p"],
 "if": ["oic.if.r", "oic.if.baseline"],
 "p": {"bm": 1, "sec": true, "port": 33822}

 },
 {
 "href": "/switch",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "p": {"bm": 3, "sec": true, "port": 33822},
 "mt": ["application/cbor", "application/exi+xml"]
 },
 {
 "href": "/brightness",
 "rt": ["oic.r.light.brightness"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "p": {"bm": 3, "sec": true, "port": 33822}

 }
]

]

}

Figure 14: List of Links in a Resource 1385

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 48

7.8.2.4 Usage Cases – Resource discovery 1386

The OCF architecture utilizes typed Links as a mechanism for bootstrapping Resource discovery 1387
through the known Core Resource /oic/res. A RETRIEVE operation on /oic/res returns (among 1388
other things) a serialized representation of typed Links to Resources that are discoverable on that 1389
Device. 1390

The serialization format should be negotiated using the underlying transport protocol (i.e. using 1391
Accept and Content-Type headers in case of CoAP). By default, OCF uses CBOR as the payload. 1392
The payload (content) in CBOR for Links is described with the JSON Schema in D.2.8. Other 1393
serializations (e.g. XML/EXI) may be defined in future versions of this specification. The JSON 1394
Schema that specifies the representation of the response to /oic/res is defined D.8. 1395

 Collections 1396

7.8.3.1 Overview 1397

A Resource that contains one or more references (specified as Links) to other resources is an 1398
Collection. These reference may be related to each other or just be a list; the Collection provides 1399
a means to refer to this set of references with a single handle (i.e. the URI). A simple resource is 1400
kept distinct from a collection. Any Resource may be turned into an Collection by binding resource 1401
references as Links. Collections may be used for creating, defining or specifying hierarchies, 1402
indexes, groups, and so on. 1403

A Collection shall have at least one Resource Type and at least one Interface bound at all times 1404
during its lifetime. During creation time of a collection the resource type and interfaces are 1405
specified. The initial defined resource types and interfaces may be updated during its life time. 1406
These initial values may be overridden using mechanism used for overriding in the case of a 1407
Resource. Additional resource types and interfaces may be bound to the Collection at creation or 1408
later during the lifecycle of the Collection. 1409

A Collection shall define the “links” Common Property. The value of the “links” Property is an array 1410
with zero or more Links. The target URIs in the Links may reference another Collection or another 1411
Resource. The referenced Collection or Resource may reside on the same Device as the Collection 1412
that includes that Link (called a local reference) or may reside on another Device (called a remote 1413
reference). The context URI of the Links in the “links” array shall (implicitly) be the Collection that 1414
contains that “links” property. The (implicit) context URI may be overridden with explicit 1415
specification of the “anchor” parameter in the Link where the value of “anchor” is the new base of 1416
the Link. 1417

A Resource may be referenced in more than one Collection, therefore, a unique parent-child 1418
relationship is not guaranteed. There is no pre-defined relationship between a Collection and the 1419
Resource referenced in the Collection, i.e., the application may use Collections to represent a 1420
relationship but none is automatically implied or defined. The lifecycles of the Collection and the 1421
referenced Resource are also independent of one another. 1422

If the “drel” property is defined for the Collection then all Links that don’t explicitly specify a 1423
relationship shall inherit this default relationship in the context of that Collection. The default 1424
relationship defines the implicit relationship between the Collection and the target URI in the Link. 1425

The list of Links defined in a Collection may be either a simple list of Links as illustrated in Figure 1426
16 or may be a list of tagged Links sets as illustrated in Figure 17. For the former, the value of the 1427
“links” Property is a simple array of Links. For the later, the value of the “links” Property is an array 1428
where each element is a resource containing a Links array and a set of one or more key-value 1429
pairs; the key-value pairs are the tags for the Links array (the key is the tag name and the value 1430
is the tag value) 1431

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 49

 1432

Figure 15: Example showing parts of Collection and Links 1433

 1434

{
 "links": [
 {
 "href": "/door",
 "rt": ["oic.r.door"],
 "if": ["oic.if.b", "oic.if.ll", "oic.if.baseline"],
 "p": {"bm": 3, "sec": true, "port": 33828}
 },
 {
 "href": "/door/lock",
 "rt": ["oic.r.lock"],
 "if": ["oic.if.b", "oic.if.baseline"],
 "p": {"bm": 3, "sec": true, "port": 33828},
 "type": ["application/cbor", "application/exi+xml"]
 }
]
}

Figure 16: Example Collection with simple links (JSON) 1435

 1436
{

/my/house
{

 "rt": ["my.r.house"],
 "color": "blue",
 "n" : "myhouse",
 "links": [

[
 {

"di": "0685B960-736F-46F7-BEC0-9E6CBD61ADC1",
"n" : "mydoor"

},
[

 {
 "href": "/door",
 "rt": ["oic.r.door"],
 "if": ["oic.if.b", "oic.if.ll", "oic.if.baseline],
 "p": {"bm": 3, "sec": true, "port": 33828}
 },
 {
 "href": "/door/lock",
 "rt": ["oic.r.lock"],
 "if": ["oic.if.b", "oic.if.baseline"],
 "p": {"bm": 3, "sec": true, "port": 33828},
 "type": ["application/cbor", "application/exi+xml"]
 }
]

],
[
 {
"di": "08854960-736F-46F7-BEC2-9E6CBD61BDC9",
},
[

 {
 "href": "/light",
 "rt": ["oic.r.light"],
 "if": ["oic.if.s", "oic.if.baseline"],
 "p": {"bm": 3, "sec": true, "port": 33828},
 },
 {
 "href": "/binarySwitch",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "p": {"bm": 3, "sec": true, "port": 33828},
 "type": ["application/cbor"]
 }
]

IRI/URI (resource)

Properties (resource)

Tags (link)

Parameters (link)

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 50

 "links": [
[
 {
"di": "0685B960-736F-46F7-BEC0-9E6CBD61ADC1"
},
[

 {
 "href": "/door",
 "rt": ["oic.r.door"],
 "if": ["oic.if.b", "oic.if.ll", "oic.if.baseline"],
 "p": {"bm": 3, "sec": true, "port": 32807}
 },
 {
 "href": "/door/lock",
 "rt": ["oic.r.lock"],
 "if": ["oic.if.b", "oic.if.baseline"],
 "p": {"bm": 3, "sec": true, "port": 32807},
 "type": ["application/cbor, "application/exi+xml"]
 }
]

],
[
 {
"di": "08854960-736F-46F7-BEC2-9E6CBD61BDC9"
},
[

 {
 "href": "/light",
 "rt": ["oic.r.light"],
 "if": ["oic.if.s", "oic.if.baseline"],
 "p": {"bm": 3, "sec": true, "port": 32808}
]
 },
 {
 "href": "/binarySwitch",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "p": {"bm": 3, "sec": true, "port": 32808},
 "type": ["application/cbor"]
 }
]
]
]
}

Figure 17: Example Collection with tagged Links (JSON) 1437

Note: Example shows only one tag; each tag has the same tag name, i.e., “di”, but have different tag values. 1438

 1439

A Collection may be: 1440

• A pre-defined Collection where the Collection has been defined a priori and the Collection is 1441
static over its lifetime. Such Collections may be used to model, for example, an appliance that 1442
is composed of other devices or fixed set of resource representing fixed functions. 1443

• A Device local Collection where the Collection is used only on the Device that hosts the 1444
Collection. Such collections may be used as a short-hand on a client for referring to many 1445
Servers as one. 1446

• A centralized Collection where the Collection is hosted on an Device but other Devices may 1447
access or update the Collection 1448

• A hosted Collection where the collection is centralized but is managed by an authorized agent 1449
or party. 1450

7.8.3.2 Collection Properties 1451

An Collection shall define the “links” Property. In addition, other Properties may be defined for the 1452
Collection by the Resource Type. The mandatory and recommended Common Properties for 1453
Collection are shown in Table 9. This list of Common Properties are in addition to those defined 1454
for Resources in section 7.3.2. When a property is repeated in Table 9 , the conditions in this 1455
definition shall override those in the general list for Resources. 1456

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 51

Table 9: Common Properties for Collections (in addition to Common Properties defined in 1457
section 7.3.2) 1458

Property Description Property name Value Type Mandatory

Links The set of links in the collection “links” json
Array of Links

Yes

Name Human friendly name for the
collection

“n” string No

Identity The id of the collection “id” UUID No

Resource
Types

The list of allowed resource
types for links in the collection.
Requests for addition of links
using link list or link batch
interfaces will be validated
against this list.
If this property is not defined or
is null string then any resource
type is permitted

“rts” json
Array of resource type
names

No

Default
relationship

Specifies the default
relationship to use for Links in
the collection where the “rel”
parameter has not been
explicitly defined.

It is permissible to have no
“drel” property defined for the
collection and the Links to also
not have “rel” defined either. In
such case, the use of the
collection is, for example, as a
random bag of links

“rel” string No

 1459

 The Properties of a Collection may not be modified. 1460

7.8.3.3 Default resource type 1461

A default Resource Type, oic.wk.col, shall be available for Collections. This Resource Type shall 1462
be used only when another type has not been defined on the Collection or when no Resource Type 1463
has been specified at the creation of the Collection. 1464

The default Resource Type provides support for the Common Properties including the “links” 1465
Property. For the default resource type, the value of “links” shall be a simple array of Links and 1466
tagging of links shall not be supported. 1467

The default Resource Type shall support the ‘baseline’ and ‘links list’ Interfaces. The default 1468
Interface shall be the ‘links list’ Interface. 1469

8 CRUDN 1470

8.1 Overview 1471

CREATE, RETRIEVE, UPDATE, DELETE, and NOTIFY (CRUDN) are operations defined for 1472
manipulating Resources. These operations are performed by a Client on the resources contained 1473
in an Server. 1474

On reception of a valid CRUDN operation an Server hosting the Resource that is the target of the 1475
request shall generate a response depending on the Interface included in the request; or based 1476
on the Default Interface for the Resource Type if no Interface is included. 1477

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 52

CRUDN operations utilize a set of parameters that are carried in the messages and are defined in 1478
Table 10. A Device shall use CBOR as the default payload (content) encoding scheme for resource 1479
representations included in CRUDN operations and operation responses; a Device may negotiate 1480
a different payload encoding scheme (e.g, see in section 12.2.4 for CoAP messaging). The 1481
following subsections specify the CRUDN operations and use of the parameters. The type 1482
definitions for these terms will be mapped in the messaging section for each protocol. 1483

Table 10. Parameters of CRUDN messages 1484

Applicability Name Denotation Definition

All messages

fr From The URI of the message originator.

to To The URI of the recipient of the message.

ri Request Identifier The identifier that uniquely identifies the
message in the originator and the recipient.

cn Content Information specific to the operation.

Requests
op Operation Specific operation requested to be performed

by the Server.

obs Observe Indicator for an observe request.

Responses
rs Response Code

Indicator of the result of the request; whether it
was accepted and what the conclusion of the
operation was. The values of the response code
for CRUDN operations shall conform to those
as defined in section 5.9 and 12.1.2 in
IETF RFC 7252.

obs Observe Indicator for an observe response.

8.2 CREATE 1485

The CREATE operation is used to request the creation of new Resources on the Server. The 1486
CREATE operation is initiated by the Client and consists of three steps, as depicted in Figure 18 1487
and described below. 1488

 1489

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 53

Figure 18. CREATE operation 1490

8.2.1 CREATE request 1491

The CREATE request message is transmitted by the Client to the Server to create a new Resource 1492
by the Server. The CREATE request message will carry the following parameters: 1493

• fr: Unique identifier of the Client 1494

• to: URI of the target resource responsible for creation of the new resource. 1495

• ri: Identifier of the CREATE request 1496

• cn: Information of the resource to be created by the Server 1497

i) cn will include the URI and resource type property of the resource to be created. 1498

ii) cn may include additional properties of the resource to be created. 1499

• op: CREATE 1500

8.2.2 Processing by the Server 1501

Following the receipt of a CREATE request, the Server may validate if the Client has the 1502
appropriate rights for creating the requested resource. If the validation is successful, the Server 1503
creates the requested resource. The Server caches the value of ri parameter in the CREATE 1504
request for inclusion in the CREATE response message. 1505

8.2.3 CREATE response 1506

The Server shall transmit a CREATE response message in response to a CREATE request 1507
message from a Client. The CREATE response message will include the following parameters. 1508

• fr: Unique identifier of the Server 1509

• to: Unique identifier of the Client 1510

• ri: Identifier included in the CREATE request 1511

• cn: Information of the resource as created by the Server. 1512

i) cn will include the URI of the created resource. 1513

ii) cn will include the resource representation of the created resource. 1514

• rs: The result of the CREATE operation 1515

8.3 RETRIEVE 1516

The RETRIEVE operation is used to request the current state or representation of a Resource. 1517
The RETRIEVE operation is initiated by the Client and consists of three steps, as depicted in 1518
Figure 19 and described below. 1519

 1520

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 54

Figure 19. RETRIEVE operation 1521

8.3.1 RETRIEVE request 1522

RETRIEVE request message is transmitted by the Client to the Server to request the 1523
representation of a Resource from an Server. The RETRIEVE request message will carry the 1524
following parameters. 1525

• fr: Unique identifier of the Client 1526

• to: URI of the resource the Client is targeting 1527

• ri: Identifier of the RETRIEVE request 1528

• op: RETRIEVE 1529

8.3.2 Processing by the Server 1530

Following the receipt of a RETRIEVE request, the Server may validate if the Client has the 1531
appropriate rights for retrieving the requested data and the properties are readable. The Server 1532
caches the value of ri parameter in the RETRIEVE request for use in the response. 1533

8.3.3 RETRIEVE response 1534

The Server shall transmit a RETRIEVE response message in response to a RETRIEVE request 1535
message from a Client. The RETRIEVE response message will include the following parameters. 1536

• fr: Unique identifier of the Server 1537

• to: Unique identifier of the Client 1538

• ri: Identifier included in the RETRIEVE request 1539

• cn: Information of the resource as requested by the Client 1540

i) cn should include the URI of the resource targeted in the RETRIEVE request 1541

 1542

• rs: The result of the RETRIEVE operation 1543

8.4 UPDATE 1544

The UPDATE operation is either a Partial UPDATE or a complete replacement of the information 1545
in a Resource in conjunction with the interface that is also applied to the operation. The UPDATE 1546
operation is initiated by the Client and consists of three steps, as depicted in Figure 20 and 1547
described below. 1548

 1549

Figure 20. UPDATE operation 1550

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 55

8.4.1 UPDATE request 1551

The UPDATE request message is transmitted by the Client to the Server to request the update of 1552
information of a Resource on the Server. The UPDATE request message will carry the following 1553
parameters. 1554

• fr: Unique identifier of the Client 1555

• to: URI of the resource targeted for the information update 1556

• ri: Identifier of the UPDATE request 1557

• op: UPDATE 1558

• cn: Information, including properties, of the resource to be updated at the target resource 1559

8.4.2 Processing by the Server 1560

Following the receipt of an UPDATE request, the Server may validate if the Client has the 1561
appropriate rights for updating the requested data. If the validation is successful the Server 1562
updates the target Resource information according to the information carried in cn parameter of 1563
the UPDATE request message. The Server caches the value of ri parameter in the UPDATE 1564
request for use in the response. 1565

An UPDATE request that includes Properties that are read-only shall be rejected by the Server 1566
with an rs indicating a bad request. 1567

An UPDATE request shall be applied only to the Properties in the target resource visible via the 1568
applied interface that support the operation. An UPDATE of non-existent Properties is ignored. 1569

8.4.3 UPDATE response 1570

The UPDATE response message will include the following parameters: 1571

• fr: Unique identifier of the Server 1572

• to: Unique identifier of the Client 1573

• ri: Identifier included in the UPDATE request 1574

• rs: The result of the UPDATE request 1575

The UPDATE response message may also include the following parameters: 1576

• cn: The Resource representation following processing of the UPDATE request 1577

8.5 DELETE 1578

The DELETE operation is used to request the removal of a Resource. The DELETE operation is 1579
initiated by the Client and consists of three steps, as depicted in Figure 21 and described below. 1580

 1581

Figure 21. DELETE operation 1582

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 56

8.5.1 DELETE request 1583

DELETE request message is transmitted by the Client to the Server to delete a Resource on the 1584
Server. The DELETE request message will carry the following parameters: 1585

• fr: Unique identifier of the Client 1586

• to: URI of the target resource which is the target of deletion 1587

• ri: Identifier of the DELETE request 1588

• op: DELETE 1589

8.5.2 Processing by the Server 1590

Following the receipt of a DELETE request, the Server may validate if the Client has the 1591
appropriate rights for deleting the identified resource, and whether the identified resource exists. 1592
If the validation is successful, the Server removes the requested resource and deletes all the 1593
associated information. The Server caches the value of ri parameter in the DELETE request for 1594
use in the response. 1595

8.5.3 DELETE response 1596

The Server shall transmit a DELETE response message in response to a DELETE request 1597
message from a Client. The DELETE response message will include the following parameters. 1598

• fr: Unique identifier of the Server 1599

• to: Unique identifier of the Client 1600

• ri: Identifier included in the DELETE request 1601

• rs: The result of the DELETE operation 1602

8.6 NOTIFY 1603

The NOTIFY operation is used to request asynchronous notification of state changes. Complete 1604
description of the NOTIFY operation is provided in section 11.4. The NOTIFY operation uses the 1605
NOTIFICATION response message which is defined here. 1606

8.6.1 NOTIFICATION response 1607

The NOTIFICATION response message is sent by an Server to notify the URLs identified by the 1608
Client of a state change. The NOTIFICATION response message carries the following parameters. 1609

• fr: Unique identifier of the Server 1610

• to: URI of the Resource target of the NOTIFICATION message 1611

• ri: Identifier included in the CREATE request 1612

• op: NOTIFY 1613

• cn: The updated state of the resource 1614

9 Network and connectivity 1615

9.1 Introduction 1616

The IOT environment, which the OCF is addressing, is composed of very heterogeneous systems. 1617
Because these systems are often tailored to address dedicated requirements, they are composed 1618
of very diverse products and services. Those products span from very constrained devices that 1619
run on batteries to every day high end devices available on consumer market shelves. The lack of 1620
a global standard and the need to create such a standard has led various groups to work on 1621
streamlining those technologies with well-established networking standards. 1622

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 57

The IETF recognized the market transition and realized that Ipv4 was no longer adequate. Not only 1623
does the new scale call for a new technology, but also the manageability of even more diverse 1624
devices, the complexity of multiple subnets and higher security and privacy needs require a whole 1625
new set of standards. Cognizant of the existence and need for dedicated physical layer and data 1626
link layer, the IETF set up working groups to streamline the various existing technologies at the 1627
network layer. In accordance with these market realities, this specification also means to leverage 1628
existing radio silicon (e.g., Bluetooth® technology, Wi-Fi, or 802.15.4) and concentrates on the 1629
network layer and the associated data link layer adaptations produced by the IETF. 1630

9.2 Architecture 1631

While the aging IPv4 centric network has evolved to support complex topologies, its deployment 1632
was primarily provisioned by a single Internet Service Provider (ISP) as a single network. More 1633
complex network topologies, often seen in residential home, are mostly introduced through the 1634
acquisition of additional home network devices, which rely on technologies like private Network 1635
Address Translation (NAT). These technologies require expert assistance to set up correctly and 1636
should be avoided in a home network as they most often result in breakage of constructs like 1637
routing, naming and discovery services. 1638

The multi-segment ecosystem OCF addresses will not only cause a proliferation of new devices 1639
and associated routers, but also new services introducing additional edge routers. All these new 1640
requirements require advance architectural constructs to address complex network topologies like 1641
the one shown in Figure 22. 1642

 1643

Figure 22. High Level Network & Connectivity Architecture 1644

Sensor
Network

(6LowPan)
/

Subnets

IPv6 Local
Network

IPv4-only or
Legacy

(Zigbee, …)

Border
Router

Gateway
(iotivity+
plugins)

IPv6 + IPv4

Internet
Core

IPv6 Sensor Network

Non-IPv6 Network

IPv6 Local
Network

User
Interface

Monitoring

Intrusion
detection

Private
VPN Service

Internet
Services

SP CE
Router

Private
Proxy

Smart
Grid)

SP CE
Router

Smart Grid
(Energy segment)

Power
Grid

Legend:

OCF
OCF aware
OCF plugged-in
Infrastructure

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 58

In terms of RFC 6434, IPv6 nodes assume either a router or host role. Nodes may further 1645
implement various specializations of thoIn terms of RFC 6434, IPv6 nodes assume either a 1646
router or host role. Nodes may further implement various specializations of those roles: 1647
 1648
• A Router may implement Customer Edge Router capabilities as defined in IETF RFC 7084. 1649
 1650
• Nodes limited in processing power, memory, non-volatile storage or transmission capacity 1651
requires special IP adaptation layers (6LoWPAN) and/or dedicated routing protocols (RPL). 1652
Examples include devices transmitting over low power physical layer like IEEE 802.14.5, ITU 1653
G9959, Bluetooth Low Energy, DECT Ultra Low Energy, Near Field Communication (NFC), 1654
 1655
• A node may translate and route messaging between IPv6 and non-IPv6 networks.se roles: 1656
 1657
• A Router may implement Customer Edge Router capabilities as defined in IETF RFC 7084. 1658
 1659
• Nodes limited in processing power, memory, non-volatile storage or transmission capacity 1660
requires special IP adaptation layers (6LoWPAN) and/or dedicated routing protocols (RPL). 1661
Examples include devices transmitting over low power physical layer like IEEE 802.14.5, ITU 1662
G9959, Bluetooth Low Energy, DECT Ultra Low Energy, Near Field Communication (NFC), 1663

 1664

9.3 • A node may translate and route messaging between IPv6 and non-IPv6 1665
networks.IPv6 network layer requirements 1666

 Introduction 1667

Projections indicate that many 10s of billions of new IoT endpoints and related services will be 1668
brought online in the next few years. These endpoint’s capabilities will span from battery powered 1669
nodes with limited compute, storage, and bandwidth to more richly resourced devices operating 1670
over Ethernet and WiFi links. 1671

Internet Protocol version 4 (IPv4), deployed some 30 years ago, has matured to support a wide 1672
variety of applications such as Web browsing, email, voice, video, and critical system monitoring 1673
and control. However, the capabilities of IPv4 are at the point of exhaustion, not the least of which 1674
is that available address space has been consumed. 1675

The IETF long ago saw the need for a successor to IPv4, thus the development of IPv6. OCF 1676
recommends IPv6 at the network layer. Amongst the reasons for IPv6 recommendations are: 1677

• Larger address space. Side-effect: greatly reduce the need for NATs. 1678

• More flexible addressing architecture. Multiple addresses and types per interface: Link-local, 1679
ULA, GUA, variously scoped Multicast addresses, etc. Better ability to support multi-homed 1680
networks, better re-numbering capability, etc. 1681

• More capable auto configuration capabilities: DHCPv6, SLAAC, Router Discovery, etc. 1682

• Technologies enabling IP connectivity on constrained nodes are based upon IPv6. 1683

• All major consumer operating systems (IoS, Android, Windows, Linux) are already IPv6 enabled. 1684

• Major Service Providers around the globe are deploying IPv6. 1685

 IPv6 node requirements 1686

9.3.2.1 Introduction 1687

In order to ensure network layer services interoperability from node to node, mandating a common 1688
network layer across all nodes is vital. The protocol should enable the network to be: secure, 1689
manageable, scalable and to include constrained and self-organizing meshed nodes. OCF 1690
recommends IPv6 as the common network layer protocol to ensure interoperability across all 1691
Devices. More capable devices may also include additional protocols creating multiple-stack 1692

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 59

devices. The remainder of this section will focus on interoperability requirements for IPv6 hosts, 1693
IPv6 constrained hosts and IPv6 routers. The various protocol translation permutations included 1694
in multi-stack gateway devices may be addresses in subsequent addendums of this specification. 1695

9.3.2.2 IP Layer 1696

An IPv6 node should support IPv6. If a node supports IPv6, then it shall conform to the 1697
requirements for communication on the local network as follows: 1698

• Shall support IETF RFC 2460 “Internet Protocol version 6 Specification” and related updates 1699
as defined in section 5.1 of IETF RFC 6434 “IPv6 Node Requirements”. 1700

• Shall support IETF RFC 4291 “IP Version 6 Addressing Architecture” and related updates as 1701
defined in section 5.9.1 of IETF RFC 6434 “IPv6 Node Requirements”. 1702

• Shall support IETF RFC 4861 “Neighbor Discovery for IPv6” and related updates as defined in 1703
section 5.2 of IETF RFC 6434 “IPv6 Node Requirements”. 1704

• Shall support IETF RFC 4862 “IPv6 Stateless Address Autoconfiguration” and related updates 1705
as defined in section 5.9.2 of IETF RFC 6434 “IPv6 Node Requirements”. 1706

• Shall support IETF RFC 4443 “Internet Control Message Protocol (ICMPv6) for IPv6” [RFC4443] 1707
and related updates as defined in section 5.8 of IETF RFC 6434 “IPv6 Node Requirements”. 1708

• Shall support IETF RFC 1981 “Path MTU Discovery” and related updates as defined in section 1709
5.6 of IETF RFC 6434 “IPv6 Node Requirements”. 1710

• Shall support IETF RFC 4193 “Unique Local IPv6 Unicast Addresses” and related updates. 1711

• Shall support IETF RFC 3810 “Multicast Listener Discovery Version 2 (MLDv2) for IPv6” and 1712
related updates. In particular, shall generate new MLDv2 Report messages for every “All OCF 1713
Nodes” address FF0X::158 joined on an interface. 1714

. 1715

 IPv6 constrained nodes 1716

9.3.3.1 Requirements 1717

An IPv6 constrained node shall support all node requirements defined in section 9.3.2. If a 1718
constrained node supports IPv6, it should use the adaptations defined as follows in order to support 1719
IPv6. 1720

9.3.3.2 IP layer 1721

An IPv6 constrained node should support the neighbour discovery optimization as defined in 1722
IETF RFC 6775 “Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal 1723
Area Networks (6LoWPANs)”. 1724

9.3.3.3 Sub IP layer 1725

• An IPv6 constrained node on an ITU-T G.9959 network should support IETF RFC 7428 and 1726
related updates. 1727

• An IPv6 constrained node on an IEEE 802.15.4 network should support IETF RFC 4944 and 1728
related updates. 1729

• An IPv6 constrained node on a BLUETOOTH(R) Low Energy network should support 1730
IETF RFC 7668 and related updates. 1731

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 60

10 Endpoint discovery 1732

10.1 Introduction 1733

This section describes how an OCF Endpoint is discovered by another OCF Endpoint in a network. 1734
An OCF Endpoint shall support CoAP discovery. 1735

10.2 CoAP based Endpoint discovery 1736

The following describes CoAP based Endpoint discovery: 1737

a) Advertising or publishing Devices shall join the ‘All OCF Nodes’ multicast groups (as defined 1738
in [IANA IPv6 Multicast Address Space Registry]) and listen on the port 5683. 1739

b) Clients intending to discover resources shall join the ‘All OCF Nodes’ multicast groups (as 1740
defined in [IANA IPv6 Multicast Address Space Registry]). 1741

c) Clients shall senddiscovery requests (GET request) to the 'All OCF Nodes’ multicast group 1742
address at port 5683. The requested URI shall be /oic/res. 1743

d) If the discovery request is intended for a specific resource type, the Query parameter "rt" shall 1744
be included in the request (section 6.2.1) with its value set to the desired resource type. Only 1745
Devices hosting the resource type shall respond to the discovery request. 1746

e) When the “rt” Query parameter is omitted, all Devices shall respond to the discovery request. 1747

f) Handling of multicast requests shall be as described in section 8 of IETF RFC 7252 and section 1748
4.1 in IETF RFC 6690. 1749

g) Devices which receive the request shall respond using CBOR payload encoding. A Device 1750
shall indicate support for CBOR payload encoding for multicast discovery as described in 1751
section 12.2.3. Later versions of the specification may support alternate payload encodings 1752
(JSON, XML/EXI, etc.). 1753

 1754

Below are a few examples to search for Devices on the network: 1755

To search for all Devices on the network a Client can issue: 1756

Request 1757

GET /oic/res 1758

Response 1759

[1760
 { 1761
 "di": "0685B960-736F-46F7-BEC0-9E6CBD61ADC1", 1762
 "links": [1763
 { 1764
 "href": "/oic/d", 1765
 "rt":["oic.d.light", "oic.wd.d"], 1766
 "if": ["oic.if.r", "oic.if.baseline"], 1767
 "p": {"bm": 1, "sec": true, "port": 32278} 1768
 }, 1769
 { 1770
 "href": "/oic/p", 1771
 "rt": ["oic.wk.p"], 1772
 "if": ["oic.if.r", "oic.if.baseline"], 1773
 "p": {"bm": 1, "sec": true, "port": 32278} 1774
 }, 1775
 { 1776
 "href": "/switch", 1777
 "rt": ["oic.r.switch.binary"], 1778
 "if": ["oic.if.a", "oic.if.baseline"], 1779
 "p": {"bm": 2, "sec": true, "port": 32278} 1780
 }, 1781
 { 1782
 "href": "/brightness", 1783

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 61

 "rt": ["oic.r.light.brightness"], 1784
 "if": ["oic.if.a", "oic.if.baseline"], 1785
 "p": {"bm": 3, "sec": true, "port": 32278} 1786
 } 1787
] 1788
 } 1789

] 1790

To search for oic.r.switch.binary resources on the network a Client can issue: 1791

Request 1792

GET /oic/res?rt=oic.r.switch.binary 1793

Response 1794

[1795
 { 1796
 "di": "0685B960-736F-46F7-BEC0-9E6CBD61ADC1", 1797
 "links": [1798
 { 1799
 "href": "/switch", 1800
 "rt": ["oic.r.switch.binary"], 1801
 "if": ["oic.if.a", "oic.if.baseline"], 1802
 "p": {"bm": 1, "sec": true, "port": 32278} 1803
 } 1804
] 1805
 } 1806

] 1807

Note that the examples do not indicate the multicast address and port number. The examples also do not include the 1808
accept header. 1809

 1810

11 Functional interactions 1811

11.1 Introduction 1812

The functional interactions between a Client and n Server are described in section 11.2 through 1813
section 11.6 respectively. The functional interactions use CRUDN messages (section 8) and 1814
include Discovery, Notification, and Device management. These functions require support of core 1815
defined resources as defined in Table 11. More details about these resources are provided later 1816
in this section. 1817

Table 11. List of Core Resources 1818

Pre-defined
URI

Resource Name Resource Type Related
Functional
Interaction

Mandatory

/oic/res Default oic.wk.res Discovery Yes

/oic/p Platform oic.wk.p Discovery Yes

/oic/d Device oic.wk.d Discovery Yes

/oic/con Configuration oic.wk.con Device
Management

No

/oic/mnt Maintenance oic.wk.mnt Device
Management

No

 1819

11.2 Provisioning 1820

Provisioning in Framework includes two distinct processes: onboarding and Configuration. 1821

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 62

onboarding is the process which delivers required information to a Device for joining the OCF 1822
network. When onboarding process is completed, the Device has necessary information and is 1823
able to join the OCF network (State #1 in Figure 23). Further details about provisioning can be 1824
found in OCF Security specification (Owner PSK). 1825

Configuration is the process which delivers required information to a device for accessing OCF 1826
services. At the end of the configuration process, the Device has all the necessary information and 1827
is able to access OCF services (State #2 in Figure 23). 1828

 1829

Figure 23. Provisioning State Changes 1830

#1 onboarding 1831

Framework is applicable to many different types of devices with different capabilities, including 1832
devices with a rich user interface that can take inputs from the users, e.g., smartphones, as well 1833
as headless devices that have no means for receiving user inputs, e.g., sensors. Additionally, the 1834
Devices may support different communication and connectivity technologies, e.g., Bluetooth, Wi-1835
Fi, etc. Different communication and connectivity technologies provide different onboarding 1836
mechanisms specific to that technology. 1837

Due to these differences and diversity of device capabilities, this version of specification does not 1838
mandate a particular process for onboarding, instead, specifies the state of the Device upon 1839
completion of the onboarding process. 1840

As part of the onboarding process the device acquires detailed information and required parameter 1841
values to be able to connect to the network, resulting in successful establishment of a connection 1842
to the network at the end of the onboarding process. The required information and parameters 1843
values include for example, SSID for Wi-Fi as well as authentication credentials. 1844

Later versions of this specification may specify a common process for onboarding across different 1845
communication and connectivity technologies. 1846

#2 Configuration 1847

Once a Device is successfully connected to the OCF network, it needs additional configuration 1848
information for accessing the OCF services or to subscribe for OCF services. The information 1849
required may include geographical location, time zone, security requirements, etc. This information 1850
may be pre-loaded on an Device, or may be acquired from a configuration service that can be 1851
located on another Device, e.g., the Configuration Source. The information regarding the 1852
configuration service resource, e.g., the URI of the Configuration Source, is pre-configured on the 1853
Device. 1854

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 63

The configuration information is also in core resource /oic/con. Upon completion of the onboarding 1855
process and as soon as the Device is connected to the network, if the configuration information is 1856
not pre-loaded, it shall initiate the configuration process, as a result of which the Device acquires 1857
the relevant configuration information, through either a pull or a push interaction, and populates 1858
its designated configuration resource with its current configured state information. The designated 1859
configuration resource maintains the latest configuration state and is the designated resource 1860
through which updates to the configuration are made. 1861

If the configuration information is not pre-loaded the Device retrieves them from the Configuration 1862
Source. During the lifetime of a Device a Client may retrieve or update the configuration state of 1863
the Device. Some of the configuration information is read only and some may be modified by 1864
Configuration Sources depending on the ‘Access Modes’ of properties in /oic/con resource. 1865

Figure 24 depicts the interactions triggered by a Device to retrieve its configuration information 1866
from the Configuration Source which may be located on a remote Device or locally. These 1867
interactions occur instantly following completion of onboarding process; the Device may retrieve 1868
its configuration at any time during its lifetime. 1869

 1870

OIC Client
Retrieving configuration for

the OIC Device

Configuration
Source

1. RETRIEVE Request
(configuration)

2. RETRIEVE Response
(configuration)

3. Common
configuration resource

populated/updated

1. On-boarding process
successfully completed

 1871

Figure 24. Interactions initiated by the Device to retrieve its configuration from a 1872
configuration source 1873

Figure 25 depicts the interactions when the retrieve of configuration information is done by a Client. 1874

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 64

OIC Client
Retrieving configuration of

another OIC Device
OIC Server

1. RETRIEVE Request
(configuration)

2. RETRIEVE Response
(configuration)

 1875

Figure 25. Interactions for retrieving the configuration state of an Device. 1876

Figure 26 depicts the interactions when the configuration information of an Device is updated by a 1877
Client, e.g., the Configuration Source. 1878
 1879

OIC Client
Updating configuration of

another OIC Device
OIC Server

1. UPDATE Request
(configuration)

2. UPDATE Response
(configuration)

 1880

Figure 26. Update of and Device configuration 1881

If Configuration is supported by a Device, i.e., the configuration information may be dynamically 1882
updated, the Core Resource /oic/con shall be supported as the designated configuration resource 1883
as described in Table 12. 1884

Configuration Resource 1885
A Device or a Platform may be initially configured from information that is set or provisioned at 1886
bootstrap. In addition, the Device and Platform may be configured further by an external agent 1887
post bootstrap depending on changing conditions or context. The core resource /oic/con exposes 1888
properties that may be used to effect changes in the configuration. 1889
 1890
A configuration is determined by setting all the properties that collectively pertain to that 1891
configuration. The outcome of setting a new configuration is determined by the value of the specific 1892
properties in that set. Setting a new configuration through /oic/con may lead to initiation of 1893
processes that affect or create side effects in other resources. 1894

 1895

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 65

Table 12. Configuration Resources 1896

Pre-
defined
URI

Resource
Type Title

Resource
Type ID
(“rt” value)

Interfaces Description Related
Functional
Interaction

/oic/con Configuration oic.wk.con oic.if.rw The resource through which configurable
information specific to the Device is exposed.
The resource properties exposed by /oic/con
are listed in Table 13.

Configuration

 1897

Table 13 defines the oic.wk.con resource type. 1898
 1899

Table 13. oic.wk.con resource type definition 1900

Property title Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

(Device) Name n string R, W yes Human friendly name
configurable by the end user (e.g.
Bob's thermostat).

Location loc json (has
two
attributes
one with
longitude
and
latitude
and also
a name
for a
location)

 R, W no Provides location information
where available.

Location Name locn string R, W no Human friendly name for location
For example, “Living Room”.

Currency c string R,W no Indicates the currency that is
used for any monetary
transactions

Region r string R,W no Free form text Indicating the
current region in which the device
is located geographically. The
free form text shall not start with
a quote (").

 1901

11.3 Resource discovery 1902

 Introduction 1903

Discovery is a function which enables endpoint discovery as well as resource based discovery. 1904
Endpoint discovery is described in detail in section 10. This section mainly describes the resource 1905
based discovery. 1906

 Resource based discovery: mechanisms 1907

11.3.2.1 Overview 1908

As part of discovery, a Client may find appropriate information about other OCF peers. This 1909
information could be instances of resources, resource types or any other information represented 1910
in the resource model that an OCF peer would want another OCF peer to discover. 1911

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 66

At the minimum, Resource based discovery uses the following: 1912

1) A resource to enable discovery shall be defined. The representation of that resource shall 1913
contain the information that can be discovered. 1914

2) The resource to enable discovery shall be specified and commonly known a-priori.A Device for 1915
hosting the resource to enable discovery shall be identified. 1916

3) A mechanism and process to publish the information that needs to be discovered with the 1917
resource to enable discovery. 1918

4) A mechanism and process to access and obtain the information from the resource to enable 1919
discovery. A query may be used in the request to limit the returned information. 1920

5) A scope for the publication 1921

6) A scope for the access. 1922

7) A policy for visibility of the information. 1923

 1924

Depending on the choice of the base aspects defined above, the Framework defines three resource 1925
based discovery mechanisms: 1926

• Direct discovery, where the Resources are published locally at the Device hosting the 1927
resources and are discovered through peer inquiry. 1928

• Indirect discovery, where Resources are published at a third party assisting with the 1929
discovery and peers publish and perform discovery against the resource to enable 1930
discovery on the assisting 3rd party. 1931

• Advertisement discovery, where the resource to enable discovery is hosted local to the 1932
initiator of the discovery inquiry but remote to the Devices that are publishing discovery 1933
information. 1934

A Device shall support direct discovery. 1935

11.3.2.2 Direct discovery 1936

In direct discovery, 1937
1) The Device that is providing the information shall host the resource to enable discovery. 1938
2) The Device publishes the information available for discovery with the local resource to 1939

enable discovery (i.e. local scope). 1940
3) Clients interested in discovering information about this Device shall issue RETRIEVE 1941

requests directly to the resource. The request may be made as a unicast or multicast. 1942
The request may be generic or may be qualified or limited by using appropriate queries in 1943
the request. 1944

4) The “server” Device that receives the request shall send a response with the discovered 1945
information directly back to the requesting “client” Device. 1946

5) The information that is included in the request is determined by the policies set for the 1947
resource to be discovered locally on the responding Device. 1948

 1949

11.3.2.3 Indirect discovery of Resources (resource directory based discovery) 1950

In indirect discovery the information about the resource to be discovered is hosted on a Server 1951
that is not hosting the resource. See section 11.3.6 for details on resource directory based 1952
discovery. 1953

In indirect discovery: 1954

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 67

a) The resource to be discovered is hosted on a Device that is neither the client initiating 1955
the discovery nor the Device that is providing or publishing the information to be 1956
discovered. This Device may use the same resource to provide discovery for multiple 1957
agents looking to discover and for multiple agents with information to be discovered. 1958

b) The Device to be discovered or with information to discover, publishes that information 1959
with resource to be discovered on a different Device. The policies on the information 1960
shared including the lifetime/validity are specified by the publishing Device. The 1961
publishing Device may modify these policies as required. 1962

c) The client doing the discovery may send a unicast discovery request to the Device 1963
hosting the discovery information or send a multicast request that shall be monitored and 1964
responded to by the Device. In both cases, the Device hosting the discovery information 1965
is acting on behalf of the publishing Device. 1966

d) The discovery policies may be set by the Device hosting the discovery information or by 1967
the party that is publishing the information to be discovered. The discovery information 1968
that is returned in the discovery response shall adhere to the policies that are in effect at 1969
the time of the request. 1970

 1971

11.3.2.4 Advertisement Discovery 1972

In advertisement discovery: 1973

a) The resource to enable discovery is hosted local to the Device that is initiating the discovery 1974
request (client). The resource to enable discovery may be an Core Resource or discovered 1975
as part of a bootstrap. 1976

b) The request could be an implementation dependent lookup or be a local RETRIEVE request 1977
against the resource that enables discovery. 1978

c) The Device with information to be discovered shall publish the appropriate information to 1979
the resource that enables discovery. 1980

d) The publishing Device is responsible for the published information. The publishing Device 1981
may UPDATE the information at the resource to enable discovery based on its needs by 1982
sending additional publication requests. The policies on the information that is discovered 1983
including lifetime is determined by the publishing Device. 1984

 1985

 Resource based discovery: Information publication process 1986

The mechanism to publish information with the resource to enable discovery can be done either 1987
locally or remotely. The publication process is depicted in Figure 27. The Device which has 1988
discovery information to publish shall a) either update the resource that enables discovery if 1989
hosted locally or b) issue an UPDATE request with the information to the Device which hosts the 1990
resource that enables discovery. The Device hosting the resource to enable discovery 1991
adds/updates the resource to enable discovery with the provided information and then responds 1992
to the Device which has requested the publication of the resource with an UPDATE response. 1993

 1994

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 68

OIC Client
(Registering resources)

OIC Server
(Hosting the designated

OIC Resource)

1. UPDATE Request

3. UPDATE Response

2. Entry updated in
/oic/res

 1995

Figure 27. Resource based discovery: Information publication process 1996

 Resource based discovery: Finding information 1997

The discovery process (Figure 28) is initiated as a RETRIEVE request to the resource to enable 1998
discovery. The request may be sent to a single Device (as in a Unicast) or to multiple Devices (as 1999
in Multicast). The specific mechanisms used to do Unicast or Multicast are determined by the 2000
support in the data connectivity layer. The response to the request has the information to be 2001
discovered based on the policies for that information. The policies can determine which information 2002
is shared, when and to which requesting agent. The information that can be discovered can be 2003
resources, types, configuration and many other standards or custom aspects depending on the 2004
request to appropriate resource and the form of request. Optionally the requester may narrow the 2005
information to be returned in the request using query parameters in the URI query. 2006

OIC Client OIC Server(s)

1. RETRIEVE Request

3. RETRIEVE Response

2. Discovery
inquiry processed

 2007

Figure 28. Resource based discovery: Finding information 2008

 2009

Discovery Resources 2010

Some of the Core Resources shall be implemented on all Devices to support discovery. The Core 2011
Resources that shall be implemented to support discovery are: 2012

 /oic/res for discovery of resources 2013

 /oic/p for discovery of platform 2014

 /oic/d for discovery of device information 2015

Details for these mandatory Core Resources are described in Table 14 2016

Platform resource – 2017

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 69

The OCF recognizes that more than one instance of Device may be hosted on a single platform. 2018
Clients need a way to discover and access the information on the platform. The core resource, 2019
/oic/p exposes platform specific properties. All instances of Device on the same Platform shall 2020
have the same values of any properties exposed (i.e. an Device may choose to expose optional 2021
properties within /oic/p but when exposed the value of that property should be the same as the 2022
value of that property on all other Devices on that Platform) 2023
 2024
Device resource 2025
The device resource shall have the pre-defined URI /oic/d. The resource /oic/d exposes the 2026
properties pertaining to a Device as defined in Table 14. The properties exposed are determined 2027
by the specific instance of Device and defined by the resource type(s) of /oic/d on that Device. 2028
Since all the resource types of /oic/d are not known a priori, the resource type(s) of /oic/d shall be 2029
determined by discovery through the core resource /oic/res. The device resource /oic/d shall have 2030
a default resource type that helps in bootstrapping the interactions with this device (the default 2031
type is described in Table 14.) 2032
 2033
Protocol indication 2034
A Device may need to support different messaging protocols depending on requirements for 2035
different application profiles. For example, the Smart Home profile may use CoAP and the 2036
Industrial profile may use DDS. To enable interoperability, a Device uses the protocol indication 2037
to indicate the transport protocols they support and can communicate over. 2038

 2039

Table 14. Mandatory discovery Core Resources 2040

Pre-
define
d URI

Resource
Type
Title

Resource
Type ID
(“rt” value)

Interfaces Description Related
Functional
Interaction

/oic/res Default oic.wk.res

oic.if.ll The resource through which the corresponding
Server is discovered and introspected for available
resources.
/oic/res shall expose the resources that are
discoverable on a Device. When an Server receives
a RETRIEVE request targeting /oic/res (e.g., GET
/oic/res), it shall respond with the link list of all the
discoverable resources of itself. The /oic/d and
/oic/p are discoverable resources, hence their links
are included in /oic/res response. The resource
properties exposed by /oic/res are listed in Table
15.

Discovery

/oic/p Platform oic.wk.p oic.if.r The discoverable resource through which platform
specific information is discovered.
The resource properties exposed by /oic/p are
listed in Table 17

Discovery

/oic/d Device oic.wk.d
and/or one
or more
Device
Specific
resource
type IDs

oic.if.r The discoverable via /oic/res resource which
exposes properties specific to the Device instance.
The resource properties exposed by /oic/d are
listed in Table 17
/oic/d may have one or more resource types that
are specific to Device in addition to the default
resource type or if present overriding the default
resource type.
The base type oic.wk.d defines the properties that
shall be exposed by all Devices.
The device specific resource type(s) exposed are
dependent on the class of device (e.g. air
conditioner, smoke alarm); applicable values are
defined by the vertical specifications.

Discovery

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 70

 2041

Table 15 defines oic.wk.res resource type. 2042

Table 15. oic.wk.res resource type definition 2043

Property title Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Name n string R no Human-friendly name defined by
the vendor

Device Identifier di UUID R yes The device identifier as indicated
by the /oic/d resource of the
Device. There may be multiple
"di" instances in /oic/res but each
"di" shall have a unique value.
This "di" value uniqueness
implies that the resources of a
device shall be grouped together
under a single "di".

Links links array See
7.8.2

 R yes The array of Links describes the
URI, supported resource types
and interfaces, and access
policy.

Messaging
Protocol

mpro SSV R No String with Space Separated
Values (SSV) of messaging
protocols supported as a SI
Number from Table 16
For example, “1 and 3” indicates
that the Device supports coap
and http as messaging protocols.

A Device which wants to indicate its messaging protocol capabilities may add the property ‘mpro’ 2044
in response to a request on /oic/res. A Device shall support CoAP based discovery as the baseline 2045
discovery mechanism (see section 10.2). A Client which sees this property in a discovery response 2046
can choose any of the supported messaging protocols for communicating with the Server for further 2047
messages. For example, if a Device supporting multiple protocols indicates it supports a value of 2048
“1 3” for the ‘mpro’ property in the discovery response, then it cannot be assumed that there is an 2049
implied ordering or priority. But a vertical service specification may choose to specify an implied 2050
ordering or priority. If the ‘mpro’ property is not present in the response, A Client shall use the 2051
default messaging protocol as specified in the vertical specification for further communication. 2052
Table 16 provides an OCF registry for protocol schemes. 2053

Table 16. Protocol scheme registry 2054

SI Number Protocol

1 coap

2 coaps

3 http

4 https

5 coap+tcp

6 coaps+tcp

Note: The discovery of an endpoint used by a specific protocol is out of scope. The mechanism used by a Client to form 2055
requests in a different messaging protocol other than discovery is out of scope. 2056

 2057

The following applies to the use of /oic/d as defined above: 2058

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 71

• A vertical may choose to expose its Device Type (e.g., refrigerator or A/C) by adding the Device 2059
Type to the list of Resource Types associated with /oic/d. 2060

o For example; rt of /oic/d becomes ["oic.wk.d", "oic.d.<thing>"]; where “oic.d.<thing>” 2061
is defined in another spec such as the Smart Home vertical. 2062

o This implies that the properties exposed by /oic/d are by default the mandatory 2063
properties in Table 17. 2064

• A vertical may choose to extend the list of properties defined by the Resource Type 'oic.wk.d'. 2065
In that case, the vertical shall assign a new Device Type specific Resource Type ID. The 2066
mandatory properties defined in Table 17 shall always be present. 2067

Note: 2068

As per existing Core specification definitions the resource type ID may be a list of resource type IDs; when that is the 2069
case the default resource type ID for /oic/d is the first resource type ID listed. So a vertical can list ‘oic.d.thing’ first. 2070
This then means a GET /oic/d returns the properties for oic.d.thing and a GET /oic/d?rt=<some rt> returns the properties 2071
for the rt listed in the query. 2072

Table 17 oic.wk.d resource type definition defines the base resource type for the /oic/d resource. 2073
 2074

Table 17. oic.wk.d resource type definition 2075

Property title Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

(Device) Name n string R no Human friendly name defined by
the vendor.”

Spec Version icv string R yes Spec version of the core
specification this device is
implemented to, The syntax is
"core.<major>.<minor>.<sub-
version>” where <major>, <minor,
and <sub-version> are the major,
minor and sub-version numbers
of the specification respectively.
This version of the specification
the string value shall be
“core.1.1.0”.

Device ID di UUID R yes Unique identifier for Device. This
value shall be as defined in
[OCF Security] for DeviceID.

Data Model
Version

dmv CSV R yes Spec version of the Resource
Specification to which this device
data model is implemented; if
implemented against a Vertical
specific resource specification,
then the Spec version of the
vertical specification this device
model is implemented to. The
syntax is a comma separated list
of ” <res>.<major>.<minor>.<sub-
version> or
<vertical>.<major>.<minor>.<sub-
version>. <res> is the string “res”
and <vertical> is the name of the
vertical defined in the Vertical
specific resource specification.
The <major>, <minor, and <sub-
version> are the major, minor and
sub-version numbers of the
specification respectively. This

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 72

version of the specification the
string value shall be “res.1.1.0”.

 2076

The additional resource type(s) of the /oic/d resource are defined by the vertical specification. 2077

 2078

Table 18 defines oic.wk.p resource type. 2079
 2080

Table 18. oic.wk.p resource type definition 2081

Property title Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Platform ID pi string R yes Unique identifier for
the physical
platform (UIUID);
this shall be a UUID
in accordance with
IETF RFC 4122. It
is recommended
that the UUID be
created using the
random generation
scheme (version 4
UUID) specific in
the RFC.

Manufacturer
Name

mnmn string R yes Name of
manufacturer

Manufacturer
Details Link

mnml URI R no Reference to
manufacturer,
represented as a
URI

Model Number mnmo string R no Model number as
designated by
manufacturer

Date of
Manufacture

mndt date Time
(show
RFC)

R no Manufacturing date
of device

Platform Version mnpv string R no Version of platform
– string (defined by
manufacturer)

OS Version mnos string R no Version of platform
resident OS – string
(defined by
manufacturer)

Hardware
Version

mnhw string R no Version of platform
hardware

Firmware
version

mnfv string R no Version of device
firmware

Support link mnsl URI R no URI that points to
support information
from manufacturer

SystemTime st datetime R no Reference time for
the device. The
format is restricted
to the concatenation
of “date” and “time”

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 73

with the “T” as a
delimiter between
“date” and “time”. The
format is [yyyy]-[mm]-
[dd]T[hh]:[mm]:[ss]Z.

Vendor ID vid string R no Vendor defined
string for the
platform. The string
is freeform and up
to the vendor on
what text to
populate it.

 2082

Composite Device 2083

A physical device may be modelled as a single device or as a composition of other devices. For 2084
example a refrigerator may be modelled as a composition, as such part of its definition of may 2085
include a sub-tending thermostat device which itself may be composed of a sub-tending 2086
thermometer device. 2087

There may be more than one way to model an server as a composition. One example method 2088
would be to have Platform which represents the composite device to have more than one instance 2089
of a Device on the Platform. Each Device instance represents one of the distinct devices in the 2090
composition. Each instance of Device may itself have or host multiple instances of other resources. 2091

An implementation irrespective of how it is composed shall only expose a single instance of /oic/d 2092
with an ‘rt’ of choice for each logical Server. 2093

Thus, for the above refrigerator example if modeled as a single Server; /oic/res would expose 2094
/oic/d with a resource type name appropriate to a refrigerator. The sub-tending thermostat and 2095
thermometer devices would be exposed simply as instances of a resource with a device 2096
appropriate resource type with an associated URI assigned by the implementation; e.g., 2097
/MyHost/MyRefrigerator/Thermostat and /MyHost/MyRefrigerator/Thermostat/Thermometer. 2098

 2099

 Resource discovery using /oic/res 2100

Discovery using /oic/res is the default discovery mechanism that shall be supported by all Devices 2101
as follows: 2102

a) Every Device updates its local /oic/res with the resources that are discoverable (see section 2103
7.3.2.2). Every time a new resource is instantiated on the Device and if that resource is 2104
discoverable by a remote Device then that resource is published with the /oic/res resource that 2105
is local to the Device (as the instantiated resource). 2106

b) An Device wanting to discover resources or resource types on one or more remote Devices 2107
makes a RETRIEVE request to the /oic/res on the remote Devices. This request may be sent 2108
multicast (default) or unicast if only a specific host is to be probed. The RETRIEVE request 2109
may optionally be restricted using appropriate clauses in the query portion of the request. 2110
Queries may select based on resource types, interfaces, or properties. 2111

c) Query applies to the representation of the resources. /oic/res is the only resource whose 2112
representation has “rt”. So /oic/res is the only resource that can be used for Multicast discovery 2113
at the transport protocol layer. 2114

d) The Device receiving the RETRIEVE request responds with a list of resources, the resource 2115
type of each of the resources and the interfaces that each resource supports. Additionally 2116

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 74

information on the policies active on the resource can also be sent. The policy supported 2117
includes observability and discoverability. (More details below) 2118

e) The receiving Device may do a deeper discovery based on the resources returned in the 2119
request to /oic/res. 2120

 2121

The information that is returned on discovery against /oic/res is at the minimum: 2122

• The URI (relative or fully qualified URL) of the resource 2123

• The Resource Type of each resource. More than one Resource Type may be returned if the 2124
resource enables more than one type. To access resources of multiple types, the specific 2125
resource type that is targeted shall be specified in the request. 2126

• The Interfaces supported by that Resource. Multiple interfaces may be returned. To access a 2127
specific interface that interface shall be specified in the request. If the interface is not specified, 2128
then the Default Interface is assumed. 2129

• Policies defined against that resource. These policies may be security related, access modes, 2130
types of interactions, etc. In addition to the request/response type of interaction, the 2131
specification allows the resource to be “observed” (section 11.4.2). 2132

 2133

The JSON schemas for discovery using /oic/res are described in D.8. Also refer to Section 10 2134
(Endpoint Discovery) for details of Multicast discovery using /oic/res on a CoAP transport. 2135

After performing discovery using /oic/res, Clients may discover additional details about Server by 2136
performing discovery using /oic/p, /oic/rts etc. If a Client already knows about Server it may 2137
discover using other resources without going through the discovery of /oic/res. 2138

 Resource directory (RD) based discovery 2139

11.3.6.1 Introduction 2140

11.3.6.1.1 Indirect discovery for lookup of the resources 2141

Direct discovery is the mechanism used currently to find resources in the network. When needed, 2142
resources are queried at a particular node directly or a multicast packet is sent to all nodes. Each 2143
queried node responds directly with its discoverable resources to the discovering device. 2144
Resources available locally are registered on the same device. 2145

In some situations, one of the other mechanisms described in section 11.3.2.3, called indirect 2146
discovery, may be required. Indirect discovery is when a 3rd party device, other than the 2147
discovering device and the discovered device, assists with the discovery process. The 3rd party 2148
only provides information on resources on behalf of another device but does not host resources 2149
on part of that device. 2150

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 75

 2151

Figure 29. Indirect discovery of resource by resource directory 2152

Indirect discovery is useful for a resource constrained device that needs to sleep to manage power 2153
and cannot process every discovery request, or when devices may not be on the same network 2154
and requires optimization for discovery. Once resources are discovered using indirect discovery 2155
then the access to the resource is done by a request directly to the Device that hosts that resource. 2156

11.3.6.1.2 Resource directory 2157

A resource directory (RD) is an Device that assists with indirect discovery. A RD can be queried 2158
at its /oic/res resource to find resources hosted on other Devices. These Devices can be sleepy 2159
nodes or any other device that cannot or may not respond to discovery requests. Device can 2160
publish all or partial list of resources they host to a RD. The RD then responds to queries for 2161
Resource discovery on behalf of the publishing Device (for example: when a Device may go to 2162
sleep). For general Resource discovery, the RD behaves like any other Server in responding to 2163
requests to /oic/res. 2164

Any Device that serves or acts as a RD shall expose a well-known resource /oic/rd. The Devices 2165
that want to discover RDs shall use this resource and one of the Resource discovery mechanisms 2166
to discover the RD and get the parameters of the RD. The information discovered through this 2167
resource shall be used to select the appropriate RD to use for resource publication. The bias 2168
information shall include the following criteria: power source (AC, battery powered or safe/reliable), 2169
connectivity (wireless, wired), CPU, memory, load statistics (processing publishing and query from 2170
the devices). In addition, the RD shall return a bias factor that ranges from 0 to 100. Optionally, 2171
the RD may also return a context - the value which shall be a string and semantics of the context 2172
are not discussed in this document but it is expected that the context will be used to establish a 2173
domain, region or some such scope that is meaningful to the application, deployment or usage. 2174

Using these criteria or the bias factor, the Device shall select one RD (per context) to publish its 2175
resources. A context describes the state of an OCF Device with respect to Resource discovery. A 2176
context is usually determined at deployment and from application requirements. An example of a 2177
context could be a multicast group- a Device that is a member of more than one multicast group 2178
may have to find and select a RD in each of the multicast groups (i.e. per context) to publish its 2179
information. The Device may choose other RDs during its lifetime but a Device shall not publish 2180

OCF

OCF

OIC

/oic/res

/oic/res

OCF

/oic/res Multicast

Multicast
Discovery

Unicast
Response with
resources for
Devices A, B and
D

Publish
(to /oic
res)

Device B acts as Resource
Directory for Device A and
Device D; Device A and D do
not respond to multicast query

Publish
(to /oic
res)

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 76

its resource information to more than one RD Devices such as TV, network router, desktop will 2181
have higher weightage or bias factor compared to mobile phone device. 2182

11.3.6.2 The remainder of this section is divided into two parts. The first part covers 2183
discovering of the RD and publishing, updating and deleting of resources for 2184
the constrained/sleepy device. The second part covers the replies of the RD to 2185
queries from devices with the aim to discover resources. Resource directory 2186
discovery 2187

11.3.6.2.1 Discovering a resource directory 2188

A RD in the OCF network shall support RD discovery, shall provide the facility to allow devices to 2189
publish their resource information to a RD, to update resource information in a RD and to delete 2190
resource information from a RD. 2191

 2192

Figure 30. RD discovery and RD supported query of resources support 2193

As shown in Figure 30, the Device that wishes to advertise its resources: first discovers a resource 2194
directory and then publishes the desired resource information. Once a set of resources have been 2195
published to a RD then the publishing device shall not respond to multicast Resource discovery 2196
queries for those published resources when the RD is on the same multicast domain. In that case, 2197
only the RD shall respond to multicast Resource discovery requests on the resource published to 2198
it. 2199

An OCF network allows for more than one device acting as a RD. The reason to have multiple RD 2200
support is to make network scalable, handle network failures and centralized device failure 2201
bottleneck. This does not preclude a scenario where a use case or deployment environment may 2202
require single device in the environment to be deployed as the only resource directory (e.g. 2203
gateway model). There may be more than one Device acting as RD on a Platform. 2204

Discovering of an RD may result in responses from more than one RD. The discovering device 2205
shall select a RD. The selection may be based on the weightage parameter(s) provided in the 2206
response from the RD. 2207

Query Resources

Discovery of RD and Publish

Device A Device B
(acting RD)

Device C
(discovering node)

Discover RD

Publish to RD

ep

Multicast Resource discovery

Does not respond Unicast Response
with Device A and
Device B resources

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 77

An RD will be application agnostic i.e., application should not be aware whether resource directory 2208
was queried to get the resource information. All the handling of the retrieval is kept opaque to the 2209
application. A Client that performs Resource discovery uses an RD just like it may use any other 2210
Server for discovery. It may send a unicast request to the RD when it needs only the resource 2211
advertised on the RD or do a multicast query when it does not require or have explicit knowledge 2212
of an RD. 2213

 2214

Figure 31. Resource Direction Deployment Scenarios 2215

Resource directory can also be discovered in the following manners: 2216

• Pre-configuration: Devices wishing to publish resource information may be configured a priori 2217
with the information (e.g. IP address, port, transport etc.) of a specific resource directory. This 2218
pre-configuration may be done at onboarding or may be updated on the device using an out-2219
of-band method. This pre-configuration may be done by the manufacturer or by the user/device 2220
manager. 2221

• Query-oriented: A Client wanting to discover resource directories using query-oriented 2222
discovery (i.e. pull) shall issue multicast Resource discovery request directed to the /oic/rd 2223
resource. Only the devices that hosts a /oic/rd resource shall respond to this query. The 2224
response shall include information about the RD (as defined by the resource type) and 2225
weightage parameters to allow the discovering device to select between RDs (see details in 2226
RD selection section). The /oid/rd resource shall be instantiated on the OCF Devices acting as 2227
a resource directory. The /oic/rd schema is as defined in D.12. 2228

• Advertisement: An RD may advertise about itself to devices. It is an advertisement packet. The 2229
devices that are already publishing to a RD may use this as a heartbeat message of the RD. If 2230
the RD advertisement does not arrive at a stipulated interval, publishing device starts searching 2231
for other RDs in the network, as this is a signal that RD is not online. Other usage of this 2232
message is it serves as an advertisement for a device seeking a RD to publish their resources. 2233
The details from the advertisement can then be used to query directly to a RD to get weightage 2234
details instead of sending a multicast packet in a network. As it is intended this is sent at a 2235
regular interval and does not include weightage information to keep packet sizes small. 2236

• One of the important benefits of an RD is to make services discoverable in networks that don't 2237
support site wide multicast but do support site wide routing. An example of such a network is 2238
Homenet .To enable an RD function across such a network a site discovery mechanism is 2239
needed to discover the RD service (IP address & port number). Homenets that support hybrid 2240

Platform

OCF

/oic/res
/oic/rd

Platform

OCF Device
A

/oic/res

OCF Device
B

/oic/res
/oic/rd

OCF Device serving as
Resource Directory

Platform with dedicated Resource
Directory

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 78

proxy (IETF draft-ietf-homenet-hybrid-proxy-zeroconf-00) allow site wide discovery based on 2241
dns-sd/mDNS. In order to make itself discoverable beyond the link local scope, an RD with a 2242
routable ip address shall implement the mDNS responder requirements defined in 2243
IETF RFC 6762. The RD shall respond to mDNS queries of type PTR and with a service name 2244
equal to "_rd._sub._oic._udp.local". The response shall include all routable IP addresses. 2245
Devices with a routable ip address shall discover all available RD instances by issuing a DNS-2246
SD's PTR lookup as defined in IETF RFC 6763 with as service name service name 2247
"_rd._sub._oic._udp.local". The response shall include all routable addresses/port pair through 2248
which the RD service is made accessible. 2249

11.3.6.2.2 Resource directory selection process 2250

11.3.6.2.2.1 Selection criteria 2251

When a device discovers more than one RD then it shall decide to use one of these RDs based on 2252
the selection criteria described here. A device shall use or publish information to only one RD 2253
within a multicast domain at a given time. This is to minimize the burden of processing duplicate 2254
information in the Resource discovery phase. 2255

There two ways to select an RD. One is based on a bias factor (RD generated) and the other is 2256
based on clients determination based on granular parameters provided by the server (client/device 2257
generated). Devices may use one or both methods to select an RD. 2258

Bias factor: The bias factor is a server generated positive number in the range of 0 to 100, where 2259
0 is the lowest to 100 being the highest. If two RDs have the same bias factor then the selecting 2260
device may choose either based auxiliary criteria or at random. Either way only one RD shall be 2261
selected and used at a time. No specific method is defined in this specification to determine the 2262
bias factor for an RD. The number may be a pre-configured value at the time of onboarding or 2263
subsequent configuration of the RD or may be based on a formula determined by the 2264
implementation of the RD. (OCF will provide a standard formula for this calculation in a future 2265
version or release of specification). 2266

The bias factor shall be calculated by the RD by adding the contribution values determined for 2267
each of the parameters in Table 19 and divided by the number of parameters. An RD may advertise 2268
a bias factor larger than the calculated value when there is reason to believe that the RD is highly 2269
capable for example an installed service provider gateway. 2270

Parameters: Optionally, parameters defined in Table 19 (like direct power supply, network 2271
connectivity, load conditions, CPU power, memory, etc.) may be returned in the discovery 2272
response. Discovering device may use the details to make granular selection decisions based on 2273
client defined policies and criteria that use the RD parameters. For example, a device in an 2274
industrial deployment may not weight power connectivity high but another in home environments 2275
may give more weightage for power. 2276

Table 19: Selection parameters 2277

Parameter Values
(Contribution)

Description

Power Safe (100)
AC (70)
Batt (40)

• Safe implies that the power supply is reliable and is backed up with
battery for power outages etc.

• Implementation may lower the number for Batt based on the type of
battery the RD device runs on. If battery conservation is important
then this number should be lowered.

Mobility Fixed (100)
Mobile (50)

• Implementation may further grade the mobility number based on how
mobile the RD device is; lower number for highly mobile and larger
numbers for limited mobility

• The mobility number shall not be larger than 80

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 79

Network
Product

Type:
• Wired (10)
• Wireless (4)
Bandwidth:
• High (10)
• Low (5)
• Lossy (3)
Interfaces

• Network product = [sum of (type * bandwidth per network
interface)]/[number of interfaces]

• Normalized to 100

Memory Factor Available
Total

• Memory is the volatile or non-volatile storage used to store the
resource information

• Memory Factor = [Available]/[Total]
• Normalized to 100 (i.e. expressed as percentage)

Request Load
Factor

1-minute
5-minute
15-minutes

• Current request loading of the RD
• Similar to UNIX load factor (using observable, pending and processing

requests instead of runnable processes)
• Expressed as a load factor 3-tuple (up to two decimal points each).

Factor is based on request processed in a 1-minute (L1), 5-minute
(L5) and 15-minute (L15) windows

• See http://www.teamquest.com/import/pdfs/whitepaper/ldavg1.pdf
• Factor = 100 – ([L1*3 + L5*7 + L15*10]/3)

 2278

11.3.6.2.2.2 Selection scenarios 2279

The device that wants to use an RD will use the endpoint discovery to find zero or more RDs on 2280
the network. After discovering the RDs, the device needs to select an RD of all found RDs on the 2281
network. The selection based on the bias factor will ensure that an Device can judge if the found 2282
RD is suitable for its needs. 2283

The following situation can occur during the selection of an RD: 2284

1) A single or multiple RDs are present in the network 2285

2) No RD is present in the network 2286

3) an additional RD arrives on the network 2287

 2288

In the first scenario the RDs are already present. If a single RD is detected then that RD can be 2289
used . When multiple RDs are detected the Device uses the bias information to select the RD. 2290

 2291

In the second scenario, device will listen to the advertisement of the devices that hosts the RDs. 2292
Once an RD advertisement packet is received it judges if the bias criteria are met and starts using 2293
the RDs. 2294

 2295

In the third scenario the Device has already published its resources to an existing RD. In this 2296
scenario it discovers a new RD on the network. 2297

After judging the bias factor the Device may choose to move to the new RD. 2298

 2299

http://www.teamquest.com/import/pdfs/whitepaper/ldavg1.pdf

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 80

11.3.6.3 If the decision is made to select the new RD, the then Device shall delete its 2300
resource information from the current used RD and then after removal publish 2301
the information to the new RD. During the transition period the Device itself 2302
shall respond to Resource discovery requests. Resource publishing 2303

11.3.6.3.1 Publish resources 2304

11.3.6.3.1.1 Overview 2305

After the selection process of a RD, a device may choose one of the following mechanisms: 2306

• Push its resources information to the selected RD or 2307

• Request the RD to pull the resource information by doing a unicast discovery request against 2308
its /oic/res 2309

The publishing device may decide to publish all resources or few resources on the resource 2310
directory. The publishing device shall only publish resources that are otherwise published to its 2311
own /oic/res. A publishing device may respond to discovery requests (on its /oic/res resource) for 2312
the resources it does not publish to a RD. Nonetheless, it is highly recommended that when an RD 2313
is used, all discoverable resources on the publisher be published to the RD. 2314

11.3.6.3.1.2 Publish: Push resource information 2315

Resource information is published using an UPDATE CRUDN operation to /oic/rd using the 2316
resource type oic.wk.rdpub and the oic.if.baseline interface. 2317

Once a publishing device has published resources to a RD, it may not respond to the multicast 2318
discovery queries for the same resources against its own /oic/res, especially when on the same 2319
multicast domain as the RD. After publishing resources, it is a RD responsibility to reply to the 2320
queries for the published resources. 2321

If the publishing device is in sleep mode and a RD has replied on behalf of the publishing device, 2322
then a discovering device will try to access resource on the provided URI. 2323

There is another possibility that the resource directory and the publishing device both respond to 2324
the multicast query from the discovering device. This will create a duplication of the packet but is 2325
an alternate that may be used for non-robust network. It is not a recommended option but for 2326
industrial scenarios, this is one of the possibilities. Either way, discovering clients shall always be 2327
prepared to process duplicate information in responses to multicast discovery request. The /oic/rd 2328
schema is as defined in D.12 to specify publishing (oic.rd.publish) to the /oic/rd resrouce. 2329

11.3.6.3.2 Update resource information 2330

Server will hold the publish resource information till the time specified in the ttl field. A device can 2331
send update if it seeks a RD to keep holding resources and reply to queries on its behalf. Update 2332
can be used for updating about all resources that are published on a RD or can use to do per 2333
resource published. 2334

Updates are done using the same resource type and interface as for the initial publish but only the 2335
information to be updated is provided in the payload. 2336

11.3.6.3.3 Delete resource information 2337

A resource information hold at the resource directory can be removed anytime by the publishing 2338
device. It can be either for the whole device information or for a particular resource. This resource 2339
should be only allowed when device meets a certain requirement, as it can create potential security 2340
issue. 2341

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 81

The delete is done using the device ID “id” as the tag in DELETE request query when all the 2342
resource information from the device is to be deleted. In the case of a specific resource then the 2343
DELETE request shall include the instance “ins” tag along with the device ID in the query. 2344

Selective deletion of information for individual resources is not possible the case where the RD 2345
pull the resource information. The publishing device can request a delete but only for all the 2346
resource information that the RD has pulled from that device. In this case, the DELETE request 2347
has the device ID “id” tag in the query. 2348

11.3.6.3.4 Transfer resource information from one RD to another 2349

When a publishing device identifies an RD that is better suited, it may decide to publish to that RD. 2350
Since the device shall publish to only one RD at a time, the client shall ensure that previously 2351
published information is deleted from the currently used RD before publishing to the newly selected 2352
RD. The deletion of the resource may be done either by allowing the TTL to expire or explicitly 2353
deleting the resource information. 2354

RDs shall not communicate resource information between themselves. It is the client’s 2355
responsibility to choose the RD and to manage the published resources. 2356

11.3.6.4 Resource discovery 2357

11.3.6.4.1 Query and retrieving of the resources 2358

The query based discovery process remains the same as that in the absence of an RD. Resources 2359
may be discovered by querying the /oic/res resource by sending a multicast or unicast request. In 2360
the case of a multicast discovery request, an RD will respond for the device that hosts the 2361
resources. Clients shall be prepared to process duplicate resource information from more than one 2362
RD responding with the same information or from an RD and the hosting device (publishing the 2363
resource information) both responding to the request. Interaction with resources discovered using 2364
the RD is done using the same mechanism and methods as with resources discovered by querying 2365
the /oic/res resource of the device hosting the resources (e.g., connect to the resource and perform 2366
CRUDN operations on the resource). 2367

11.4 Notification 2368

 Overview 2369

An Server shall support NOTIFY operation to enable a Client to request and be notified of desired 2370
states of one or more Resources in an asynchronous manner. Section 11.4.2 specifies the observe 2371
mechanism in which updates are delivered to the requester. 2372

 Observe 2373

In observe mechanism the Client utilizes the RETRIEVE operation to require the Server for updates 2374
in case of Resource state changes. The Observe mechanism consists of five steps which are 2375
depicted in Figure 32 and described below. 2376

Note: the observe mechanism can only be used for a resource with a property of observable 2377
(section 7.3.2.2). 2378

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 82

OIC Client OIC Server

1. RETRIEVE Request
(Observe)

3. RETRIEVE Response
(Observe)

5. RETRIEVE Response
(Observe)

2. Observe request
cached

4. Observe
condition satisfied

 2379

Figure 32. Observe Mechanism 2380

11.4.2.1 RETRIEVE request with observe indication 2381

The Client transmits a RETRIEVE request message to the Server to request updates for the 2382
Resource on the Server if there is a state change. The RETRIEVE request message carries the 2383
following parameters: 2384

• fr: Unique identifier of the Client 2385

• to: Resource that the Client is requesting to observe 2386

• ri: Identifier of the RETRIEVE request 2387

• op: RETRIEVE 2388

• obs: Indication for observe request 2389

11.4.2.2 Processing by the Server 2390

Following the receipt of the RETRIEVE request, the Server may validate if the Client has the 2391
appropriate rights for the requested operation and the properties are readable and observable. If 2392
the validation is successful, the Server caches the information related to the observe request. The 2393
Server caches the value of the ri parameter from the RETRIEVE request for use in the initial 2394
response and future responses in case of a change of state. 2395

11.4.2.3 RETRIEVE response with observe indication 2396

The Server shall transmit a RETRIEVE response message in response to a RETRIEVE request 2397
message from a Client. The RETRIEVE response message shall include the following parameters. 2398
If validation succeeded, the response includes an observe indication. If not, the observe indication 2399
is omitted from the response which signals to the requesting client that registration for notification 2400
was not allowed. 2401

The RETRIEVE response message shall include the following parameters: 2402

• fr: Unique identifier of the Server 2403

• to: Unique identifier of the Client 2404

• ri: Identifier included in the RETRIEVE request 2405

• cn: Information resource representation as requested by the Client 2406

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 83

• rs: The result of the RETRIEVE operation 2407

• obs: Indication that the response is made to an observe request 2408

11.4.2.4 Resource monitoring by the Server 2409

The Server shall monitor the state the Resource identified in the observe request from the Client. 2410
Anytime there is a change in the state of the observed resource, the Server sends another 2411
RETRIEVE response with the observe indication. The mechanism does not allow the client to 2412
specify any bounds or limits which trigger a notification, the decision is left entirely to the server. 2413

11.4.2.5 Additional RETRIEVE responses with observe indication 2414

The Server shall transmit updated RETRIEVE response messages following observed changes in 2415
the state of the Resources indicated by the Client. The RETRIEVE response message shall include 2416
the parameters listed in section 11.4.2.3. 2417

11.4.2.6 Cancelling Observe 2418

The Client can explicitly cancel observe by sending a RETRIEVE request without the observe 2419
indication field to the same resource on Server which it was observing. For certain protocol 2420
mappings, the client may also be also be able to cancel an observe by ceasing to respond to the 2421
RETRIEVE responses. 2422

11.5 Device management 2423

The Device Management includes the following functions: 2424

• Diagnostics and maintenance 2425

The device management functionalities specified in this version of specification are intended to 2426
address the basic device management features. Addition of new device management features in 2427
the future versions of the specification is expected. 2428

 Diagnostics and maintenance 2429

The Diagnostics and Maintenance function in the Framework is intended for use by the 2430
administrators to resolve issues encountered with the Devices while operating in the field. If 2431
diagnostics and maintenance is supported by a Device, the Core Resource ‘/oic/mnt’ shall be 2432
supported as described in Table 20. 2433

Table 20. Optional diagnostics and maintenance device management Core Resources 2434

Pre-
defined
URI

Resource
Type Title

Resource
Type ID
(“rt” value)

Interfaces Description Related
Functional
Interaction

/oic/mnt Maintenance oic.wk.mnt oic.if.rw The resource through which the device is
maintained and can be used for diagnostic
purposes.
The resource properties exposed by
/oic/mnt are listed in Table 21.

Device
Management

 2435

Table 21 defines the oic.wk.mnt resource type. At least one of the Factory_Reset, and Reboot 2436
properties shall be implemented. 2437

Table 21. oic.wk.mnt resource type definition 2438

Property title Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Name n string R, W no

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 84

Factory_Reset fr boolean R, W no When writing to this
Property:
0 – No action (Default*)
1 – Start Factory Reset
After factory reset, this
value shall be changed
back to the default value
(i.e., 0).
After factory reset all
configuration and state
data will be lost.
When reading this
Property, a value of “1”
indicates a pending
factory reset, otherwise
the value shall be “0”
after the factory reset.

Reboot rb boolean R, W no When writing to this
Property:
0 – No action (Default)
1 – Start Reboot
After Reboot, this value
shall be changed back to
the default value (i.e., 0)

 2439

Note: * - Default indicates the value of this property as soon as the device is rebooted or factory reset 2440

 2441

The Framework specifies the following commands to be executed on the designated diagnostic 2442
resource of Devices over the network: 2443

• Factory_Reset: Updates the device configuration to its original (default) state (factory state 2444
and equivalent to hard reboot) 2445

• Reboot: Triggers a soft reboot of a Device maintaining most of the configurations intact 2446

Execution of these commands may result in a change in the configuration state of a Device. The 2447
configuration information in the configuration resource is expected to be updated following 2448
execution of these commands by the Device, if needed. A Client invokes operations on the Server 2449
for executing the Diagnostic functions by sending an UPDATE message to the Server. 2450

 2451

11.6 Scenes 2452

 Introduction 2453

Scenes are a mechanism for automating certain operations. 2454

A scene is a static entity that stores a set of defined resource property values for a collection of 2455
resources. Scenes provide a mechanism to store a setting over multiple Resources that may be 2456
hosted by multiple separate Servers. Scenes, once set up, can be used by multiple Clients to recall 2457
a setup. 2458

Scenes can be grouped and reused, a group of scences is also a scene. 2459

In short, scenes are bundled user settings. 2460

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 85

 Scenes 2461

11.6.2.1 Introduction 2462

Scenes are described by means of resources. The scene resources are hosted by a Server and 2463
the top level resource is listed in /oic/res. This means that a Client can determine if the scene 2464
functionality is hosted on a Server via a RETRIEVE on /oic/res or via Resource discovery. The 2465
setup of scenes is driven by Client interactions. This includes creating new scenes, and mappings 2466
of Server resource properties that are part of a scene. 2467

The scene functionality is created by multiple resources and has the structure depicted in Figure 2468
33. The sceneList and sceneCollection resources are overloaded collection resources. The 2469
sceneCollection contains a list of scenes. This list contains zero or more scenes. The 2470
sceneMember resource contains the mapping between a scene and what needs to happen 2471
according to that scene on an indicated resource. 2472

 2473

Figure 33 Generic scene resource structure 2474

11.6.2.2 Scene creation 2475

A Client desiring to interact with scenes needs to first determine if the server supports the scene 2476
feature; the sceneMembers of a scene do not have to be co-located on the server supporting the 2477
scene feature. This can be done by checking if /oic/res contains the rt of the sceneList resource. 2478
This is depicted in first steps of Figure 34. The sceneCollection is created by the Server using 2479
some out of bound mechanism, Client creation of scenes is not supported at this time. This will 2480
entail defining the scene with an applicable list of scene values and the mappings for each 2481
Resource being part of the scene. The mapping for each resource being part of the sceneCollection 2482
is described by a resource called sceneMember. The sceneMember resource contains the link to 2483
a resource and the mapping between the scene listed in the sceneValues property and the actual 2484
resource property value of the Resource indicated by the link. 2485

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 86

 2486

Figure 34 Interactions to check Scene support and setup of specific scenes 2487

11.6.2.3 Interacting with Scenes 2488

All capable Clients can interact with scenes. The allowed scene values and the last applied scene 2489
value can be retrieved from the server hosting the scene. The scene value shall be changed by 2490
issuing an UPDATE operation with a payload that sets the lastScene property to one of the listed 2491
allowed scene values. These steps are depicted in Figure 35. Note that the lastScene value does 2492
not imply that the current state of all resources that are part of the scene will be at the mapped 2493
value. This is due to that the setting the scene values are not modelled as actual states of the 2494
system. This means that another Client can change just one resource being part of the scene 2495
without having feedback that the state of the scene is changed. 2496

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 87

 2497

Figure 35 Client interactions on a specific scene 2498

As described previously, a scene can reference one or more resources that are present on one or 2499
more Servers. The scene members are re-evaluated each time a scene change takes place. This 2500
evaluation is triggered by a Client that is either embedded as part of the Server hosting the scene, 2501
or separate to the server having knowledge of the scene via a RETRIEVE operation, observing the 2502
referenced resources using the mechanism described in section 11.4.2. During the evaluation the 2503
mappings for the new scene value will be applied to the Server. This behaviour is depicted in 2504
Figure 36. 2505

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 88

 2506

Figure 36 Interaction overview due to a Scene change 2507

11.6.2.4 Summary of resource types defined for Scene functionality 2508

Table 22 summarizes the list of resource types that are part of Scenes. 2509

Table 22 list of resource types for Scenes 2510

Friendly Name (informative) Resource Type (rt) Short Description Section

sceneList oic.wk.sceneList Top Level collection containing
sceneCollections

sceneCollection oic.wk.sceneCollection Description of zero or more
scenes

sceneMember oic.wk.sceneMember Description of mappings for
each specific resource part of
the sceneCollection

 Security considerations 2511

Creation of Scenes on a Server that is capable of this functionality is dependent on the ACLs 2512
applied to the resources and the Client having the appropriate permissions. Interaction between 2513
a Client (embedded or separate) and a Server that hosts the resource that is referenced as a scene 2514
member is contingent on the Client having appropriate permissions to access the resource on the 2515
host Server. 2516

See OCF Security for details on the use of ACLs and also the mechanisms around Device 2517
Authentication that are necessary to ensure that the correct permissions exist for the Client to 2518
access the scene member resource(s) on the Server. 2519

 2520

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 89

12 Messaging 2521

12.1 Introduction 2522

This section specifies the protocol messaging mapping to the CRUDN messaging operations 2523
(Section 8) for each messaging protocol specified (e.g., CoAP.). Mapping to additional protocols 2524
is expected in later version of this specification. All the property information from the resource 2525
model shall be carried within the message payload. This payload shall be generated in the resource 2526
model layer and shall be encapsulated in the data connectivity layer. The message header shall 2527
only be used to describe the message payload (e.g., verb, mime-type, message payload format), 2528
in addition to the mandatory header fields defined in messaging protocol (e.g., CoAP) specification. 2529
If the message header does not support this, then this information shall also be carried in the 2530
message payload. Resource model information shall not be included in the message header 2531
structure unless the message header field is mandatory in the messaging protocol specification. 2532

12.2 Mapping of CRUDN to CoAP 2533

 Overview 2534

A Device implementing CoAP shall conform to IETF RFC 7252 for the methods specified in section 2535
12.2.3. A Device implementing CoAP shall conform to IETF draft-ietf-core-observe-16 to 2536
implement the CoAP Observe option. Support for CoAP block transfer when the payload is larger 2537
than the MTU is defined in section 12.2.6. 2538

 URIs 2539

An OCF: URI is mapped to a coap: URI by replacing the scheme name ‘oic’ with ‘coap’ if unsecure 2540
or ‘coaps’ if secure before sending over the network by the requestor. Similarly on the receiver 2541
side, the scheme name is replaced with ‘oic’. 2542

 CoAP method with request and response 2543

12.2.3.1 Overview 2544

Every request has a CoAP method that realizes the request. The primary methods and their 2545
meanings are shown in Table 23, which provides the mapping of GET/PUT/POST/DELETE 2546
methods to CREATE, RETRIEVE, UPDATE, and DELETE operations. The associated text provides 2547
the generic behaviours when using these methods, however resource interfaces may modify these 2548
generic semantics. 2549
 2550

Table 23. CoAP request and response 2551

Method for
CRUDN (mandatory) Request data (mandatory) Response data

GET for
RETRIEVE

- Method code: GET (0.01)
- Request URI: an existing URI for the
Resource to be retrieved

- Response code: success (2.xx) or error (4.xx)
- Payload: Resource representation of the target
Resource (when successful)

POST for
CREATE

- Method code: POST (0.02)
- Request URI: an existing URI for the
Resource responsible for the creation
- Payload: Resource presentation of the
Resource to be created

- Response code: success (2.xx) or error (4.xx)
- Payload: the URI of the newly created Resource
(when successful).

PUT for
CREATE

- Method code: PUT (0.03)
- Request URI: a new URI for the
Resource to be created.
- Payload: Resource presentation of the
Resource to be created.

- Response code: success (2.xx) or error (4.xx)

POST for
UPDATE

- Method code: POST (0.02) - Response Code: success (2.xx) or error (4.xx)

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 90

- Request URI: an existing URI for the
Resource to be updated.
- Payload: representation of the
Resource to be updated.

DELETE for
DELETE

- Method code: DELETE (0.04)
- Request URI: an existing URI for the
Resource to be deleted.

- Response code: success (2.xx) or error (4.x)

 2552

12.2.3.2 CREATE with POST or PUT 2553

12.2.3.2.1 With POST 2554

POST shall be used only in situations where the request URI is valid, that is it is the URI of an 2555
existing Resource on the Server that is processing the request. If no such Resource is present, 2556
the Server shall respond with an error response code of 4.xx. The use of POST for CREATE shall 2557
use an existing request URI which identifies the Resource on the Server responsible for creation. 2558
The URI of the created Resource is determined by the Server and provided to the Client in the 2559
response. 2560

A Client shall include the representation of the new Resource in the request payload. The new 2561
resource representation in the payload shall have all the necessary properties to create a valid 2562
Resource instance, i.e. the created Resource should be able to properly respond to the valid 2563
Request with mandatory Interface (e.g., GET with ?if=oic.if.baseline). 2564

Upon receiving the POST request, the Server shall either 2565

• create the new Resource with a new URI, respond with the new URI for the newly created 2566
Resource and a success response code (2.xx); or 2567

• respond with an error response code (4.xx). 2568

POST is unsafe and is the supported method when idempotent behaviour cannot be expected or 2569
guaranteed. 2570

12.2.3.2.2 With PUT 2571

PUT shall be used to create a new Resource or completely replace the entire representation of an 2572
existing Resource. The resource representation in the payload of the PUT request shall be the 2573
complete representation. PUT for CREATE shall use a new request URI identifying the new 2574
Resource to be created. 2575

The new resource representation in the payload shall have all the necessary properties to create 2576
a valid Resource instance, i.e. the created Resource should be able to properly respond to the 2577
valid Request with mandatory Interface (e.g. GET with ?if=oic.if.baseline). 2578

Upon receiving the PUT request, the Server shall either 2579

• create the new Resource with the request URI provided in the PUT request and send back a 2580
response with a success response code (2.xx); or 2581

• respond with an error response code (4.xx). 2582

PUT is an unsafe method but it is idempotent, thus when a PUT request is repeated the outcome 2583
is the same each time. 2584

12.2.3.3 RETRIEVE with GET 2585

GET shall be used for the RETRIEVE operation. The GET method retrieves the representation of 2586
the target Resource identified by the request URI. 2587

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 91

Upon receiving the GET request, the Server shall either 2588

• send back the response with the representation of the target Resource with a success response 2589
code (2.xx); or 2590

• respond with an error response code (4.xx) or ignore it (e.g. non-applicable multicast GET). 2591

GET is a safe method and is idempotent. 2592

12.2.3.4 UPDATE with POST 2593

POST shall be used only in situations where the request URI is valid, that is it is the URI of an 2594
existing Resource on the Server that is processing the request. If no such Resource is present, 2595
the Server shall respond with an error response code of 4.xx. A client shall use POST to UPDATE 2596
Property values of an existing Resource (see Sections 3.1.32 and 8.4.2). 2597

Upon receiving the request, the Server shall either 2598

• apply the request to the Resource identified by the request URI in accordance with the applied 2599
interface (i.e. POST for non-existent Properties is ignored) and send back a response with a 2600
success response code (2.xx); or 2601

• respond with an error response code (4.xx). Note that If the representation in the payload is 2602
incompatible with the target Resource for POST using the applied interface (i.e. the "overwrite" 2603
semantic cannot be honored because of read-only property in the payload), then the error 2604
response code 4.xx shall be returned. 2605

POST is unsafe and is the supported method when idempotent behaviour cannot be expected or 2606
guaranteed. 2607

12.2.3.5 DELETE with DELETE 2608

DELETE shall be used for DELETE operation. The DELETE method requests that the resource 2609
identified by the request URI be deleted. 2610
Upon receiving the DELETE request, the Server shall either 2611
• delete the target Resource and send back a response with a success response code (2.xx); or 2612

• respond with an error response code (4.xx). 2613

DELETE is unsafe but idempotent (unless URIs are recycled for new instances). 2614
 2615
 2616

 Content Type negotiation 2617

The Device framework mandates support of CBOR, however it allows for negotiation of the payload 2618
body if more than one encoding type is supported by an implementation. In this case the accept 2619
option defined in section 5.10.4 of IETF RFC 7252 shall be used to indicate which content 2620
encodings are requested by the Client. 2621

Content types supported are as shown in Table 24. 2622

Table 24. Content Types and Content Formats 2623

Content Type Content Format

application/xml 41

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 92

application/exi 47

application/json
defined in IETF RFC 7159

50

application/cbor
defined in IETF RFC 7049

60

Note: An OCF vertical can mandate a specific content type. 2624

Server and Client shall send a Content-Format option every time in a message with a payload 2625
body. The Content Format option shall use the Content Format numeric value from Table 24. 2626

 CRUDN to CoAP response codes 2627

The mapping of CRUDN operations response codes to CoAP response codes are identical to the 2628
response codes defined in IETF RFC 7252. 2629

 CoAP block transfer 2630

Basic CoAP messages work well for the small payloads typical of light-weight, constrained IoT 2631
devices. However scenarios can be envisioned in which an application needs to transfer larger 2632
payloads. 2633

CoAP block-wise transfer as defined in IETF draft-ietf-core-block-18 shall be used by all Servers 2634
which generate a content payload that would exceed the size of a CoAP datagram as the result of 2635
handling any defined CRUDN operation. 2636

Similarly, CoAP block-wise transfer as defined in IETF draft-ietf-core-block-18 shall be supported 2637
by all Clients. The use of block-wise transfer is applied to both the reception of payloads as well 2638
as transmission of payloads that would exceed the size of a CoAP datagram. 2639

All blocks that are sent using this mechanism for a single instance of a transfer shall all have the 2640
same reliability setting (i.e. all confirmable or all non-confirmable). 2641

A Client may support both the block1 (as descriptive) and block2 (as control) options as described 2642
by IETF draft-ietf-core-block-18. A Server may support both the block1 (as control) and block2 (as 2643
descriptive) options as described by IETF draft-ietf-core-block-18. 2644

 CoAP serialization over TCP 2645

12.2.7.1 Introduction 2646

In environments where TCP is already available, CoAP can take advantage of it to provide 2647
reliability. Also in some environments UDP traffic is blocked, so deployments may use TCP. For 2648
example, consider a cloud application acting as a Client and the Server is located at the user’s 2649
home. The Server which already support CoAP as a messaging protocol (e.g., Smart Home vertical 2650
profile) could easily support CoAP serialization over TCP rather than adding another messaging 2651
protocol. A Device implementing CoAP Serialization over TCP shall conform to IETF draft-2652
tschofenig-core-coap-tcp-tls-04. 2653

12.2.7.2 Indication of support 2654

If UDP is blocked, clients depend on the pre-configured details on the device to find support for 2655
CoAP over TCP. If UDP is not-blocked, a Device which supports CoAP serialization over TCP shall 2656
populate the Messaging Protocol (mpro) property in oic/res with the value “coap+tcp” or “coaps+tcp” 2657
to indicate that the device supports messaging protocol as specified by section 11.3.4. 2658

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 93

12.2.7.3 Message type and header 2659

The message type transported between Client and Server shall be a non-confirmable message 2660
(NON). The protocol stack used in this scenario shall be as described in section 3 in IETF draft-2661
tschofenig-core-coap-tcp-tls-04. 2662

The CoAP header as described in figure 6 in IETF draft-tschofenig-core-coap-tcp-tls-04 shall be 2663
used for messages transmitted between a Client and a Server. A Device shall use “Alternative L3” 2664
as defined in IETF draft-tschofenig-core-coap-tcp-tls-04. 2665

12.2.7.4 URI scheme 2666

The URI scheme used shall be as defined in section 6 in IETF draft-tschofenig-core-coap-tcp-tls-2667
04]. 2668

For the “coaps+tcp” URI scheme the “TLS Application Layer Protocol Negotiation Extension” 2669
IETF RFC 7301 shall be used. 2670

12.2.7.5 KeepAlive 2671

12.2.7.5.1 Overview 2672

In order to ensure that the connection between a Device is maintained, when using CoAP 2673
serialization over TCP, a Device that initiated the connection should send application layer 2674
KeepAlive messages. The reasons to support application layer KeepAlive are as follows: 2675

• TCP KeepAlive only guarantees that a connection is alive at the network layer, but not at the 2676
application layer 2677

• Interval of TCP KeepAlive is configurable only using kernel parameters, and is OS dependent 2678
(e.g., 2 hours by default in Linux) 2679

12.2.7.5.2 KeepAlive Mechanism 2680

Devices supporting CoAP over TCP shall use the following KeepAlive mechanism. A Server shall 2681
support a resource of type oic.wk.ping as defined in Table 25. 2682

Table 25. Ping resource 2683

Pre-
defined

URI

Resource
Type
Title

Resource
Type ID

(“rt” value)

Interfaces Description Related
Functional
Interaction

/oic/pin
g

Ping oic.wk.ping

oic.if.rw The resource using which a Client keeps its
Connection with a Server active.
The resource properties exposed by /oic/ping are
listed in Table 26.

KeepAlive

 2684

Table 26 defines oic.wk.ping resource type. 2685

Table 26. oic.wk.ping resource type definition 2686

Property title Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Name n string R, W no

Interval in integer minutes R,W yes The time interval for which
connection shall be kept alive
and not closed.

The following steps detail the KeepAlive mechanisms for a Client and Server: 2687

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 94

1) A Client which wants to keep the connection with a Server alive shall send a PUT request to 2688
/oic/ping resource on the Server updating its connection Interval. 2689

a) This time interval shall start from 2 minutes and increases in multiples of 2 up to a maximum 2690
of 64 minutes. It stays at 64 minutes from that point. 2691

2) An Server receiving this ping request shall respond within 1 minute. 2692

3) If a Client does not receive the response within 1 minute, it shall terminate the connection. 2693

4) If an Server does not receive a PUT request to ping resource within the specified "interval" 2694
time, the Server shall terminate the connection. 2695

An example of the KeepAlive mechanism is as follows: 2696

• Client → Server: PUT /oic/ping {interval: 2} 2697

• Server → Client: 2.03 valid 2698

 2699

12.3 Payload Encoding in CBOR 2700

OCF implementations shall perform the conversion to CBOR from JSON defined schemas and to 2701
JSON from CBOR in accordance with IETF RFC 7049 section 4 unless otherwise specified in this 2702
section. 2703

Properties defined as a JSON integer shall be encoded in CBOR as an integer (CBOR major types 2704
0 and 1). Properties defined as a JSON number shall be encoded as an integer, single- or double-2705
precision floating point (CBOR major type 7, sub-types 26 and 27); the choice is implementation 2706
dependent. Half-precision floating point (CBOR major 7, sub-type 25) shall not be used. Integer 2707
numbers shall be within the open range (-2^53, 2^53). Properties defined as a JSON number 2708
should be encoded as integers whenever possible; if this is not possible Properties defined as a 2709
JSON number should use single-precision if the loss of precision does not affect the quality of 2710
service, otherwise the Property shall use double-precision. 2711

 2712

On receipt of a CBOR payload, an implementation shall be able to interpret CBOR integer values 2713
in any position. If a property defined as a JSON integer is received encoded other than as an 2714
integer, the implementation may reject this encoding using a final response as appropriate for the 2715
underlying transport (e.g. 4.00 for CoAP) and thus optimise for the integer case. If a property is 2716
defined as a JSON number an implementation shall accept integers, single- and double-precision 2717
floating point. 2718

13 Security 2719

The details for handling security and privacy are specified in [OCF Security]. 2720

 2721

14 Multi resource model support 2722

14.1 Interoperability issue 2723

14.1.1 Multiple IoT Standards 2724

Note: Alignment and interoperability between models will be added in a later version of the 2725
specification. 2726

IoT requires standardization for interoperability among diverse devices and multiple standards are 2727
under development currently. IETF defines network and web transfer protocol (e.g. 6lowpan 2728
[RFC6775] and CoAP [RFC6690], [RFC7252]), oneM2M [oneM2M] produces technical 2729

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 95

specifications for a common M2M Service Layer [oneM2M-TS0001], [oneM2M-TS0004] and IPSO 2730
Alliance [IPSO] publishes Smart Object Guideline [IPSOSmartObjects]. 2731

Multitude of IoT standards are based on "Representational State Transfer (REST)", which is a 2732
software architecture style with a coordinated set of constraints for the design of components in a 2733
distributed hypermedia system [REST]. In REST based IoT, a real world entity is represented as 2734
resource in a server, which a client accesses and manipulates the resource through 2735
representations to interact with the entity, i.e. sensing and controlling the physical environments. 2736
Moreover several IoT standards adopt the common network and web transfer protocols. oneM2M, 2737
IPSO and OCF all use CoAP and IP/ UDP, [oneM2M-TS0008], [IPSO], [OCF] so any client and 2738
server supporting those standards can exchange request and response messages. 2739

However in order to interact properly, it's not sufficient for IoT devices to be able to transfer CoAP 2740
messages. IoT devices should understand each other's resources and be aware of their semantic 2741
meaning and syntactic form. Currently each standard defines its own "resource model" and 2742
specifies a different scheme to construct resources from physical entities such as light [OCF], 2743
[IPSOFramework], [IPSOSmartObjects], [oneM2M-TS0001]. Hence client and server adopting 2744
different standards can't perform meaningful interaction, i.e. the client can't manipulate the 2745
resource representation in the server. 2746

For wider interoperability among multiple standards, IoT devices need to understand each other's 2747
resource model to process CoAP request and response message properly. To interpret resources 2748
correctly, client and server need to determine which resource model each other follows in the first 2749
place. The client should be aware of whether its corresponding server adopts oneM2M or OCF 2750
model and vice versa. 2751

14.1.2 Different resource models 2752

OCF specification follows a resource oriented architecture with RESTful architectural style. 2753
Without common understanding on resource model, two IoT devices can’t interact with each other. 2754

Currently multiple organizations such as OCF, IPSO Alliance or oneM2M, define their own resource 2755
model in difference ways, which may restrict interoperability to the respective ecosystems. The 2756
main discrepancies are as follows 2757

• Resource structure: Some define resource to have attributes (e.g. oneM2M), whereas 2758
others define it atomic and not decomposed into attributes (e.g. IPSO alliance). For 2759
example, a smart light may be represented as a resource with on-off attribute or a 2760
resourcecollection with on-off resource. In the former, on-off attribute doesn’t have URI 2761
and should be accessed indirectly via the resource. In the latter, being a resource itself, 2762
on-off resource is assigned its own URI and can be directly manipulated. 2763

• Resource name & type: Some allow resource to be named freely and indicate its 2764
characteristic with separate resource type attribute (e.g. oneM2M). Whereas others fix the 2765
name ofresource a priori and indicate its characteristic with the name itself (e.g 2766
IPSOalliance). For example, smart light can be named anyway such as ‘LivingRoomLight_1” 2767
in oneM2M but should have the fixed Object name with numerical Object ID of “IPSO Light 2768
Control (3311)” in IPSO alliance. Furthermore, in consequence, it’s likely that data path in 2769
URI is freely defined in the former and predetermined for the latter. 2770

• Resource hierarchy: Some allow resource to be organized in hierarchy so that resource 2771
includes another resource in itself with parent-child relationship (e.g. oneM2M). Whereas 2772
others mandate resource to be of flat structure and associate with other resources only by 2773
referencing their links. 2774

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 96

In addition to the above, different organizations use different syntax and have different features 2775
(e.g. resource interface), which will inhibit IoT interoperability. When IoT client and server don’t 2776
understand the resource model each supports, they can’t perform RESTful transaction. 2777

For example, a smart light can be represented as an IPSO Smart Object in JSON as below: 2778

 2779

 2780

 2781

In the above, "3311" is an "Object ID" defining object type, 0" an "Object Instance", designating 2782
one or more instances, "5850", "5851", "Resource ID", defining resource type. Also IPSO embeds 2783
resource information in data path, so "On/Off" resource has predetermined data path of 2784
"3311/0/5850" and "Dimmer" resource datapath of "3311/0/5851" 2785

 2786

Whereas the same smart light may be represented in OCF as two Resources. 2787

 2788

 2789

 2790

{
 "3311": {
 "description": "IPSO light
control",
 "instances": {
 "0": {
 "resources": {
 "5850": {
 "description": "On/Off",
 "value": 0
 },
 "5851": {
 "description": "Dimmer",
 "value": 70
 }
 }
 }
 }
 }
}

{
"n": "myLightBrightness",
 "rt":
"oic.r.light.brightness",
 "brightness": 70
}

{
 "n": "myLightSwtich",
 "rt": "oic.r.switch.binary",
 "value": True
}

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 97

14.2 A scheme to exchange resource model information 2791

14.2.1 A scheme to exchange resource model information 2792

IoT devices, i.e. client and server, need to understand the resource model which their 2793
corresponding device supports to be able to interoperate each other. 2794

For the initial step, it would help for IoT devices to indicate resource model each device supports. 2795
Then client and server may choose a common resource model for interaction, or in the absence of 2796
such a common model, rely on translation between the models, possibly with the assistance of 3rd 2797
party such as intermediary. Alignment and interoperability between models will be added in a later 2798
version of the specification. 2799

This document presents a scheme for CoAP endpoints, client and server, to exchange resource 2800
model they support. 2801

First, the Internet media type and Content-Format identifier are used to indicate a specific resource 2802
model. The Internet media types can be defined to indicate the resource models, potentially with 2803
content-coding, such as "application/ipso+json", then assigned numeric Content-Format identifiers 2804
such as "123123" to minimize payload overhead for CoAP usage. 2805

Second, CoAP Accept and Content-Format Option are used to exchange the Content-Format 2806
identifiers indicating the resource models which CoAP endpoints prefer or support. A client 2807
includes the CoAP Accept option to inform a server which resource model, potentially with content-2808
encoding, is acceptable and the server returns the payload in the preferred resource model if 2809
available. The Content-Format Option indicates the resource model which the payload follows. 2810

 2811

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 98

Annex A 2812

(informative) 2813

 2814

Operation Examples 2815

A.1 Introduction 2816

This section describes some example scenarios using sequence of operations between the entities 2817
involved. In all the examples below “Light” is a Server and “Smartphone” is a Client. In one of the 2818
scenario “Garage” additionally acts as a Server. All the examples are based on the following 2819
example resource definitions: 2820

rt=oic.example.light with resource type definition as illustration in Table 27. 2821

Table 27. oic.example.light resource type definition 2822

Property title Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Name n string R, W no

on-off of boolean R, W yes On/Off Control:
0 = Off
1 = On

dim dm integer 0-255 R, W yes Resource which can take a
range of values minimum
being 0 and maximum being
255

 2823

rt=oic.example.garagedoor with resource type definition as illustration in Table 28. 2824

Table 28. oic.example.garagedoor resource type definition 2825

Property title Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Name n string R, W no

open-close oc boolean R, W yes Open/Close Control:
0 = Open
1 = Close

 2826

/oic/mnt (rt=oc.wk.mnt) used in below examples is defined in section 11.5.1. 2827

A.2 When at home: From smartphone turn on a single light 2828

This sequence highlights (Figure 37) the discovery and control of an OCF light resource from an 2829
OCF smartphone. 2830

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 99

 2831

Figure 37. When at home: from smartphone turn on a single light 2832

Discovery request can be sent to “All OCF Nodes” Multicast address FF0X::158 or can be sent 2833
directly to the IP address of device hosting the light resource. 2834

1) Smartphone sends a GET request to /oic/res resource to discover all resources hosted on 2835
targeted end point 2836

2) The end point (bulb) responds with the list of resource URI, resource type and interfaces 2837
supported on the end point (one of the resource is ‘/light’ whose rt=oic.example.light) 2838

3) Smartphone sends a GET request to ’/light’ resource to know its current state 2839

4) The end point responds with representation of light resource ({n=bedlight;of=0}) 2840

5) Smartphone changes the ‘of’ property of the light resource by sending a POST request to ‘/light’ 2841
resource ({of=1}) 2842

6) On Successful execution of the request, the end point responds with the changed resource 2843
representation. Else, error code is returned. Details of the error codes are defined in section 2844
12.2.5. 2845

A.3 GroupAction execution 2846

This example will be added when groups feature is added in later version of specification 2847

A.4 When garage door opens, turn on lights in hall; also notify smartphone 2848

This example will be added when scripts feature is added in later version of specification 2849

A.5 Device management 2850

This sequence highlights (Figure 38) the device management function of maintenance. 2851

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 100

 2852

 2853

Figure 38. Device management (maintenance) 2854

Pre-Condition: Admin device has different security permissions and hence can perform device 2855
management operations on the Device 2856

1) Admin device sends a GET request to /oic/res resource to discover all resources hosted on a 2857
targeted end point (in this case Bulb) 2858

2) The end point (bulb) responds with the list of resource URI, resource type and interfaces 2859
supported on the end point (one of the resources is /oic/mnt whose rt=oc.wk.mnt) 2860

3) Admin Device changes the ‘fr’ property of the maintenance resource by sending a POST 2861
request to /oic/mnt resource ({fr=1}). This triggers a factory reset of the end point (bulb) 2862

4) On successful execution of the request, the end point responds with the changed resource 2863
representation. Else, error code is returned. Details of the error codes are defined in section 2864
12.2.5. 2865

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 101

Annex B 2866

(informative) 2867

 2868

OCF interaction scenarios and deployment models 2869

B.1 OCF interaction scenarios 2870

A Client connects to one or multiple Servers in order to access the resources provided by those 2871
Servers. The following are scenarios representing possible interactions among Roles: 2872

• Direct interaction between Client and Server (Figure 39). In this scenario the Client and the 2873
Server directly communicate without involvement of any other Device. A smartphone which 2874
controls an actuator directly uses this scenario. 2875

 2876

Figure 39. Direct interaction between Server and Client 2877

• Interaction between Client and Server using another server (Figure 40). In this scenario, 2878
another Server provides the support needed for the Client to directly access the desired 2879
resource on a specific Server. This scenario is used for example, when a smartphone first 2880
accesses a discovery server to find the addressing information of a specific appliance, and 2881
then directly accesses the appliance to control it. 2882

 2883

Figure 40. Interaction between Client and Server using another Server 2884

• Interaction between Client and Server using Intermediary (Figure 41). In this scenario an 2885
Intermediary facilitates the interaction between the Client and the Server. A smartphone which 2886
controls appliances in a smart home via MQTT broker uses this scenario. 2887

 2888

Figure 41. Interaction between Client and Server using Intermediary 2889

• Interaction between Client and Server using support from multiple Servers and intermediary 2890
(Figure 42). In this scenario, both Server and Intermediary roles are present to facilitate the 2891
transaction between the Client and a specific Server. An example scenario is when a 2892
smartphone first accesses a Resource Directory (RD) server to find the address to a specific 2893
appliance, then utilizes MQTT broker to deliver a command message to the appliance. The 2894
smartphone can utilize the mechanisms defined in CoRE Resource Directory such as default 2895
location, anycast address or DHCP (IETF draft-ietf-core-resource-directory-02) to discover the 2896
Resource Directory information. 2897

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 102

 2898

Figure 42. Interaction between Client and Server using support from multiple Servers and 2899
Intermediary 2900

B.2 Deployment model 2901

In deployment, Devices are deployed and interact via either wired or wireless connections. Devices 2902
are the physical entities that may host resources and play one or more Roles. There is no constraint 2903
on the structure of a deployment or number of Devices in it. Architecture is flexible and scalable 2904
and capable of addressing large number of devices with different device capabilities, including 2905
constrained devices which have limited memory and capabilities. Constrained devices are defined 2906
and categorized in [TCNN]. 2907

 2908

Figure 43. Example of Devices 2909

Figure 43 depicts a typical deployment and set of Devices, which may be divided in the following 2910
categories: 2911

• Things: Networked devices which are able to interface with physical environments. Things are 2912
the devices which are primarily controlled and monitored. Examples include smart appliances, 2913
sensors, and actuators. Things mostly take the role of Sever but they may also take the role of 2914
Client, for example in machine-to-machine communications. 2915

• User Devices: Devices employed by the users enabling the users to access resources and 2916
services. Examples include smart phones, tablets, and wearable devices. User Devices mainly 2917
take the role of Client, but may also take the role of Server or Intermediary. 2918

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 103

• Service Gateways: Network equipment which take the role of Intermediary. Examples are 2919
home gateways. 2920

• Infra Servers: Data centers residing in cloud infrastructure, which facilitate the interaction 2921
among Devices by providing network services such as AAA, NAT traversal or discovery. It can 2922
also play the role of Client or Intermediary 2923

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 104

Annex C 2924

(informative) 2925

 2926

Other Resource Models and OCF Mapping 2927

C.1 Multiple resource models 2928

RESTful interactions are defined dependent on the resource model; hence, Devices require a 2929
common understanding of the resource model for interoperability. 2930

There are multiple resource models defined by different organizations including OCF, IPSO 2931
Alliance and oneM2M, and used in the industry, which may restrict interoperability among 2932
respective ecosystems. The main differences from Resource model are as follows: 2933

• Resource structure: Resources may be defined to have properties (e.g., oneM2M defined 2934
resources), or may be defined as an atomic entity and not be decomposable into properties 2935
(e.g., IPSO alliance defined resources). For example, a smart light may be represented as a 2936
resource with an on-off property or a resource collection containing an on-off resource. In the 2937
former, on-off property doesn’t have a URI of its own and can only be accessed indirectly via 2938
the resource. In the latter, being a resource itself, on-off resource is assigned its own URI and 2939
can be directly manipulated. 2940

• Resource name & type: Resources may be allowed to be named freely and have their 2941
characteristics indicated using a resource type property (e.g., as defined in oneM2M). 2942
Alternatively, the name of resources may be defined a priori in a way that the name by itself is 2943
indicative of its characteristic (e.g., as defined by IPSO alliance). For example, in oneM2M 2944
resource model, a smart light can be named with no restrictions, such as ‘LivingRoomLight_1” 2945
but in IPSO alliance resource model it is required to have the fixed Object name with numerical 2946
Object ID of “IPSO Light Control (3311)”. Consequently, it’s likely that in the former case the 2947
data path in URI is freely defined and in the latter case it is predetermined. 2948

• Resource hierarchy: Resources may be allowed to be organized in hierarchy where a resource 2949
contains another resource with a parent-child relationship (e.g., in oneM2M definition of 2950
resource model). Resources may also be required to have a flat structure and associate with 2951
other resources only by referencing their links. 2952

In addition to the above, different organizations use different syntax and define different features 2953
(e.g., resource interface), which preclude interoperability. 2954

C.2 OCF approach for support of multiple resource models 2955

In order to expand the IoT ecosystem the Framework takes an inclusive approach for interworking 2956
with existing resource models. Specifically, the Framework defines a resource model while 2957
providing a mechanism to easily map to other models. By embracing existing resource models 2958
OCF is inclusive of existing ecosystems while allowing for the transition toward definition of a 2959
comprehensive resource model integrating all ecosystems. 2960

The following OCF characteristics enable support of other resource models: 2961

• resource model is the superset of multiple models: the resource model is defined as the 2962
superset of existing resource models. In other words, any existing resource model can be 2963
mapped to a subset of resource model concepts. 2964

• Framework may allow for resource model negotiation: the Client and Server exchange the 2965
information about what resource model(s) each supports. Based on the exchanged information, 2966
the Client and Server choose a resource model to perform RESTful interactions or to perform 2967
translation. This feature is out of scope of the current version of this specification, however, 2968
the following is a high level description for resource model negotiation. 2969

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 105

C.3 Resource model indication 2970

The Client and server exchange the information about what resource model(s) each supports. 2971
Based on the exchanged information, the Client and Server choose a resource model to perform 2972
RESTful interactions or to perform translation. The exchange could be part of discovery and 2973
negotiation. Based on the exchange, the Client and Server follow a procedure to ensure 2974
interoperability among them. They may choose a common resource model or execute translation 2975
between resource models. 2976

• Resource model schema exchange: The Client and Server may share the resource model 2977
information when they initiate a RESTful interaction. They may exchange the information about 2978
which resource model they support as part of session establishment procedures. Alternatively, 2979
each request or response message may carry the indication of which resource model it is using. 2980
For example, [COAP] defines “Content-Format option” to indicate the “representation format” 2981
such as “application/json”. It’s possible to extend the Content-Format Option to indicate the 2982
resource model used with the representation format such as “application/ipso-json”. 2983

• Ensuing procedures: After the Client and Server exchange the resource model information, 2984
they perform a suitable procedure to ensure interoperability among them. The simplest way is 2985
to choose a resource model supported by both the Client and Server. In case there is no 2986
common resource model, the Client and Server may interact through a 3rd party. 2987

In addition to translation which can be resource intensive, a method based on profiles can be used 2988
in which an OCF implementation can accommodate multiple profiles and hence multiple 2989
ecosystems. 2990

• Resource Model Profile: the Framework defines resource model profiles and implementers or 2991
users choose the active profile. The chosen profile constraints the Device to strict rules in how 2992
resources are defined, instantiated and interacted with. This would allow for interoperation with 2993
devices from the ecosystem identified by the profile (e.g., IPSO, OneM2M etc.). Although this 2994
enables a Device to participate in and be part of any given ecosystem, this scheme does not 2995
allow for generic interoperability at runtime. While this approach may be suitable for resource 2996
constrained devices, more resource capable devices are expected to support more than one 2997
profile. 2998

C.4 An Example Profile (IPSO profile) 2999

IPSO defines smart objects that have specific resources and they take values determined by the 3000
data type of that resource. The smart object specification defines a category of such objects. Each 3001
resource represents a characteristic of the smart object being modelled. 3002

While the terms may be different, there are equivalent concepts in OCF to represent these terms. 3003
This section provides the equivalent OCF terms and then frames the IPSO smart object in OCF 3004
terms. 3005

The IPSO object Light Control defined in Section 16 of the IPSO Smart Objects 1.0 is used as the 3006
reference example. 3007

C.4.1 Conceptual equivalence 3008

The IPSO smart object definition is equivalent to an Resource Type definition which defines the 3009
relevant characteristics of an entity being modelled. The specific IPSO Resource is equivalent to 3010
a Property that like an IPSO Resource has a defined data type, enumeration of acceptable values, 3011
units, a general description and access modes (based on the Interface). 3012

The general method for developing the equivalent Resource Type from an IPSO Smart Object 3013
definition is to ignore the Object ID and replace the Object URN with and OCF ‘.’ (dot) separated 3014
name that incorporates the IPSO object. Alternatively the Object URN can be used as the Resource 3015

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 106

Type ID as is (as long as the URN does not contain any ‘.’ (dots)) – using the same Object URN 3016
as the Resource Type ID allows for compatibility when interacting with an IPSO compliant device. 3017
The object URN based naming does not have any bearing for OCF to OCF interoperability and so 3018
the OCF format is preferred – for OCF to OCF interoperability only the data model consistency is 3019
required. 3020

Two models are available to render IPSO objects into OCF. 3021

1) One is where the IPSO Smart Object represents a Resource. In this case, the IP Smart Object 3022
is regarded as a resource with the Resource Type matching the description of the Smart Object. 3023
Furthermore, each resource in the IPSO definition is represented as an Property in the 3024
Resource Type (the IPSO Resource ID is replaced with a string representing the Property). 3025
This is the preferred approach when the IPSO Data Model is expressed in the Resource Model. 3026

2) The other approach is to model an IPSO Smart Object as an Collection. Each IPSO Resource 3027
is then modelled as an Resource with an Resource Type that matches the definition of the 3028
IPSO Resource. Each of these resource instances are then bound to the Collection that 3029
represents this IPSO Smart Object. 3030

 3031

Below is an example showing how an IPSO LightControl Object is modelled as a Resource. 3032

Resource Type: Light Control 3033

Description: This Object is used to control a light source, such as a LED or other light. It allows a 3034
light to be turned on or off and its dimmer setting to be controlled as a percentage value between 3035
0 and 100. An optional colour setting enables a string to be used to indicate the desired colour. 3036
Table 29 and Table 30 define the resource type and its properties, respectively. 3037

Table 29. Light control resource type definition 3038

Resource Type Resource Type ID Multiple Instances Description

Light Control “oic.light.control” or
“urn:oma:lwm2m:ext:3311”

Yes Light control object with
on/off and optional dimming
and energy monitor

 3039

Table 30. Light control resource type definition 3040

Property title Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

On/Off “on-off” boolean R, W yes On/Of Control:
0 = Off
1 = On

Dimmer “dim” integer % R, W no Proportional Control,
integer value between 0
and 100 as percentage

Color “color” string 0 – 100 Defined
by
“units”
property

R, W no String representing some
value in color space

Units “units” string R no Measurement Units
Definition e.g., “Cel” for
Temperature in Celsius.

On Time “ontime” integer s R, W no The time in seconds that
the light has been on.

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 107

Writing a value of 0 resets
the counter

Cumulative
active power

“cumap” float Wh R no The cumulative active
power since the last
cumulative energy reset or
device start

Power Factor “powfact” float R no The power factor of the load

 3041

 3042

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 108

Annex D 3043

(normative) 3044

 3045

Resource Type definitions 3046

D.1 List of resource type definitions 3047

Table 31 contains the list of defined core resources in this specification. 3048

Table 31. Alphabetized list of core resources 3049

Friendly Name
(informative)

Resource Type (rt) Section

Collections oic.wk.col D.2

Configuration oic.wk.con D.3

Device oic.wk.d D.4

Discoverable
Resources

oic.wk.res D.8

Maintenance oic.wk.mnt D.5

Platform oic.wk.p D.6

Ping oic.wk.ping D.7

Resource Directory oic.wk.rd D.12

Scenes (Top Level) oic.wk.sceneList D.9

Scenes Collections oic.wk.sceneCollection D.10

Scenes Member oic.wk.sceneMember D.11

 3050

D.2 OCF Collection 3051

D.2.1 Introduction 3052

OCF Collection Resource Type contains properties and links. The oic.if.baseline interface exposes 3053
a representation of the links and the properties of the collection resource itself 3054

D.2.2 Fixed URI 3055

/CollectionBaselineInterfaceURI 3056

D.2.3 Resource Type 3057

The resource type (rt) is defined as: oic.wk.col. 3058

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 109

D.2.4 RAML Definition 3059

#%RAML 0.8 3060

title: Collections 3061
version: 1.0 3062

traits: 3063
 - interface-ll : 3064
 queryParameters: 3065

 if: 3066
 enum: ["oic.if.ll"] 3067

 - interface-b : 3068
 queryParameters: 3069

 if: 3070
 enum: ["oic.if.b"] 3071

 - interface-baseline : 3072
 queryParameters: 3073

 if: 3074
 enum: ["oic.if.baseline"] 3075

 3076

/CollectionBaselineInterfaceURI: 3077

 description: | 3078
 OCF Collection Resource Type contains properties and links. 3079
 The oic.if.baseline interface exposes a representation of 3080
 the links and the properties of the collection resource itself 3081
 3082

 is : ['interface-baseline'] 3083

 get: 3084

 description: | 3085
 Retrieve on Baseline Interface 3086
 3087

 responses : 3088

 200: 3089

 body: 3090
 application/json: 3091

 schema: | 3092

 { 3093
 "$schema": "http://json-schema.org/draft-04/schema#", 3094
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 3095
reserved.", 3096
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.collection-3097
schema.json#", 3098
 "title": "Collection", 3099
 "definitions": { 3100
 "uuid": { 3101
 "type":"string", 3102
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-3103
[a-fA-F0-9]{12}$" 3104
 }, 3105
 "oic.collection.setoflinks": { 3106
 "description": "A set (array) of simple or individual OIC Links. In 3107
addition to properties required for an OIC Link, the identifier for that link in this set is also 3108
required", 3109
 "type": "array", 3110
 "items": { 3111
 "$ref": "oic.oic-link-schema.json#/definitions/oic.oic-link" 3112
 } 3113
 }, 3114
 "oic.collection.tags": { 3115
 "type": "object", 3116
 "description": "The tags that can be used for tagging links in a 3117
collection", 3118

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 110

 "properties": { 3119
 "n": { 3120
 "type": "string", 3121
 "description": "Used to name i.e. tag the set of links" 3122
 }, 3123
 "id": { 3124
 "description": "Id for each set of links i.e. tag. Can be an 3125
value that is unique to the use context or a UUIDv4", 3126
 "anyOf": [3127
 { 3128
 "type": "integer", 3129
 "description": "A number that is unique to that 3130
collection; like an ordinal number that is not repeated" 3131
 }, 3132
 { 3133
 "type": "string", 3134
 "description": "A unique string that could be a hash or 3135
similarly unique" 3136
 }, 3137
 { 3138
 "$ref": "#/definitions/uuid", 3139
 "description": "A unique string that could be a UUIDv4" 3140
 } 3141
] 3142
 }, 3143
 "di": { 3144
 "$ref": "#/definitions/uuid", 3145
 "description": "The device ID which is an UUIDv4 string" 3146
 }, 3147
 "base": { 3148
 "type": "string", 3149
 "description": "The base URI to be used if the links are relative 3150
URIs (i.e. relative references); see base URI in Core spec for details", 3151
 "format": "uri" 3152
 } 3153
 }, 3154
 "minProperties": 1 3155
 }, 3156
 "oic.collection.tagged-setoflinks": { 3157
 "type": "array", 3158
 "description": "A tagged link is a set (array) of links that are tagged 3159
with one or more key-value pairs usually either an ID or Name or both", 3160
 "items": [3161
 { 3162
 "$ref": "#/definitions/oic.collection.tags" 3163
 }, 3164
 { 3165
 "$ref": "#/definitions/oic.collection.setoflinks" 3166
 } 3167
], 3168
 "additionalItems": false 3169
 }, 3170
 "oic.collection.setof-tagged-setoflinks": { 3171
 "type": "array", 3172
 "items": [3173
 { 3174
 "$ref": "#/definitions/oic.collection.tagged-setoflinks" 3175
 } 3176
], 3177
 "additionalItems": false 3178
 }, 3179
 "oic.collection.alllinks": { 3180
 "description": "All forms of links in a collection", 3181
 "oneOf": [3182
 { 3183
 "$ref": "#/definitions/oic.collection.setof-tagged-setoflinks" 3184
 }, 3185
 { 3186
 "$ref": "#/definitions/oic.collection.tagged-setoflinks" 3187
 }, 3188
 { 3189

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 111

 "$ref": "#/definitions/oic.collection.setoflinks" 3190
 } 3191
] 3192
 }, 3193
 "oic.collection": { 3194
 "type": "object", 3195
 "description": "A collection is a set (array) of tagged-link or set 3196
(array) of simple links along with additional properties to describe the collection itself", 3197
 "properties": { 3198
 "n": { 3199
 "type": "string", 3200
 "description": "User friendly name of the 3201
collection" }, 3202
 "id": { 3203
 "anyOf": [3204
 { 3205
 "type": "integer", 3206
 "description": "A number that is unique to that 3207
collection; like an ordinal number that is not repeated" 3208
 }, 3209
 { 3210
 "type": "string", 3211
 "description": "A unique string that could be a hash or 3212
similarly unique" 3213
 }, 3214
 { 3215
 "$ref": "#/definitions/uuid", 3216
 "description": "A unique string that could be a UUIDv4" 3217
 } 3218
], 3219
 "description": "ID for the collection. Can be an value that is 3220
unique to the use context or a UUIDv4" 3221
 }, 3222
 "di": { 3223
 "$ref": "#/definitions/uuid", 3224
 "description": "The device ID which is an UUIDv4 string; used for 3225
backward compatibility with Spec A defintion of /oic/res" 3226
 }, 3227
 "rts": { 3228
 "type": "string", 3229
 "description": "Defines the list of allowable resource types (for 3230
Target and anchors) in links included in the collection; new links being created can only be from 3231
this list" }, 3232
 "drel": { 3233
 "type": "string", 3234
 "description": "When specified this is the default relationship 3235
to use when an OIC Link does not specify an explicit relationship with *rel* parameter" 3236
 }, 3237
 "links": { 3238
 "$ref": "#/definitions/oic.collection.alllinks" 3239
 } 3240
 } 3241
 } 3242
 }, 3243
 "type": "object", 3244
 "allOf": [3245
 { 3246
 "$ref": "#/definitions/oic.collection" 3247
 } 3248
] 3249
 } 3250
 3251

 example: | 3252

 { 3253
 "rt": ["oic.wk.col"], 3254
 "id": "unique_example_id", 3255
 "rts": ["oic.r.switch.binary", "oic.r.airFlow"], 3256
 "links": [3257
 { 3258
 "href": "switch", 3259

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 112

 "rt": "oic.r.switch.binary", 3260
 "if": "oic.if.a" 3261
 }, 3262
 { 3263
 "href": "airFlow", 3264
 "rt": "oic.r.airFlow", 3265
 "if": "oic.if.a" 3266
 } 3267
] 3268
 } 3269
 3270

 post: 3271

 description: | 3272
 Update on Baseline Interface 3273
 3274

 body: 3275
 application/json: 3276

 schema: | 3277

 { 3278
 "$schema": "http://json-schema.org/draft-04/schema#", 3279
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 3280
reserved.", 3281
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.collection-3282
schema.json#", 3283
 "title": "Collection", 3284
 "definitions": { 3285
 "uuid": { 3286
 "type":"string", 3287
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-3288
fA-F0-9]{12}$" 3289
 }, 3290
 "oic.collection.setoflinks": { 3291
 "description": "A set (array) of simple or individual OIC Links. In addition 3292
to properties required for an OIC Link, the identifier for that link in this set is also required", 3293
 "type": "array", 3294
 "items": { 3295
 "$ref": "oic.oic-link-schema.json#/definitions/oic.oic-link" 3296
 } 3297
 }, 3298
 "oic.collection.tags": { 3299
 "type": "object", 3300
 "description": "The tags that can be used for tagging links in a collection", 3301
 "properties": { 3302
 "n": { 3303
 "type": "string", 3304
 "description": "Used to name i.e. tag the set of links" 3305
 }, 3306
 "id": { 3307
 "description": "Id for each set of links i.e. tag. Can be an value 3308
that is unique to the use context or a UUIDv4", 3309
 "anyOf": [3310
 { 3311
 "type": "integer", 3312
 "description": "A number that is unique to that collection; 3313
like an ordinal number that is not repeated" 3314
 }, 3315
 { 3316
 "type": "string", 3317
 "description": "A unique string that could be a hash or 3318
similarly unique" 3319
 }, 3320
 { 3321
 "$ref": "#/definitions/uuid", 3322
 "description": "A unique string that could be a UUIDv4" 3323
 } 3324
] 3325
 }, 3326
 "di": { 3327

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 113

 "$ref": "#/definitions/uuid", 3328
 "description": "The device ID which is an UUIDv4 string" 3329
 }, 3330
 "base": { 3331
 "type": "string", 3332
 "description": "The base URI to be used if the links are relative 3333
URIs (i.e. relative references); see base URI in Core spec for details", 3334
 "format": "uri" 3335
 } 3336
 }, 3337
 "minProperties": 1 3338
 }, 3339
 "oic.collection.tagged-setoflinks": { 3340
 "type": "array", 3341
 "description": "A tagged link is a set (array) of links that are tagged with 3342
one or more key-value pairs usually either an ID or Name or both", 3343
 "items": [3344
 { 3345
 "$ref": "#/definitions/oic.collection.tags" 3346
 }, 3347
 { 3348
 "$ref": "#/definitions/oic.collection.setoflinks" 3349
 } 3350
], 3351
 "additionalItems": false 3352
 }, 3353
 "oic.collection.setof-tagged-setoflinks": { 3354
 "type": "array", 3355
 "items": [3356
 { 3357
 "$ref": "#/definitions/oic.collection.tagged-setoflinks" 3358
 } 3359
], 3360
 "additionalItems": false 3361
 }, 3362
 "oic.collection.alllinks": { 3363
 "description": "All forms of links in a collection", 3364
 "oneOf": [3365
 { 3366
 "$ref": "#/definitions/oic.collection.setof-tagged-setoflinks" 3367
 }, 3368
 { 3369
 "$ref": "#/definitions/oic.collection.tagged-setoflinks" 3370
 }, 3371
 { 3372
 "$ref": "#/definitions/oic.collection.setoflinks" 3373
 } 3374
] 3375
 }, 3376
 "oic.collection": { 3377
 "type": "object", 3378
 "description": "A collection is a set (array) of tagged-link or set (array) 3379
of simple links along with additional properties to describe the collection itself", 3380
 "properties": { 3381
 "n": { 3382
 "type": "string", 3383
 "description": "User friendly name of the 3384
collection" }, 3385
 "id": { 3386
 "anyOf": [3387
 { 3388
 "type": "integer", 3389
 "description": "A number that is unique to that collection; 3390
like an ordinal number that is not repeated" 3391
 }, 3392
 { 3393
 "type": "string", 3394
 "description": "A unique string that could be a hash or 3395
similarly unique" 3396
 }, 3397
 { 3398

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 114

 "$ref": "#/definitions/uuid", 3399
 "description": "A unique string that could be a UUIDv4" 3400
 } 3401
], 3402
 "description": "ID for the collection. Can be an value that is unique 3403
to the use context or a UUIDv4" 3404
 }, 3405
 "di": { 3406
 "$ref": "#/definitions/uuid", 3407
 "description": "The device ID which is an UUIDv4 string; used for 3408
backward compatibility with Spec A defintion of /oic/res" 3409
 }, 3410
 "rts": { 3411
 "type": "string", 3412
 "description": "Defines the list of allowable resource types (for 3413
Target and anchors) in links included in the collection; new links being created can only be from 3414
this list" }, 3415
 "drel": { 3416
 "type": "string", 3417
 "description": "When specified this is the default relationship to 3418
use when an OIC Link does not specify an explicit relationship with *rel* parameter" 3419
 }, 3420
 "links": { 3421
 "$ref": "#/definitions/oic.collection.alllinks" 3422
 } 3423
 } 3424
 } 3425
 }, 3426
 "type": "object", 3427
 "allOf": [3428
 { 3429
 "$ref": "#/definitions/oic.collection" 3430
 } 3431
] 3432
 } 3433
 3434

 responses : 3435

 200: 3436

 body: 3437
 application/json: 3438

 schema: | 3439

 { 3440
 "$schema": "http://json-schema.org/draft-04/schema#", 3441
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 3442
reserved.", 3443
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.collection-3444
schema.json#", 3445
 "title": "Collection", 3446
 "definitions": { 3447
 "uuid": { 3448
 "type":"string", 3449
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-3450
[a-fA-F0-9]{12}$" 3451
 }, 3452
 "oic.collection.setoflinks": { 3453
 "description": "A set (array) of simple or individual OIC Links. In 3454
addition to properties required for an OIC Link, the identifier for that link in this set is also 3455
required", 3456
 "type": "array", 3457
 "items": { 3458
 "$ref": "oic.oic-link-schema.json#/definitions/oic.oic-link" 3459
 } 3460
 }, 3461
 "oic.collection.tags": { 3462
 "type": "object", 3463
 "description": "The tags that can be used for tagging links in a 3464
collection", 3465
 "properties": { 3466

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 115

 "n": { 3467
 "type": "string", 3468
 "description": "Used to name i.e. tag the set of links" 3469
 }, 3470
 "id": { 3471
 "description": "Id for each set of links i.e. tag. Can be an 3472
value that is unique to the use context or a UUIDv4", 3473
 "anyOf": [3474
 { 3475
 "type": "integer", 3476
 "description": "A number that is unique to that 3477
collection; like an ordinal number that is not repeated" 3478
 }, 3479
 { 3480
 "type": "string", 3481
 "description": "A unique string that could be a hash or 3482
similarly unique" 3483
 }, 3484
 { 3485
 "$ref": "#/definitions/uuid", 3486
 "description": "A unique string that could be a UUIDv4" 3487
 } 3488
] 3489
 }, 3490
 "di": { 3491
 "$ref": "#/definitions/uuid", 3492
 "description": "The device ID which is an UUIDv4 string" 3493
 }, 3494
 "base": { 3495
 "type": "string", 3496
 "description": "The base URI to be used if the links are relative 3497
URIs (i.e. relative references); see base URI in Core spec for details", 3498
 "format": "uri" 3499
 } 3500
 }, 3501
 "minProperties": 1 3502
 }, 3503
 "oic.collection.tagged-setoflinks": { 3504
 "type": "array", 3505
 "description": "A tagged link is a set (array) of links that are tagged 3506
with one or more key-value pairs usually either an ID or Name or both", 3507
 "items": [3508
 { 3509
 "$ref": "#/definitions/oic.collection.tags" 3510
 }, 3511
 { 3512
 "$ref": "#/definitions/oic.collection.setoflinks" 3513
 } 3514
], 3515
 "additionalItems": false 3516
 }, 3517
 "oic.collection.setof-tagged-setoflinks": { 3518
 "type": "array", 3519
 "items": [3520
 { 3521
 "$ref": "#/definitions/oic.collection.tagged-setoflinks" 3522
 } 3523
], 3524
 "additionalItems": false 3525
 }, 3526
 "oic.collection.alllinks": { 3527
 "description": "All forms of links in a collection", 3528
 "oneOf": [3529
 { 3530
 "$ref": "#/definitions/oic.collection.setof-tagged-setoflinks" 3531
 }, 3532
 { 3533
 "$ref": "#/definitions/oic.collection.tagged-setoflinks" 3534
 }, 3535
 { 3536
 "$ref": "#/definitions/oic.collection.setoflinks" 3537

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 116

 } 3538
] 3539
 }, 3540
 "oic.collection": { 3541
 "type": "object", 3542
 "description": "A collection is a set (array) of tagged-link or set 3543
(array) of simple links along with additional properties to describe the collection itself", 3544
 "properties": { 3545
 "n": { 3546
 "type": "string", 3547
 "description": "User friendly name of the 3548
collection" }, 3549
 "id": { 3550
 "anyOf": [3551
 { 3552
 "type": "integer", 3553
 "description": "A number that is unique to that 3554
collection; like an ordinal number that is not repeated" 3555
 }, 3556
 { 3557
 "type": "string", 3558
 "description": "A unique string that could be a hash or 3559
similarly unique" 3560
 }, 3561
 { 3562
 "$ref": "#/definitions/uuid", 3563
 "description": "A unique string that could be a UUIDv4" 3564
 } 3565
], 3566
 "description": "ID for the collection. Can be an value that is 3567
unique to the use context or a UUIDv4" 3568
 }, 3569
 "di": { 3570
 "$ref": "#/definitions/uuid", 3571
 "description": "The device ID which is an UUIDv4 string; used for 3572
backward compatibility with Spec A defintion of /oic/res" 3573
 }, 3574
 "rts": { 3575
 "type": "string", 3576
 "description": "Defines the list of allowable resource types (for 3577
Target and anchors) in links included in the collection; new links being created can only be from 3578
this list" }, 3579
 "drel": { 3580
 "type": "string", 3581
 "description": "When specified this is the default relationship 3582
to use when an OIC Link does not specify an explicit relationship with *rel* parameter" 3583
 }, 3584
 "links": { 3585
 "$ref": "#/definitions/oic.collection.alllinks" 3586
 } 3587
 } 3588
 } 3589
 }, 3590
 "type": "object", 3591
 "allOf": [3592
 { 3593
 "$ref": "#/definitions/oic.collection" 3594
 } 3595
] 3596
 } 3597
 3598

D.2.5 Property Definition 3599

Property name Value type Mandatory Access mode Description
id Read Write
href string yes Read Write This is the target

URI, it can be
specified as a
Relative

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 117

Reference or
fully-qualified
URI. Relative
Reference
should be used
along with the di
parameter to
make it unique.

rel string Read Write
rt array yes Read Write
if array yes Read Write
di string Read Write The Device ID on

which the
Relative
Reference in href
is to be resolved
on. Base URI
should be used
in preference
where possible

buri string Read Write The base URI
used to fully
qualify a Relative
Reference in the
href parameter.
Use the OCF
Schema for URI

p Read Write Specifies the
framework
policies on the
Resource
referenced by
the target URI

bm yes Read Write Specifies the
framework
policies on the
Resource
referenced by
the target URI for
e.g. observable
and discoverable

sec Read Write Specifies if
security needs to
be turned on
when looking to
interact with the
Resource

port Read Write Secure port to be
used for
connection

bp string Read Write Batch
Parameters: Uri
Parameters To
Use With An
Oic.If.B Batch

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 118

Request Using
This Link

anchor string Read Write This is used to
override the
context URI e.g.
override the URI
of the containing
collection

ins object Read Write

D.2.6 CRUDN Behaviour 3600

Resource Create Read Update Delete Notify
/CollectionBaselineInterfaceURI get post

D.2.7 Referenced JSON schemas 3601

D.2.8 oic.oic-link-schema.json 3602

{ 3603
 "$schema": "http://json-schema.org/draft-04/schema#", 3604
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights reserved.", 3605
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.oic-link-schema.json#", 3606
 "definitions": { 3607
 "oic.oic-link": { 3608
 "type": "object", 3609
 "properties": { 3610
 "href": { 3611
 "type": "string", 3612
 "maxLength": 256, 3613
 "description": "This is the target URI, it can be specified as a Relative Reference or 3614
fully-qualified URI. Relative Reference should be used along with the di parameter to make it 3615
unique.", 3616
 "format": "uri" 3617
 }, 3618
 "rel": { 3619
 "type": "string", 3620
 "default": "hosts", 3621
 "maxLength": 64, 3622
 "description": "The relation of the target URI referenced by the link to the context URI" 3623
 }, 3624
 "rt": { 3625
 "type": "array", 3626
 "items" : [3627
 { 3628
 "type" : "string", 3629
 "maxLength": 64 3630
 } 3631
], 3632
 "minItems" : 1, 3633
 "readOnly": true, 3634
 "description": "Resource Type" 3635
 }, 3636
 "if": { 3637
 "type": "array", 3638
 "items": [3639
 { 3640
 "type" : "string", 3641
 "enum" : ["oic.if.baseline", "oic.if.ll", "oic.if.b", "oic.if.rw", "oic.if.r", 3642
"oic.if.a", "oic.if.s"] 3643
 } 3644
], 3645
 "minItems": 1, 3646
 "readOnly": true, 3647
 "description": "The interface set supported by this resource" 3648
 }, 3649
 "di": { 3650
 "type": "string", 3651
 "description": "The Device ID on which the Relative Reference in href is to be resolved 3652

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 119

on. Base URI should be used in preference where possible", 3653
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-3654
9]{12}$" 3655
 }, 3656
 "buri": { 3657
 "type": "string", 3658
 "description": "The base URI used to fully qualify a Relative Reference in the href 3659
parameter. Use the OCF Schema for URI", 3660
 "maxLength": 256, 3661
 "format": "uri" 3662
 }, 3663
 "p": { 3664
 "readOnly": true, 3665
 "description": "Specifies the framework policies on the Resource referenced by the target 3666
URI", 3667
 "type": "object", 3668
 "properties": { 3669
 "bm": { 3670
 "readOnly": true, 3671
 "description": "Specifies the framework policies on the Resource referenced by the 3672
target URI for e.g. observable and discoverable", 3673
 "type": "integer" 3674
 }, 3675
 "sec": { 3676
 "readOnly": true, 3677
 "description": "Specifies if security needs to be turned on when looking to interact 3678
with the Resource", 3679
 "type": "boolean" 3680
 }, 3681
 "port": { 3682
 "readOnly": true, 3683
 "description": "Secure port to be used for connection", 3684
 "type": "integer" 3685
 } 3686
 }, 3687
 "required" : ["bm"] 3688
 }, 3689
 "bp": { 3690
 "type": "string", 3691
 "description": " Batch Parameters: URI parameters to use with an oic.if.b batch request 3692
using this link" 3693
 }, 3694
 "title": { 3695
 "type": "string", 3696
 "maxLength": 64, 3697
 "description": "A title for the link relation. Can be used by the UI to provide a 3698
context" 3699
 }, 3700
 "anchor": { 3701
 "type": "string", 3702
 "maxLength": 256, 3703
 "description": "This is used to override the context URI e.g. override the URI of the 3704
containing collection", 3705
 "format": "uri" 3706
 }, 3707
 "ins": { 3708
 "oneOf": [3709
 { 3710
 "type": "integer", 3711
 "description": "An ordinal number that is not repeated - must be unique in the 3712
collection context" 3713
 }, 3714
 { 3715
 "type": "string", 3716
 "maxLength": 256, 3717
 "format" : "uri", 3718
 "description": "Any unique string including a URI" 3719
 }, 3720
 { 3721
 "type": "string", 3722
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-3723

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 120

9]{12}$", 3724
 "description": "Use UUID for universal uniqueness - used in /oic/res to identify the 3725
device" 3726
 } 3727
], 3728
 "description": "The instance identifier for this web link in an array of web links - used 3729
in collections" 3730
 }, 3731
 "type": { 3732
 "type": "array", 3733
 "description": "A hint at the representation of the resource referenced by the target 3734
URI. This represents the media types that are used for both accepting and emitting", 3735
 "items" : [3736
 { 3737
 "type": "string", 3738
 "maxLength": 64 3739
 } 3740
], 3741
 "minItems": 1, 3742
 "default": "application/cbor" 3743
 } 3744
 }, 3745
 "required": ["href", "rt", "if"] 3746
 } 3747
 }, 3748
 "type": "object", 3749
 "allOf": [3750
 { "$ref": "#/definitions/oic.oic-link" } 3751
] 3752
} 3753
 3754

D.3 OIC Configuration 3755

D.3.1 Introduction 3756

Known resource that is hosted by every Server. Allows for device specific information to be 3757
configured. 3758

D.3.2 Fixed URI 3759

/oic/con 3760

D.3.3 Resource Type 3761

The resource type (rt) is defined as: oic.wk.con. 3762

D.3.4 RAML Definition 3763

#%RAML 0.8 3764

title: OIC Configuration 3765
version: v1-20160622 3766

traits: 3767
 - interface : 3768
 queryParameters: 3769

 if: 3770
 enum: ["oic.if.rw", "oic.if.baseline"] 3771

 3772

/oic/con: 3773

 description: | 3774
 Known resource that is hosted by every Server. 3775
 Allows for device specific information to be configured. 3776
 3777

 is : ['interface'] 3778

 get: 3779

 description: | 3780

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 121

 Retrieves the current configuration settings 3781
 3782

 responses : 3783

 200: 3784

 body: 3785
 application/json: 3786

 schema: | 3787

 { 3788
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.wk.con-3789
schema.json#", 3790
 "$schema": "http://json-schema.org/draft-04/schema#", 3791
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 3792
reserved.", 3793
 "definitions": { 3794
 "oic.wk.con": { 3795
 "type": "object", 3796
 "properties": { 3797
 "n": { 3798
 "type": "string", 3799
 "maxLength": 64, 3800
 "description": "Human friendly name" 3801
 }, 3802
 "loc": { 3803
 "type": "string", 3804
 "description": "Location information" 3805
 }, 3806
 "locn": { 3807
 "type": "string", 3808
 "maxLength": 64, 3809
 "description": "Human Friendly Name" 3810
 }, 3811
 "c": { 3812
 "type": "string", 3813
 "maxLength": 64, 3814
 "description": "Currency" 3815
 }, 3816
 "r": { 3817
 "type": "string", 3818
 "maxLength": 64, 3819
 "description": "Region" 3820
 } 3821
 } 3822
 } 3823
 }, 3824
 "type": "object", 3825
 "allOf": [3826
 { "$ref": "#/definitions/oic.wk.con" } 3827
], 3828
 "required": ["n"] 3829
 } 3830
 3831

 example: | 3832

 { 3833
 "rt": ["oic.wk.con"], 3834
 "n": "My Friendly Device Name", 3835
 "loc": "My Location Information", 3836
 "locn": "My Location Name", 3837
 "c": "USD", 3838
 "r": "MyRegion" 3839
 } 3840
 3841

 post: 3842

 description: | 3843
 Update the information about the Device 3844
 3845

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 122

 body: 3846
 application/json: 3847

 schema: | 3848

 { 3849
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.wk.con-schema.json#", 3850
 "$schema": "http://json-schema.org/draft-04/schema#", 3851
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 3852
reserved.", 3853
 "definitions": { 3854
 "oic.wk.con": { 3855
 "type": "object", 3856
 "properties": { 3857
 "n": { 3858
 "type": "string", 3859
 "maxLength": 64, 3860
 "description": "Human friendly name" 3861
 }, 3862
 "loc": { 3863
 "type": "string", 3864
 "description": "Location information" 3865
 }, 3866
 "locn": { 3867
 "type": "string", 3868
 "maxLength": 64, 3869
 "description": "Human Friendly Name" 3870
 }, 3871
 "c": { 3872
 "type": "string", 3873
 "maxLength": 64, 3874
 "description": "Currency" 3875
 }, 3876
 "r": { 3877
 "type": "string", 3878
 "maxLength": 64, 3879
 "description": "Region" 3880
 } 3881
 } 3882
 } 3883
 }, 3884
 "type": "object", 3885
 "allOf": [3886
 { "$ref": "#/definitions/oic.wk.con" } 3887
], 3888
 "required": ["n"] 3889
 } 3890
 3891

 example: | 3892

 { 3893
 "n": "My Friendly Device Name" 3894
 } 3895
 3896

 responses : 3897

 200: 3898

 body: 3899
 application/json: 3900

 schema: | 3901

 { 3902
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.wk.con-3903
schema.json#", 3904
 "$schema": "http://json-schema.org/draft-04/schema#", 3905
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 3906
reserved.", 3907
 "definitions": { 3908
 "oic.wk.con": { 3909
 "type": "object", 3910
 "properties": { 3911

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 123

 "n": { 3912
 "type": "string", 3913
 "maxLength": 64, 3914
 "description": "Human friendly name" 3915
 }, 3916
 "loc": { 3917
 "type": "string", 3918
 "description": "Location information" 3919
 }, 3920
 "locn": { 3921
 "type": "string", 3922
 "maxLength": 64, 3923
 "description": "Human Friendly Name" 3924
 }, 3925
 "c": { 3926
 "type": "string", 3927
 "maxLength": 64, 3928
 "description": "Currency" 3929
 }, 3930
 "r": { 3931
 "type": "string", 3932
 "maxLength": 64, 3933
 "description": "Region" 3934
 } 3935
 } 3936
 } 3937
 }, 3938
 "type": "object", 3939
 "allOf": [3940
 { "$ref": "#/definitions/oic.wk.con" } 3941
], 3942
 "required": ["n"] 3943
 } 3944
 3945

 example: | 3946

 { 3947
 "n": "My Friendly Device Name" 3948
 } 3949
 3950

D.3.5 Property Definition 3951

Property name Value type Mandatory Access mode Description
id Read Write Copyright (c)

2016 Open
Connectivity
Foundation, Inc.
All rights
reserved.

n string yes Read Write Human friendly
name

loc string Read Write Location
information

locn string Read Write Human Friendly
Name

c string Read Write Currency
r string Read Write Region

D.3.6 CRUDN Behaviour 3952

Resource Create Read Update Delete Notify
/oic/con get post

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 124

D.4 Device 3953

D.4.1 Introduction 3954

Known resource that is hosted by every Server. Allows for logical device specific information to be 3955
discovered. 3956

D.4.2 Fixed URI 3957

/oic/d 3958

D.4.3 Resource Type 3959

The resource type (rt) is defined as: oic.wk.d. 3960

D.4.4 RAML Definition 3961

#%RAML 0.8 3962

title: OIC Root Device 3963
version: v1-20160622 3964

traits: 3965
 - interface : 3966
 queryParameters: 3967

 if: 3968
 enum: ["oic.if.r", "oic.if.baseline"] 3969

 3970

/oic/d: 3971

 description: | 3972
 Known resource that is hosted by every Server. 3973
 Allows for logical device specific information to be discovered. 3974
 3975

 is : ['interface'] 3976

 get: 3977

 description: | 3978
 Retrieve the information about the Device 3979
 3980

 responses : 3981

 200: 3982

 body: 3983
 application/json: 3984

 schema: | 3985

 { 3986
 "$schema": "http://json-schemas.org/draft-04/schema#", 3987
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 3988
reserved.", 3989
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.wk.d-3990
schema.json#", 3991
 "definitions": { 3992
 "uuid": { 3993
 "type":"string", 3994
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-3995
fA-F0-9]{12}$" 3996
 }, 3997
 "oic.wk.d": { 3998
 "type": "object", 3999
 "properties": { 4000
 "n": { 4001
 "type": "string", 4002
 "maxLength": 64, 4003
 "readOnly": true, 4004
 "description": "Human friendly name" 4005
 }, 4006
 "di": { 4007

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 125

 "$ref": "#/definitions/uuid", 4008
 "readOnly": true, 4009
 "description": "Unique identifier for device (UUID)" 4010
 }, 4011
 "icv": { 4012
 "type": "string", 4013
 "maxLength": 64, 4014
 "readOnly": true, 4015
 "description": "The version of the OIC Server" 4016
 }, 4017
 "dmv": { 4018
 "type": "string", 4019
 "maxLength": 64, 4020
 "readOnly": true, 4021
 "description": "The spec version of the vertical and/or resource 4022
specification" 4023
 } 4024
 } 4025
 } 4026
 }, 4027
 "type": "object", 4028
 "allOf": [4029
 { "$ref": "#/definitions/oic.wk.d" } 4030
], 4031
 "required": ["n", "di", "icv", "dmv"] 4032
 } 4033
 4034

 example: | 4035

 { 4036
 "n": "Device 1", 4037
 "rt": ["oic.wk.d"], 4038
 "di": "54919CA5-4101-4AE4-595B-353C51AA983C", 4039
 "icv": "core.1.1.0", 4040
 "dmv": "res.1.1.0" 4041
 } 4042
 4043

D.4.5 Property Definition 4044

Property name Value type Mandatory Access mode Description
id Read Write
uuid string Read Write
n string yes Read Only
di yes Read Only Unique identifier

for device (UUID)
icv string yes Read Only
dmv string yes Read Only

D.4.6 CRUDN Behaviour 4045

Resource Create Read Update Delete Notify
/oic/d get

D.5 Maintenance 4046

D.5.1 Introduction 4047

The resource through which an Device is maintained and can be used for diagnostic purposes. fr 4048
(Factory Reset) is a boolean. The value 0 means No action (Default), the value 1 means Start 4049
Factory Reset After factory reset, this value shall be changed back to the default value rb (Reboot) 4050
is a boolean. The value 0 means No action (Default), the value 1 means Start Reboot After Reboot, 4051
this value shall be changed back to the default value 4052

D.5.2 Fixed URI 4053

/oic/mnt 4054

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 126

D.5.3 Resource Type 4055

The resource type (rt) is defined as: oic.wk.mnt. 4056

D.5.4 RAML Definition 4057

#%RAML 0.8 4058

title: Maintenance 4059
version: v1-20160622 4060

traits: 4061
 - interface : 4062
 queryParameters: 4063

 if: 4064
 enum: ["oic.if.r", "oic.if.baseline"] 4065

 4066

/oic/mnt: 4067

 description: | 4068
 The resource through which an Device is maintained and can be used for diagnostic purposes. 4069
 fr (Factory Reset) is a boolean. 4070
 The value 0 means No action (Default), the value 1 means Start Factory Reset 4071
 After factory reset, this value shall be changed back to the default value 4072
 rb (Reboot) is a boolean. 4073
 The value 0 means No action (Default), the value 1 means Start Reboot 4074
 After Reboot, this value shall be changed back to the default value 4075
 4076

 is : ['interface'] 4077

 get: 4078

 description: | 4079
 Retrieve the maintenance action status 4080
 4081

 queryParameters: 4082

 if: 4083
 enum: oic.if.r 4084

 responses : 4085

 200: 4086

 body: 4087
 application/json: 4088

 schema: | 4089

 { 4090
 "$schema": "http://json-schemas.org/draft-04/schema#", 4091
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 4092
reserved.", 4093
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.wk.mnt-4094
schema.json#", 4095
 "definitions": { 4096
 "oic.wk.mnt": { 4097
 "type": "object", 4098
 "properties": { 4099
 "n": { 4100
 "type" : "string", 4101
 "maxLength" : 64, 4102
 "description": "Name" 4103
 }, 4104
 "fr":{ 4105
 "type": "boolean", 4106
 "description": "Factory Reset" 4107
 }, 4108
 "rb": { 4109
 "type": "boolean", 4110
 "description": "Reboot Action" 4111
 } 4112
 } 4113

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 127

 } 4114
 }, 4115
 "type": "object", 4116
 "allOf": [4117
 { "$ref": "#/definitions/oic.wk.mnt" } 4118
], 4119
 "required": ["fr"] 4120
 } 4121
 4122

 example: | 4123

 { 4124
 "rt": ["oic.wk.mnt"], 4125
 "n": "My Maintenance Actions", 4126
 "fr": false, 4127
 "rb": false 4128
 } 4129
 4130

 post: 4131

 description: | 4132
 Set the maintenance action(s) 4133
 4134

 queryParameters: 4135

 if: 4136
 enum: oic.if.rw 4137

 body: 4138
 application/json: 4139

 schema: | 4140

 { 4141
 "$schema": "http://json-schemas.org/draft-04/schema#", 4142
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 4143
reserved.", 4144
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.wk.mnt-schema.json#", 4145
 "definitions": { 4146
 "oic.wk.mnt": { 4147
 "type": "object", 4148
 "properties": { 4149
 "n": { 4150
 "type" : "string", 4151
 "maxLength" : 64, 4152
 "description": "Name" 4153
 }, 4154
 "fr":{ 4155
 "type": "boolean", 4156
 "description": "Factory Reset" 4157
 }, 4158
 "rb": { 4159
 "type": "boolean", 4160
 "description": "Reboot Action" 4161
 } 4162
 } 4163
 } 4164
 }, 4165
 "type": "object", 4166
 "allOf": [4167
 { "$ref": "#/definitions/oic.wk.mnt" } 4168
], 4169
 "required": ["fr"] 4170
 } 4171
 4172

 example: | 4173

 { 4174
 "n": "My Maintenance Actions", 4175
 "fr": false, 4176
 "rb": false 4177

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 128

 } 4178
 4179

 responses : 4180

 200: 4181

 body: 4182
 application/json: 4183

 schema: | 4184

 { 4185
 "$schema": "http://json-schemas.org/draft-04/schema#", 4186
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 4187
reserved.", 4188
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.wk.mnt-4189
schema.json#", 4190
 "definitions": { 4191
 "oic.wk.mnt": { 4192
 "type": "object", 4193
 "properties": { 4194
 "n": { 4195
 "type" : "string", 4196
 "maxLength" : 64, 4197
 "description": "Name" 4198
 }, 4199
 "fr":{ 4200
 "type": "boolean", 4201
 "description": "Factory Reset" 4202
 }, 4203
 "rb": { 4204
 "type": "boolean", 4205
 "description": "Reboot Action" 4206
 } 4207
 } 4208
 } 4209
 }, 4210
 "type": "object", 4211
 "allOf": [4212
 { "$ref": "#/definitions/oic.wk.mnt" } 4213
], 4214
 "required": ["fr"] 4215
 } 4216
 4217

 example: | 4218

 { 4219
 "n": "My Maintenance Actions", 4220
 "fr": false, 4221
 "rb": false 4222
 } 4223
 4224

D.5.5 Property Definition 4225

Property name Value type Mandatory Access mode Description
id Read Write
n string Read Write Name
fr boolean yes Read Write Factory Reset
rb boolean Read Write Reboot Action

D.5.6 CRUDN Behaviour 4226

Resource Create Read Update Delete Notify
/oic/mnt get post

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 129

D.6 Platform 4227

D.6.1 Introduction 4228

Known resource that is defines the platform on which a Server is hosted. Allows for platform 4229
specific information to be discovered. 4230

D.6.2 Fixed URI 4231

/oic/p 4232

D.6.3 Resource Type 4233

The resource type (rt) is defined as: oic.wk.p. 4234

D.6.4 RAML Definition 4235

#%RAML 0.8 4236

title: Platform 4237
version: v1-20160622 4238

traits: 4239
 - interface : 4240
 queryParameters: 4241

 if: 4242
 enum: ["oic.if.r", "oic.if.baseline"] 4243

 4244

/oic/p: 4245

 description: | 4246
 Known resource that is defines the platform on which an Server is hosted. 4247
 Allows for platform specific information to be discovered. 4248
 4249

 is : ['interface'] 4250

 get: 4251

 description: | 4252
 Retrieve the information about the Platform 4253
 4254

 responses : 4255

 200: 4256

 body: 4257
 application/json: 4258

 schema: | 4259

 { 4260
 "$schema": "http://json-schemas.org/draft-04/schema#", 4261
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 4262
reserved.", 4263
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.wk.p-4264
schema.json#", 4265
 "definitions": { 4266
 "uuid": { 4267
 "type":"string", 4268
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-4269
fA-F0-9]{12}$" 4270
 }, 4271
 "oic.wk.p": { 4272
 "type": "object", 4273
 "properties": { 4274
 "pi": { 4275
 "$ref": "#/definitions/uuid", 4276
 "readOnly": true, 4277
 "description": "Platform Identifier as a UUID" 4278
 }, 4279
 "mnmn": { 4280
 "type": "string", 4281

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 130

 "readOnly": true, 4282
 "description": "Manufacturer Name", 4283
 "maxLength": 64 4284
 }, 4285
 "mnml": { 4286
 "type": "string", 4287
 "readOnly": true, 4288
 "description": "Manufacturer's URL", 4289
 "maxLength": 256, 4290
 "format": "uri" 4291
 }, 4292
 "mnmo": { 4293
 "type": "string", 4294
 "maxLength": 64, 4295
 "readOnly": true, 4296
 "description": "Model number as designated by manufacturer" 4297
 }, 4298
 "mndt": { 4299
 "type": "string", 4300
 "readOnly": true, 4301
 "description": "Manufacturing Date as defined in ISO 8601, where the format 4302
is [yyyy]-[mm]-[dd].", 4303
 "pattern": "^([0-9]{4})-(1[0-2]|0[1-9])-(3[0-1]|2[0-9]|1[0-9]|0[1-9])$" 4304
 }, 4305
 "mnpv": { 4306
 "type": "string", 4307
 "maxLength": 64, 4308
 "readOnly": true, 4309
 "description": "Platform Version" 4310
 }, 4311
 "mnos": { 4312
 "type": "string", 4313
 "maxLength": 64, 4314
 "readOnly": true, 4315
 "description": "Platform Resident OS Version" 4316
 }, 4317
 "mnhw": { 4318
 "type": "string", 4319
 "maxLength": 64, 4320
 "readOnly": true, 4321
 "description": "Platform Hardware Version" 4322
 }, 4323
 "mnfv": { 4324
 "type": "string", 4325
 "maxLength": 64, 4326
 "readOnly": true, 4327
 "description": "Manufacturer's firmware version" 4328
 }, 4329
 "mnsl": { 4330
 "type": "string", 4331
 "readOnly": true, 4332
 "description": "Manufacturer's Support Information URL", 4333
 "maxLength": 256, 4334
 "format": "uri" 4335
 }, 4336
 "st": { 4337
 "type": "string", 4338
 "readOnly": true, 4339
 "description": "Reference time for the device as defined in ISO 8601, where 4340
concatenation of 'date' and 'time' with the 'T' as a delimiter between 'date' and 'time'. The 4341
format is [yyyy]-[mm]-[dd]T[hh]:[mm]:[ss]Z.", 4342
 "format": "date-time" 4343
 }, 4344
 "vid": { 4345
 "type": "string", 4346
 "maxLength": 64, 4347
 "readOnly": true, 4348
 "description": "Manufacturer's defined string for the platform. The string 4349
is freeform and up to the manufacturer on what text to populate it" 4350
 } 4351
 } 4352

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 131

 } 4353
 }, 4354
 "type": "object", 4355
 "allOf": [4356
 { "$ref": "#/definitions/oic.wk.p" } 4357
], 4358
 "required": ["pi", "mnmn"] 4359
 } 4360
 4361

 example: | 4362

 { 4363
 "pi": "54919CA5-4101-4AE4-595B-353C51AA983C", 4364
 "rt": ["oic.wk.p"], 4365
 "mnmn": "Acme, Inc" 4366
 } 4367
 4368

D.6.5 Property Definition 4369

Property name Value type Mandatory Access mode Description
id Read Write
uuid string Read Write
pi yes Read Only Platform Identifier as

a UUID
mnmn string yes Read Only Manufacturer Name
mnml string Read Only Manufacturer's URL
mnmo string Read Only
mndt string Read Only Manufacturing Date

as defined in ISO
8601, where the
format is [yyyy]-
[mm]-[dd].

mnpv string Read Only
mnos string Read Only
mnhw string Read Only
mnfv string Read Only
mnsl string Read Only Manufacturer's

Support Information
URL

st string Read Only Reference time for
the device as
defined in ISO 8601,
where concatenation
of 'date' and 'time'
with the 'T' as a
delimiter between
'date' and 'time'. The
format is [yyyy]-
[mm]-
[dd]T[hh]:[mm]:[ss]Z.

vid string Read Only

D.6.6 CRUDN Behaviour 4370

Resource Create Read Update Delete Notify
/oic/p get

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 132

D.7 Ping 4371

D.7.1 Introduction 4372

The resource using which an Client keeps its Connection with an Server active. 4373

D.7.2 Fixed URI 4374

/oic/ping 4375

D.7.3 Resource Type 4376

The resource type (rt) is defined as: oic.wk.ping. 4377

D.7.4 RAML Definition 4378

#%RAML 0.8 4379

title: Ping 4380
version: v1-20160622 4381

traits: 4382
 - interface : 4383
 queryParameters: 4384

 if: 4385
 enum: ["oic.if.rw", "oic.if.baseline"] 4386

 4387

/oic/ping: 4388

 description: | 4389
 The resource using which an Client keeps its Connection with an Server active. 4390
 4391

 is : ['interface'] 4392

 get: 4393

 description: | 4394
 Retrieve the ping information 4395
 4396

 responses : 4397

 200: 4398

 body: 4399
 application/json: 4400

 schema: | 4401

 { 4402
 "$schema": "http://json-schemas.org/draft-04/schema#", 4403
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 4404
reserved.", 4405
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.wk.ping-4406
schema.json#", 4407
 "definitions": { 4408
 "oic.wk.ping": { 4409
 "type": "object", 4410
 "properties": { 4411
 "in": { 4412
 "type": "integer", 4413
 "description": "ReadWrite, Indicates the interval for which connection 4414
shall be kept alive" 4415
 } 4416
 } 4417
 } 4418
 }, 4419
 "type": "object", 4420
 "allOf": [4421
 { "$ref": "#/definitions/oic.wk.ping"} 4422
], 4423
 "required": [4424
 "in" 4425
] 4426

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 133

 } 4427
 4428

 example: | 4429

 { 4430
 "rt": ["oic.wk.ping"], 4431
 "n": "Ping Information", 4432
 "in": 16 4433
 } 4434
 4435

D.7.5 Property Definition 4436

Property name Value type Mandatory Access mode Description
id Read Write
in integer Read Write ReadWrite,

Indicates the
interval for which
connection shall
be kept alive

in Read Write

D.7.6 CRUDN Behaviour 4437

Resource Create Read Update Delete Notify
/oic/ping get

D.8 Discoverable Resources 4438

D.8.1 Introduction 4439

The resource through which the corresponding Server is discovered and introspected for available 4440
resources. 4441

D.8.2 Fixed URI 4442

/oic/res 4443

D.8.3 Resource Type 4444

The resource type (rt) is defined as: oic.wk.res. 4445

D.8.4 RAML Definition 4446

#%RAML 0.8 4447

title: Discoverable Resources 4448
version: v1-20160622 4449

traits: 4450
 - interface : 4451
 queryParameters: 4452

 if: 4453
 enum: ["oic.if.ll", "oic.if.baseline"] 4454

 4455

/oic/res: 4456

 description: | 4457
 The resource through which the corresponding Server is discovered and introspected for 4458
available resources. 4459
 4460

 is : ['interface'] 4461

 get: 4462

 description: | 4463
 Retrieve the discoverable resource set 4464
 4465

 responses : 4466

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 134

 200: 4467

 body: 4468
 application/json: 4469

 schema: | 4470

 { 4471
 "$schema": "http://json-schema.org/draft-v4/schema#", 4472
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 4473
reserved.", 4474
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.wk.res-4475
schema.json#", 4476
 "definitions": { 4477
 "uuid": { 4478
 "type":"string", 4479
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-4480
fA-F0-9]{12}$" 4481
 }, 4482
 "oic.res-links.json": { 4483
 "type": "object", 4484
 "properties": { 4485
 "n": { 4486
 "type": "string", 4487
 "maxLength": 64, 4488
 "readOnly": true, 4489
 "description": "Human friendly name" 4490
 }, 4491
 "di": { 4492
 "$ref": "#/definitions/uuid", 4493
 "readOnly": true, 4494
 "description": "Unique identifier for device (UUID) as indicated by the 4495
/oic/d resource of the device" 4496
 }, 4497
 "mpro": { 4498
 "readOnly": true, 4499
 "description": "Supported messaging protocols", 4500
 "type": "string", 4501
 "maxLength": 64 4502
 }, 4503
 "links": { 4504
 "type": "array", 4505
 "items": { 4506
 "$ref": "oic.oic-link-schema.json#/definitions/oic.oic-link" 4507
 } 4508
 } 4509
 }, 4510
 "required": ["di", "links"] 4511
 } 4512
 }, 4513
 "description": "The list of resources expressed as OIC links", 4514
 "type": "array", 4515
 "items": { 4516
 "$ref": "#/definitions/oic.res-links.json" 4517
 } 4518
 } 4519
 4520

 example: | 4521

 [4522
 { 4523
 "rt": ["oic.wk.res"], 4524
 "di": "0685B960-736F-46F7-BEC0-9E6CBD61ADC1", 4525
 "links": 4526
 [4527
 { 4528
 "href": "/res", 4529
 "rel": "self", 4530
 "rt": ["oic.r.collection"], 4531
 "if": ["oic.if.ll"] 4532
 }, 4533
 { 4534

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 135

 "href": "/smartDevice", 4535
 "rel": "contained", 4536
 "rt": ["oic.d.smartDevice"], 4537
 "if": ["oic.if.a"] 4538
 } 4539
] 4540
 } 4541
] 4542
 4543

D.8.5 Property Definition 4544

Property name Value type Mandatory Access mode Description
id Read Write
uuid string Read Write
n string Read Only
di yes Read Only Unique identifier

for device (UUID)
as indicated by
the /oic/d
resource of the
device

mpro Read Write Supported
messaging
protocols

links array yes Read Write

D.8.6 CRUDN Behaviour 4545

Resource Create Read Update Delete Notify
/oic/res get

D.9 Scenes (Top level) 4546

D.9.1 Introduction 4547

Toplevel Scene resource. This resource is a generic collection resource. The rts value shall contain 4548
oic.sceneCollection resource types. 4549

D.9.2 Fixed URI 4550

/SceneListResURI 4551

D.9.3 Resource Type 4552

The resource type (rt) is defined as: oic.wk.sceneList. 4553

D.9.4 RAML Definition 4554

#%RAML 0.8 4555

title: Scene 4556
version: v1-20160622 4557

traits: 4558
 - interface : 4559
 queryParameters: 4560

 if: 4561
 enum: ["oic.if.a", "oic.if.ll", "oic.if.baseline"] 4562

 4563

/SceneListResURI: 4564

 description: | 4565
 Toplevel Scene resource. 4566
 This resource is a generic collection resource. 4567
 The rts value shall contain oic.sceneCollection resource types. 4568
 4569

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 136

 get: 4570

 description: | 4571
 Provides the current list of web links pointing to scenes 4572
 4573

 responses : 4574

 200: 4575

 body: 4576
 application/json: 4577

 schema: | 4578

 { 4579
 "$schema": "http://json-schema.org/draft-04/schema#", 4580
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 4581
reserved.", 4582
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.collection-4583
schema.json#", 4584
 "title": "Collection", 4585
 "definitions": { 4586
 "uuid": { 4587
 "type":"string", 4588
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-4589
[a-fA-F0-9]{12}$" 4590
 }, 4591
 "oic.collection.setoflinks": { 4592
 "description": "A set (array) of simple or individual OIC Links. In 4593
addition to properties required for an OIC Link, the identifier for that link in this set is also 4594
required", 4595
 "type": "array", 4596
 "items": { 4597
 "$ref": "oic.oic-link-schema.json#/definitions/oic.oic-link" 4598
 } 4599
 }, 4600
 "oic.collection.tags": { 4601
 "type": "object", 4602
 "description": "The tags that can be used for tagging links in a 4603
collection", 4604
 "properties": { 4605
 "n": { 4606
 "type": "string", 4607
 "description": "Used to name i.e. tag the set of links" 4608
 }, 4609
 "id": { 4610
 "description": "Id for each set of links i.e. tag. Can be an 4611
value that is unique to the use context or a UUIDv4", 4612
 "anyOf": [4613
 { 4614
 "type": "integer", 4615
 "description": "A number that is unique to that 4616
collection; like an ordinal number that is not repeated" 4617
 }, 4618
 { 4619
 "type": "string", 4620
 "description": "A unique string that could be a hash or 4621
similarly unique" 4622
 }, 4623
 { 4624
 "$ref": "#/definitions/uuid", 4625
 "description": "A unique string that could be a UUIDv4" 4626
 } 4627
] 4628
 }, 4629
 "di": { 4630
 "$ref": "#/definitions/uuid", 4631
 "description": "The device ID which is an UUIDv4 string" 4632
 }, 4633
 "base": { 4634
 "type": "string", 4635
 "description": "The base URI to be used if the links are relative 4636
URIs (i.e. relative references); see base URI in Core spec for details", 4637

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 137

 "format": "uri" 4638
 } 4639
 }, 4640
 "minProperties": 1 4641
 }, 4642
 "oic.collection.tagged-setoflinks": { 4643
 "type": "array", 4644
 "description": "A tagged link is a set (array) of links that are tagged 4645
with one or more key-value pairs usually either an ID or Name or both", 4646
 "items": [4647
 { 4648
 "$ref": "#/definitions/oic.collection.tags" 4649
 }, 4650
 { 4651
 "$ref": "#/definitions/oic.collection.setoflinks" 4652
 } 4653
], 4654
 "additionalItems": false 4655
 }, 4656
 "oic.collection.setof-tagged-setoflinks": { 4657
 "type": "array", 4658
 "items": [4659
 { 4660
 "$ref": "#/definitions/oic.collection.tagged-setoflinks" 4661
 } 4662
], 4663
 "additionalItems": false 4664
 }, 4665
 "oic.collection.alllinks": { 4666
 "description": "All forms of links in a collection", 4667
 "oneOf": [4668
 { 4669
 "$ref": "#/definitions/oic.collection.setof-tagged-setoflinks" 4670
 }, 4671
 { 4672
 "$ref": "#/definitions/oic.collection.tagged-setoflinks" 4673
 }, 4674
 { 4675
 "$ref": "#/definitions/oic.collection.setoflinks" 4676
 } 4677
] 4678
 }, 4679
 "oic.collection": { 4680
 "type": "object", 4681
 "description": "A collection is a set (array) of tagged-link or set 4682
(array) of simple links along with additional properties to describe the collection itself", 4683
 "properties": { 4684
 "n": { 4685
 "type": "string", 4686
 "description": "User friendly name of the 4687
collection" }, 4688
 "id": { 4689
 "anyOf": [4690
 { 4691
 "type": "integer", 4692
 "description": "A number that is unique to that 4693
collection; like an ordinal number that is not repeated" 4694
 }, 4695
 { 4696
 "type": "string", 4697
 "description": "A unique string that could be a hash or 4698
similarly unique" 4699
 }, 4700
 { 4701
 "$ref": "#/definitions/uuid", 4702
 "description": "A unique string that could be a UUIDv4" 4703
 } 4704
], 4705
 "description": "ID for the collection. Can be an value that is 4706
unique to the use context or a UUIDv4" 4707
 }, 4708

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 138

 "di": { 4709
 "$ref": "#/definitions/uuid", 4710
 "description": "The device ID which is an UUIDv4 string; used for 4711
backward compatibility with Spec A defintion of /oic/res" 4712
 }, 4713
 "rts": { 4714
 "type": "string", 4715
 "description": "Defines the list of allowable resource types (for 4716
Target and anchors) in links included in the collection; new links being created can only be from 4717
this list" }, 4718
 "drel": { 4719
 "type": "string", 4720
 "description": "When specified this is the default relationship 4721
to use when an OIC Link does not specify an explicit relationship with *rel* parameter" 4722
 }, 4723
 "links": { 4724
 "$ref": "#/definitions/oic.collection.alllinks" 4725
 } 4726
 } 4727
 } 4728
 }, 4729
 "type": "object", 4730
 "allOf": [4731
 { 4732
 "$ref": "#/definitions/oic.collection" 4733
 } 4734
] 4735
 } 4736
 4737

 example: | 4738

 { 4739
 "rt": "oic.wk.sceneList", 4740
 "n": "list of scene Collections", 4741
 "rts": "oic.wk.sceneCollection", 4742
 "links": [4743
] 4744
 } 4745
 4746

D.9.5 Property Definition 4747

Property name Value type Mandatory Access mode Description
id Read Write
uuid string Read Write
n string Read Write Used to name

i.e. tag the set of
links

id Read Write
di Read Write The device ID

which is an
UUIDv4 string

base string Read Write The base URI to
be used if the
links are relative
URIs (i.e.
relative
references); see
base URI in Core
spec for details

n string Read Write User friendly
name of the
collection

id Read Write

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 139

di Read Write The device ID
which is an
UUIDv4 string;
used for
backward
compatibility with
Spec A defintion
of /oic/res

rts string Read Write Defines the list of
allowable
resource types
(for Target and
anchors) in links
included in the
collection; new
links being
created can only
be from this list

drel string Read Write When specified
this is the default
relationship to
use when an OIC
Link does not
specify an
explicit
relationship with
rel parameter

links Read Write

D.9.6 CRUDN Behaviour 4748

Resource Create Read Update Delete Notify
/SceneListResURI get

D.10 Scene Collections 4749

D.10.1 Introduction 4750

Collection that models a set of Scenes. This resource is a generic collection resource with 4751
additional parameters. The rts value shall contain oic.sceneMember resource types. The additional 4752
parameters are lastScene, this is the scene value last set by any OIC Client sceneValueList, 4753
this is the list of available scenes lastScene shall be listed in sceneValueList. 4754

D.10.2 Fixed URI 4755

/SceneCollectionResURI 4756

D.10.3 Resource Type 4757

The resource type (rt) is defined as: oic.wk.sceneCollection. 4758

D.10.4 RAML Definition 4759

#%RAML 0.8 4760

title: Scene 4761
version: v1-20160622 4762

traits: 4763
 - interface : 4764
 queryParameters: 4765

 if: 4766
 enum: ["oic.if.a", "oic.if.ll", "oic.if.baseline"] 4767

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 140

 4768

/SceneCollectionResURI: 4769

 description: | 4770
 Collection that models a set of Scenes. 4771
 This resource is a generic collection resource with additional parameters. 4772
 The rts value shall contain oic.sceneMember resource types. 4773
 The additional parameters are 4774
 lastScene, this is the scene value last set by any OIC Client 4775
 sceneValueList, this is the list of available scenes 4776
 lastScene shall be listed in sceneValueList. 4777
 4778

 get: 4779

 description: | 4780
 Provides the current list of web links pointing to scenes 4781
 4782

 responses : 4783

 200: 4784

 body: 4785
 application/json: 4786

 schema: | 4787

 { 4788
 "$schema": "http://json-schema.org/draft-04/schema#", 4789
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 4790
reserved.", 4791
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.sceneCollection-4792
schema.json#", 4793
 "title" : "Scene Collection", 4794
 "definitions": { 4795
 "oic.sceneCollection": { 4796
 "type": "object", 4797
 "properties": { 4798
 "lastScene": { 4799
 "type": "string", 4800
 "description": "Last selected Scene, shall be part of sceneValues", 4801
 "format": "UTF8" 4802
 }, 4803
 "sceneValues": { 4804
 "type": "string", 4805
 "readOnly": true, 4806
 "description": "All available scene values", 4807
 "format": "CSV" 4808
 }, 4809
 "n": { 4810
 "type": "string", 4811
 "description": "Used to name the Scene collection", 4812
 "format": "UTF8" 4813
 }, 4814
 "id": { 4815
 "type": "string", 4816
 "description" : "A unique string that could be a hash or 4817
similarly unique" 4818
 }, 4819
 "rts": { 4820
 "type": "string", 4821
 "readOnly": true, 4822
 "description": "Defines the list of allowable resource types in links 4823
included in the collection; new links being created can only be from this list", 4824
 "format": "UTF8" 4825
 }, 4826
 "links": { 4827
 "type": "array", 4828
 "description": "Array of OIC web links that are reference from this 4829
collection", 4830
 "items" : { 4831
 "allOf": [4832
 { "$ref": "oic.oic-link-schema.json#/definitions/oic.oic-link" }, 4833

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 141

 { "required" : ["ins"] } 4834
] 4835
 } 4836
 } 4837
 }, 4838
 "required": ["lastScene","sceneValues","rts","id"] 4839
 } 4840
 }, 4841
 4842
 "type": "object", 4843
 "allOf" : [4844
 { "$ref": "#/definitions/oic.sceneCollection" } 4845
] 4846
 } 4847
 4848

 example: | 4849

 { 4850
 "lastScene": "off", 4851
 "sceneValues": "off,Reading,TVWatching", 4852
 "rt": "oic.wk.sceneCollection", 4853
 "n": "My Scenes for my living room", 4854
 "id": "0685B960-736F-46F7-BEC0-9E6CBD671ADC1", 4855
 "rts": "oic.wk.sceneMember", 4856
 "links": [4857
] 4858
 } 4859
 4860

 put: 4861

 description: | 4862
 Provides the action to change the last settted scene selection. 4863
 Calling this method shall update of all sceneMembers to the prescribed membervalue. 4864
 When this method is called with the same value as the current lastScene value 4865
 then all sceneMembers shall be updated. 4866
 4867

 body: 4868
 application/json: 4869

 schema: | 4870

 { 4871
 "$schema": "http://json-schema.org/draft-04/schema#", 4872
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 4873
reserved.", 4874
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.sceneCollection-4875
schema.json#", 4876
 "title" : "Scene Collection", 4877
 "definitions": { 4878
 "oic.sceneCollection": { 4879
 "type": "object", 4880
 "properties": { 4881
 "lastScene": { 4882
 "type": "string", 4883
 "description": "Last selected Scene, shall be part of sceneValues", 4884
 "format": "UTF8" 4885
 }, 4886
 "sceneValues": { 4887
 "type": "string", 4888
 "readOnly": true, 4889
 "description": "All available scene values", 4890
 "format": "CSV" 4891
 }, 4892
 "n": { 4893
 "type": "string", 4894
 "description": "Used to name the Scene collection", 4895
 "format": "UTF8" 4896
 }, 4897
 "id": { 4898
 "type": "string", 4899
 "description" : "A unique string that could be a hash or 4900

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 142

similarly unique" 4901
 }, 4902
 "rts": { 4903
 "type": "string", 4904
 "readOnly": true, 4905
 "description": "Defines the list of allowable resource types in links included 4906
in the collection; new links being created can only be from this list", 4907
 "format": "UTF8" 4908
 }, 4909
 "links": { 4910
 "type": "array", 4911
 "description": "Array of OIC web links that are reference from this 4912
collection", 4913
 "items" : { 4914
 "allOf": [4915
 { "$ref": "oic.oic-link-schema.json#/definitions/oic.oic-link" }, 4916
 { "required" : ["ins"] } 4917
] 4918
 } 4919
 } 4920
 }, 4921
 "required": ["lastScene"] 4922
 } 4923
 }, 4924
 4925
 "type": "object", 4926
 "allOf" : [4927
 { "$ref": "#/definitions/oic.sceneCollection" } 4928
] 4929
 } 4930
 4931

 example: | 4932

 { 4933
 "lastScene": "Reading" 4934
 } 4935
 4936

 responses : 4937

 200: 4938

 description: | 4939
 Indicates that the value is changed. 4940
 The changed properties are provided in the response. 4941
 4942

 body: 4943
 application/json: 4944

 schema: | 4945

 { 4946
 "$schema": "http://json-schema.org/draft-04/schema#", 4947
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 4948
reserved.", 4949
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.sceneCollection-4950
schema.json#", 4951
 "title" : "Scene Collection", 4952
 "definitions": { 4953
 "oic.sceneCollection": { 4954
 "type": "object", 4955
 "properties": { 4956
 "lastScene": { 4957
 "type": "string", 4958
 "description": "Last selected Scene, shall be part of sceneValues", 4959
 "format": "UTF8" 4960
 }, 4961
 "sceneValues": { 4962
 "type": "string", 4963
 "readOnly": true, 4964
 "description": "All available scene values", 4965
 "format": "CSV" 4966
 }, 4967

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 143

 "n": { 4968
 "type": "string", 4969
 "description": "Used to name the Scene collection", 4970
 "format": "UTF8" 4971
 }, 4972
 "id": { 4973
 "type": "string", 4974
 "description" : "A unique string that could be a hash or 4975
similarly unique" 4976
 }, 4977
 "rts": { 4978
 "type": "string", 4979
 "readOnly": true, 4980
 "description": "Defines the list of allowable resource types in links 4981
included in the collection; new links being created can only be from this list", 4982
 "format": "UTF8" 4983
 }, 4984
 "links": { 4985
 "type": "array", 4986
 "description": "Array of OIC web links that are reference from this 4987
collection", 4988
 "items" : { 4989
 "allOf": [4990
 { "$ref": "oic.oic-link-schema.json#/definitions/oic.oic-link" }, 4991
 { "required" : ["ins"] } 4992
] 4993
 } 4994
 } 4995
 }, 4996
 "required": ["lastScene"] 4997
 } 4998
 }, 4999
 5000
 "type": "object", 5001
 "allOf" : [5002
 { "$ref": "#/definitions/oic.sceneCollection" } 5003
] 5004
 } 5005
 5006

 example: | 5007

 { 5008
 "lastScene": "Reading" 5009
 } 5010
 5011

D.10.5 Property Definition 5012

Property name Value type Mandatory Access mode Description
id yes Read Write
lastScene string yes Read Write Last selected

Scene, shall be
part of
sceneValues

sceneValues string yes Read Only All available
scene values

n string Read Write Used to name
the Scene
collection

id string yes Read Write A unique string
that could be a
hash or similarly
unique

rts string yes Read Only Defines the list of
allowable
resource types in

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 144

links included in
the collection;
new links being
created can only
be from this list

links array Read Write Array of OIC web
links that are
reference from
this collection

D.10.6 CRUDN Behaviour 5013

Resource Create Read Update Delete Notify
/SceneCollectionResURI put get

D.11 Scene Member 5014

D.11.1 Introduction 5015

Collection that models a sceneMember. 5016

D.11.2 Fixed URI 5017

/SceneMemberResURI 5018

D.11.3 Resource Type 5019

The resource type (rt) is defined as: oic.r.switch.binary. 5020

D.11.4 RAML Definition 5021

#%RAML 0.8 5022

title: Scene 5023
version: v1-20160622 5024

traits: 5025
 - interface : 5026
 queryParameters: 5027

 if: 5028
 enum: ["oic.if.a", "oic.if.ll", "oic.if.baseline"] 5029

 5030

/SceneMemberResURI: 5031

 description: | 5032
 Collection that models a sceneMember. 5033
 5034

 get: 5035

 description: | 5036
 Provides the scene member 5037
 5038

 responses : 5039

 200: 5040

 body: 5041
 application/json: 5042

 schema: | 5043

 { 5044
 "$schema": "http://json-schema.org/draft-04/schema#", 5045
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 5046
reserved.", 5047
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.sceneMember-5048
schema.json#", 5049
 "title" : "Scene Member", 5050
 "definitions": { 5051
 "oic.sceneMember": { 5052

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 145

 "type": "object", 5053
 "properties": { 5054
 "n": { 5055
 "type": "string", 5056
 "description": "Used to name the Scene collection", 5057
 "format": "UTF8" 5058
 }, 5059
 "id": { 5060
 "type": "string", 5061
 "description": "Can be an value that is unique to the use context or a 5062
UUIDv4" 5063
 }, 5064
 "SceneMappings" : { 5065
 "type": "array", 5066
 "description": "array of mappings per scene, can be 1", 5067
 "items": [5068
 { 5069
 "type": "object", 5070
 "properties": { 5071
 "scene": { 5072
 "type": "string", 5073
 "description": "Specifies a scene value that will acted upon" 5074
 }, 5075
 "memberProperty": { 5076
 "type": "string", 5077
 "readOnly": true, 5078
 "description": "property name that will be mapped" 5079
 }, 5080
 "memberValue": { 5081
 "type": "string", 5082
 "readOnly": true, 5083
 "description": "value of the Member Property" 5084
 } 5085
 }, 5086
 "required": ["scene", "memberProperty", "memberValue"] 5087
 } 5088
] 5089
 }, 5090
 5091
 "link": { 5092
 "type": "string", 5093
 "description": "web link that points at a resource", 5094
 "$ref": "oic.oic-link-schema.json#" 5095
 } 5096
 }, 5097
 "required": ["link"] 5098
 } 5099
 }, 5100
 5101
 "type": "object", 5102
 "allOf" : [5103
 { "$ref": "#/definitions/oic.sceneMember" } 5104
] 5105
 } 5106
 5107

 example: | 5108

 { 5109
 "id": "0685B960-FFFF-46F7-BEC0-9E6234671ADC1", 5110
 "n": "my binary switch (for light bulb) mappings", 5111
 "link": { "href":"coap://mydevice/mybinaryswitch", 5112
 "if": "oic.if.a", 5113
 "rt": "oic.r.switch.binary" }, 5114
 "sceneMappings": [5115
 { 5116
 "scene": "off", 5117
 "memberProperty": "value", 5118
 "memberValue": true 5119
 }, 5120
 { 5121
 "scene": "Reading", 5122

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 146

 "memberProperty": "value", 5123
 "memberValue": false 5124
 }, 5125
 { 5126
 "scene": "TVWatching", 5127
 "memberProperty": "value", 5128
 "memberValue": true 5129
 } 5130
] 5131
 } 5132
 5133

D.11.5 Property Definition 5134

Property name Value type Mandatory Access mode Description
id Read Write
n string Read Write Used to name

the Scene
collection

id string Read Write Can be an value
that is unique to
the use context
or a UUIDv4

SceneMappings array Read Write Array Of
Mappings Per
Scene, Can Be 1

scene string yes Read Write Specifies a
scene value that
will acted upon

memberProperty string yes Read Only Property Name
That Will Be
Mapped

memberValue string yes Read Only Value Of The
Member Property

link string yes Read Write Web Link That
Points At A
Resource

D.11.6 CRUDN Behaviour 5135

Resource Create Read Update Delete Notify
/SceneMemberResURI get

D.12 Resource directory resource 5136

D.12.1 Introduction 5137

Resource to be exposed by any Device that can act as a Resource Directory 5138

D.12.2 Fixed URI 5139

/oic/rd 5140

D.12.3 Resource Type 5141

The resource type (rt) is defined as: oic.wk.rd. 5142

D.12.4 RAML Definition 5143

#%RAML 0.8 5144

title: Resource Directory 5145
version: v1-20160622 5146

traits: 5147
 - rddefinterface : 5148

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 147

 queryParameters: 5149

 if: 5150
 description: Interface is optional since there is only one interface supported for the 5151
Resource Type 5152
Both for RD selectin and for publish 5153
 5154
 type: string 5155
 enum: ["oic.if.baseline"] 5156
 default: oic.if.baseline 5157

 5158

/oic/rd: 5159

 description: | 5160
 Resource to be exposed by any Device that can act as a Resource Directory 5161
 5162

 get: 5163

 description: | 5164
 Get the attributes of the Resource Directory for selection purposes. 5165
 5166

 queryParameters: 5167

 rt: 5168
 enum: oic.wk.rd 5169
 type: string 5170

 description: Only one Resource Type is used for GET; RT is optional 5171
 5172

 required: false 5173

 example: GET /oic/rd?rt=oic.wk.rd 5174
 5175

 responses : 5176

 200: 5177

 description: | 5178
 Respond with the selector criteria - either the set of attributes or the bias factor 5179
 5180

 body: 5181
 application/json: 5182

 schema: | 5183

 { 5184
 "$schema": "http://json-schema.org/draft-04/schema#", 5185
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 5186
reserved.", 5187
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.rd.selection-5188
schema.json#", 5189
 "title" : "RD Selection", 5190
 "definitions": { 5191
 "oic.rd.attributes": { 5192
 "type": "object", 5193
 "properties": { 5194
 "n": { 5195
 "type": "string", 5196
 "description": "A human friendly name for the Resource Directory", 5197
 "format": "UTF8" 5198
 }, 5199
 "di": { 5200
 "$ref": "oic.types-schema.json#/definitions/uuid", 5201
 "description": "A unique identifier for the Resource Directory - the same 5202
as the device ID of the RD" 5203
 5204
 }, 5205
 "sel": { 5206
 "description": "Selection criteria that a device wanting to publish to any 5207
RD can use to choose this Resource Directory over others that are discovered", 5208
 "oneOf": [5209

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 148

 { 5210
 "type": "object", 5211
 "properties": { 5212
 "pwr": { 5213
 "type": "string", 5214
 "enum": ["ac", "batt", "safe"], 5215
 "description": "A hint about how the RD is powered. If AC then this 5216
is stronger than battery powered. If source is reliable (safe) then appropriate mechanism for 5217
managing power failure exists" 5218
 }, 5219
 "conn": { 5220
 "type": "string", 5221
 "enum": ["wrd", "wrls"], 5222
 "description": "A hint about the networking connectivity of the RD. 5223
wrd if wired connected and *wrls* if wireless connected." 5224
 }, 5225
 "bw": { 5226
 "type": "string", 5227
 "description": "Qualitative bandwidth of the connection", 5228
 "enum": ["high", "low", "lossy"] 5229
 }, 5230
 "mf": { 5231
 "type": "integer", 5232
 "description": "Memory factor - Ratio of available memory to total 5233
memory expressed as a percentage" 5234
 }, 5235
 "load": { 5236
 "type": "array", 5237
 "items": { 5238
 "type": "number" 5239
 }, 5240
 "minitems": 3, 5241
 "maxitems": 3, 5242
 "description": "Current load capacity of the RD. Expressed as a 5243
load factor 3-tuple (upto two decimal points each). Load factor is based on request processed in a 5244
1 minute, 5 minute window and 15 minute window" 5245
 } 5246
 } 5247
 }, 5248
 { 5249
 "type": "integer", 5250
 "minimum": 0, 5251
 "maximum": 100, 5252
 "description": "A bias factor calculated by the Resource directory - 5253
the value is in the range of 0 to 100 - 0 implies that RD is not to be selected. Client chooses RD 5254
with highest bias factor or randomly between RDs that have same bias factor" 5255
 } 5256
] 5257
 } 5258
 } 5259
 } 5260
 }, 5261
 "type": "object", 5262
 "allOf": [{"$ref": "#/definitions/oic.rd.attributes"}], 5263
 "required": ["sel"] 5264
 } 5265
 5266

 example: | 5267

 { 5268
 "rt": "oic.wk.rd", 5269
 "sel": 50 5270
 } 5271
 5272

 post: 5273

 description: | 5274
 Publish the resource information 5275
 Appropriates parts of the information posted will be discovered through /oic/res 5276
 5277

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 149

 queryParameters: 5278

 rt: 5279
 enum: oic.wk.rdpub 5280
 type: string 5281

 description: Only one Resource Type is used for GET; RT is optional 5282
 5283

 required: false 5284

 example: GET /oic/rd?rt=oic.wk.rdpub 5285
 5286

 body: 5287
 application/json: 5288

 schema: | 5289

 { 5290
 "$schema": "http://json-schema.org/draft-04/schema#", 5291
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 5292
reserved.", 5293
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.rd.publish-5294
schema.json#", 5295
 "title": "RD Publish & Update", 5296
 "definitions": { 5297
 "oic.rd.publish": { 5298
 "description": "Publishes resources as OIC Links into the resource directory", 5299
 "properties": { 5300
 "linkSet": { 5301
 "$ref": "oic.collection-schema.json#/definitions/oic.collection.setof-tagged-5302
setoflinks" 5303
 }, 5304
 "ttl": { 5305
 "type": "integer", 5306
 "description": "Time to indicate a RD, how long to keep this published item. 5307
After this time (in seconds) elapses, the RD invalidates the links. To keep link alive the 5308
publishing device updates the ttl using the update schema" 5309
 } 5310
 } 5311
 } 5312
 }, 5313
 "type": "object", 5314
 "allOf": [{ "$ref": "#/definitions/oic.rd.publish" }], 5315
 "required": ["links"], 5316
 "dependencies": { 5317
 "links": ["ttl"] 5318
 } 5319
 } 5320
 5321

 responses : 5322

 200: 5323

 description: | 5324
 Respond with the same schema as publish but with the links have the "ins" parameter set 5325
to the appropriate instance value. 5326
 This value is used by the receiver to manage that OIC Link instance. 5327
 5328

 body: 5329
 application/json: 5330

 schema: | 5331

 { 5332
 "$schema": "http://json-schema.org/draft-04/schema#", 5333
 "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights 5334
reserved.", 5335
 "id": "https://www.openconnectivity.org/ocf-apis/core/schemas/oic.rd.publish-5336
schema.json#", 5337
 "title": "RD Publish & Update", 5338
 "definitions": { 5339
 "oic.rd.publish": { 5340
 "description": "Publishes resources as OIC Links into the resource directory", 5341

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 150

 "properties": { 5342
 "linkSet": { 5343
 "$ref": "oic.collection-schema.json#/definitions/oic.collection.setof-5344
tagged-setoflinks" 5345
 }, 5346
 "ttl": { 5347
 "type": "integer", 5348
 "description": "Time to indicate a RD, how long to keep this published 5349
item. After this time (in seconds) elapses, the RD invalidates the links. To keep link alive the 5350
publishing device updates the ttl using the update schema" 5351
 } 5352
 } 5353
 } 5354
 }, 5355
 "type": "object", 5356
 "allOf": [{ "$ref": "#/definitions/oic.rd.publish" }], 5357
 "required": ["links"], 5358
 "dependencies": { 5359
 "links": ["ttl"] 5360
 } 5361
 } 5362
 5363

 example: | 5364

 { 5365
 "links": [5366
 { 5367
 "href": "coap://someAuthority:1000/somePath", 5368
 "rt": "oic.r.someResource", 5369
 "if": "oic.if.a", 5370
 "ins": 12345 5371
 }, 5372
 { 5373
 "href": "coap://someAuthority:1000/somePath", 5374
 "rt": "oic.r.someOtherResource", 5375
 "if": "oic.if.baseline", 5376
 "ins": 54321 5377
 } 5378
], 5379
 "ttl": 600 5380
 } 5381
 5382

 delete: 5383

 description: | 5384
 Delete a particular OIC Link - the link may be a simple link or a link in a tagged set. 5385
 5386

 queryParameters: 5387

 di: 5388
 type: string 5389

 description: This is used to determine which set of links to operata on. (Need 5390
authentication to ensure that there is no spoofing). If instance is ommitted then the entire set of 5391
links from this device ID is deleted 5392
 5393

 required: true 5394

 example: DELETE /oic/rd?di="0685B960-736F-46F7-BEC0-9E6CBD671ADC1" 5395
 5396

 ins: 5397
 type: string 5398

 description: Instance of the link to delete 5399
Value of parameter is a string where instance to be deleted are comma separated 5400
 5401

 required: false 5402

 example: DELETE /oic/rd?di="0685B960-736F-46F7-BEC0-9E6CBD671ADC1";ins="20" 5403
 5404

Copyright Open Connectivity Foundation, Inc. © 2016. All rights Reserved 151

 responses : 5405

 200: 5406

 description: | 5407
 The delete succeeded 5408
 5409

D.12.5 Property Definition 5410

Property name Value type Mandatory Access mode Description
id Read Write
n string Read Write A human friendly

name for the
Resource
Directory

di Read Write A unique
identifier for the
Resource
Directory - the
same as the
device ID of the
RD

sel yes Read Write
pwr string Read Write A hint about how

the RD is
powered. If AC
then this is
stronger than
battery powered.
If source is
reliable (safe)
then appropriate
mechanism for
managing power
failure exists

conn string Read Write A hint about the
networking
connectivity of
the RD. *wrd* if
wired connected
and *wrls* if
wireless
connected.

bw string Read Write Qualitative
bandwidth of the
connection

mf integer Read Write Memory factor -
Ratio of available
memory to total
memory
expressed as a
percentage

load array Read Write

D.12.6 CRUDN Behaviour 5411

Resource Create Read Update Delete Notify
/oic/rd get post delete

 5412

	1 Scope
	2 Normative references
	3 Terms, definitions, symbols and abbreviations
	3.1 Terms and definitions
	3.2 Symbols and abbreviations
	3.3 Conventions
	3.4 Data types

	4 Document conventions and organization
	5 Architecture
	5.1 Overview
	5.2 Principle
	5.3 Functional block diagram
	5.3.1 Framework

	5.4 Example Scenario with roles
	5.5 Example Scenario: Bridging to Non- OCF ecosystem

	6 Identification and addressing
	6.1 Introduction
	6.2 Identification
	6.2.1 Resource identification and addressing

	6.3 Namespace:
	6.4 Network addressing

	7 Resource model
	7.1 Introduction
	7.2 Resource
	7.3 Property
	7.3.1 Introduction
	7.3.2 Common Properties
	7.3.2.1 Introduction
	7.3.2.2 Property Name and Property Value definitions
	7.3.2.3 Resource Type
	7.3.2.4 Interface
	7.3.2.5 Name
	7.3.2.6 Resource Identity

	7.4 Resource Type
	7.4.1 Introduction
	7.4.2 Resource Type Property
	7.4.3 Resource Type definition

	7.5 Device Type
	7.6 Interface
	7.6.1 Introduction
	7.6.2 Interface Property
	7.6.3 Interface methods
	7.6.3.1 Overview
	7.6.3.2 Baseline Interface
	7.6.3.2.1 Overview
	7.6.3.2.2 Use of RETRIEVE
	7.6.3.2.3 Use of UPDATE

	7.6.3.3 Link List Interface
	7.6.3.3.1 Overview
	7.6.3.3.2 Example: “links list” Interface

	7.6.3.4 Batch Interface
	7.6.3.4.1 Overview
	7.6.3.4.2 Examples: Batch Interface

	7.6.3.5 Actuator Interface
	7.6.3.6 Sensor Interface
	7.6.3.7 Read-only Interface
	7.6.3.8 Read-write Interface

	7.7 Resource representation
	7.8 Structure
	7.8.1 Introduction
	7.8.2 Resource Relationships
	7.8.2.1 Parameters
	7.8.2.1.1 “ins” or Link Instance Parameter
	7.8.2.1.2 “p” or Policy Parameter
	7.8.2.1.3 “type” or Media Type Parameter
	7.8.2.1.4 “bp” or the Batch Interface Parameter
	7.8.2.1.5 “di” or Device ID parameter
	7.8.2.1.6 “buri” or base URI Parameter

	7.8.2.2 Formatting
	7.8.2.3 List of Links in a Collection
	7.8.2.4 Usage Cases – Resource discovery

	7.8.3 Collections
	7.8.3.1 Overview
	7.8.3.2 Collection Properties
	7.8.3.3 Default resource type

	8 CRUDN
	8.1 Overview
	8.2 CREATE
	8.2.1 CREATE request
	8.2.2 Processing by the Server
	8.2.3 CREATE response

	8.3 RETRIEVE
	8.3.1 RETRIEVE request
	8.3.2 Processing by the Server
	8.3.3 RETRIEVE response

	8.4 UPDATE
	8.4.1 UPDATE request
	8.4.2 Processing by the Server
	8.4.3 UPDATE response

	8.5 DELETE
	8.5.1 DELETE request
	8.5.2 Processing by the Server
	8.5.3 DELETE response

	8.6 NOTIFY
	8.6.1 NOTIFICATION response

	9 Network and connectivity
	9.1 Introduction
	9.2 Architecture
	9.3 • A node may translate and route messaging between IPv6 and non-IPv6 networks.IPv6 network layer requirements
	9.3.1 Introduction
	9.3.2 IPv6 node requirements
	9.3.2.1 Introduction
	9.3.2.2 IP Layer

	9.3.3 IPv6 constrained nodes
	9.3.3.1 Requirements
	9.3.3.2 IP layer
	9.3.3.3 Sub IP layer

	10 Endpoint discovery
	10.1 Introduction
	10.2 CoAP based Endpoint discovery

	11 Functional interactions
	11.1 Introduction
	11.2 Provisioning
	11.3 Resource discovery
	11.3.1 Introduction
	11.3.2 Resource based discovery: mechanisms
	11.3.2.1 Overview
	11.3.2.2 Direct discovery
	11.3.2.3 Indirect discovery of Resources (resource directory based discovery)
	11.3.2.4 Advertisement Discovery

	11.3.3 Resource based discovery: Information publication process
	11.3.4 Resource based discovery: Finding information
	11.3.5 Resource discovery using /oic/res
	11.3.6 Resource directory (RD) based discovery
	11.3.6.1 Introduction
	11.3.6.1.1 Indirect discovery for lookup of the resources
	11.3.6.1.2 Resource directory

	11.3.6.2 The remainder of this section is divided into two parts. The first part covers discovering of the RD and publishing, updating and deleting of resources for the constrained/sleepy device. The second part covers the replies of the RD to querie...
	11.3.6.2.1 Discovering a resource directory
	11.3.6.2.2 Resource directory selection process
	11.3.6.2.2.1 Selection criteria
	11.3.6.2.2.2 Selection scenarios

	11.3.6.3 If the decision is made to select the new RD, the then Device shall delete its resource information from the current used RD and then after removal publish the information to the new RD. During the transition period the Device itself shall re...
	11.3.6.3.1 Publish resources
	11.3.6.3.1.1 Overview
	11.3.6.3.1.2 Publish: Push resource information

	11.3.6.3.2 Update resource information
	11.3.6.3.3 Delete resource information
	11.3.6.3.4 Transfer resource information from one RD to another

	11.3.6.4 Resource discovery
	11.3.6.4.1 Query and retrieving of the resources

	11.4 Notification
	11.4.1 Overview
	11.4.2 Observe
	11.4.2.1 RETRIEVE request with observe indication
	11.4.2.2 Processing by the Server
	11.4.2.3 RETRIEVE response with observe indication
	11.4.2.4 Resource monitoring by the Server
	11.4.2.5 Additional RETRIEVE responses with observe indication
	11.4.2.6 Cancelling Observe

	11.5 Device management
	11.5.1 Diagnostics and maintenance

	11.6 Scenes
	11.6.1 Introduction
	11.6.2 Scenes
	11.6.2.1 Introduction
	11.6.2.2 Scene creation
	11.6.2.3 Interacting with Scenes
	11.6.2.4 Summary of resource types defined for Scene functionality

	11.6.3 Security considerations

	12 Messaging
	12.1 Introduction
	12.2 Mapping of CRUDN to CoAP
	12.2.1 Overview
	12.2.2 URIs
	12.2.3 CoAP method with request and response
	12.2.3.1 Overview
	12.2.3.2 CREATE with POST or PUT
	12.2.3.2.1 With POST
	12.2.3.2.2 With PUT

	12.2.3.3 RETRIEVE with GET
	12.2.3.4 UPDATE with POST
	12.2.3.5 DELETE with DELETE

	12.2.4 Content Type negotiation
	12.2.5 CRUDN to CoAP response codes
	12.2.6 CoAP block transfer
	12.2.7 CoAP serialization over TCP
	12.2.7.1 Introduction
	12.2.7.2 Indication of support
	12.2.7.3 Message type and header
	12.2.7.4 URI scheme
	12.2.7.5 KeepAlive
	12.2.7.5.1 Overview
	12.2.7.5.2 KeepAlive Mechanism

	12.3 Payload Encoding in CBOR

	13 Security
	14 Multi resource model support
	14.1 Interoperability issue
	14.1.1 Multiple IoT Standards
	14.1.2 Different resource models

	14.2 A scheme to exchange resource model information
	14.2.1 A scheme to exchange resource model information

	Annex A (informative) Operation Examples
	A.1 Introduction
	A.2 When at home: From smartphone turn on a single light
	A.3 GroupAction execution
	A.4 When garage door opens, turn on lights in hall; also notify smartphone
	A.5 Device management

	Annex B (informative) OCF interaction scenarios and deployment models
	B.1 OCF interaction scenarios
	B.2 Deployment model

	Annex C (informative) Other Resource Models and OCF Mapping
	C.1 Multiple resource models
	C.2 OCF approach for support of multiple resource models
	C.3 Resource model indication
	C.4 An Example Profile (IPSO profile)
	C.4.1 Conceptual equivalence

	Annex D (normative) Resource Type definitions
	D.1 List of resource type definitions
	D.2 OCF Collection
	D.2.1 Introduction
	D.2.2 Fixed URI
	D.2.3 Resource Type
	D.2.4 RAML Definition
	D.2.5 Property Definition
	D.2.6 CRUDN Behaviour
	D.2.7 Referenced JSON schemas
	D.2.8 oic.oic-link-schema.json

	D.3 OIC Configuration
	D.3.1 Introduction
	D.3.2 Fixed URI
	D.3.3 Resource Type
	D.3.4 RAML Definition
	D.3.5 Property Definition
	D.3.6 CRUDN Behaviour

	D.4 Device
	D.4.1 Introduction
	D.4.2 Fixed URI
	D.4.3 Resource Type
	D.4.4 RAML Definition
	D.4.5 Property Definition
	D.4.6 CRUDN Behaviour

	D.5 Maintenance
	D.5.1 Introduction
	D.5.2 Fixed URI
	D.5.3 Resource Type
	D.5.4 RAML Definition
	D.5.5 Property Definition
	D.5.6 CRUDN Behaviour

	D.6 Platform
	D.6.1 Introduction
	D.6.2 Fixed URI
	D.6.3 Resource Type
	D.6.4 RAML Definition
	D.6.5 Property Definition
	D.6.6 CRUDN Behaviour

	D.7 Ping
	D.7.1 Introduction
	D.7.2 Fixed URI
	D.7.3 Resource Type
	D.7.4 RAML Definition
	D.7.5 Property Definition
	D.7.6 CRUDN Behaviour

	D.8 Discoverable Resources
	D.8.1 Introduction
	D.8.2 Fixed URI
	D.8.3 Resource Type
	D.8.4 RAML Definition
	D.8.5 Property Definition
	D.8.6 CRUDN Behaviour

	D.9 Scenes (Top level)
	D.9.1 Introduction
	D.9.2 Fixed URI
	D.9.3 Resource Type
	D.9.4 RAML Definition
	D.9.5 Property Definition
	D.9.6 CRUDN Behaviour

	D.10 Scene Collections
	D.10.1 Introduction
	D.10.2 Fixed URI
	D.10.3 Resource Type
	D.10.4 RAML Definition
	D.10.5 Property Definition
	D.10.6 CRUDN Behaviour

	D.11 Scene Member
	D.11.1 Introduction
	D.11.2 Fixed URI
	D.11.3 Resource Type
	D.11.4 RAML Definition
	D.11.5 Property Definition
	D.11.6 CRUDN Behaviour

	D.12 Resource directory resource
	D.12.1 Introduction
	D.12.2 Fixed URI
	D.12.3 Resource Type
	D.12.4 RAML Definition
	D.12.5 Property Definition
	D.12.6 CRUDN Behaviour

