UPnP QosPolicyHolder:3
Service Template Version 1.01
For UPnP Version 1.0
Status: Standardized DCP
Date: November 30, 2008

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee of the UPnP Forum, pursuant to Section 2.1(c)(ii) of the UPnP Forum Membership Agreement. UPnP Forum Members have rights and licenses defined by Section 3 of the UPnP Forum Membership Agreement to use and reproduce the Standardized DCP in UPnP Compliant Devices. All such use is subject to all of the provisions of the UPnP Forum Membership Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS ARE PROVIDED "AS IS" AND "WITH ALL FAULTS". THE UPNP FORUM MAKES NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE STANDARDIZED DCPS, INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, OF REASONABLE CARE OR WORKMANLIKE EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE.

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ally Yu-kyoung Song</td>
<td>LGE</td>
</tr>
<tr>
<td>Amol Bhagwat (editor)</td>
<td>CableLabs</td>
</tr>
<tr>
<td>Bruce Fairman</td>
<td>Sony</td>
</tr>
<tr>
<td>Daryl Hlasny</td>
<td>Sharp Labs of America</td>
</tr>
<tr>
<td>Dieter Verslype</td>
<td>Ghent University</td>
</tr>
<tr>
<td>Fred Tuck (co-chair)</td>
<td>EchoStar</td>
</tr>
<tr>
<td>Jelle Nelis</td>
<td>Ghent University</td>
</tr>
<tr>
<td>Michael van Hartskamp</td>
<td>Philips</td>
</tr>
<tr>
<td>(co-chair)</td>
<td></td>
</tr>
<tr>
<td>Narm Gadiraju</td>
<td>Intel Corporation</td>
</tr>
<tr>
<td>Puneet Sharma</td>
<td>HP</td>
</tr>
<tr>
<td>Richard Chen</td>
<td>Philips</td>
</tr>
<tr>
<td>Sherman Gavette</td>
<td>Sharp Labs of America</td>
</tr>
<tr>
<td>Steve Wade</td>
<td>Sharp Labs of America</td>
</tr>
<tr>
<td>Suman Sharma</td>
<td>Intel Corporation</td>
</tr>
<tr>
<td>Authors</td>
<td>Member</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Zong Wu</td>
<td>Entropic</td>
</tr>
</tbody>
</table>

The UPnP Forum in no way guarantees the accuracy or completeness of this author list and in no way implies any rights for or support from those members listed. This list is not the specifications’ contributor list that is kept on the UPnP Forum’s website.
Contents

1. OVERVIEW AND SCOPE ... 5
 1.1. REFERENCED SPECIFICATIONS ... 5
 1.1.1. Normative References.. 5
 1.1.2. Informative References ... 5

2. SERVICE MODELING DEFINITIONS .. 6
 2.1. SERVICE TYPE ... 6
 2.2. DERIVED DATA TYPES ... 6
 2.2.1. XML Fragments as UPnP Arguments .. 6
 2.2.2. Extensibility of XML .. 6
 2.3. STATE VARIABLES ... 8
 2.3.1. A_ARG_TYPE_TrafficDescriptor .. 9
 2.3.2. A_ARG_TYPE_TrafficPolicy .. 9
 2.3.3. A_ARG_TYPE_ListOfTrafficDescriptors .. 10
 2.3.4. A_ARG_TYPE_ListOfTrafficPolicies .. 10
 2.3.5. A_ARG_TYPE_IsPreferred .. 12
 2.3.6. A_ARG_TYPE_QphPolicyRule .. 12
 2.3.7. A_ARG_TYPE_ListOfQphPolicyRule .. 15
 2.3.8. A_ARG_TYPE_Position ... 16
 2.3.9. A_ARG_TYPE_TIN .. 16
 2.3.10. A_ARG_TYPE_IN ... 16
 2.3.11. A_ARG_TYPE_ReasonCode ... 16
 2.3.12. A_ARG_TYPE_PolicyHandle ... 17
 2.3.13. A_ARG_TYPE_ListPolicyHandle ... 17
 2.3.14. PolicyVersion ... 17
 2.3.15. Relationships Between State Variables ... 17
 2.4. EVENTING AND MODERATION ... 18
 2.4.1. Event Model .. 18
 2.5. ACTIONS .. 18
 2.5.1. GetTrafficPolicy .. 19
 2.5.2. GetListOfTrafficPolicies .. 20
 2.5.3. SetAsPreferred ... 22
 2.5.4. AddQphPolicy ... 24
 2.5.5. RemoveQphPolicy .. 26
 2.5.6. RetrieveQphPolicy ... 26
 2.5.7. GetPolicyVersion ... 27
 2.5.8. Non-Standard Actions Implemented by a UPnP Vendor ... 28
 2.5.9. Error Code Summary ... 28

3. THEORY OF OPERATION (INFORMATIVE) ... 30
 3.1. RETRIEVING POLICIES .. 30
 3.2. PREFERRED QOSPOLICYHOLDER SERVICE SELECTION .. 30
 3.3. QOSPOLICYHOLDER SERVICE CONFIGURATION ... 31

4. XML SERVICE DESCRIPTION .. 32

5. TEST .. 36
List of Tables

Table 2-1: State Variables .. 8
Table 2-2: Event Moderation .. 18
Table 2-3: Actions .. 18
Table 2-4: Arguments for GetTrafficPolicy ... 19
Table 2-5: Error Codes for GetTrafficPolicy .. 20
Table 2-6: Arguments for GetListOfTrafficPolicies ... 21
Table 2-7: Error Codes for GetListOfTrafficPolicies .. 22
Table 2-8: Arguments for SetAsPreferred ... 22
Table 2-9: Error Codes for SetAsPreferred .. 24
Table 2-10: Arguments for AddQphPolicy ... 24
Table 2-11: Reason code for AddQphPolicy .. 25
Table 2-12: Error code for AddQphPolicy .. 25
Table 2-13: Arguments for RemoveQphPolicy .. 26
Table 2-14: Error code for RemoveQphPolicy ... 26
Table 2-15: Arguments for RetrieveQphPolicy ... 27
Table 2-16: Arguments for GetPolicyVersion ... 28
Table 2-17: Common Error Codes ... 28
1. Overview and Scope
This service definition is compliant with the UPnP Device Architecture version 1.0.

This service type enables modeling of the ‘QosPolicyHolder’ function capabilities. The functionality for the QosPolicyHolder Service can be implemented by any device on the network. The QosPolicyHolder Service is responsible for providing the traffic policy values for any given traffic stream as requested by an entity that manages the network traffic, typically a QoS Manager. The traffic policy values are determined by applying the policy rules, which are configured for the network, to the requested traffic information.

A QosPolicyHolder is a dual-role entity that exposes a QosPolicyHolder Service to the Control Point (mainly the QoS Manager) while acting as a Control Point for the QosDevice Services running on the network. This document describes the components of the QosPolicyHolder Service and the QoS Policy Holder. The QosPolicyHolder Service is responsible for providing the traffic policy values for any given traffic stream as requested by an entity that manages the network traffic, typically a QoS Manager. The traffic policy values are determined by applying the policy rules, which are configured for the network, to the requested traffic information.

- UPnP-QoS Architecture document
- UPnP QosDevice Service Definition Document

1.1. Referenced Specifications
Unless explicitly stated otherwise herein, implementation of the mandatory provisions of any standard referenced by this specification shall be mandatory for compliance with this specification.

1.1.1. Normative References
This section lists the normative references used in this document and includes the tag inside square brackets that is used for each sub reference:

[QM] – UPnP QosManager:3 Service Document: This reference is informative except for the definitions of the following state variables, which are normative: A_ARG_TYPE_TrafficDescriptor, and A_ARG_TYPE_ListOfTrafficDescriptors. Available at: http://www.upnp.org/specs/qos/UPnP-qos-QosManager-v3-Service-20081130.pdf

1.1.2. Informative References
This section lists the informative references used in this document and includes the tag inside square brackets that is used for each sub reference:

2. Service Modeling Definitions

2.1. ServiceType

The following service type identifies a service that is compliant with this template:

\texttt{urn:schemas-upnp-org:service:QosPolicyHolder:3}

The shorthand ‘\textit{QosPolicyHolder} Service’ is used herein to refer to this service type.

2.2. Derived Data Types

This section defines some derived data types that are represented as UPnP string data types with special syntax.

2.2.1. XML Fragments as UPnP Arguments

UPnP-QoS often uses XML Fragments as arguments in UPnP actions. The containing UPnP data type is a string. This places restrictions on a string’s content; it has to represent a well-formed XML fragment (this includes a complete XML document).

An XML fragment, in adherence to the UPnP Device Architecture 1.0 [DEVICE], MUST be escaped by using the normal XML rules, [XML]Section 2.4 Character Data and Markup, before embedding it in a SOAP request / response message or an event notification message. The XML escaping rules are summarized:

- The (<) character is encoded as (<)
- The (>) character is encoded as (>)
- The (&) character is encoded as (&)
- The (") character is encoded as (")
- The (') character is encoded as (')

In their XML fragments, implementations MAY use an explicit reference to appropriate namespaces.

2.2.2. Extensibility of XML

The names of UPnP-QoS namespaces come in two flavors. The ones in HTTP-form are existing UPnP-QoS v1 and v2 namespace names. The ones in URN-form are introduced in UPnP-QoS v3 (or later).

In order to maintain the extensibility of a namespace, all future modifications of the schema definition will be proper supersets. The namespace name will not change even when the service version number changes.

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.
The v2, v3, v4 tags within a schema allow for the UPnP Forum to add newly standardized elements to the schema definitions without impacting implementations based on previous version(s) of the schema. UPnP-QoS v3 introduces the v4 tags in a similar way as UPnP-QoS v2 defined the v3 tags. The contents of the v4 tags MAY be (re)defined in UPnP-QoS v4 depending on needs.

At several places in the XML schemas there is also room for vendor differentiation or future revisions through the use of the “any”-tag. This tag is placed both in the original schema as well as within the v2 and v3 tags to allow extensions related to those versions of the specification.

When extending UPnP-QoS with their own XML tags, vendors SHOULD use a namespace to prevent collisions of their tags with those of other vendors. It is RECOMMENDED that implementations are not required to retrieve the corresponding schemas from the Internet. For example, a vendor MAY provide its own enhancements within the schema.

Below is an example using extensions to TrafficPolicy v2

```xml
<TrafficPolicy
 xmlns="http://www.upnp.org/schemas/TrafficPolicy.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:prv="http://myPrivate.com"
 xmlns:prv2="http://myPrivate2.com"
 xmlns:prv3="urn:schemas-myprivate-com:v3Extensions"
 xmlns:prv4="urn:schemas-myprivate-com:v4Extensions"
 xsi:schemaLocation="http://www.upnp.org/schemas/TrafficPolicy.xsd
 http://www.upnp.org/schemas/qos/TrafficPolicy-v2.xsd">
 <AdmissionPolicy>Enabled</AdmissionPolicy>
 <TrafficImportanceNumber>3</TrafficImportanceNumber>
 <UserImportanceNumber>128</UserImportanceNumber>
 <v2>
  <PolicyHolderId>uuid:2fac1234-31f8-11b4-a222-08002b34c003:serviceId:qph</PolicyHolderId>
  <PolicyLastModified>2004-11-26T15:03:23-08:00</PolicyLastModified>
  <PolicyModifyingUserName>Jimmy</PolicyModifyingUserName>
  <PolicyHolderConfigUrl>http://10.0.0.5/ConfPolicy.html</PolicyHolderConfigUrl>
  <v3>
   <!-- UPnP Forum v3 extensions go here -->
   </v3>
   <!-- UPnP Forum v4 extensions go here -->
   <prv4:MyPrivate4>whatever</prv4:MyPrivate4>
   </v4>
   <prv3:MyPrivate3>whatever</prv3:MyPrivate3>
   </v3>
   <prv2:MyPrivate2>whatever</prv2:MyPrivate2>
   </v2>
   <prv:MyPrivate1>whatever</prv:MyPrivate1>
 </TrafficPolicy>
```
2.3. State Variables

The QosPolicyHolder Service is ‘action’ based. This service’s state variables exist primarily to support argument passing of the service’s actions. A client retrieves QosPolicyHolder Service information via the return parameters of the actions defined in section 2.5.

Reader Note: For first-time reader, it may be more insightful to read the theory of operations first and then the action definitions before reading the state variable definitions.

Table 2-1: State Variables

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Req. or Opt.</th>
<th>Data Type</th>
<th>Allowed Value</th>
<th>Default Value</th>
<th>Eng. Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_ARG_TYPE_TrafficDescriptor</td>
<td>R</td>
<td>string</td>
<td>(XML fragment)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_TrafficPolicy</td>
<td>R</td>
<td>string</td>
<td>(XML fragment)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_ListOfTrafficDescriptors</td>
<td>R</td>
<td>string</td>
<td>(XML fragment)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_ListOfTrafficPolicies</td>
<td>R</td>
<td>string</td>
<td>(XML fragment)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_IsPreferred</td>
<td>O</td>
<td>boolean</td>
<td></td>
<td>False</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_QphPolicyRule</td>
<td>O</td>
<td>string</td>
<td>(XML fragment)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_ListOfQphPolicyRule</td>
<td>O</td>
<td>string</td>
<td>(XML fragment)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_Position</td>
<td>O</td>
<td>ui4</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_TIN</td>
<td>O</td>
<td>ui4</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_IN</td>
<td>O</td>
<td>ui4</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_ReasonCode</td>
<td>O</td>
<td>ui4</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_PolicyHandle</td>
<td>O</td>
<td>ui4</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
2.3.1. A_ARG_TYPE_TrafficDescriptor

This is a string containing an XML fragment. It contains information describing a traffic descriptor. Refer to the UPnP QosManager:3 [QM] for details of this XML document using the namespace.

2.3.2. A_ARG_TYPE_TrafficPolicy

This is a string containing an XML fragment. It contains information describing TrafficPolicy information. The XML fragment in this argument MUST validate against the XML schema for TrafficPolicy in the XML namespace “http://www.upnp.org/schemas/TrafficPolicy.xsd” which is located at http://www.upnp.org/schemas/qos/TrafficPolicy-v2.xsd.

2.3.2.1. Description of fields in the TrafficPolicy structure

TrafficPolicy structure consists of the following seven elements:

- **AdmissionPolicy** is a required field and is set to “Enabled”.

- **TrafficImportanceNumber** is a required field of type integer with values in the range of 0 through 7. This value conforms to the numbering scheme for traffic classes as described in IEEE 802.1Q Annex G [IEEE 802.1Q] and with additional traffic classes described in the QosManager:3 [QM]. This value is used by QosDevice service(s) in the traffic’s path to indicate what priority level to utilize when priority tagging the traffic’s network packets.

- **UserImportanceNumber** is a required field of type integer with values in the range of 0 through 255. This is used by a QoS Manager for Preemption. This value is applicable only when the AdmissionPolicy is enabled. Note that a value of 255 is the highest user importance and 0 is the lowest.

- **PolicyHolderId** is an optional field. Refer to the PolicyHolderId field in the TrafficDescriptor structure in the QosManager:3 [QM] for the definition and more details.

- **PolicyLastModified** is an optional field. Refer to the PolicyLastModified field in the TrafficDescriptor structure in the QosManager:3 [QM] for the definition and more details.

- **PolicyModifyingUserName** is an optional field. Refer to the PolicyModifyingUserName field in the TrafficDescriptor structure in the QosManager:3 [QM] for the definition and more details.

- **PolicyHolderConfigUrl** is an optional field. Refer to the PolicyHolderConfigUrl field in the TrafficDescriptor structure in the QosManager:3 [QM] for the definition and more details.
2.3.2.2. Sample Argument XML String

Illustrated below are two separate examples of TrafficPolicy structure.

Example 1:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<TrafficPolicy
  xmlns="http://www.upnp.org/schemas/TrafficPolicy.xsd"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://www.upnp.org/schemas/TrafficPolicy.xsd
  http://www.upnp.org/schemas/qos/TrafficPolicy-v2.xsd">
  <AdmissionPolicy>Enabled</AdmissionPolicy>
  <TrafficImportanceNumber>3</TrafficImportanceNumber>
  <UserImportanceNumber>128</UserImportanceNumber>
  <v2>
    <PolicyHolderId>uuid:2fac1234-31f8-11b4-a222-08002b34c003:urn:upnp-org:serviceId:QosPolicyHolder-3a</PolicyHolderId>
    <PolicyLastModified>2004-11-26T15:03:23-08:00</PolicyLastModified>
    <PolicyModifyingUserName>Jimmy</PolicyModifyingUserName>
    <PolicyHolderConfigUrl>http://10.0.0.50/ConfigPolicy.html</PolicyHolderConfigUrl>
  </v2>
</TrafficPolicy>
```

Example 2:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<TrafficPolicy
  xmlns="http://www.upnp.org/schemas/TrafficPolicy.xsd"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://www.upnp.org/schemas/TrafficPolicy.xsd
  http://www.upnp.org/schemas/qos/TrafficPolicy-v2.xsd">
  <AdmissionPolicy>Enabled</AdmissionPolicy>
  <TrafficImportanceNumber>5</TrafficImportanceNumber>
  <v2>
    <PolicyHolderId>uuid:2fac1234-31f8-11b4-a222-08002b34c003:urn:upnp-org:serviceId:QosPolicyHolder-3b</PolicyHolderId>
    <PolicyHolderConfigUrl>http://10.0.0.50/ConfigPolicy.html</PolicyHolderConfigUrl>
  </v2>
</TrafficPolicy>
```

2.3.3. A_ARG_TYPE_ListOfTrafficDescriptors

This is a string containing an XML fragment. It contains information describing ListOfTrafficDescriptors structure. This structure contains a list of traffic descriptor each with the information for a traffic stream. Refer to the UPnP QosManager:3 [QM] for details of this XML document using the namespace.

2.3.4. A_ARG_TYPE_ListOfTrafficPolicies

This is a string containing an XML fragment. It contains information describing the ListOfTrafficPolicies structure. This structure contains traffic policies for a list of traffic streams. The XML fragment in this argument MUST validate against the XML schema for ListOfTrafficPolicies in the XML namespace "urn:schemas-upnp-org:qos:ListOfTrafficPolicies" which is located at http://www.upnp.org/schemas/qos/ListOfTrafficPolicies-v3.xsd.

2.3.4.1. Description of fields in the ListOfTrafficPolicies structure

The ListOfTrafficPolicies structure consists of the following elements.

AdmissionPolicy: This is a required field. Refer to section 2.3.2.1 for details.
PolicyHolderId: This is a required field. Refer to the PolicyHolderId field in the TrafficDescriptor structure in the QoS Manager:3 [QM] for the definition and more details.

PolicyHolderConfigUrl: This is a required field. Refer to the PolicyHolderConfigUrl field in the TrafficDescriptor structure in the QoS Manager:3 [QM] for the definition and more details.

PolicyLastModified: This is a required field. Refer to the PolicyLastModified field in the TrafficDescriptor structure in the QoS Manager:3 [QM] for the definition and more details.

PolicyModifyingUserName: This is a required field. Refer to the PolicyModifyingUserName field in the TrafficDescriptor structure in the QoS Manager:3 [QM] for the definition and more details.

TdPolicy: This is a required structure. This contains traffic policies per TSPEC for different traffic descriptors identified by a TrafficHandle.

2.3.4.2. Description of fields in the TdPolicy structure

TrafficHandle: This is a required field. It identifies a traffic descriptor in the list. Refer to the TrafficHandle field in the TrafficDescriptor structure in the QoS Manager:3 [QM] for the definition and more details.

TdPolicyPerTspec: This is a required structure. This contains traffic policies for different TSPECs of a traffic descriptor identified by a TrafficHandle.

2.3.4.3. Description of fields in the TdPolicyPerTspec structure

TspecIndex: This is a required field. It identifies a TSPEC in the list of TSPECs. Refer to the TspecIndex field in the TrafficDescriptor structure in the QoS Manager:3 [QM] for the definition and more details.

TrafficImportanceNumber: This is a required field. Refer to section 2.3.2.1 for details.

UserImportanceNumber: This is a required field. Refer to section 2.3.2.1 for details.

2.3.4.4. Sample Argument XML String

Illustrated below is an example of ListOfTrafficPolicies structure.

```xml
<ListOfTrafficPolicies xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <TdPolicy>
    <TrafficHandle>TH1b4-a222-08002b34c0037f921234-723c-11b4</TrafficHandle>
    <TdPolicyPerTspec>
      <TspecIndex>1</TspecIndex>
      <TrafficImportanceNumber>7</TrafficImportanceNumber>
    </TdPolicyPerTspec>
  </TdPolicy>
  <TdPolicy>
    <TrafficHandle>TH712-a213-0807823742c0037f921234-723c-11b4</TrafficHandle>
    <TdPolicyPerTspec>
      <TspecIndex>1</TspecIndex>
      <TrafficImportanceNumber>7</TrafficImportanceNumber>
    </TdPolicyPerTspec>
  </TdPolicy>
  <AdmissionPolicy>Enabled</AdmissionPolicy>
  <PolicyHolderId>fac1234-31f8-11b4-a222-08002b34c003:urn:upnp-org:serviceId:QosPolicyHolder-3a</PolicyHolderId>
  <PolicyHolderConfigUrl>http://192.168.1.2/QPH.html</PolicyHolderConfigUrl>
  <PolicyLastModified>2006-12-19T16:39:57-08:00</PolicyLastModified>
  <PolicyModifyingUserName>jpaine</PolicyModifyingUserName>
</ListOfTrafficPolicies>
```
2.3.5. A_ARG_TYPE_IsPreferred
This is a boolean variable. The value of “1” indicates that a QosPolicyHolder Service is selected as preferred. The value of “0” indicates that no QosPolicyHolder Service is set as preferred.

2.3.6. A_ARG_TYPE_QphPolicyRule
This is a string containing an XML fragment. It contains information describing the QosPolicyHolder Service policy details including a policy classifier and corresponding parameters. The XML fragment in this argument MUST validate against the XML schema for QphPolicyRule in the XML namespace “http://www.upnp.org/schemas/QphPolicyRule.xsd” which is located at http://www.upnp.org/schemas/qos/QphPolicyRule-v3.xsd

2.3.6.1. Description of A_ARG_TYPE_QphPolicyRule
The QphPolicyRule structure consists of two structures: the QphPolicyClassifier and the QphPolicyParameter, whose descriptions are provided below.

QphPolicyClassifier: This structure contains fields/information that will be used for classifying a traffic stream to which QoS policy will be applied.

QphPolicyParameter: This structure contains the actual policy parameters (TIN and IN) applied for a traffic stream matching a classifier.

2.3.6.1.1. Classifying a traffic stream
QphPolicyClassifier consists of a number of optional fields to test whether a traffic stream gets classified by this rule. A field that is absent satisfies all tests for the corresponding field in the TrafficDescriptor of the traffic stream. A traffic stream matches a QphPolicyRule if and only if all present fields of QphPolicyClassifier satisfy all tests for the corresponding fields in the TrafficDescriptor of the traffic stream.

In this section we provide information on how to interpret classification by certain types.

2.3.6.1.1.1. Integer value
An upper and lower boundary can be provided for any field containing an integer value. A field containing an integer value satisfies the provided boundaries if and only if the integer value is lower or equal to the upper boundary and the integer value is higher or equal to the lower boundary. If the upper boundary isn’t provided, the upper boundary test always succeeds. If the lower boundary isn’t provided, the lower boundary test always succeeds.

2.3.6.1.1.2. String value
A field that contains a string value satisfies the test when the string value matches the corresponding field in the TrafficDescriptor under test or when the field is absent.

2.3.6.1.1.3. IP address
An upper and lower boundary can be provided for any field containing an IP address. An IP address satisfies the provided boundaries if and only if every octet is within the bounds provided for that octet (see section 2.3.6.1.1.1). If the upper boundary isn’t provided, the upper boundary defaults to the IP address of all ones (255.255.255.255 for IPv4, ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6). If the lower boundary isn’t provided, the lower boundary defaults to the IP address of all zeroes (0.0.0.0 for IPv4, :: for IPv6).

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.
2.3.6.1.1.4. TrafficId
Refer to section 2.2.2.2 of [QM] for the definition of TrafficId.

An upper and lower boundary can be provided for any field containing a TrafficId. A TrafficId satisfies the provided boundaries if and only if all present fields are within the bounds for the individual fields. If the upper boundary isn’t provided, the upper boundary defaults to a TrafficId where default upper boundary values apply for all fields (refer to section 2.3.6.1.1.1 and section 2.3.6.1.1.3). If the lower boundary isn’t provided, the lower boundary defaults to a TrafficId where default lower boundary values apply for all fields (refer to section 2.3.6.1.1.1 and section 2.3.6.1.1.3).

2.3.6.1.1.5. Tspec
Refer to section 2.2.2.2.3.1 of [QM] for the definition of Tspec.

An upper and lower boundary can be provided for any field containing a Tspec. A Tspec satisfies the provided boundaries if and only if all present fields are within the bounds for the individual fields. If the upper boundary isn’t provided, the upper boundary defaults to a Tspec where default upper boundary values apply for all fields (refer to section 2.3.6.1.1.1 and section 2.3.6.1.1.3). If the lower boundary isn’t provided, the lower boundary defaults to a Tspec where default lower boundary values apply for all fields (refer to section 2.3.6.1.1.1 and section 2.3.6.1.1.3).

2.3.6.1.2. Description of fields in the QphPolicyClassifier structure
TrafficIdUpLimit: Refer to section 2.3.6.1.1.4 for more information on this variable. This optional field provides an upper boundary for the TrafficId of the stream under test.

TrafficIdLowLimit: Refer to section 2.3.6.1.1.4 for more information on this variable. This optional field provides a lower boundary for the TrafficId of the stream under test.

TspecUpLimit: Refer to section 2.3.6.1.1.5 for more information on this variable. This optional field provides an upper boundary for the TSPEC indicated by the ActiveTspecIndex of the stream under test.

TspecLowLimit: Refer to section 2.3.6.1.1.5 for more information on this variable. This optional field provides a lower boundary for the TSPEC indicated by the ActiveTspecIndex of the stream under test.

QosBoundarySourceAddressUpLimit: Refer to QosBoundarySourceAddress definition in section 2.2.2.2 of [QM] for definition of this variable. Refer to section 2.3.6.1.1.3 for more information on this variable. This optional field provides an upper boundary for QosBoundarySourceAddress of the stream under test.

QosBoundarySourceAddressLowLimit: Refer to QosBoundarySourceAddress definition in section 2.2.2.2 of [QM] for definition of this variable. Refer to section 2.3.6.1.1.3 for more information on this variable. This OPTIONAL field provides a lower boundary for QosBoundarySourceAddress of the stream under test.

QosBoundaryDestinationAddressUpLimit: Refer to QosBoundaryDestinationAddress definition in section 2.2.2.2 of [QM] for definition of this variable. Refer to section 2.3.6.1.1.3 for more information on this variable. This optional field provides an upper boundary for QosBoundaryDestinationAddress of the stream under test.

QosBoundaryDestinationAddressLowLimit: Refer to QosBoundaryDestinationAddress definition in section 2.2.2.2 of [QM] for definition of this variable. Refer to section 2.3.6.1.1.3 for more information on this variable. This optional field provides a lower boundary for QosBoundaryDestinationAddress of the stream under test.

UserName: Refer to section 2.2.2.2 of [QM] for definition of this variable. Refer to section 2.3.6.1.1.2 for more information on this variable. This is an optional field.

CpName: Refer to section 2.2.2.2 of [QM] for definition of this variable. Refer to section 2.3.6.1.1.2 for more information on this variable. This is an optional field.
VendorApplicationName: Refer to section 2.2.2.2 of [QM] for definition of this variable. Refer to section 2.3.6.1.1.2 for more information on this variable. This is an optional field.

PortName: Refer to section 2.2.2.2 of [QM] for definition of this variable. Refer to section 2.3.6.1.1.2 for more information on this variable. This is an optional field.

ServiceProviderServiceName: Refer to section 2.2.2.2 of [QM] for definition of this variable. Refer to section 2.3.6.1.1.2 for more information on this variable. This is an optional field.

TrafficLeaseTimeUpLimit: Refer to TrafficLeaseTime definition in section 2.2.2.2 of [QM] for definition of this variable. Refer to section 2.3.6.1.1.1 for more information on this variable. This optional field provides an upper boundary for the TrafficLeaseTime of the stream under test.

TrafficLeaseTimeLowLimit: Refer to TrafficLeaseTime definition in section 2.2.2.2 of [QM] for definition of this variable. Refer to section 2.3.6.1.1.1 for more information on this variable. This optional field provides a lower boundary for the TrafficLeaseTime of the stream under test.

Critical: Refer to section 2.2.2.2 of [QM] for definition of this variable. This optional field matches if it equals the value of Critical in the TrafficDescriptor of the traffic stream under test or if this field is absent.

StartTime: This optional variable is of type unsigned integer and contains the scheduled start time of the validity interval of this QphPolicyRule which is repeated every week. Time is specified in seconds and it ranges from 0 – 604800 (to cover 7 days of week). Time 0 is Sunday 12 midnight (start of Sunday). Refer to section 2.3.6.1.1.1 for more information on this variable.

EndTime: This optional variable is of type unsigned integer and contains the scheduled end time of the validity interval of this QphPolicyRule which is repeated every week. Time is specified in seconds and it ranges from 0 – 604800 (to cover 7 days of week). Time 0 is Sunday 12 midnight (start of Sunday). StartTime MUST be less than EndTime. Refer to section 2.3.6.1.1.1 for more information on this variable.

2.3.6.1.3. Description of fields in the QphPolicyParameter structure

TrafficImportanceNumber (TIN): Refer to section 1.4.2.1

ImportanceNumber (IN): This is an unsigned integer value in the range of 0 through 255. This is used by a Control Point to indicate the static priority of a stream matching the QphPolicyClassifier. During the preemption process, this information is used by QosPolicyHolder Service to derive the relative UserImportanceNumber (UIN) of streams.

2.3.6.2. Sample argument XML string

Illustrated below is an example of QphPolicyRule structure.

```xml
<?xml version="1.0" encoding="UTF-8"?>
 xmlns:td="http://www.upnp.org/schemas/TrafficDescriptorv1.xsd">
  <QphPolicyClassifier>
    <TrafficIdUpLimit>
      <td:SourceAddress>
        <td:Ipv4>1.2.3.4</td:Ipv4>
      </td:SourceAddress>
      <td:SourcePort>47420</td:SourcePort>
      <td:DestinationAddress>
        <td:Ipv4>1.2.3.4</td:Ipv4>
      </td:DestinationAddress>
      <td:DestinationPort>46807</td:DestinationPort>
    </TrafficIdUpLimit>
    <TrafficIdLowLimit>
      <td:SourceAddress>
        <td:Ipv4>2.199.252.164</td:Ipv4>
      </td:SourceAddress>
    </TrafficIdLowLimit>
  </QphPolicyClassifier>
</QphPolicyRule>
```

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.
2.3.7. **A_ARG_TYPE_ListOfQphPolicyRule**

This is a string containing an XML fragment. It contains information listing one or more QosPolicyHolder Service policy rules. The XML fragment in this argument MUST validate against the XML schema for ListOfQphPolicyRule in the XML namespace, “http://www.upnp.org/schemas/ListOfQphPolicyRule.xsd” which is located at http://www.upnp.org/schemas/qos/ListOfQphPolicyRule-v3.xsd

2.3.7.1. **Description of A_ARG_TYPE_ListOfQphPolicyRule**

- **NumberQphPolicyRule**: This is an unsigned integer value containing the number of QphPolicyRule instances included in ListOfQphPolicyRule.

- **QphPolicyList**: This is an XML structure that contains information on a single policy rule. A_ARG_TYPE_ListOfQphPolicyRule MUST contain exactly NumberQphPolicyRule instances of QphPolicyList.

2.3.7.1.1. QphPolicyList

This XML structure identifies a rule and its position. It contains the following fields

- **QphPolicyRule**: This required filed of type A_ARG_TYPE_QphPolicyRule. It contains the policy rule.

- **PolicyHandle**: This required field is of type A_ARG_TYPE_PolicyHandle. It contains the PolicyHandle of the QphPolicyRule included in ListOfQphPolicyRule.

- **Position**: This required field is of type A_ARG_TYPE_Position. It represents the position of the QphPolicyRule in the QosPolicyHolder Service policy database.

2.3.7.2. **Sample argument XML string**

Illustrated below is an example of ListOfQphPolicyRule structure.

```xml
<?xml version="1.0" encoding="UTF-8"?>
  <NumberQphPolicyRule>1</NumberQphPolicyRule>
  <QphPolicyList>
    <QphPolicyRule>
      <pr:QphPolicyClassifier>
        <UserName>SiZnk3</UserName>
        <CpName>fhnUjy70vPT3CdEtotrbuMVVgjKlw6u2oug6WM</CpName>
        <VendorApplicationName>polkLGv</VendorApplicationName>
        <PortName>FC</PortName>
        <ServiceProviderServiceName>PyJNLvgq7AfoP_w</ServiceProviderServiceName>
        <TrafficLeaseTimeUpLimit>8615</TrafficLeaseTimeUpLimit>
        <TrafficLeaseTimeLowLimit>1738</TrafficLeaseTimeLowLimit>
        <Critical>false</Critical>
        <StartTime>238</StartTime>
        <EndTime>474652</EndTime>
      </pr:QphPolicyClassifier>
      <TrafficImportanceNumber>0</TrafficImportanceNumber>
      <ImportanceNumber>0</ImportanceNumber>
    </QphPolicyRule>
  </QphPolicyList>
</ListOfQphPolicyRule>
```

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.
<pr:TrafficIdUpLimit>
 <td:SourceAddress>
 <td:Ipv4>1.2.3.4</td:Ipv4>
 </td:SourceAddress>
 <td:SourcePort>47420</td:SourcePort>
 <td:DestinationAddress>
 <td:Ipv4>1.2.3.4</td:Ipv4>
 </td:DestinationAddress>
 <td:DestinationPort>46807</td:DestinationPort>
</pr:TrafficIdUpLimit>

<pr:TrafficIdLowLimit>
 <td:SourceAddress>
 <td:Ipv4>2.199.252.164</td:Ipv4>
 </td:SourceAddress>
 <td:SourcePort>45521</td:SourcePort>
 <td:DestinationAddress>
 <td:Ipv4>1.2.3.4</td:Ipv4>
 </td:DestinationAddress>
 <td:DestinationPort>9932</td:DestinationPort>
</pr:TrafficIdLowLimit>

<pr:UserName>SiZnk3</pr:UserName>
<pr:CpName>fhnnUjy70VFT3CdRotrbuMVVqjKlW6u2oug6WM</pr:CpName>
<pr:VendorApplicationName>poLkLGv</pr:VendorApplicationName>
<pr:ServiceProviderServiceName>PyJNLv7AzoF_w</pr:ServiceProviderServiceName>
<pr:TrafficLeaseTimeUpLimit>8615</pr:TrafficLeaseTimeUpLimit>
<pr:TrafficLeaseTimeLowLimit>1738</pr:TrafficLeaseTimeLowLimit>
<pr:Critical>false</pr:Critical>
<pr:StartTime>555238</pr:StartTime>
<pr:EndTime>474652</pr:EndTime>

2.3.8. A_ARG_TYPE_Position
This is an unsigned integer (ui4). It is used by the Control Point to indicate the position where the new policy rule MUST be added in QosPolicyHolder Service database. Position is used to determine the order in which traffic descriptors are compared against classifiers. The comparison is done in ascending order of position. The first match found is used. The first position has the value 0.

2.3.9. A_ARG_TYPE_TIN
This is an unsigned integer (ui4). Refer to the description of TrafficImportanceNumber (TIN) in section 2.3.2.1 for details.

2.3.10.A_ARG_TYPE_IN
This is an unsigned integer (ui4). Refer to the description of ImportanceNumber (IN) in section 2.3.6.1 for details.

2.3.11.A_ARG_TYPE_ReasonCode
This is an unsigned integer (ui4). This variable is used by QosPolicyHolder Service to indicate the reason for not assigning the requested IN to the Control Point as part of AddQphPolicy() action. When the...
QosPolicyHolder Service successfully accepts the requested \textit{IN} “0” is returned as part of this variable. Different values of reason code are defined as part of action definition.

2.3.12. \textbf{A_ARG_TYPE_PolicyHandle}

This is an unsigned integer (ui4). This variable is used as identifier of the successfully added policy in \textit{QosPolicyHolder} Service database. The value of this variable is defined by the \textit{QosPolicyHolder} Service. The purpose of this variable is to uniquely identify a rule in the \textit{QosPolicyHolder} database (QphPolicyRule).

2.3.13. \textbf{A_ARG_TYPE_ListPolicyHandle}

This is a \textit{string} containing an XML fragment. It contains information listing zero or more \textit{PolicyHandle} structures. The XML fragment in this argument MUST validate against the XML schema for \textit{ListPolicyHandle} in the XML namespace “http://www.upnp.org/schemas/ListPolicyHandle.xsd” which is located at http://www.upnp.org/schemas/qos/ListPolicyHandle-v3.xsd

2.3.13.1. \textbf{Description of A_ARG_TYPE_ListPolicyHandle}

\textit{NumberOfPolicyHandle}: This is an unsigned integer value containing the number of \textit{PolicyHandle} instances included as part inside \textit{ListPolicyHandle}. Value of 0 is used to indicate all policies stored in \textit{QosPolicyHolder} Service.

\textit{PolicyHandle}: There can be zero or more instances of \textit{PolicyHandle}. Number of instances MUST be equal to \textit{NumberOfPolicyHandle}.

2.3.13.2. \textbf{Sample argument XML string}

Illustrated below is an example of \textit{ListPolicyHandle} structure.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<ListPolicyHandle>
  <NumberOfPolicyHandle>1</NumberOfPolicyHandle>
  <PolicyHandle>100</PolicyHandle>
</ListPolicyHandle>
```

2.3.14. \textbf{PolicyVersion}

\textit{PolicyVersion} is variable of type unsigned integer (ui4) and the \textit{QosPolicyHolder} Service stores the value of this variable. This variable is incremented each time there is a successful change to \textit{QosPolicyHolder} Service \textit{QphPolicyRule} database.

2.3.15. \textbf{Relationships Between State Variables}

There are no relationships between any of the state variables for this service.
2.4. Eventing and Moderation

Table 2-2: Event Moderation

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Evented</th>
<th>Moderated Event</th>
<th>Max Event Rate</th>
<th>Logical Combination</th>
<th>Min Delta per Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_ARG_TYPE_TrafficDescriptor</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_TrafficPolicy</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_ListOfTrafficDescriptors</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_ListOfTrafficPolicies</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_IsPreferred</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_QphPolicyRule</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_ListOfQphPolicyRule</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_Position</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_TIN</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_IN</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_ReasonCode</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_PolicyHandle</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>A_ARG_TYPE_ListPolicyHandle</td>
<td>NO</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>PolicyVersion</td>
<td>YES</td>
<td>YES</td>
<td>2</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

1 Determined by N, where Rate = (Event)/(N secs).
2 (N) * (allowedValueRange Step)

2.4.1. Event Model

PolicyVersion: The state variable is optional and MUST be evented, when implemented. If the SetAsPreferred() action is implemented, this event MUST be implemented. This is a QosPolicyHolder Service variable that is evented to allow interested parties to monitor the QosPolicyHolder Service state. This variable is incremented each time there is a successful policy change in QosPolicyHolder Service database.

2.5. Actions

The QosPolicyHolder Service is added to a UPnP device that will manage the QoS policy for the entire network.

Immediately following Table 2-3: Actions is detailed information about the actions listed in this table, including short descriptions of the actions, the effects of the actions on state variables, and error codes defined by the actions.

Table 2-3: Actions

<table>
<thead>
<tr>
<th>Name</th>
<th>Req. or Opt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetTrafficPolicy ()</td>
<td>R</td>
</tr>
</tbody>
</table>
All four actions `AddQphPolicy()`, `RemoveQphPolicy()`, `RetrieveQphPolicy()` and `GetPolicyVersion()` and the event `PolicyVersion` MUST be implemented together.

If `SetAsPreferred()` action is implemented, `AddQphPolicy()`, `RemoveQphPolicy()`, `RetrieveQphPolicy()` and `GetPolicyVersion()` actions MUST be implemented.

2.5.1. GetTrafficPolicy

This action is invoked to determine the traffic policy for a requested traffic stream. The `QosPolicyHolder` Service returns the traffic policy for the supplied TrafficDescriptor in the `OutputTrafficPolicy` output argument.

2.5.1.1. Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Direction</th>
<th>relatedStateVariable</th>
</tr>
</thead>
<tbody>
<tr>
<td>RequestedTrafficDescriptor</td>
<td>IN</td>
<td>A_ARG_TYPE_TrafficDescriptor</td>
</tr>
<tr>
<td>OutputTrafficPolicy</td>
<td>OUT</td>
<td>A_ARG_TYPE_TrafficPolicy</td>
</tr>
</tbody>
</table>

The `RequestedTrafficDescriptor` input argument contains information for the traffic stream requiring some level of QoS. This action will determine the traffic policy for this requested traffic stream.

The `OutputTrafficPolicy` output argument contains the traffic policy for the requested traffic stream.

2.5.1.2. Service requirements

If the input parameter is not a TrafficDescriptor (including non-XML input), `QosPolicyHolder` Service MUST return error code 799.

If a `QoS Manager` does not supply `ActiveTspecIndex` in `RequestedTrafficDescriptor` to `QosPolicyHolder` Service, the `QosPolicyHolder` Service MUST return error code 723.

If a `QoS Manager` does not supply a `TrafficHandle`, or if `TrafficHandle` has a NULL value, in the `RequestedTrafficDescriptor` to `QosPolicyHolder` Service, the `QosPolicyHolder` Service MUST return error code 700.

The `QosPolicyHolder` Service MUST only return the traffic policy for the Tspec indicated by the `ActiveTspecIndex`.
In the RequestedTrafficDescriptor to the QosPolicyHolder Service, the ActiveTspecIndex indicates the Tspec for which TrafficPolicy is needed. ActiveTspecIndex MUST be one of the TspecIndex values in the AvailableOrderedTspecList. If not, the QosPolicyHolder Service MUST return error code 720.

If the QoS Manager provides any elements of TrafficPolicy in the input RequestedTrafficDescriptor, then the QosPolicyHolder Service MUST ignore those elements and their values.

If a PolicyHolderId is specified by the requesting Control Point in the RequestedTrafficDescriptor supplied to the QosManager, and if it is not the PolicyHolderId of this QosPolicyHolder service, the QosPolicyHolder MUST return error code 781.

The QosPolicyHolder Service MUST set the AdmissionPolicy element to “Enabled” in the TrafficPolicy returned for a traffic descriptor.

2.5.1.3. CP requirements when calling the action

A Control Point (e.g. QoS Manager) MUST supply the TrafficHandle in the RequestedTrafficDescriptor input argument to QosPolicyHolder Service when calling the GetTrafficPolicy() action.

A Control Point (e.g. QoS Manager) MUST supply an ActiveTspecIndex that is one of the TspecIndex values in the AvailableOrderedTspecList in the RequestedTrafficDescriptor input argument to QosPolicyHolder Service when calling the QPH:GetTrafficPolicy() action.

2.5.1.4. Dependency on State (if any)

There is no dependency on the current state of this service when this action gets executed.

2.5.1.5. Effect on State (if any)

There is no effect on the state of this service when this action gets executed.

2.5.1.6. Errors

<table>
<thead>
<tr>
<th>errorCode</th>
<th>errorDescription</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>Traffic Handle missing or empty</td>
<td>Traffic Handle must be filled in as input to this action.</td>
</tr>
<tr>
<td>720</td>
<td>ActiveTspecIndex is not a TspecIndex</td>
<td></td>
</tr>
<tr>
<td>723</td>
<td>ActiveTspecIndex missing</td>
<td>Valid ActiveTspecIndex must be filled in as input to this action.</td>
</tr>
<tr>
<td>781</td>
<td>PolicyHolderId does not match</td>
<td>This QosPolicyHolder Service is not the same as the PolicyHolderId specified in A_ARG_TYPE_TrafficPolicy.</td>
</tr>
<tr>
<td>799</td>
<td>Invalid Input Parameter</td>
<td>The input parameter supplied to Action is invalid.</td>
</tr>
</tbody>
</table>

2.5.2. GetListOfTrafficPolicies

This action is used to determine traffic policies for multiple traffic descriptors using a single action. The QoS Manager typically invokes this action to obtain QoS policies for a set of Blocking Streams during the

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.
preemption process while trying to admit a new stream [QM]. If a TrafficDescriptor lists multiple Tspecs, the QosPolicyHolder Service returns policies for the individual Tspecs of the TrafficDescriptor.

2.5.2.1. Arguments

Table 2-6: Arguments for GetListOfTrafficPolicies

<table>
<thead>
<tr>
<th>Argument</th>
<th>Direction</th>
<th>relatedStateVariable</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListOfTrafficDescriptors</td>
<td>IN</td>
<td>A_ARG_TYPE_ListOfTrafficDescriptor</td>
</tr>
<tr>
<td>ListOfTrafficPolicies</td>
<td>OUT</td>
<td>A_ARG_TYPE_ListOfTrafficPolicies</td>
</tr>
</tbody>
</table>

The ListOfTrafficDescriptors input argument contains information for the list of traffic streams requiring some level of QoS. This action determines traffic policies for the requested list of traffic streams.

The ListOfTrafficPolicies output argument contains traffic policies for the requested list of traffic streams. The ListOfTrafficPolicies argument lists traffic policy for each individual TrafficDescriptor in the ListOfTrafficDescriptors input argument. If an individual TrafficDescriptor in the ListOfTrafficDescriptors input argument contains multiple Tspecs, the ListOfTrafficPolicies argument will have multiple traffic policies for the TrafficDescriptor, each corresponding to an individual Tspec in the TrafficDescriptor. The higher the value of the UIN, the more important the associated traffic stream. The scope of UINs returned as a part of this action is constrained to this instance of the invocation of this action. The UINs returned as a part of this action MUST be unique within this list.

2.5.2.2. Service requirements

If the input parameter is not a ListOfTrafficDescriptors (including non-XML input), QosPolicyHolder Service MUST return error code 799.

If a QoS Manager does not supply a TrafficHandle, or if TrafficHandle has a NULL value, in at least one of the TrafficDescriptors supplied to the QosPolicyHolder Service, the QosPolicyHolder Service MUST return error code 700.

The QosPolicyHolder Service MUST ignore all elements of the TrafficPolicy in the input TrafficDescriptor.

If a TrafficDescriptor in the ListOfTrafficDescriptors contains multiple Tspecs, the QosPolicyHolder Service MUST return traffic policy for each Tspec in the ListOfTrafficPolicies output argument.

The QosPolicyHolder Service MUST set the AdmissionPolicy element to “Enabled” in the TrafficPolicy returned for a list of traffic descriptors.

2.5.2.3. CP requirements when calling the action

A Control Point (e.g. QoS Manager) MUST supply the TrafficHandle in each of TrafficDescriptors in the ListOfTrafficDescriptors input argument to the QosPolicyHolder Service when calling the GetListOfTrafficPolicies() action.

2.5.2.4. Dependency on State (if any)

There is no dependency on the current state of this service when this action gets executed.

2.5.2.5. Effect on State (if any)

There is no effect on the state of this service when this action gets executed.

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.
2.5.2.6. Errors

Table 2-7: Error Codes for GetListOfTrafficPolicies

<table>
<thead>
<tr>
<th>errorCode</th>
<th>errorDescription</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>Traffic Handle missing or empty</td>
<td>Every Traffic Handle must be filled in as input to this action.</td>
</tr>
<tr>
<td>799</td>
<td>Invalid Input Parameter</td>
<td>The input parameter supplied to Action is invalid.</td>
</tr>
</tbody>
</table>

2.5.3. SetAsPreferred

This is an optional action. This action is invoked on a QosPolicyHolder Service to either set the QosPolicyHolder Service as the preferred QosPolicyHolder Service on the network or to indicate that no QosPolicyHolder Service is preferred on the network.

2.5.3.1. Arguments

Table 2-8: Arguments for SetAsPreferred

<table>
<thead>
<tr>
<th>Argument</th>
<th>Direction</th>
<th>relatedStateVariable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SelectAsPreferred</td>
<td>IN</td>
<td>A_ARG_Type_IsPreferred</td>
</tr>
</tbody>
</table>

The input argument SelectAsPreferred is a boolean variable. The value of “1” indicates that the QosPolicyHolder Service is selected as the preferred QosPolicyHolder on the network and value of “0” indicates that no QosPolicyHolder Service is preferred on the network.

In order to change the preferred QosPolicyHolder selection, it is recommended not to invoke the SetAsPreferred() action with the value of “0” for the SelectAsPreferred input argument on the preferred QosPolicyHolder Service prior to selecting a new QosPolicyHolder to be preferred. It is sufficient to invoke the SetAsPreferred() action on the new QosPolicyHolder with the value of “1” for the SelectAs Preferred input argument.

2.5.3.2. Service requirements

If the QosPolicyHolder Service determines that some other QosPolicyHolder Service has been selected as the preferred one on the network (as described in step 4 of Section 2.5.3.4 below), the QosPolicyHolder Service MUST return an error code of 730.

If the QosPolicyHolder Service determines that there is a collision on the network (as described in step 5 of Section 2.5.3.4 below) because multiple QosPolicyHolder Services are being set as preferred on the network at the same time, the QosPolicyHolder Service MUST return an error code of 731.

2.5.3.3. CP requirements when calling the action

None.
2.5.3.4. QoS Policy Holder Requirements

After the `SetAsPreferred()` action is invoked with `SelectAsPreferred` input argument equal to “1”, the QoS Policy Holder MUST perform the Preferred QosPolicyHolder Synchronization/Propagation Process as described below:

1. The QoS Policy Holder MUST determine the fields in the `PreferredQph` input argument for the `QD:SetPreferredQph()` action as follows:
 a. `PreferredQphId` = Its own `QosPolicyHolder` ServiceId;
 b. `QphPreferenceCount` = The highest value of `QphPreferenceCount` returned from all of the available v3 `QosDevice` Services, incremented by one.

 Note: The highest value of `QphPreferenceCount` is determined by comparing the `QphPreferenceCount` variable returned from all the v3 `QosDevice` Services as an output argument of `QD:SetPreferredQph()`.

2. The QoS Policy Holder MUST invoke the `QD:SetPreferredQph()` action with the above values on each of the available `QosDevice:3` Services that implement this action.

3. If the `QD:SetPreferredQph()` action on all of the available `QosDevice` Services returns the `SetPreferredQphResults` with the value 0 indicating success, the QoS Policy Holder concludes that it has successfully established itself as the preferred `QosPolicyHolder` Service on the network. To maintain itself as the preferred `QosPolicyHolder` Service on the network, the QoS Policy Holder performs the following:
 a. The QoS Policy Holder MUST invoke `QD:SetPreferredQph()` action on every `QosDevice` Service that advertises itself on the network [DEVICE] and implements this action.
 b. Every time the `QosPolicyHolder` Service is rebooted, the QoS Policy Holder MUST invoke `QD:SetPreferredQph()` action on all the available `QosDevice` Services that implement this action.
 c. Anytime, if `QD:SetPreferredQph()` action does not return the `SetPreferredQphResults` with the value 0 indicating success, the QoS Policy Holder MUST follow the steps 4 or 5 identified below based on the value returned for `SetPreferredQphResults`.

4. If the `QD:SetPreferredQph()` action on any of the `QosDevice` Services returns the `SetPreferredQphResults` of 770 (QphPreferenceCount mismatch) as defined in `QosDevice` Service [QoS DEV], the QoS Policy Holder concludes that the Control Point has selected some other `QosPolicyHolder` Service as the preferred one on the network and the QoS Policy Holder MUST not invoke `QD:SetPreferredQph()` actions on the remaining `QosDevice` Services.

5. If the `QD:SetPreferredQph()` action on any of the `QosDevice` Service returns the `SetPreferredQphResults` of 771 (Synchronization error) as defined in [QoS DEV], the QoS Policy Holder concludes that there is a collision on the network because multiple `QosPolicyHolder` Services are being set as preferred on the network at the same time and the QoS Policy Holder MUST not invoke `QD:SetPreferredQph()` actions on the remaining `QosDevice` Services.

After the `SetAsPreferred()` action is invoked with `SelectAsPreferred` input argument equal to “0”, the QoS Policy Holder MUST perform the following steps:

1. The QoS Policy Holder MUST determine the fields in the `PreferredQph` input argument as follows:
 a. `PreferredQphId` = null;
 b. `QphPreferenceCount` = Highest value of `QphPreferenceCount` state variable on the network incremented by one.

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.
2. The QoS Policy Holder MUST invoke the QD:SetPreferredQp() action with the above values on each of the QosDevice Services on the network that implement this action.

3. If the QD:SetPreferredQp() action on any of the QosDevice Services returns the SetPreferredQphResults of 770 (QphPreferenceCount mismatch) as defined in [QoS DEV], the QoS Policy Holder concludes that the user has selected some other QosPolicyHolder Service as the preferred one on the network and the QoS Policy Holder MUST not invoke QD:SetPreferredQp() actions on the remaining QosDevice Services.

4. If the QD:SetPreferredQph() action on any of the QosDevice Service returns the SetPreferredQphResults of 771 (Synchronization error) as defined in [QoS DEV], the QoS Policy Holder concludes that there is a collision on the network because multiple QosPolicyHolder Services are being set as preferred on the network at the same time and the QoS Policy Holder MUST not invoke QD:SetPreferredQph() actions on the remaining QosDevice Services.

2.5.3.5. **Dependency on State (if any)**

There is no dependency on the current state of this service when this action gets executed.

2.5.3.6. **Effect on State (if any)**

There is no effect on the state of this service when this action gets executed.

2.5.3.7. **Errors**

Table 2-9: Error Codes for SetAsPreferred

<table>
<thead>
<tr>
<th>errorCode</th>
<th>errorDescription</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>730</td>
<td>Preferred QPH Failure</td>
<td>Some other Policy Holder is selected as the preferred one on the network</td>
</tr>
<tr>
<td>731</td>
<td>Preferred QPH Sync Error</td>
<td>Multiple Policy Holders are being set as preferred at the same time</td>
</tr>
</tbody>
</table>

2.5.4. **AddQphPolicy**

This is an optional action. This action is invoked on a QosPolicyHolder Service to add a new policy rule in the QosPolicyHolder Service database. The Position input argument is used by the QosPolicyHolder Service to insert the policy rule at the given position and shifts the existing policy rules past the given position.

2.5.4.1. **Arguments**

Table 2-10: Arguments for AddQphPolicy

<table>
<thead>
<tr>
<th>Argument</th>
<th>Direction</th>
<th>relatedStateVariable</th>
</tr>
</thead>
<tbody>
<tr>
<td>QphPolicyRule</td>
<td>IN</td>
<td>A_ARG_TYPE_QphPolicyRule</td>
</tr>
<tr>
<td>Position</td>
<td>IN</td>
<td>A_ARG_TYPE_Position</td>
</tr>
<tr>
<td>PolicyVersion</td>
<td>IN</td>
<td>PolicyVersion</td>
</tr>
<tr>
<td>TrafficImportanceNumber</td>
<td>OUT</td>
<td>A_ARG_TYPE_TIN</td>
</tr>
</tbody>
</table>

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.
2.5.4.2. **Service Requirements**

`QosPolicyHolder` Service MUST verify the `PolicyVersion` provided as part of input matches with the current `PolicyVersion`. Otherwise, the `QosPolicyHolder` Service MUST return an error code of 783.

The `QosPolicyHolder` Service MUST check if the `Position` provided as part of input is within the range of policies in the database. The `Position` input argument MUST be used by the `QosPolicyHolder` Service to insert the policy rule at the given position. If the `QosPolicyHolder` Service determines that the value of `Position` is out of range, it MUST append the new rule to the `QosPolicyHolder` Service database.

2.5.4.3. **CP requirement when calling this action**

Control Point MUST provide `QphPolicyRule`, `Position` and current `PolicyVersion` as input while calling this action.

2.5.4.4. **QoS Policy Holder Requirements**

None

2.5.4.5. **Dependency on State (if any)**

There is no dependency on the current state of this service when this action gets executed.

2.5.4.6. **Effect on State (if any)**

`QosPolicyHolder` Service `QphPolicyRule` database is affected by this action.

2.5.4.7. **Reason Code**

Table 2-11: Reason code for AddQphPolicy

<table>
<thead>
<tr>
<th>ReasonCode</th>
<th>ReasonDescription</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Success</td>
<td>Requested IN is successfully assigned</td>
</tr>
<tr>
<td>1</td>
<td>IN not assignable</td>
<td>QosPolicyHolder Service could not assign the requested IN.</td>
</tr>
<tr>
<td>100-200</td>
<td>Reserved</td>
<td>Reserved for vendor-specific reason codes</td>
</tr>
</tbody>
</table>

2.5.4.8. **Errors**

Table 2-12: Error code for AddQphPolicy

<table>
<thead>
<tr>
<th>errorCode</th>
<th>errorDescription</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>783</td>
<td>Incorrect PolicyVersion</td>
<td>If QosPolicyHolder Service finds that <code>PolicyVersion</code> variable is not valid</td>
</tr>
</tbody>
</table>
2.5.5. RemoveQphPolicy
This is an optional action. This action is invoked on a QosPolicyHolder Service to remove a policy rule from QosPolicyHolder Service database.

2.5.5.1. Arguments

Table 2-13: Arguments for RemoveQphPolicy

<table>
<thead>
<tr>
<th>Argument</th>
<th>Direction</th>
<th>relatedStateVariable</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolicyHandle</td>
<td>IN</td>
<td>A_ARG_TYPE_PolicyHandle</td>
</tr>
</tbody>
</table>

2.5.5.2. Service Requirements
QosPolicyHolder Service MUST check the existence of the PolicyHandle in the database provided as part of input. If the QosPolicyHolder Service determines that PolicyHandle provided as part of input doesn’t exist, the QosPolicyHolder Service MUST return an error code of 784. If it is valid, the QosPolicyHolder Service MUST delete the policy rule.

2.5.5.3. CP requirement when calling this action
Control Point MUST provide PolicyHandle as input while calling this action.

2.5.5.4. QoS Policy Holder Requirements
None

2.5.5.5. Dependency on State (if any)
There is no dependency on the current state of this service when this action gets executed.

2.5.5.6. Effect on State (if any)
QosPolicyHolder Service QosPolicyRule database is affected by this action.

2.5.5.7. Errors

Table 2-14: Error code for RemoveQphPolicy

<table>
<thead>
<tr>
<th>errorCode</th>
<th>errorDescription</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>784</td>
<td>Invalid PolicyHandle</td>
<td>During the validation, if QosPolicyHolder Service finds that PolicyHandle is invalid</td>
</tr>
</tbody>
</table>

2.5.6. RetrieveQphPolicy
This is an optional action. This action is invoked on a QosPolicyHolder Service to retrieve one or more policy rules from QosPolicyHolder Service database.
2.5.6.1. Arguments

Table 2-15: Arguments for RetrieveQphPolicy

<table>
<thead>
<tr>
<th>Argument</th>
<th>Direction</th>
<th>relatedStateVariable</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListPolicyHandle</td>
<td>IN</td>
<td>A_ARG_TYPE_ListPolicyHandle</td>
</tr>
<tr>
<td>PolicyVersion</td>
<td>OUT</td>
<td>PolicyVersion</td>
</tr>
<tr>
<td>ListOfQphPolicyRule</td>
<td>OUT</td>
<td>A_ARG_TYPE_ListOfQphPolicyRule</td>
</tr>
</tbody>
</table>

2.5.6.2. Service Requirements

Upon receiving this action,

a) If ListPolicyHandle field indicates that all policies are requested, the QosPolicyHolder Service MUST return all the policies stored in the QosPolicyHolder Service. Refer to definition of NumberOfPolicyHandle in section 2.3.13.1 for details on how to request all the policies.

b) If ListPolicyHandle has zero or more occurrences of PolicyHandle, the the QosPolicyHolder Service MUST return the corresponding policies. If a PolicyHandle doesn’t exist in the QosPolicyHolder Service, it MUST NOT return QphPolicyList for that PolicyHandle in the ListOfQphPolicyRule output argument.

2.5.6.3. CP requirement when calling this action

Control Point MUST provide ListPolicyHandle as input while calling this action.

2.5.6.4. QoS Policy Holder Requirements

None

2.5.6.5. Dependency on State (if any)

There is no dependency on the current state of this service when this action gets executed.

2.5.6.6. Effect on State (if any)

There is no effect on the current state of this service when this action gets executed.

2.5.6.7. Errors

None

2.5.7. GetPolicyVersion

This is an optional action. This action is invoked on a QosPolicyHolder Service to get the PolicyVersion state variable.
2.5.7.1. Arguments

Table 2-16: Arguments for GetPolicyVersion

<table>
<thead>
<tr>
<th>Argument</th>
<th>Direction</th>
<th>relatedStateVariable</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolicyVersion</td>
<td>OUT</td>
<td>PolicyVersion</td>
</tr>
</tbody>
</table>

2.5.7.2. Service Requirements

QosPolicyHolder Service MUST return the current PolicyVersion as output of this action.

2.5.7.3. CP requirement when calling this action

None

2.5.7.4. QoS Policy Holder Requirements

None

2.5.7.5. Dependency on State (if any)

There is no dependency on the current state of this service when this action gets executed.

2.5.7.6. Effect on State (if any)

There is no dependency on the current state of this service when this action gets executed.

2.5.7.7. Errors

None

2.5.8. Non-Standard Actions Implemented by a UPnP Vendor

To facilitate certification, non-standard actions implemented by UPnP vendors should be included in this service template. The UPnP Device Architecture [DEVICE] specifies naming requirements for non-standard actions (see the section on Description).

2.5.9. Error Code Summary

The following table lists error codes common to actions for this service type. If an action results in multiple errors, the most specific error MUST be returned. These common error codes are defined in the UPnP Device Architecture [DEVICE] and other Technical Committee documents.

Table 2-17: Common Error Codes

<table>
<thead>
<tr>
<th>errorCode</th>
<th>errorDescription</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-499</td>
<td>TBD</td>
<td>See UPnP Device Architecture section on Control.</td>
</tr>
<tr>
<td>500-599</td>
<td>TBD</td>
<td>See UPnP Device Architecture section on Control</td>
</tr>
<tr>
<td>600-699</td>
<td>TBD</td>
<td>See UPnP Device Architecture section on Control</td>
</tr>
</tbody>
</table>

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.
<table>
<thead>
<tr>
<th>errorCode</th>
<th>errorDescription</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>Traffic Handle missing or empty</td>
<td>Traffic Handle must be filled in as input to this action.</td>
</tr>
<tr>
<td>720</td>
<td>ActiveTspecIndex is not a TspecIndex</td>
<td></td>
</tr>
<tr>
<td>723</td>
<td>ActiveTspecIndex missing</td>
<td>Valid ActiveTspecIndex must be filled in as input to this action.</td>
</tr>
<tr>
<td>730</td>
<td>Preferred QPH Failure</td>
<td>Some other Policy Holder is selected as the preferred one on the network</td>
</tr>
<tr>
<td>731</td>
<td>Preferred QPH Sync Error</td>
<td>Multiple Policy Holders are being set as preferred at the same time</td>
</tr>
<tr>
<td>781</td>
<td>PolicyHolderId does not match</td>
<td>This QosPolicyHolder Service is not the same as the PolicyHolderId specified in A_ARG_TYPE_TrafficPolicy.</td>
</tr>
<tr>
<td>783</td>
<td>Incorrect PolicyVersion</td>
<td>If QosPolicyHolder Service finds that PolicyVersion variable is not valid</td>
</tr>
<tr>
<td>784</td>
<td>Invalid PolicyHandle</td>
<td>During the validation, if QosPolicyHolder Service finds that PolicyHandle is invalid</td>
</tr>
<tr>
<td>799</td>
<td>Invalid Input Parameter</td>
<td>The input parameter supplied to Action is invalid.</td>
</tr>
<tr>
<td>800-899</td>
<td>TBD</td>
<td>(Specified by UPnP vendor.)</td>
</tr>
</tbody>
</table>
3. Theory of Operation (Informative)

The sole purpose of this service is to provide an interface to a network entity that will host QoS policies. It is necessary for such an entity within the UPnP network to provide some traffic policy values for any network traffic stream that wants to have QoS that is better than default. This is accomplished by this service.

3.1. Retrieving Policies

QoS Policies for a traffic stream or a set of traffic streams are obtained by invoking either the GetTrafficPolicy() or the GetListOfTrafficPolicies() action, respectively, on the QosPolicyHolder Service.

The GetTrafficPolicy() action will accept as input a traffic descriptor, defined as an XML string in [QM], which contains all the information needed to generate QoS traffic policy values for this traffic stream. The QoS Manager is required to invoke the GetTrafficPolicy() action when it is attempting to establish QoS for a Prioritized Stream and for a Hybrid Stream. The QoS Manager optionally invokes the GetTrafficPolicy() action when it is attempting to establish QoS for a Parameterized Stream. If the input traffic descriptor contains multiple Tspecs, the GetTrafficPolicy() action returns traffic policy only for the TSPEC identified by the ActiveTspecIndex provided by the Control Point. The QoS traffic policy values, as an XML string, that are returned by the GetTrafficPolicy() action for a requested traffic descriptor are summarized in Section 2.3.2.1.

The GetListOfTrafficPolicies() action will accept as input a list of traffic descriptors, defined as an XML string in [QM], which contains all the information needed to generate QoS traffic policy values for a list of traffic streams. The Control Point (i.e. QoS Manager) typically invokes GetListOfTrafficPolicies() action to obtain the relative importance of a set of streams that it intends to preempt while attempting to admit a new stream. The QosPolicyHolder Service returns traffic policy for each traffic descriptor. If a traffic descriptor contains multiple Tspecs, the QosPolicyHolder Service returns a traffic policy for each Tspec in the traffic descriptor. The QoS traffic policy values returned by the GetListOfTrafficPolicies() action for a requested list of traffic descriptor are summarized in Section 2.3.4.1.

From version 3.0 onwards, QosPolicyHolder Service is required to enable AdmissionPolicy. For admitted Parameterized Streams, the stream will be allocated requested network resources by the UPnP-QoS framework. Network preemption decisions, when AdmissionPolicy is “Enabled”, are made by using the UserImportanceNumber (UIN).

The QosPolicyHolder Service takes into consideration various fields in the traffic descriptor of a particular traffic stream to determine its traffic policy values (TIN and UIN).

3.2. Preferred QosPolicyHolder Service Selection

In a scenario of multiple QosPolicyHolder Services on the network, a user may desire to have all the policies stored in a single centralized QosPolicyHolder Service for consistent application of QoS policies. This is achieved by invoking the SetAsPreferred() action with the value of input argument SelectAsPreferred set to “1”. When a QosPolicyHolder Service is selected as preferred, the QoS Manager uses this preferred QosPolicyHolder Service for all the Hybrid and Parameterized streams. The QoS Manager uses the preferred QosPolicyHolder Service for prioritized streams only if the Control Point does not specify PolicyHolderId parameter in the traffic descriptor. If a user no longer wishes to have a particular QosPolicyHolder Service to be preferred, then a user can either select another QosPolicyHolder Service as preferred by invoking a SetAsPreferred() action on a different QosPolicyHolder Service with SelectAsPreferred input argument set to “1” or by invoking the SetAsPreferred() action on the same QosPolicyHolder Service with SelectAsPreferred input argument set to “0”.

SetAsPreferred() is an optional action. Thus, a QosPolicyHolder Service that does not implement this action cannot be selected as preferred by the user.
See QosManager:3 Service [QM] for details on how the QoS Manager selects a QosPolicyHolder Service for establishing QoS under different QosPolicyHolder Service configurations.

3.3. QosPolicyHolder Service Configuration

Policy Add/Delete/Update:

A Control Point interested in adding any QphPolicyRule to the QosPolicyHolder Service will perform following steps:

1. The Control Point calls the RetrieveQphPolicy() action to retrieve all the policies in the QosPolicyHolder Service. Output of this action helps the Control Point decide the location where it wants to add the new policy rule. It also provides the current PolicyVersion to the Control Point. Refer to the definition of NumberOfPolicyHandle for details on specifying all the policies.
2. As a next step, the Control Point populates the QphPolicyRule parameter and calls the AddQphPolicy() action. Once a QphPolicyRule is successfully added, the QosPolicyHolder Service returns success. If during the addition process the QosPolicyHolder Service makes some changes to QphPolicyRule, it provides the appropriate ReasonCode as part of the output.

A Control Point interested in deleting any QphPolicyRule from the QosPolicyHolder Service will perform following steps:

1. The Control Point calls the RemoveQphPolicy() action with PolicyHandle as input to delete any QphPolicyRule from the QosPolicyHolder Service. The Control Point gets PolicyHandle as a result of calling the AddQphPolicy() or the RetrieveQphPolicy() action before calling this action.
2. As a next step, the QosPolicyHolder Service verifies the PolicyHandle and if it’s valid, the QosPolicyHolder Service removes the QphPolicyRule from its database.

Policy Lookup:

1. Upon receiving the GetTrafficPolicy() or GetListOfTrafficPolicies() action, the QosPolicyHolder Service performs policy lookup process for each traffic descriptor and returns the TIN and UIN. The policy lookup process, at the least, involves the following:
 a) The QosPolicyHolder Service uses the traffic descriptors parameters to perform policy rule lookup in its policy database.
 b) If no matching policy rule is found during the Policy Lookup, the default policy rule is applied.
 c) Policy precedence is defined by the order of occurrence of policy elements in the QosPolicyHolder Service policy database, thus a lookup always results in exactly one result.
4. XML Service Description

<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion> <!-- UPnP version 1.0 -->
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>GetTrafficPolicy</name>
 <argumentList>
 <argument>
 <name>RequestedTrafficDescriptor</name>
 <relatedStateVariable>A_ARG_TYPE_TrafficDescriptor</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <name>OutputTrafficPolicy</name>
 <relatedStateVariable>A_ARG_TYPE_TrafficPolicy</relatedStateVariable>
 <direction>out</direction>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetListOfTrafficPolicies</name>
 <argumentList>
 <argument>
 <name>ListOfTrafficDescriptors</name>
 <relatedStateVariable>A_ARG_TYPE_ListOfTrafficDescriptors</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <name>ListOfTrafficPolicies</name>
 <relatedStateVariable>A_ARG_TYPE_ListOfTrafficPolicies</relatedStateVariable>
 <direction>out</direction>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>SetAsPreferred</name>
 <argumentList>
 <argument>
 <name>SelectAsPreferred</name>
 <relatedStateVariable>A_ARG_TYPE_IsPreferred</relatedStateVariable>
 <direction>in</direction>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>AddQphPolicy</name>
 <argumentList>
 <argument>
 <name>QphPolicyRule</name>
 <relatedStateVariable>A_ARG_TYPE_QPHPolicyRule</relatedStateVariable>
 <direction>in</direction>
 </argument>
 </argumentList>
 </action>
 </actionList>
</scpd>
<name>Position</name>
<relatedStateVariable>A_ARG_TYPE_Position</relatedStateVariable>
<direction>in</direction>
</argument>
<argument>
<name>PolicyVersion</name>
<relatedStateVariable>PolicyVersion</relatedStateVariable>
<direction>in</direction>
</argument>
<argument>
<name>TrafficImportanceNumber</name>
<relatedStateVariable>A_ARG_TYPE_TIN</relatedStateVariable>
<direction>in</direction>
</argument>
<argument>
<name>ImportanceNumber</name>
<relatedStateVariable>A_ARG_TYPE_IN</relatedStateVariable>
<direction>out</direction>
</argument>
<argument>
<name>ReasonCode</name>
<relatedStateVariable>A_ARG_TYPE_ReasonCode</relatedStateVariable>
<direction>out</direction>
</argument>
<argument>
<name>PolicyHandle</name>
<relatedStateVariable>A_ARG_TYPE_PolicyHandle</relatedStateVariable>
<direction>out</direction>
</argument>
</argumentList>
</action>
<action>
<name>RemoveQphPolicy</name>
<argumentList>
<argument>
<name>PolicyHandle</name>
<relatedStateVariable>A_ARG_TYPE_PolicyHandle</relatedStateVariable>
<direction>in</direction>
</argument>
</argumentList>
</action>
<action>
<name>RetrieveQphPolicy</name>
<argumentList>
<argument>
<name>ListPolicyHandle</name>
<relatedStateVariable>A_ARG_TYPE_ListPolicyHandle</relatedStateVariable>
<direction>in</direction>
</argument>
<argument>
<name>PolicyVersion</name>
<relatedStateVariable>PolicyVersion</relatedStateVariable>
<direction>out</direction>
</argument>
<argument>
<name>ListOfQphPolicyRule</name>
<relatedStateVariable>A_ARG_TYPE_ListOfQphPolicyRule</relatedStateVariable>
<direction>out</direction>
</argument>
</argumentList>
</action>
<action>
<name>GetPolicyVersion</name>
<argumentList>
<argument>
 <name>PolicyVersion</name>
 <relatedStateVariable>PolicyVersion</relatedStateVariable>
 <direction>out</direction>
</argument>
</argumentList>

Declarations for other actions added by UPnP vendor (if any) go here

<serviceStateTable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_TrafficDescriptor</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_TrafficPolicy</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ListOfTrafficDescriptors</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ListOfTrafficPolicies</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_IsPreferred</name>
 <dataType>boolean</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_QphPolicyRule</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ListOfQphPolicyRule</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Position</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_TIN</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_IN</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ReasonCode</name>
 <dataType>ui4</dataType>
 </stateVariable>
</serviceStateTable>
<name>ARG TYPE ListPolicyHandles</name>
<dataType>string</dataType>
</stateVariable>
<stateVariable sendEvents="yes">
<name>PolicyVersion</name>
<dataType>ui4</dataType>
</stateVariable>

Declarations for other state variables added by UPnP vendor (if any) go here
</serviceStateTable>
</scpd>
5. Test

Content requirements for this section to be specified in revision 1a of this standard template.