

LinkAuthentication:1
Service Template Version 1.01
For UPnPTM Version 1.0
Status: Standardized DCP
Date: October 17, 2003

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee of the UPnP™
Forum, pursuant to Section 2.1(c)(ii) of the UPnP™ Forum Membership Agreement. UPnP™ Forum
Members have rights and licenses defined by Section 3 of the UPnP™ Forum Membership Agreement to
use and reproduce the Standardized DCP in UPnP™ Compliant Devices. All such use is subject to all of
the provisions of the UPnP™ Forum Membership Agreement.

THE UPNP™ FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL
PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS ARE
PROVIDED "AS IS" AND "WITH ALL FAULTS". THE UPNP™ FORUM MAKES NO
WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
STANDARDIZED DCPS, INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, OF
REASONABLE CARE OR WORKMANLIKE EFFORT, OR RESULTS OR OF LACK OF
NEGLIGENCE.

© 2000-2003 Contributing Members of the UPnP™ Forum All rights Reserved.

Authors Company
Christopher Lord Intel Corporation
William Lupton GlobespanVirata Inc
Ajay Garg Intel Corporation

LinkAuthentication:1 Service Template Version 1.01 2

Contents

1. OVERVIEW AND SCOPE...4
2. SERVICE MODELING DEFINITIONS...5

2.1. SERVICETYPE...5
2.2. STATE VARIABLES ...5

2.2.1. NumberOfEntries ...6
2.2.2. Identifier ...6
2.2.3. Secret...6
2.2.4. SecretType ...6
2.2.5. AuthType ..7
2.2.6. AuthState..7
2.2.7. CredentialState ...8
2.2.8. Description...8
2.2.9. MACAddress ...9
2.2.10. CredentialDuration ..9
2.2.11. LinkedIdentifier ...9
2.2.12. LastChange ...9
2.2.13. LastError..10

2.3. EVENTING AND MODERATION..10
2.3.1. Event Model...11

2.4. ACTIONS...11
2.4.1. GetGenericEntry ...12
2.4.2. GetSpecificEntry ...13
2.4.3. AddEntry ..14
2.4.4. UpdateEntry...16
2.4.5. DeleteEntry...17
2.4.6. GetNumberOfEntries ..18
2.4.7. FactoryDefaultReset..18
2.4.8. ResetAuthentication..19
2.4.9. Common Error Codes..19

2.5. THEORY OF OPERATION ...21
2.5.1. 802.1x introduction..21
2.5.2. High level intended operation ...21
2.5.3. Detailed level operation ..22
2.5.4. Record format ..24
2.5.5. Example using client certificate credentials ..24
2.5.6. Limitations on Pending Records..25

3. XML SERVICE DESCRIPTION ..26
4. TEST...32

List of Tables
Table 1: State Variables...5

Table 1.1: allowedValueList for SecretType ...6

Table 1.2: allowedValueList for AuthType ..7

Table 1.3: allowedValueList for AuthState ...7

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 3

Table 1.4: allowedValueList for CredentialState ...8

Table 2: Event Moderation..10

Table 3: Actions ..11

Table 4: Arguments for GetGenericEntry...12

Table 5: Arguments for GetSpecificEntry ..13

Table 6: Arguments for AddEntry ...14

Table 7: Arguments for UpdateEntry ..16

Table 8: Arguments for DeleteEntry ..17

Table 9: Arguments for GetNumberOfEntries..18

Table 10: Common Error Codes..19

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 4

1. Overview and Scope
This device template is compliant with the UPnP™ Device Architecture, Version 1.0.

This service-type enables a UPnP™ control point to configure and control the parameters pertaining to
authentication by an authentication server. The service specifies variables and actions that are used by
control points to add, update and delete records used for authentication. This would typically be used for
maintaining per-client authentication parameters on a device. This service would support a user/client list
with the credentials (password, public key) and the specific access rights on a per-user basis. The service is
mainly designed for authentication on a wireless access point (AP) that implements link layer security such
as 802.1x. It may be used for other purposes - e.g., to securely store client credentials such as certificates
and asymmetric keys for network-layer security protocols.

The working committee has however looked at this service only from the perspective of 802.1x usage and
therefore this document makes several references to the 802.1x protocol. This service may be co-located
with the access point device that requires the authentication service or located on a different device on the
network such as an Internet Gateway Device (IGD). The service was defined to associate WLAN clients
and their credentials to bootstrap a secure WLAN in a UPnP™ technology compliant
WLANAccessPointDevice*.

This service is defined as a standalone service and will remain at the component level. Any product that
implements a standard device specification will have the option to implement this standard service
specification. The product will be tested at certification testing time for this service in addition to being
tested to the product’s original device type (e.g., WLANAccessPointDevice, InternetGatewayDevice).

* Refer to companion documents defined by the UPnP™ Internet Gateway working committee for more
details on specific devices and services referenced in this document.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 5

2. Service Modeling Definitions

2.1. ServiceType
The following service type identifies a service that is compliant with this template:

 urn:schemas-upnp-org:service:LinkAuthentication:1

2.2. State Variables
Table 1: State Variables

Variable Name Req.
or
Opt.1

Data
Type

Allowed Value 2 Default Value 2 Eng.
Units

NumberOfEntries R ui2 >=0 0 N/A
Identifier R String <= 64 char Empty string N/A
Secret R String Encoded in

BASE64, <=
1024 char

Empty string N/A

SecretType R String See Table 1.1,
<= 32 char

Not specified N/A

AuthType R String See Table 1.2,
<= 32 char

Not specified N/A

AuthState R String See Table 1.3,
<= 32 char

“Unconfigured” N/A

CredentialState R String See Table 1.4,
<= 32 char

“Unconfigured” N/A

Description R String <= 256 char Empty string N/A
MACAddress R String MAC address,

“xx:xx:xx:xx:xx:x
x”, case-
independent, 17
char

Empty string N/A

CredentialDuration R ui4 >= 0 0 Seconds
LinkedIdentifier R String <= 64 char Empty string N/A
LastChange R String <= 1024 char Empty string N/A
LastError R String <= 1024 char Empty string N/A

Non-standard state variables
implemented by an UPnP™

X TBD TBD TBD TBD

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 6

Variable Name Req.
or
Opt.1

Data
Type

Allowed Value 2 Default Value 2 Eng.
Units

device vendor go here.
1 R = Required, O = Optional, X = Non-standard.
2 Values listed in this column are required. To specify standard optional values or to delegate assignment
of values to the vendor, you must reference a specific instance from the appropriate table below.

2.2.1. NumberOfEntries
This variable indicates the number of entries in the authentication database.

2.2.2. Identifier
This variable is similar to a username or userID field. This field is matched when a client supplies
an EAP-Identity string. This service expects Identifier to uniquely identify each record in the
authentication database, that is, there are no records with duplicate Identifier fields. Note, EAP
uses the term Identifier to refer to a single octet used to match EAP request and responses, in
this specification Identifier refers to the EAP Identity string. See RFC 2716 Section 3.1. The
Identifier may contain the characters < > & which will “break” the surrounding XML, therefore the
Identifier string must be ‘escaped’. Refer to DeviceSecurity section “XML Strings as UPnP™
Parameters”.

2.2.3. Secret
This variable contains the secret as per the type specified in SecretType. It is encoded as a
canonical BASE64 string (as used by the DeviceSecurity service).

2.2.4. SecretType
This variable specifies the type of secret contained in the Secret field. Possible string values are
specified in table 1.1.

Table 1.1: allowedValueList for SecretType

Value Req. or Opt. 1 Description

TextPassword R This value indicates that Secret field contains a text
password

X509Certificate R This value indicates the Secret field contains an X.509
certificate

PublicKey R This value indicates the Secret field contains a public key

PubKeyHash160 R This value indicates the Secret field contains a 160-bit
hash of a public key

Vendor-defined R R

Vendor-defined O O

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 7

3 R = Required, O = Optional.

2.2.5. AuthType
This variable specifies the type of authentication. Possible string values are specified in table 1.2

Table 1.2: allowedValueList for AuthType

Value Req. or Opt. 1 Description

SharedSecret R This value indicates the 802.1x client is using an
authentication method that requires addition of a credential
such as shared secret that is missing, i.e., TextPassword.
When AuthState is Pending the user would be expected to
provide the shared secret to the AP via the control point
using the UpdateEntry action. This results in a change in
the Secret field value.

ValidateCredentials

R This value indicates the 802.1x client is using an
authentication method that requires the verification of
existing credentials, i.e. as in an X509Certificate. When
AuthState is Pending this requires the user or control
point to validate the credential in the Secret field.

Vendor-defined R R

Vendor-defined O O

1 R = Required, O = Optional.

2.2.6. AuthState
This variable specifies the current state of the authentication process. Possible string values are
specified in table 1.3. Refer to the state diagram and theory of operation for details.

Table 1.3: allowedValueList for AuthState

Value Req. or Opt. 1 Description

Unconfigured R A WLAN client corresponding to this Identifier has yet
to authenticate.

Failed R A WLAN client corresponding to this Identifier failed
to successfully authenticate the contents of the secret field
- for example, with 802.1x authentication. This state informs
control points the secret that was entered or validated has
failed.

Succeeded R A WLAN client corresponding to this Identifier
successfully authenticated using the contents of the secret
field, for example, with 802.1x authentication. This state
informs control points that the secret that was entered or
validated has succeeded.

Vendor-defined R R

Vendor-defined O O

1 R = Required, O = Optional.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 8

2.2.7. CredentialState
This variable specifies the current state of the credential approval/validation process. Possible
string values are specified in table 1.4. Refer to the state diagram and theory of operation for
details.

Table 1.4: allowedValueList for CredentialState

Value Req. or Opt.
1

Description

Unconfigured R This value indicates that other variables in the particular
record are uninitialized or in an invalid state. Examples of
such variables include Secret and AuthType. This
record will not be used for authentication; it may be used for
other purposes.

Pending

(alert CP for action)

R This value indicates the record referred to by the
Identifier does not have a validated Secret field.
Control points are expected to prompt the end-user to enter
the SharedSecret or validate a credential. Upon end-user
acceptance the control point changes AuthState to either
Accepted or Denied

Accepted R This value indicates the database record referred to by the
Identifier field has had its Secret field
entered/validated by the end-user.

Denied R This value indicates that when a client attempts to
authenticate it is not allowed to proceed with link layer
authentication. This state is intended to restrict devices from
the network and restrict events from those devices.

Vendor-defined R R

Vendor-defined O O

1 R = Required, O = Optional.

The component performing authentication and authorization for network access is expected to
refer to the client database for credential information. If a given Identifier is not found in the
database, a new record is created, populated, and set to Pending. The user, via a control point,
can update the record to Accepted, or Denied. The control point may query the user for an
amount of time to grant the client temporary network access. The amount of time is specified in
seconds and is stored in the CredentialDuration variable.

2.2.8. Description
This variable stores a string used exclusively by control points to aid in identifying authentication
records. For example, a control point may prompt the user to supply a friendly name for the client
device. It is stored in the authentication records and may not be used by the AP device. The
Description may contain the characters < > & which will “break” the surrounding XML, therefore
the Description string must be ‘escaped’. Refer to DeviceSecurity section “XML Strings as
UPnP™ Parameters”.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 9

2.2.9. MACAddress
This variable specifies the MAC address of the client. It is not intended to be used to authenticate
the client, as MAC Addresses are mutable. This field can be used by control points to display the
device’s MAC address during the initial authentication process when the client device is first
added to the network and authentication database. This field is dynamically updated by the AP
when a client device is authenticating. This field is also updated to reflect the last MAC address
that successfully or unsuccessfully authenticated. See the theory of operation section for more
details.

2.2.10. CredentialDuration
This variable determines the time (in number of seconds) a client record with a
CredentialState of Accepted is allowed to authenticate. A value of 0 means the client
record is permanent, that is, there is no expiration period. Non-zero values specify temporary
access. When a non-zero CredentialDuration transitions to zero (the number of seconds
has expired) the record must be deleted and LastChange event triggered. Note that permanent
client records with CredentialDuration of zero persist across device resets or reboots. It is
up to vendors to implement persistence as appropriate for their device, for example store in non-
volatile storage such as flash or disk. Non-zero CredentialDuration values do not persist
across device resets or reboots, that is, the temporary client is expected to be re-authenticated.
The remaining number of seconds can be retrieved via the GetGenericEntry and
GetSpecificEntry actions. Automatic second decrements to the CredentialDuration do
NOT generate a LastChange event.

2.2.11. LinkedIdentifier
Some EAP authentication methods allow two EAP negotiations. For example, PEAP optionally
negotiates two phases, a Part 1 and a Part 2 phase to complete authentication. Each phase may
negotiate using unique Identifiers, AuthTypes, and credentials. To allow the EAP server to
indicate related records to the control point this field contains the Identifier for the initial EAP
negation. For example, if PEAP Part1 used an Identifier of User1, AuthType of
ValidateCredentials and SecretType of PubKeyHash160 and PEAP Part 2 used an Identifier
of User2, AuthType of SharedSecret, then two records would exist with the LinkedIdentifier field of
the User2 record containing User1. Therefore, if the Part 2 authentication phase fails, the EAP
server should delete both records User 1 and User 2. Additionally, if the user refuses to
authenticate Part 2, the control point should set both records CredentialState to Denied or
optionally delete both records User1 and User2.

The LinkedIdentifier may contain the characters < > & which will “break” the surrounding XML,
therefore the LinkedIdentifier string must be ‘escaped’. Refer to DeviceSecurity section “XML
Strings as UPnP™ Parameters”.

2.2.12.LastChange
This variable is used for eventing purposes to allow control points to receive meaningful event
notifications when a record is added, deleted or changed.

LastChange is an evented string variable whose value is an escaped XML string (as used by the
DeviceSecurity service) with the following format (white space is shown for readability but is not
necessary or desirable):

<action>
 <fieldname>value</fieldname>…
</action>

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 10

where action is one of {Add, Delete, Update}, fieldname is one of {Identifier,
Secret, SecretType, AuthType, AuthState, CredentialState,
LinkedIdentifier}, and value is specified per the State Variables table. The Identifier
must always be present. To prevent sending the Secret, which can be a large string, over the
network an empty string should be sent in its place. This is intended to reduce the traffic when
the LastChange event triggers, and also of course avoids sending sensitive information via
event messages. Multiple changes to a single record can be concatenated to trigger only a single
event to subscribed control points. When a record is updated, it is recommended that only those
fields whose values have changed be sent, but control points should not assume this.

For example, creation of a new record might result in the following value for LastChange.

<Add>
 <Identifier>Foo</Identifier>
 <Secret/>
 <SecretType>TextPassword</SecretType>
 <AuthType>SharedSecret</AuthType>
 <AuthState>Unconfigured</AuthState>
 <CredentialState>Unconfigured</CredentialState>
</Add>

A subsequent change to CredentialState might result in the following value.

<Update>
 <Identifier>Foo</Identifier>
 <CredentialState>Pending</CredentialState>
</Update>

2.2.13.LastError
This variable is used for eventing purposes to allow control points to discover when an
asynchronous error (i.e. an error that is not the direct result of a UPnP™ action) has occurred in
the authentication server backend handler. For example, the EAP server might have tried to add
a new record to the authentication database but failed due to lack of resources.

LastError is an evented string variable whose value is an escaped XML string (as used by the
DeviceSecurity service) with the following format (white space is shown for readability but is not
necessary or desirable):

<Error>
 <Code>integer-code</Code>
 <Description>error-description</Description>
</Error>

Where appropriate, standard UPnP™ error codes and descriptions can be used. New codes
should be allocated according to the conventions described in Section 2.4.9.

2.3. Eventing and Moderation
Table 2: Event Moderation

Variable Name Evented Moderated
Event

Max Event
Rate1

Logical
Combination

Min Delta
per Event2

LastChange Yes No N/A N/A N/A

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 11

Variable Name Evented Moderated
Event

Max Event
Rate1

Logical
Combination

Min Delta
per Event2

LastError Yes No N/A N/A N/A

Non-standard state variables
implemented by an UPnP™ device
vendor go here.

TBD TBD TBD TBD TBD

1 Determined by N, where Rate = (Event)/(N secs).
2 (N) * (allowedValueRange Step).

2.3.1. Event Model
Control points can use LastChange events to notify end-users of clients attempting to access the network
for the first time, and can use LastError events to notify them of asynchronous errors. Additionally,
control points can use events for duplication or to backup the authentication database to a control point
such as a PC or into another wireless access point. Refer to the Theory of operation for further details.

Note: events alone cannot be used to duplicate a database, because they will not contain the value of the
Secret field. A control point could, on noting that Secret had changed, use GetSpecificEntry to
retrieve its value.

2.4. Actions
Table 3 lists the required and optional actions for the UPnP™ AP device. This is followed by detailed
information about these actions, including short descriptions of the actions, the effects of the actions on
state variables, and error codes defined by the actions.

Securing UPnP™ actions in this service is optional but strongly recommended, using UPnP™ security
protocols as defined by UPnP™ Security working group. If the AP implements security for UPnP™
actions, Table 3 indicates which actions MUST be secure. The others may be implemented as secure or
open. Secure actions MUST be protected for both confidentiality and integrity.

Access permissions will be inherited from the containing device (e.g., WLANAccessPointDevice).

Table 3: Actions

Name Secure or
Open*

Req. or
Opt. 1

GetGenericEntry S R
GetSpecificEntry S R
AddEntry S R
UpdateEntry S R
DeleteEntry S R
GetNumberOfEntries S R
FactoryDefaultReset S R
ResetAuthentication S R
Non-standard actions implemented by an UPnP™ device vendor go here. X X

1 R = Required, O = Optional, X = Non-standard.

* This column is relevant if DeviceSecurity service is present in the container device

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 12

2.4.1. GetGenericEntry
This action retrieves authentication records one entry at a time. Control points can call this action
with an incrementing array index until no more entries are found in the authentication record list.
If LastChange is updated during a call, the process may have to start over. Entries in the array
are contiguous. As entries are deleted, the array is compacted, and the evented variable
LastChange is triggered. Authentication records are logically stored as an array and retrieved
using an array index ranging from 0 to NumberOfEntries-1.

2.4.1.1. Arguments
Table 4: Arguments for GetGenericEntry

Argument Direction relatedStateVariable
NewIndex IN NumberOfEntries

NewIdentifier OUT Identifier

NewSecret OUT Secret

NewSecretType OUT SecretType

NewAuthType OUT AuthType

NewAuthState OUT AuthState

NewCredentialState OUT CredentialState

NewDescription OUT Description

NewMACAddress OUT MACAddress

NewCredentialDuration OUT CredentialDuration

NewLinkedIdentifier OUT LinkedIdentifier

2.4.1.2. Dependency on State (if any)

2.4.1.3. Effect on State (if any)
None.

2.4.1.4. Errors

errorCode errorDescription Description
402 Invalid Args See UPnP™ Device Architecture section on Control.
713 SpecifiedArrayIndexInvalid The specified array index is out of bounds.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 13

2.4.2. GetSpecificEntry
This action retrieves one authentication record entry specified by the input parameter
NewIdentifierKey. Authentication records are logically stored as an array in the
authentication record list and can be retrieved using their Identifier as a unique value.

2.4.2.1. Arguments
Table 5: Arguments for GetSpecificEntry

Argument Direction relatedStateVariable
NewIdentifierKey IN Identifier

NewIdentifier OUT Identifier

NewSecret OUT Secret

NewSecretType OUT SecretType

NewAuthType OUT AuthType

NewAuthState OUT AuthState

NewCredentialState OUT CredentialState

NewDescription OUT Description

NewMACAddress OUT MACAddress

NewCredentialDuration OUT CredentialDuration

NewLinkedIdentifier OUT LinkedIdentifier

2.4.2.2. Dependency on State (if any)

2.4.2.3. Effect on State (if any)
None.

2.4.2.4. Errors

errorCode errorDescription Description
402 Invalid Args See UPnP™ Device Architecture section on Control.
605 String Argument Too Long A string argument is too long for the device to handle

properly.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 14

702

IdentifierKeyNotPresent The record corresponding to input Identifier key is not
found in the authentication record list.

2.4.3. AddEntry
This action creates a new authentication record.

2.4.3.1. Arguments
Table 6: Arguments for AddEntry

Argument Direction relatedStateVariable
NewIdentifier IN Identifier

NewSecret IN Secret

NewSecretType IN SecretType

NewAuthType IN AuthType

NewAuthState IN AuthState

NewCredentialState IN CredentialState

NewDescription IN Description

NewMACAddress IN MACAddress

NewCredentialDuration IN CredentialDuration

NewLinkedIdentifier IN LinkedIdentifier

NewNumberOfEntries OUT NumberOfEntries

2.4.3.2. Dependency on State (if any)

2.4.3.3. Effect on State (if any)
When adding a new record the LastChange variable is evented including the new fields and
values.

2.4.3.4. Errors

errorCode errorDescription Description
402 Invalid Args See UPnP™ Device Architecture section on Control.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 15

501 Action Failed See UPnP™ Device Architecture section on Control.

605 String Argument Too Long A string argument is too long for the device to handle
properly.

701 EntryAlreadyPresent If an existing record with Identifier already exists in the
database return this error.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 16

2.4.4. UpdateEntry
This action modifies an existing authentication record.

2.4.4.1. Arguments
Table 7: Arguments for UpdateEntry

Argument Direction relatedStateVariable
NewIdentifier IN Identifier

NewSecret IN Secret

NewSecretType IN SecretType

NewAuthType IN AuthType

NewAuthState IN AuthState

NewCredentialState IN CredentialState

NewDescription IN Description

NewMACAddress IN MACAddress

NewCredentialDuration IN CredentialDuration

NewLinkedIdentifier IN LinkedIdentifier

NewNumberOfEntries OUT NumberOfEntries

2.4.4.2. Dependency on State (if any)

2.4.4.3. Effect on State (if any)
The modified fields and values are evented via the LastChange event.

2.4.4.4. Errors

errorCode errorDescription Description
402 Invalid Args See UPnP™ Device Architecture section on Control.
501 Action Failed See UPnP™ Device Architecture section on Control.

605 String Argument
Too Long

A string argument is too long for the device to handle properly.

714 EntryNotPresent If existing record with Identifier does not exist return this error.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 17

2.4.5. DeleteEntry
This action deletes an authentication record specified by InIdentifier.

2.4.5.1. Arguments
Table 8: Arguments for DeleteEntry

Argument Direction relatedStateVariable
NewIdentifier IN Identifier

NewNumberOfEntries OUT NumberOfEntries

2.4.5.2. Dependency on State (if any)

2.4.5.3. Effect on State (if any)
As each entry is deleted, the array is compacted, and the evented variable LastChange is
triggered. LastChange only includes the ActionField set to Delete followed by the Identifier
field.

2.4.5.4. Errors

errorCode errorDescription Description
402 Invalid Args See UPnP™ Device Architecture section on Control.
605 String Argument Too Long A string argument is too long for the device to handle

properly.
702

IdentifierKeyNotPresent The record corresponding to input Identifier key is not
found in the authentication record list.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 18

2.4.6. GetNumberOfEntries
This action retrieves the value NumberOfEntries.

2.4.6.1. Arguments
Table 9: Arguments for GetNumberOfEntries

Argument Direction relatedStateVariable
NewNumberOfEntries OUT NumberOfEntries

2.4.6.2. Dependency on State (if any)

2.4.6.3. Effect on State (if any)

2.4.6.4. Errors

ErrorCode errorDescription Description
402 Invalid Args See UPnP™ Device Architecture section on Control.

2.4.7. FactoryDefaultReset
This action resets the service to its factory defaults. On successful completion, the authentication
database will contain only those entries that were pre-defined by the vendor, if any.

It is recommended that the relevant LastChange events be posted when resetting to factory
defaults.

All authenticated sessions using credentials in the credential store must be disassociated.

FactoryDefaultReset is processed by the LinkAuthentication service when a containing device
has its DeviceSecurity FactoryDefaultReset invoked. Additionally, the IGD working committee
has determined that the LinkAuthentication service is a child service of the WLANConfiguration
service when contained in the WLANAccessPointDevice. Therefore when WLANConfiguration
FactoryDefaultReset is invoked, the implementation of WLANConfiguration FactoryDefaultReset
must invoke the implementation of LinkAuthentication FactoryDefaultReset.

2.4.7.1. Arguments
None

2.4.7.2. Dependency on State (if any)

2.4.7.3. Effect on State (if any)

2.4.7.4. Errors

ErrorCode errorDescription Description
402 Invalid Args See UPnP™ Device Architecture section on Control.
501 Action Failed See UPnP™ Device Architecture section on Control.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 19

2.4.8. ResetAuthentication
This action performs a soft reset of the service. This forces all clients to re-authenticate and
guarantees that CredentialState and AuthState are consistent, as follows.

• All authenticated sessions using credentials in the credential store must be
disassociated.

• All non-permanent authentication database entries (i.e. those that have non-zero
CredentialDuration fields) are deleted.

• All entries with a CredentialState other than Accepted (i.e. those whose secrets
have never been validated) are deleted.

• AuthState is set to Unconfigured for all remaining entries, and the EAP server
proceeds with re-authentication.

It is required that the relevant LastChange events be posted when performing a soft reset.

This soft reset logic is also executed on each reboot.

The IGD working committee has determined that the LinkAuthentication service is an implied
child service of the WLANConfiguration service when contained in the WLANAccessPointDevice.
Therefore when WLANConfiguration ResetAuthentication is invoked, the implementation of
WLANConfiguration ResetAuthentication must invoke the implementation of LinkAuthentication
ResetAuthentication.

2.4.8.1. Arguments
None

2.4.8.2. Dependency on State (if any)

2.4.8.3. Effect on State (if any)

2.4.8.4. Errors

ErrorCode errorDescription Description
402 Invalid Args See UPnP™ Device Architecture section on Control.
501 Action Failed See UPnP™ Device Architecture section on Control.

2.4.9. Common Error Codes
The following table lists error codes common to actions for this service type. If an action results in multiple
errors, the most specific error should be returned.

Table 10: Common Error Codes

errorCode errorDescription Description
401 Invalid Action See UPnP™ Device Architecture section on Control.
402 Invalid Args See UPnP™ Device Architecture section on Control.
404 Invalid Var See UPnP™ Device Architecture section on Control.
501 Action Failed See UPnP™ Device Architecture section on Control.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 20

errorCode errorDescription Description
600-699 TBD Common action errors. Defined by UPnP™ Forum Technical

Committee.
701-799 Common action errors defined by the UPnP™ Forum working

committees.
800-899 TBD (Specified by UPnP™ device vendor.)

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 21

2.5. Theory of Operation
The LinkAuthentication service provides a mechanism for control points to access a per-client credential
store. It is strongly recommended that actions of this service are controlled using DeviceSecurity:1.0 as
defined in the UPnP™ Security working group. The term “per-client” means that users and/or WLAN
client devices have unique credentials, as opposed to using a single network-wide common credential. The
credential store and this service can be used for any authentication mechanism but one of the main uses is
with 802.1x. The following sections describe how it works with 802.1x, but is also applicable to other
authentication processes, for example, any client can store their public keys in the credential store keyed
with its unique Identifier.

2.5.1. 802.1x introduction
IEEE-802.1x is a request-response framework used for physical port-level access (as in an Ethernet switch)
to local area networks. There are three roles in 802.1x: 1) the supplicant, 2) the authenticator, and 3) the
authentication server. The supplicant is the client attempting to authenticate to gain network access. The
authenticator is the device enforcing authentication, and the authentication server provides the mechanism
to check the supplicant’s credentials on behalf of the authenticator. 802.1x uses EAP (Extensible
Authentication Protocol) to exchange authentication messages between the client requesting authentication
and the authentication server. Several EAP authentication protocols have been specified including EAP-
TLS, Protected EAP, EAP-TTLS and others, see RFC 2284 for details. Per the 802.1x specification – “an
Authenticator and an Authentication server can be co-located within the same System, allowing that
System to perform the authentication function without the need for communication with an external
server.” – IEEE Std 802.1x-2001 §6.1.

IEEE-802.1x has been adapted to 802.11 by the industry where the wireless station (the supplicant)
authenticates with an authentication server via an AP (the authenticator). This is typically applied in
enterprise networks where the authentication protocols rely on ‘back-end’ authentication servers (e.g.
RADIUS). The servers are linked to user databases that are commonly found in large corporate class
networks administered by Information Technology staff. However, one cannot assume that level of
administrative expertise in the home environment. The LinkAuthentication service provides a simple and
sufficient authentication server framework that can be updated via UPnP™ actions. Although the
LinkAuthentication service is assumed generally to be co-located with the AP, it is possible that it may be
running on a separate device on the LAN.

2.5.2. High level intended operation
Access points implementing 802.1x based authentication require the use of authentication server(s).
Additionally, 802.1x client devices such as embedded devices with built-in or preconfigured unique (“per-
client”) credentials such as passwords or certificates need to have their credentials initially verified, added,
and stored in the authentication server. The LinkAuthentication service can be used by an AP that
supports 802.1x and does not have an authentication server such as RADIUS available (external to the AP
device) on the network. This service provides a means for UPnP™ Control Points to store and access the
authentication data and is essentially a front-end API to manipulate the authentication database the AP uses
for 802.1x authentication. It also provides a mechanism to inform the control point via UPnP™ events that
a particular entry needs to be validated. The authentication data store can be present anywhere on the
network. For instance, it can be stored locally on the AP or in an embedded device such as an IGD that can
host the LinkAuthentication service and the database. In the latter case, the AP could access the database
on the IGD via RADIUS and the user could manipulate the database via the LinkAuthentication service.
RFC 2716 (EAP-TLS) uses the term “EAP Server” to denote the “ultimate endpoint” actually performing
the authentication process. This term is also used below.

The LinkAuthentication service maintains records with state variables to aid control points (via end-user
interaction) in verifying, adding, and storing per-user or per-device unique credentials. There are two
entities making changes to records in the database. For instance, in the case of the LinkAuthentication
Service and the database residing locally in the AP, one entity is the 802.1x EAP Server while the other
entity is the UPnP™ Control Point. Both are able to update fields in the authentication database and

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 22

respond to changes. Any modification to the client records generates the appropriate UPnP™ events (see
description for LastChange variable).

This service supports the most commonly utilized authentication protocols specified via 802.1x EAP. The
EAP protocols are generalized in this document into two types. The first type requires that the public key
of a client be verified and the other requires the end user to enter a secret such as a password. For example,
with EAP-TLS the client’s certificate (credentials) is sent to the AP and then to the Control Point. It is
assumed that the user at the Control Point has a means to validate this certificate. Another EAP type is
Protected EAP which involves EAP-TLS tunnel with the use of an inner protocol such as MSCHAPv2. In
this case, a shared secret / password is entered via the Control Point and stored in the database. The secret
would already be present in the client in permanent storage such as disk or put in flash memory at the time
of manufacture. For example, the secret on a closed/embedded device could be accessed by the user by
reading a sticker on the device or printed documentation. Once the user has entered the secret into the
Control Point it is sent to the AP and used to authenticate the client.

2.5.3. Detailed level operation
The 802.1x EAP process starts with a request by the EAP Server for an EAP Identity string from the
enrolling client. The EAP Server accesses the authentication records using the EAP Identity string to
retrieve the record with the corresponding Identifier field. Therefore all devices accessing the wireless
network must have unique EAP Identity strings. The EAP process then progresses to select an
authentication method (EAP Type). Once an EAP type has been agreed upon by the server and client, the
EAP authentication method is executed. It is expected that the EAP Server will refer to the corresponding
client record with the given Identifier during the authentication process and verify that the credentials used
for authentication match those in the authentication records.

If the EAP Identity string does not match any client Identifiers, then a new record is created by the
EAP Server. The EAP server should populate the record with the Identifier field set to the EAP
Identity string from the enrolling client and set the AuthType corresponding to the EAP authentication
mode (such as EAP-TLS) selected by the EAP server . The EAP server should also update the MAC
address field in the record. If credential exchanges have occurred by this time as in the case of EAP-TLS,
the EAP server should populate the Secret field appropriately as well. The EAP server can now set the
CredentialState to Pending which will trigger LastChange and alert control points of an
enrolling client. The control points will prompt the user to accept or deny the client’s credentials. If the
user selects Denied the control point invokes UpdateEntry action, halting the client authentication
process. This results in an EAP Failure sent to the client by the AP. If the user selects Accepted the
client authentication proceeds and the EAP server verifies the credential in the secret field is actually being
used for client authentication. At the conclusion of the authentication process the EAP server updates the
AuthState field.

However, if the EAP Identity does match a client Identifier and the CredentialState is
Accepted the EAP server proceeds with the authentication process and verifies the credential in the
secret field is actually being used for client authentication. If CredentialState is already Denied
the client authentication process halts and an EAP Failure is sent to the client. At the conclusion of the
authentication process the EAP server updates the AuthState field.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 23

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 24

2.5.4. Record format
Each record is uniquely addressed via the Identifier field. As an example, the following
authentication records contain two device records with CredentialState set to Accepted, named
Dev1 and Dev2. For this example these two devices have already authenticated via EAP-TLS and the AP
has stored the devices’ public keys. Since the AuthState is Authenticated, when either of these
devices sends its EAP Identity, the AP will find the matching record and compare the contents of the Secret
field with the public key that the client sends during the TLS handshake phase. If they match the AP will
continue the TLS handshake; if they do not match the AP should not continue the TLS handshake.

Identifier Secret Secret
Type

Auth
Type Cred State Auth State Descrip. MAC

addr.
Cred

Duration

Dev 1 Key1 Public
Key

Validate
Credentials

Accepted Succeeded MAC 1 0

Dev 2 Key2 Public
Key

Validate
Credentials

Accepted Succeeded MAC 2 0

… … … … … … … …

With EAP-TLS the Identifier field and the public key will be sent in the clear over the wireless link during
the TLS handshake phase. TLS will ensure that the client sending a public key has a matching private key.
It is important to store and compare the credential for EAP-TLS, in this example the public key, in the
authentication records with the client’s public key since a rogue device can masquerade as Dev1 by sending
Dev1 as its identifier and use Dev1’s MAC address. Additionally, the rogue device can easily create a
valid public key / private key pair and send the public key to the AP during the TLS handshake phase. If
the rogue client’s public key were not matched against Dev1’s user authenticated Secret (its public key) in
the authentication records the AP EAP server would challenge the rogue device using the rogue device’s
public key and the rogue client would successfully complete the TLS handshake. Therefore, to prevent
rogue devices from successfully masquerading using their own keys, the public key or other credential
should be maintained in the authentication records and matched during authentication.

2.5.5. Example using client certificate credentials
In this example, an 802.1x based client device is attempting to gain network access. Suppose the client and
AP are both configured with certificates from a common certificate authority. The EAP-TLS process will
exchange challenges and certificates. The certificates are typically validated in terms of expiration dates,
and the certificate chain to the root certificate authority. In this case the AP certificate is validated by the
client which then proceeds with establishing the TLS tunnel. The first time the client associates the AP is
expected to find that the client’s certificate (or hash of the public key in the cert) is not in the client
credential records. In this case the EAP server creates and populates a record with the Identifier,
Secret and AuthType of ValidateCredentials, then the EAP server sets the
CredentialState to Pending. The CP receives the event(s) and informs the user that a device with
an identifier of (a string such as serialnumber@manufacturer) and a “secret” of (some string) is requesting
network access. The secret in this case is printed on the bottom of the client device. This is a hash of the
public key. The user is expected to look under the device and match the number on the sticker to the
number on the control point. If the user deems that the numbers match the user will click on the “accept”
button and optionally enter a time interval for temporary network access. The CP will set
CredentialState to Accepted and the EAP server will then continue the TLS session ensuring the
public key from the client is indeed used for the TLS session. If the EAP-TLS authentication succeeds or
fails the AuthState variable will be updated informing the control point. Note the client has been
authenticated by the AP (by checking the hash on the device).

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 25

The above example relies on the clients and AP having pre-installed certificates. This is not practical for
the home environment especially for small embedded devices without a user interface. This limitation will
have to be addressed with some authentication method that provides mutual authentication but does not
require certificate validation.

2.5.6. Limitations on Pending Records
The EAP server must delete Pending records when the 802.1x authentication process times out or is
aborted. The state machines and time values are specified in the IEEE Std 802.1x-2001.

An attacker could attempt authentication with randomly selected EAP Identity strings and overwhelm the
credential store by effectively creating too many Pending records. Each implementation should place an
implementation dependent limit on the maximum number of Pending records.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 26

3. XML Service Description
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>GetGenericEntry</name>
 <argumentList>
 <argument>
 <name>NewIndex</name>
 <direction>in</direction>
 <relatedStateVariable>NumberOfEntries</relatedStateVariable>
 </argument>
 <argument>
 <name>NewIdentifier</name>
 <direction>out</direction>
 <relatedStateVariable>Identifier</relatedStateVariable>
 </argument>
 <argument>
 <name>NewSecret</name>
 <direction>out</direction>
 <relatedStateVariable>Secret</relatedStateVariable>
 </argument>
 <argument>
 <name>NewSecretType</name>
 <direction>out</direction>
 <relatedStateVariable>SecretType</relatedStateVariable>
 </argument>
 <argument>
 <name>NewAuthType</name>
 <direction>out</direction>
 <relatedStateVariable>AuthType</relatedStateVariable>
 </argument>
 <argument>
 <name>NewAuthState</name>
 <direction>out</direction>
 <relatedStateVariable>AuthState</relatedStateVariable>
 </argument>
 <argument>
 <name>NewCredentialState</name>
 <direction>out</direction>
 <relatedStateVariable>CredentialState</relatedStateVariable>
 </argument>
 <argument>
 <name>NewDescription</name>
 <direction>out</direction>
 <relatedStateVariable>Description</relatedStateVariable>
 </argument>
 <argument>
 <name>NewMACAddress</name>
 <direction>out</direction>
 <relatedStateVariable>MACAddress</relatedStateVariable>
 </argument>
 <argument>
 <name>NewCredentialDuration</name>
 <direction>out</direction>
 <relatedStateVariable>CredentialDuration</relatedStateVariable>
 </argument>
 <argument>
 <name>NewLinkedIdentifier</name>
 <direction>out</direction>
 <relatedStateVariable>LinkedIdentifier</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 27

 <name>GetSpecificEntry</name>
 <argumentList>
 <argument>
 <name>NewIdentifierKey</name>
 <direction>in</direction>
 <relatedStateVariable>Identifier</relatedStateVariable>
 </argument>
 <argument>
 <name>NewIdentifier</name>
 <direction>out</direction>
 <relatedStateVariable>Identifier</relatedStateVariable>
 </argument>
 <argument>
 <name>NewSecret</name>
 <direction>out</direction>
 <relatedStateVariable>Secret</relatedStateVariable>
 </argument>
 <argument>
 <name>NewSecretType</name>
 <direction>out</direction>
 <relatedStateVariable>SecretType</relatedStateVariable>
 </argument>
 <argument>
 <name>NewAuthType</name>
 <direction>out</direction>
 <relatedStateVariable>AuthType</relatedStateVariable>
 </argument>
 <argument>
 <name>NewAuthState</name>
 <direction>out</direction>
 <relatedStateVariable>AuthState</relatedStateVariable>
 </argument>
 <argument>
 <name>NewCredentialState</name>
 <direction>out</direction>
 <relatedStateVariable>CredentialState</relatedStateVariable>
 </argument>
 <argument>
 <name>NewDescription</name>
 <direction>out</direction>
 <relatedStateVariable>Description</relatedStateVariable>
 </argument>
 <argument>
 <name>NewMACAddress</name>
 <direction>out</direction>
 <relatedStateVariable>MACAddress</relatedStateVariable>
 </argument>
 <argument>
 <name>NewCredentialDuration</name>
 <direction>out</direction>
 <relatedStateVariable>CredentialDuration</relatedStateVariable>
 </argument>
 <argument>
 <name>NewLinkedIdentifier</name>
 <direction>out</direction>
 <relatedStateVariable>LinkedIdentifier</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>AddEntry</name>
 <argumentList>
 <argument>
 <name>NewIdentifier</name>
 <direction>in</direction>
 <relatedStateVariable>Identifier</relatedStateVariable>
 </argument>
 <argument>
 <name>NewSecret</name>
 <direction>in</direction>
 <relatedStateVariable>Secret</relatedStateVariable>

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 28

 </argument>
 <argument>
 <name>NewSecretType</name>
 <direction>in</direction>
 <relatedStateVariable>SecretType</relatedStateVariable>
 </argument>
 <argument>
 <name>NewAuthType</name>
 <direction>in</direction>
 <relatedStateVariable>AuthType</relatedStateVariable>
 </argument>
 <argument>
 <name>NewAuthState</name>
 <direction>in</direction>
 <relatedStateVariable>AuthState</relatedStateVariable>
 </argument>
 <argument>
 <name>NewCredentialState</name>
 <direction>in</direction>
 <relatedStateVariable>CredentialState</relatedStateVariable>
 </argument>
 <argument>
 <name>NewDescription</name>
 <direction>in</direction>
 <relatedStateVariable>Description</relatedStateVariable>
 </argument>
 <argument>
 <name>NewMACAddress</name>
 <direction>in</direction>
 <relatedStateVariable>MACAddress</relatedStateVariable>
 </argument>
 <argument>
 <name>NewCredentialDuration</name>
 <direction>in</direction>
 <relatedStateVariable>CredentialDuration</relatedStateVariable>
 </argument>
 <argument>
 <name>NewLinkedIdentifier</name>
 <direction>in</direction>
 <relatedStateVariable>LinkedIdentifier</relatedStateVariable>
 </argument>
 <argument>
 <name>NewNumberOfEntries</name>
 <direction>out</direction>
 <relatedStateVariable>NumberOfEntries</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>UpdateEntry</name>
 <argumentList>
 <argument>
 <name>NewIdentifier</name>
 <direction>in</direction>
 <relatedStateVariable>Identifier</relatedStateVariable>
 </argument>
 <argument>
 <name>NewSecret</name>
 <direction>in</direction>
 <relatedStateVariable>Secret</relatedStateVariable>
 </argument>
 <argument>
 <name>NewSecretType</name>
 <direction>in</direction>
 <relatedStateVariable>SecretType</relatedStateVariable>
 </argument>
 <argument>
 <name>NewAuthType</name>
 <direction>in</direction>
 <relatedStateVariable>AuthType</relatedStateVariable>
 </argument>

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 29

 <argument>
 <name>NewAuthState</name>
 <direction>in</direction>
 <relatedStateVariable>AuthState</relatedStateVariable>
 </argument>
 <argument>
 <name>NewCredentialState</name>
 <direction>in</direction>
 <relatedStateVariable>CredentialState</relatedStateVariable>
 </argument>
 <argument>
 <name>NewDescription</name>
 <direction>in</direction>
 <relatedStateVariable>Description</relatedStateVariable>
 </argument>
 <argument>
 <name>NewMACAddress</name>
 <direction>in</direction>
 <relatedStateVariable>MACAddress</relatedStateVariable>
 </argument>
 <argument>
 <name>NewCredentialDuration</name>
 <direction>in</direction>
 <relatedStateVariable>CredentialDuration</relatedStateVariable>
 </argument>
 <argument>
 <name>NewLinkedIdentifier</name>
 <direction>in</direction>
 <relatedStateVariable>LinkedIdentifier</relatedStateVariable>
 </argument>
 <argument>
 <name>NewNumberOfEntries</name>
 <direction>out</direction>
 <relatedStateVariable>NumberOfEntries</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>DeleteEntry</name>
 <argumentList>
 <argument>
 <name>NewIdentifier</name>
 <direction>in</direction>
 <relatedStateVariable>Identifier</relatedStateVariable>
 </argument>
 <argument>
 <name>NewNumberOfEntries</name>
 <direction>out</direction>
 <relatedStateVariable>NumberOfEntries</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetNumberOfEntries</name>
 <argumentList>
 <argument>
 <name>NewNumberOfEntries</name>
 <direction>out</direction>
 <relatedStateVariable>NumberOfEntries</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>FactoryDefaultReset</name>
 </action>
 <action>
 <name>ResetAuthentication</name>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="no">

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 30

 <name>NumberOfEntries</name>
 <dataType>ui2</dataType>
 <defaultValue>0</defaultValue>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>Identifier</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>Secret</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>SecretType</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>TextPassword</allowedValue>
 <allowedValue>X509Certificate</allowedValue>
 <allowedValue>PublicKey</allowedValue>
 <allowedValue>PublicKeyHash160</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>AuthType</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>SharedSecret</allowedValue>
 <allowedValue>ValidateCredentials</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>AuthState</name>
 <dataType>string</dataType>
 <defaultValue>Unconfigured</defaultValue>
 <allowedValueList>
 <allowedValue>Unconfigured</allowedValue>
 <allowedValue>Failed</allowedValue>
 <allowedValue>Succeeded</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>CredentialState</name>
 <dataType>string</dataType>
 <defaultValue>Unconfigured</defaultValue>
 <allowedValueList>
 <allowedValue>Unconfigured</allowedValue>
 <allowedValue>Pending</allowedValue>
 <allowedValue>Accepted</allowedValue>
 <allowedValue>Denied</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>Description</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>MACAddress</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>CredentialDuration</name>
 <dataType>ui4</dataType>
 <defaultValue>0</defaultValue>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>LastChange</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>LinkedIdentifier</name>
 <dataType>string</dataType>

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 31

 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>LastError</name>
 <dataType>string</dataType>
 </stateVariable>
 </serviceStateTable>
</scpd>

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

LinkAuthentication:1 Service Template Version 1.01 32

4. Test
No semantic tests have been defined for this service.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

	Overview and Scope
	Service Modeling Definitions
	ServiceType
	State Variables
	NumberOfEntries
	Identifier
	Secret
	SecretType
	AuthType
	AuthState
	CredentialState
	Description
	MACAddress
	CredentialDuration
	LinkedIdentifier
	LastChange
	LastError

	Eventing and Moderation
	Event Model

	Actions
	GetGenericEntry
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	GetSpecificEntry
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	AddEntry
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	UpdateEntry
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	DeleteEntry
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	GetNumberOfEntries
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	FactoryDefaultReset
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	ResetAuthentication
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	Common Error Codes

	Theory of Operation
	802.1x introduction
	High level intended operation
	Detailed level operation
	Record format
	Example using client certificate credentials
	Limitations on Pending Records

	XML Service Description
	Test

