
ConfigurationManagement:2  
Service Template Version 1.01 
For UPnP Version 1.0 
Status: Standardized DCP (SDCP) 
Date: March 4th, 2013 
 

This Standardized DCP has been adopted as a Standardized DCP by the Steering 
Committee of the UPnP Forum, pursuant to Section 2.1(c)(ii) of the UPnP Forum 
Membership Agreement. UPnP Forum Members have rights and licenses defined by 
Section 3 of the UPnP Forum Membership Agreement to use and reproduce the 
Standardized DCP in UPnP Compliant Devices. All such use is subject to all of the 
provisions of the UPnP Forum Membership Agreement.  

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY 
INTELLECTUAL PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS. 
THE STANDARDIZED DCPS ARE PROVIDED "AS IS" AND "WITH ALL 
FAULTS". THE UPNP FORUM MAKES NO WARRANTIES, EXPRESS, IMPLIED, 
STATUTORY, OR OTHERWISE WITH RESPECT TO THE STANDARDIZED DCPS, 
INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF 
MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A 
PARTICULAR PURPOSE, OF REASONABLE CARE OR WORKMANLIKE 
EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE. 

© 2012 UPnP Forum. All Rights Reserved. 

Authors Company 

André Bottaro France Telecom Group 

Enrico Grosso Telecom Italia 

Levent Gurgen France Telecom Group 

William Lupton 2Wire / Pace 

Davide Moreo (Editor) Telecom Italia 

François-Gaël Ottogalli France Telecom Group 

Xavier Roubaud France Telecom Group 

Kiran Vedula Samsung Electronics 
* Note: The UPnP Forum in no way guarantees the accuracy or completeness of this author list and in no 
way implies any rights for or support from those members listed. This list is not the specifications’ 
contributor list that is kept on the UPnP Forum’s website. 



ConfigurationManagement:2 Service Template Version 1.01 2 

Copyright UPnP Forum © 2012.  All rights reserved. 

Contents 

1.  OVERVIEW AND SCOPE .................................................................................................................. 6 

1.1.  INTRODUCTION ................................................................................................................................. 6 
1.2.  REFERENCES..................................................................................................................................... 7 
1.3.  GLOSSARY ........................................................................................................................................ 8 
1.4.  NOTATION ........................................................................................................................................ 8 

1.4.1.  Data Types ............................................................................................................................... 9 
1.4.2.  Strings Embedded in Other Strings ......................................................................................... 9 

1.5.  DERIVED DATA TYPES ................................................................................................................... 10 
1.5.1.  Comma Separated Value (CSV) Lists .................................................................................... 10 
1.5.2.  Embedded XML Documents .................................................................................................. 12 

1.6.  MANAGEMENT OF XML NAMESPACES IN STANDARDIZED DCPS ................................................... 12 
1.6.1.  Namespace Names, Namespace Versioning and Schema Versioning ................................... 14 
1.6.2.  Namespace Usage Examples ................................................................................................. 16 

1.7.  VENDOR DEFINED EXTENSIONS ..................................................................................................... 17 

2.  SERVICE MODELING DEFINITIONS .......................................................................................... 18 

2.1.  SERVICETYPE ................................................................................................................................. 18 
2.2.  KEY CONCEPTS .............................................................................................................................. 18 

2.2.1.  Data Model Management Basics ........................................................................................... 18 
2.2.2.  Security .................................................................................................................................. 19 
2.2.3.  Alarming ................................................................................................................................ 19 

2.3.  SYNTAX FOR PARAMETER NAMES ................................................................................................... 20 
2.3.2.  Attributes ............................................................................................................................... 24 
2.3.3.  Instance Nodes as Primary Keys and Unique Keys Extension .............................................. 34 
2.3.4.  Time stamps ........................................................................................................................... 35 

2.4.  SECURITY FEATURE........................................................................................................................ 35 
2.4.1.  ACLs ...................................................................................................................................... 35 
2.4.2.  Hierarchy of ACLs ................................................................................................................. 36 
2.4.3.  ACLs for Instance and InstanceAlias Nodes ......................................................................... 37 
2.4.4.  Dynamic creation of ACLs for Instance Nodes ..................................................................... 39 
2.4.5.  Requirements for ACLs .......................................................................................................... 40 
2.4.6.  Roles for the examples ........................................................................................................... 42 
2.4.7.  Representations of ACL ......................................................................................................... 43 
2.4.8.  Device Requirements ............................................................................................................. 47 

2.5.  STATE VARIABLES ......................................................................................................................... 48 
2.5.1.  ConfigurationUpdate ............................................................................................................. 50 
2.5.2.  CurrentConfigurationVersion ............................................................................................... 51 
2.5.3.  SupportedDataModelsUpdate ............................................................................................... 51 
2.5.4.  SupportedParametersUpdate ................................................................................................ 52 
2.5.5.  AttributeValuesUpdate .......................................................................................................... 52 
2.5.6.  InconsistentStatus .................................................................................................................. 53 
2.5.7.  AlarmsEnabled ...................................................................................................................... 54 
2.5.8.  A_ARG_TYPE_StructurePath ............................................................................................... 55 
2.5.9.  A_ARG_TYPE_StructurePathList ......................................................................................... 55 
2.5.10.  A_ARG_TYPE_PartialPath ................................................................................................... 56 
2.5.11.  A_ARG_TYPE_ParameterValueList ..................................................................................... 56 
2.5.12.  A_ARG_TYPE_NodeAttributeValueList ................................................................................ 57 
2.5.13.  A_ARG_TYPE_ParameterInitialValueList ............................................................................ 58 
2.5.14.  A_ARG_TYPE_Filter............................................................................................................. 59 
2.5.15.  A_ARG_TYPE_SupportedDataModels ................................................................................. 60 
2.5.16.  A_ARG_TYPE_SearchDepth ................................................................................................. 63 
2.5.17.  A_ARG_TYPE_ChangeStatus ............................................................................................... 63 



ConfigurationManagement:2 Service Template Version 1.01 3 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.5.18.  A_ARG_TYPE_InstancePathList ........................................................................................... 63 
2.5.19.  A_ARG_TYPE_ContentPathList ........................................................................................... 64 
2.5.20.  A_ARG_TYPE_MultiInstancePath ........................................................................................ 65 
2.5.21.  A_ARG_TYPE_InstancePath................................................................................................. 65 
2.5.22.  A_ARG_TYPE_NodeAttributePathList .................................................................................. 66 
2.5.23.  A_ARG_TYPE_ACLDataPathList ......................................................................................... 67 
2.5.24.  A_ARG_TYPE_ACL .............................................................................................................. 67 
2.5.25.  Relationships Between State Variables ................................................................................. 69 

2.6.  EVENTING AND MODERATION ........................................................................................................ 72 
2.6.1.  Event Model ........................................................................................................................... 72 
2.6.2.  Eventing and Security ............................................................................................................ 72 

2.7.  ACTIONS ......................................................................................................................................... 72 
2.7.1.  GetSupportedDataModels() ................................................................................................... 75 
2.7.2.  GetSupportedParameters() .................................................................................................... 76 
2.7.3.  GetInstances() ........................................................................................................................ 79 
2.7.4.  GetValues() ............................................................................................................................ 82 
2.7.5.  GetSelectedValues() ............................................................................................................... 85 
2.7.6.  SetValues() ............................................................................................................................. 87 
2.7.7.  CreateInstance() .................................................................................................................... 90 
2.7.8.  DeleteInstance() ..................................................................................................................... 93 
2.7.9.  GetAttributes() ....................................................................................................................... 96 
2.7.10.  SetAttributes() ........................................................................................................................ 99 
2.7.11.  GetInconsistentStatus() ........................................................................................................ 101 
2.7.12.  GetConfigurationUpdate() .................................................................................................. 102 
2.7.13.  GetCurrentConfigurationVersion() ..................................................................................... 103 
2.7.14.  GetSupportedDataModelsUpdate() ..................................................................................... 103 
2.7.15.  GetSupportedParametersUpdate() ...................................................................................... 104 
2.7.16.  GetAttributeValuesUpdate() ................................................................................................ 105 
2.7.17.  GetAlarmsEnabled() ............................................................................................................ 106 
2.7.18.  SetAlarmsEnabled() ............................................................................................................. 106 
2.7.19.  GetACLData() ..................................................................................................................... 107 
2.7.20.  Non-Standard Actions Implemented by a UPnP Vendor ..................................................... 111 
2.7.21.  Common Error Codes .......................................................................................................... 111 

2.8.  THEORY OF OPERATION ............................................................................................................... 113 
2.8.1.  Discovering of the Data Model ........................................................................................... 113 
2.8.2.  Management ........................................................................................................................ 114 
2.8.3.  BMS Interaction ................................................................................................................... 115 
2.8.4.  Eventing from Changes in Parameter Values ..................................................................... 116 
2.8.5.  Version Control ................................................................................................................... 116 
2.8.6.  MultiInstance Nodes Management ...................................................................................... 117 
2.8.7.  SMS Interaction ................................................................................................................... 117 
2.8.8.  Consistency .......................................................................................................................... 118 
2.8.9.  Managing the Phone Data Model ....................................................................................... 118 
2.8.10.  Alarming .............................................................................................................................. 121 

3.  XML SERVICE DESCRIPTION .................................................................................................... 122 

APPENDIX A: XML SCHEMA (NORMATIVE) ................................................................................. 128 

APPENDIX B: DATA MODEL REQUIREMENTS (NORMATIVE) ................................................ 134 

B.1.  RESERVED NAMESPACES .............................................................................................................. 134 
B.2.  NUMBEROFENTRIES PARAMETERS ............................................................................................... 135 
B.3.  COMMON OBJECTS ....................................................................................................................... 136 

APPENDIX C: MAPPING RULES FOR OTHER ORGANIZATIONS (INFORMATIVE) ............ 142 



ConfigurationManagement:2 Service Template Version 1.01 4 

Copyright UPnP Forum © 2012.  All rights reserved. 

C.1.  BBF (TR-069) MAPPING RULES .................................................................................................. 142 
C.2.  OMA (OMA-DM) MAPPING RULES ............................................................................................ 143 
C.3.  MIB (SNMP) MAPPING RULES .................................................................................................... 144 

APPENDIX D: VERSION HISTORY (INFORMATIVE) .................................................................... 145 

APPENDIX E: EXAMPLES FOR ACL (INFORMATIVE) ................................................................ 146 

E.1.  ACL MODULE .............................................................................................................................. 146 
E.2.  NODE MODULE............................................................................................................................. 147 
E.3.  DATA MODEL MODULE ................................................................................................................ 152 
E.4.  TEST MODULE .............................................................................................................................. 153 
E.5.  TEST EXAMPLES ........................................................................................................................... 154 

 

List of Tables 
Table 1-1: CSV Examples ............................................................................................................................. 11 

Table 1-2: Namespace Definitions ................................................................................................................ 13 

Table 1-3: Schema-related Information ......................................................................................................... 14 

Table 2-4: Nodes attributes ............................................................................................................................ 25 

Table 2-5: Requirements for attributes .......................................................................................................... 26 

Table 2-6:Type attribute values description .................................................................................................. 27 

Table 2-7: Access Attribute Semantics .......................................................................................................... 29 

Table 2-8: EventOnChange Attribute Semantics .......................................................................................... 30 

Table 2-9: Version Attribute Semantics ........................................................................................................ 31 

Table 2-10: AlarmOnChange Attribute Semantics ....................................................................................... 33 

Table 2-11: Relationship between permissions and Restrictable actions ...................................................... 40 

Table 2-12: Requirements for permissions .................................................................................................... 41 

Table 2-13: State Variables ........................................................................................................................... 48 

Table 2-14: allowedValueList for InconsistentStatus ................................................................................... 53 

Table 2-15: allowedValueList for AlarmsEnabled ........................................................................................ 54 

Table 2-16: allowedValueList for A_ARG_TYPE_ChangeStatus ................................................................. 63 

Table 2-17: Event Moderation ...................................................................................................................... 72 

Table 2-18: Actions ....................................................................................................................................... 73 

Table 2-19: Arguments for GetSupportedDataModels() ............................................................................... 75 

Table 2-20: Error Codes for GetSupportedDataModels () ............................................................................ 76 

Table 2-21: Arguments for GetSupportedParameters() ................................................................................ 77 

Table 2-22: Error Codes for GetSupportedParameters() .............................................................................. 79 



ConfigurationManagement:2 Service Template Version 1.01 5 

Copyright UPnP Forum © 2012.  All rights reserved. 

Table 2-23: Arguments for GetInstances() .................................................................................................... 80 

Table 2-24: Error Codes for GetInstances() .................................................................................................. 82 

Table 2-25: Arguments for GetValues() ........................................................................................................ 83 

Table 2-26: Error Codes for GetValues ......................................................................................................... 84 

Table 2-27: Arguments for GetSelectedValues() ........................................................................................... 85 

Table 2-28: Error Codes for GetSelectedValues() ......................................................................................... 87 

Table 2-29: Arguments for SetValues() ......................................................................................................... 88 

Table 2-30: Error Codes for SetValues() ....................................................................................................... 89 

Table 2-31: Arguments for CreateInstance() ................................................................................................ 91 

Table 2-32: Error Codes for CreateInstance() .............................................................................................. 92 

Table 2-33: Arguments for DeleteInstance() ................................................................................................. 94 

Table 2-34: Error Codes for DeleteInstance() ............................................................................................... 95 

Table 2-35: Arguments for GetAttributes() ................................................................................................... 97 

Table 2-36: Error Codes for GetAttributes() ................................................................................................. 98 

Table 2-37: Arguments for SetAttributes() .................................................................................................. 100 

Table 2-38: Error Codes for SetAttributes() ................................................................................................ 101 

Table 2-39: Arguments for GetInconsistentStatus() .................................................................................... 101 

Table 2-40: Error Codes for GetInconsistentStatus() .................................................................................. 102 

Table 2-41: Arguments for GetConfigurationUpdate() .............................................................................. 102 

Table 2-42: Error Codes for GetConfigurationUpdate() ............................................................................. 103 

Table 2-43: Arguments for GetCurrentConfigurationVersion() ................................................................. 103 

Table 2-44: Error Codes for GetCurrentConfigurationVersion() ............................................................... 103 

Table 2-45: Arguments for GetSupportedDataModelsUpdate() ................................................................. 104 

Table 2-46: Error Codes for GetSupportedDataModelsUpdate() ............................................................... 104 

Table 2-47: Arguments for GetSupportedParametersUpdate() .................................................................. 104 

Table 2-48: Error Codes for GetSupportedParametersUpdate() ................................................................ 105 

Table 2-49: Arguments for GetAttributeValuesUpdate() ............................................................................ 105 

Table 2-50: Error Codes for GetAttributeValuesUpdate() .......................................................................... 105 

Table 2-51: Arguments for GetAlarmsEnabled() ........................................................................................ 106 

Table 2-52: Error Codes for GetAlarmsEnabled() ...................................................................................... 106 

Table 2-53: Arguments for SetAlarmsEnabled() ......................................................................................... 107 



ConfigurationManagement:2 Service Template Version 1.01 6 

Copyright UPnP Forum © 2012.  All rights reserved. 

Table 2-54: Error Codes for SetAlarmsEnabled () ...................................................................................... 107 

Table 2-55: Arguments for GetACLData() ................................................................................................. 108 

Table 2-56: Error Codes for GetACLData() ................................................................................................ 110 

Table 2-57: Common Error Codes .............................................................................................................. 111 

Table 2-58: Error Codes Usage ................................................................................................................... 112 

Table 0-59: Reserved PartialPaths and rules for prefixes ............................................................................ 135 

 

1. Overview and Scope 
This service definition is compliant with the UPnP Device Architecture version 1.0. It defines a service 
type referred to herein as ConfigurationManagement:2 service or, where the version number is not 
significant, ConfigurationManagement service. 

1.1. Introduction 
The ConfigurationManagement Service (CMS) defines a generic UPnP service, hosted by an UPnP Parent 
Device, wich allows a control point to manage the configuration in terms of Parameters supported by the 
device and their actual values. 

The term Parent Device is frequently used thorough this document. It refers to UPnP device/service sub-
tree whose root is the UPnP device that contains the ConfigurationManagement service instance.  UPnP 
actions or other operations on a Parent Device SHOULD apply to all levels of this sub-tree, but SHOULD 
NOT apply to an embedded device that itself contains a ConfigurationManagement service instance. 

Parameters may describe configuration features of the Parent Device or may be related to its status 
information. CMS defines the concept of Data Model as the set of Parameters provided by a Parent 
Device for being managed by CMS actions. 

CMS can be used as an UPnP service in any UPnP Device, whether the UPnP DM ManageableDevice or a 
UPnP Device defined by another UPnP Working Committee. Refer to [DEVICE] for details of the possible 
deployment scenarios. 

This document specifies two related concepts: 

• Generic actions for managing Parent Device configuration.  
• A basic set of configuration parameters that a Parent Device can support. In case the Parent Device is 

a ManageableDevice (see also [DEVICE]), then such configuration parameters are mandatory and 
referred as Common Objects; additional or alternative configuration parameters can be defined by 
other UPnP DCPs and optionally supported, by other organizations’data model definitions or by 
vendor specific extensions. 

This service-type enables the following functions: 

• Reading the actual configuration and status of a Parent Device using CMS (i.e. “reading” parameters), 
in terms of available data model parameters with their values. 

• Changing the actual configuration of a Parent Device using CMS (i.e. “writing” parameters), by 
setting new values of parameters and creating or deleting object instances (i.e. rows in parameter 
tables). 



ConfigurationManagement:2 Service Template Version 1.01 7 

Copyright UPnP Forum © 2012.  All rights reserved. 

• A warning mechanism to allow control points to be informed as some relevant changes occur in the 
data model parameter values (e.g.: a critical fault, a warning, a significant event, ...), in order to take 
immediate actions if needed. This mechanism uses the eventing by providing extra information within 
the event message (parameters and values). 

These CMS operations can be protected by an OPTIONAL Security Feature based on 
DeviceProtection:1 [DPS].  Actions that do not return sensitive information, change the device 
configuration, or affect normal device operation can always be invoked by all control points.  If the 
Security Feature is supported, other actions can only be invoked if the control point is appropriately 
authorized. 

1.2. References 
This section lists the normative references used in the UPnP DM specifications and includes the tag inside 
square brackets that is used for each such reference: 

[UDA] UPnP Device Architecture, version1.0, UPnP Forum, July 20, 2006. 
Available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.0.pdf 

[DEVICE] UPnP ManageableDevice:2 Device Document, UPnP Forum, February 16, 
2012, http://www.upnp.org/specs/dm/UPnP-dm-ManageableDevice-v2-Device.pdf 

[BMS] UPnP BasicManagement:2 Service Document, UPnP Forum, February 16, 2012, 
http://www.upnp.org/specs/dm/UPnP-dm-BasicManagement-v2-Service.pdf 

[SMS] UPnP SoftwareManagement:2 Service Document, UPnP Forum, February 16, 
2012,  http://www.upnp.org/specs/dm/UPnP-dm-SoftwareManagement-v2-
Service.pdf 

[EBNF] W3C Extensible Markup Language (XML) 1.0 (Fifth Edition) -Notation 
section, http://www.w3.org/TR/REC-xml#sec-notation 

[RFC 2119] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, March 
1997, http://tools.ietf.org/html/rfc2119 

[RFC 3513] RFC 3513, Internet Protocol Version 6 (IPv6) Addressing Architecture, IETF, 
April 2003, http://tools.ietf.org/html/rfc3513 

[SOAP] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/2000/NOTE-
SOAP-20000508 

[XML] Extensible Markup Language (XML) 1.0 (Fourth 
Edition), http://www.w3.org/TR/REC-xml 

[XML-NCName] W3C XML Schema Part 2: Datatypes Second 
Edition, http://www.w3.org/TR/xmlschema-2/#NCName. NCName syntax defined 
in: 
http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName 

[IANA-MIME] MIME Media Types registered at IANA: http://www.iana.org/assignments/media-
types/ 

[URI] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, IETF, January 
2005, http://tools.ietf.org/html/rfc3986  

[XML-NS] The “xml:” Namespace, W3C, April 
2006, http://www.w3.org/XML/1998/namespace  

[XML-NMSP] Namespaces in XML, W3C, August 2006, http://www.w3.org/TR/REC-xml-names 

http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf�
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf�
http://www.upnp.org/specs/dm/UPnP-dm-ManageableDevice-v2-Device.pdf�
http://www.w3.org/TR/REC-xml#sec-notation�
http://www.w3.org/TR/2000/NOTE-SOAP-20000508�
http://www.w3.org/TR/2000/NOTE-SOAP-20000508�
http://www.w3.org/TR/REC-xml�
http://www.w3.org/TR/xmlschema-2/#NCName�
http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName�
http://www.iana.org/assignments/media-types/�
http://www.iana.org/assignments/media-types/�
http://tools.ietf.org/html/rfc3986�
http://www.w3.org/XML/1998/namespace�
http://www.w3.org/TR/REC-xml-names�


ConfigurationManagement:2 Service Template Version 1.01 8 

Copyright UPnP Forum © 2012.  All rights reserved. 

[XML-SCHEMA-1] XML Schema Part 1: Structures Second Edition, W3C, October 
2004, http://www.w3.org/TR/xmlschema-1  

[XML-SCHEMA-2] XML Schema Part 2: Datatypes Second Edition, W3C, October 
2004, http://www.w3.org/TR/xmlschema-2  

[DPS] UPnP DeviceProtection:1 Service Document, UPnP Forum, February 24, 
2011, http://upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf. 

[PHONE] UPnP PhoneManagement:1 Service Document, UPnP Forum, March 22, 
2011, http://upnp.org/specs/phone/UPnP-phone-PhoneManagement-v1-
Service.pdf 

1.3. Glossary 
ACL Access Control List  

BMS BasicManagement Service 

CMS ConfigurationManagement Service  

SMS SoftwareManagement Service 

CSV Comma Separated Value 

BNF  Backus-Naur Form 

DM Device Management 

MD ManageableDevice 

DU Deployment Unit 

XSD XML Schema Definition 

 

1.4. Notation 
In this document, features are described as Required, Recommended, or Optional as follows: 

the keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” 
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this specification are to be 
interpreted as described in [RFC 2119]. 

In addition, the following keywords are used in this specification: 

PROHIBITED – The definition or behavior is an absolute prohibition of this specification.  Opposite of 
REQUIRED.  

CONDITIONALLY REQUIRED – The definition or behavior depends on a condition. If the specified 
condition is met, then the definition or behavior is REQUIRED, otherwise it is PROHIBITED. 

CONDITIONALLY OPTIONAL – The definition or behavior depends on a condition. If the specified 
condition is met, then the definition or behavior is OPTIONAL, otherwise it is PROHIBITED. 

http://www.w3.org/TR/xmlschema-1�
http://www.w3.org/TR/xmlschema-2�
http://upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf�
http://upnp.org/specs/phone/UPnP-phone-PhoneManagement-v1-Service.pdf�
http://upnp.org/specs/phone/UPnP-phone-PhoneManagement-v1-Service.pdf�


ConfigurationManagement:2 Service Template Version 1.01 9 

Copyright UPnP Forum © 2012.  All rights reserved. 

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and 
application features and behavior that affect the interoperability and security of implementations. When 
these words are not capitalized, they are meant in their natural-language sense. 

• Strings that are to be taken literally are enclosed in “double quotes”. 

• Words that are emphasized are printed in italic. 

• Data Model names and values, and literal XML, are printed using the data character style. 

• Keywords that are defined by the UPnP DM Working Committee are printed using the forum 
character style. 

• Keywords that are defined by the UPnP Device Architecture are printed using the arch character 
style. 

• A double colon delimiter, “::”, signifies a hierarchical parent-child (parent::child) relationship 
between the two objects separated by the double colon. This delimiter is used in multiple contexts, 
for example: Service::Action(), Action()::Argument, parentProperty::childProperty. 

1.4.1. Data Types 
This specification uses data type definitions from two different sources. The UPnP Device Architecture 
defined data types are used to define state variable and action argument data types [UDA].  The XML 
Schema namespace is used to define XML-valued action arguments [XML-SCHEMA-2] (including the 
Data Model Parameter values, see 2.3.2.1).  

For UPnP Device Architecture defined Boolean data types, it is strongly RECOMMENDED to use the 
value “0” for false, and the value “1” for true. However, when used as input arguments, the values “false”, 
“no”, “true”, “yes” may also be encountered and MUST be accepted. Nevertheless, it is strongly 
RECOMMENDED that all state variables and output arguments be represented as “0” and “1”.  

For XML Schema defined Boolean data types, it is strongly RECOMMENDED to use the value “0” for 
false, and the value “1” for true. However, when used within input arguments, the values “false”, “true” 
may also be encountered and MUST be accepted. Nevertheless, it is strongly RECOMMENDED that all 
XML Boolean values be represented as “0” and “1”. 

XML elements that are of type xsd:anySimpleType (for example Data Model Parameter values) 
MUST include an xsi:type attribute that indicates the actual data type of the element value.  This is a SOAP 
requirement. 

1.4.2. Strings Embedded in Other Strings 
Some string variables, arguments and other XML elements and attributes (including Data Model 
Parameter values) described in this document contains substrings that MUST be independently identifiable 
and extractable for other processing.  This requires the definition of appropriate substring delimiters and an 
escaping mechanism so that these delimiters can also appear as ordinary characters in the string and/or its 
independent substrings. 

This document uses such embedded strings in Comma Separated Value (CSV) lists (see section 1.5.1). 
Escaping conventions use the backslash character, “\” (character code U+005C), as follows: 

a) Backslash (“\”) is represented as “\\”. 

b) Comma (“,”) is represented as “\,” in individual substring entries. 

c) Double quote (“””) is not escaped. 



ConfigurationManagement:2 Service Template Version 1.01 10 

Copyright UPnP Forum © 2012.  All rights reserved. 

This document also uses such embedded strings to represent XML documents (see section 1.5.2).  
Escaping conventions use XML entity references as specified in [XML] Section 2.4.  For example: 

a) Ampersand (“&”) is represented as “&amp;” or via a numeric character reference. 

b) Left angle bracket (“<”) is represented as “&lt;” or via a numeric character reference. 

c) Right angle bracket (“>”) usually doesn’t have to be escaped, but often is, in which case it is 
represented as “&gt;” or via a numeric character reference. 

1.5. Derived Data Types 
This section defines a derived data type that is represented as a string data type with special syntax.  This 
specification uses string data type definitions that originate from two different sources.  The UPnP Device 
Architecture defined string data type is used to define state variable and action argument string data types.  
The XML Schema namespace is used to define xsd:string data types.  The following definition applies 
to both string data types. 

1.5.1. Comma Separated Value (CSV) Lists 
The UPnP DM services use state variables, action arguments and other XML elements and attributes that 
represent lists – or one-dimensional arrays – of values. [UDA] does not provide for either an array type or 
a list type, so a list type is defined here.  Lists MAY either be homogeneous (all values are the same type) 
or heterogeneous (values of different types are allowed).  Lists MAY also consist of repeated occurrences 
of homogeneous or heterogeneous subsequences, all of which have the same syntax and semantics (same 
number of values, same value types and in the same order). 

• The data type of a homogeneous list is string or xsd:string and denoted by CSV (x), where x 
is the type of the individual values. 

• The data type of a heterogeneous list is also string or xsd:string and denoted by CSV (w, x [, 
y, z]), where w, x, y and z are the types of the individual values, and the square brackets indicate 
that y and z (and the preceding comma) are optional.  If the number of values in the heterogeneous 
list is too large to show each type individually, that variable type is represented as CSV 
(heterogeneous), and the variable description includes additional information as to the expected 
sequence of values appearing in the list and their corresponding types. The data type of a repeated 
subsequence list is string or xsd:string and denoted by CSV ({w, x, y, z}), where w, x, y and 
z are the types of the individual values in the subsequence and the subsequence MAY be repeated 
zero or more times (in this case none of the values are optional). 

The individual value types are specified as [UDA] data types or A_ARG_TYPE data types for string lists, 
and as [XML-SCHEMA-2] data types for xsd:string lists. 

• A list is represented as a string type (for state variables and action arguments) or xsd:string 
type (within other XML elements and attributes). 

• Commas separate values within a list. 

• Integer values are represented in CSVs with the same syntax as the integer data type specified 
in [UDA] (that is: optional leading sign, optional leading zeroes, numeric ASCII). 

• Boolean values are represented in state variable and action argument CSVs as either “0” for false 
or “1” for true. These values are a subset of the defined Boolean data type values specified 
in [UDA]: 0, false, no, 1, true, yes. 



ConfigurationManagement:2 Service Template Version 1.01 11 

Copyright UPnP Forum © 2012.  All rights reserved. 

• Boolean values are represented in other XML element CSVs as either “0” for false or “1” for true. 
These values are a subset of the defined Boolean data type values specified in [XML-SCHEMA-
2]: 0, false, 1, true. 

• Escaping conventions for the comma and backslash characters are defined in section 1.4.2. 

• The number of values in a list is the number of unescaped commas, plus one.  The one exception 
to this rule is that an empty string represents an empty list.  This means that there is no way to 
represent a list consisting of a single empty string value. 

• White space before, after, or interior to any numeric data type is not allowed. 

• White space before, after, or interior to any other data type is part of the value. 

Table 1-1: CSV Examples 

Type refinement 
of string 

Value Comments 

CSV (string) “first,second” List of 2 strings used as state variable or 
action argument value. 

CSV 
(xsd:string) 

“first,second” List of 2 strings used within an XML 
element 

CSV (xsd:token) “first, second ” List of 2 strings used within an XML 
element.  Each element is of type 
xsd:token so, even though the second 
value is “ second ” and has leading and 
trailing spaces, the value seen by the 
application will be “second” because 
xsd:token collapses whitespace. 

CSV (string, date-
Time [, string]) 

“Warning,2009-07-07T13:22:41, 
third\,value” 

List of string, dateTime and (optional) string 
used as state variable or action argument 
value.  Note the leading space and escaped 
comma in the third value, which is 
“ third,value”. 

CSV (string, date-
Time [, string]) 

“Warning,2009-07-07T13:22:41,” As above but third value is empty. 

CSV (string, date-
Time [, string]) 

“Warning,2009-07-07T13:22:41” As above but third value is omitted. 

CSV (A_ARG_-
TYPE_Host) 

“grumpy,sleepy” List of data items used as action argument 
value, each of which obeys the rules 
governing A_ARG_TYPE_Host.  Any 
comma or backslash characters within a data 
item would have been escaped. 

CSV (i4) “1, 2” Illegal CSV. White space is not allowed as 
part of an integer value. 



ConfigurationManagement:2 Service Template Version 1.01 12 

Copyright UPnP Forum © 2012.  All rights reserved. 

Type refinement 
of string 

Value Comments 

CSV (string) “a,,c,” List of 4 strings “a”, “”, “c” and “”. 

CSV (string) “” Empty list.  It is not possible to create a list 
containing a single empty string. 

 

1.5.2. Embedded XML Documents 
An XML document is a string that represents a valid XML 1.0 document according to a specific schema.  
Every occurrence of the phrase “XML Document” is italicized and preceded by the document’s root 
element name (also italicized), as listed in column 3, “Valid Root Element(s)” of Table 1-3, “Schema-
related Information”.  For example, the phrase SupportedDataModels XML Document refers to a valid 
XML 1.0 document according to the CMS schema defined in Appendix A: XML schema (Normative).  
Such a document comprises a single <SupportedDataModels …> root element, optionally preceded 
by the XML declaration <?xml version="1.0" …?>.   

This string will therefore be of one of the following two forms: 

“<SupportedDataModels …>…</SupportedDataModels>” 

or  

“<?xml …?><SupportedDataModels …>…</SupportedDataModels>” 

Escaping conventions for the ampersand, left angle bracket and right angle bracket characters are defined 
in section 1.4.2. 

For consistency with [UDA] and for future extensibility, devices and control points MUST ignore the 
following in embedded XML documents: 

• Any unknown XML elements and their sub elements or content, 

• Any unknown attributes and their values, 

• Any XML comments that they do not understand, and 

• Any XML processing instructions that they do not understand.  

1.6. Management of XML Namespaces in Standardized DCPs 
UPnP specifications make extensive use of XML namespaces. This allows separate DCPs, and even 
separate components of an individual DCP, to be designed independently and still avoid name collisions 
when they share XML documents. Every name in an XML document belongs to exactly one namespace. In 
documents, XML names appear in one of two forms: qualified or unqualified. An unqualified name (or no-
colon-name) contains no colon (“:”) characters. An unqualified name belongs to the document’s default 
namespace. A qualified name is two no-colon-names separated by one colon character. The no-colon-name 
before the colon is the qualified name’s namespace prefix, the no-colon-name after the colon is the 
qualified name’s “local” name (meaning local to the namespace identified by the namespace prefix). 
Similarly, the unqualified name is a local name in the default namespace. 

The formal name of a namespace is a URI. The namespace prefix used in an XML document is not the 
name of the namespace. The namespace name is globally unique. It has a single definition that is accessible 



ConfigurationManagement:2 Service Template Version 1.01 13 

Copyright UPnP Forum © 2012.  All rights reserved. 

to anyone who uses the namespace. It has the same meaning anywhere that it is used, both inside and 
outside XML documents. The namespace prefix, however, in formal XML usage, is defined only in an 
XML document. It must be locally unique to the document. Any valid XML no-colon-name may be used. 
And, in formal XML usage, no two XML documents are ever required to use the same namespace prefix to 
refer to the same namespace. The creation and use of the namespace prefix was standardized by the W3C 
XML Committee in [XML-NMSP] strictly as a convenient local shorthand replacement for the full URI 
name of a namespace in individual documents. 

All of the namespaces used in this specification are listed in the Tables “Namespace Definitions” and 
“Schema-related Information”. For each such namespace, Table 1-2, “Namespace Definitions” gives a 
brief description of it, its name (a URI) and its defined “standard” prefix name. Some namespaces included 
in these tables are not directly used or referenced in this document. They are included for completeness to 
accommodate those situations where this specification is used in conjunction with other UPnP 
specifications to construct a complete system of devices and services. The individual specifications in such 
collections all use the same standard prefix. The standard prefixes are also used in Table 1-3, “Schema-
related Information”, to cross-reference additional namespace information. This second table includes each 
namespace’s valid XML document root element(s) (if any), its schema file name, versioning information 
(to be discussed in more detail below), and a link to the entry in Section 1.2 for its associated schema.  

The normative definitions for these namespaces are the documents referenced in Table 1-3. The schemas 
are designed to support these definitions for both human understanding and as test tools. However, 
limitations of the XML Schema language itself make it difficult for the UPnP-defined schemas to 
accurately represent all details of the namespace definitions. As a result, the schemas will validate many 
XML documents that are not valid according to the specifications.  

 

Table 1-2: Namespace Definitions 

Standard 
Name-
space 
Prefix 

Namespace Name Namespace 
Description 

Normative 
Definition 
Document 
Reference 

DM Working Committee defined namespaces 

bms urn:schemas-upnp-org:dm:bms BMS data structures [BMS] 

cms urn:schemas-upnp-org:dm:cms CMS data structures Appendix A: XML 
schema (Normative) 

sms urn:schemas-upnp-org:dm:sms SMS data structures [SMS] 

bmsnsl urn:schemas-upnp-org:dm:bms:nsl BMS NSLookupResult [BMS] 

Externally defined namespaces 

xsd http://www.w3.org/2001/XMLSchema  XML Schema 
Language 1.0 

[XML-SCHEMA-1] 

[XML-SCHEMA-2] 

xsi http://www.w3.org/2001/XMLSchema- 

instance 

XML Schema Instance 
Document schema 

Sections 2.6 & 3.2.7 
of:  
[XML-SCHEMA-1] 

xml http://www.w3.org/XML/1998/namespace The “xml:” Namespace [XML-NS] 

 



ConfigurationManagement:2 Service Template Version 1.01 14 

Copyright UPnP Forum © 2012.  All rights reserved. 

Table 1-3: Schema-related Information 

Standard 
Name-
space 
Prefix 

Relative URI and File 
Name1 

• Form 1, 2, 3 

Valid Root Element(s) Schema 
Reference 

DM Working Committee defined namespaces 

bms bms-vn-yyyymmdd.xsd 

bms-vn.xsd 

bms.xsd 

<NSLookupResult> 

<BandwidthTestInfo> 

<BandwidthTest> 

<BandwidthTestResult> 

<ACL> 

[BMS] 

cms cms-vn-yyyymmdd.xsd 

cms-vn.xsd 

cms.xsd 

<ContentPathList> 

<InstancePathList> 

<NodeAttributeValueList> 

<NodeAttrbutePathList> 

<ParameterInitialValueList> 

<ParameterValueList> 

<StructurePathList> 

<SupportedDataModels> 

<ACLDataPathList> 

<ACL> 

Appendix A: XML 
schema 
(Normative) 

sms sms-vn-yyyymmdd.xsd 

sms-vn.xsd 

sms.xsd 

<ACL> [SMS] 

bmsnsl bmsnsl-vn-yyyymmdd.xsd 

bmsnsl-vn.xsd 

bmsnsl.xsd 

<NSLookupResult> [BMS] 

 

1 Absolute URIs are generated by prefixing the relative URIs with “http://www.upnp.org/schemas/dm/”. 

1.6.1. Namespace Names, Namespace Versioning and Schema Versioning 
The UPnP DM service specifications define several data structures (such as state variables and action 
arguments) whose format is an XML instance document that must comply with one or more specific XML 
namespaces. Each namespace is uniquely identified by an assigned namespace name. The namespaces that 
are defined by the DM Working Committee MUST be named by a URN. See Table 1-2 “Namespace 
Definitions” for a current list of namespace names.  Additionally, each namespace corresponds to an XML 
schema document that provides a machine-readable representation of the associated namespace to enable 
automated validation of the XML (state variable or action Parameter) instance documents. 

Within an XML schema and XML instance document, the name of each corresponding namespace appears 
as the value of an xmlns attribute within the root element. Each xmlns attribute also includes a namespace 
prefix that is associated with that namespace in order to disambiguate (a.k.a. qualify) element and attribute 



ConfigurationManagement:2 Service Template Version 1.01 15 

Copyright UPnP Forum © 2012.  All rights reserved. 

names that are defined within different namespaces. The schemas that correspond to the listed namespaces 
are identified by URI values that are listed in the schemaLocation attribute also within the root element. 
(See Section 1.6.2)  

In order to enable both forward and backward compatibility, namespace names are permanently assigned 
and MUST NOT change even when a new version of a specification changes the definition of a 
namespace. However, all changes to a namespace definition MUST be backward-compatible.  In other 
words, the updated definition of a namespace MUST NOT invalidate any XML documents that comply 
with an earlier definition of that same namespace. This means, for example, that a namespace MUST NOT 
be changed so that a new element or attribute is required. Although namespace names MUST NOT change, 
namespaces still have version numbers that reflect a specific set of definitional changes. Each time the 
definition of a namespace is changed, the namespace’s version number is incremented by one.  

Each time a new namespace version is created, a new XML schema document (.xsd) is created and 
published so that the new namespace definition is represented in a machine-readable form. Since an XML 
schema document is just a representation of a namespace definition, translation errors can occur.  
Therefore, it is sometime necessary to re-release a published schema in order to correct typos or other 
namespace representation errors.  In order to easily identify the potential multiplicity of schema releases for 
the same namespace, the URI of each released schema MUST conform to the following format (called 
Form 1):  

Form 1: "http://www.upnp.org/schemas/dm/" schema-root-name "-v" ver "-" yyyymmdd  ".xsd" 

where:  

• schema-root-name is the name of the root element of the namespace that this schema represents.  

• ver corresponds to the version number of the namespace that is represented by the schema. 

• yyyymmdd is the year, month and day (in the Gregorian calendar) that this schema was released.  

Table 1-3 “Schema-related Information” identifies the URI formats for each of the namespaces that are 
currently defined by the UPnP DM Working Committee.  

As an example, the original schema URI for the “cms” namespace might be “http://www.upnp.org/sche-
mas/dm/cms-v1-20091231.xsd”. If the UPnP DM service specifications were subsequently updated in the 
year 2010, the URI for the updated version of the “cms” namespace might be “http://www.upnp.org/sche-
mas/dm/cms-v2-20100906.xsd”.  

In addition to the dated schema URIs that are associated with each namespace, each namespace also has a 
set of undated schema URIs. These undated schema URIs have two distinct formats with slightly different 
meanings: 

Form 2: “http://www.upnp.org/schemas/dm/” schema-root-name “-v” ver  ".xsd" 

Form 3: “http://www.upnp.org/schemas/dm/” schema-root-name  ".xsd" 

Form 2 of the undated schema URI is always linked to the most recent release of the schema that represents 
the version of the namespace indicated by ver. For example, the undated URI “…/dm/cms-v2.xsd” is 
linked to the most recent schema release of version 2 of the “cms” namespace. Therefore, on September 
06, 2010 (20100906), the undated schema URI might be linked to the schema that is otherwise known as 
“…/dm/cms-v2-20100906.xsd”. Furthermore, if the schema for version 2 of the “cms” namespace was ever 
re-released, for example to fix a typo in the 20100906 schema, then the same undated schema URI 
(“…/dm/cms-v2.xsd”) would automatically be updated to link to the updated version 2 schema for the 
“cms” namespace.  

Form 3 of the undated schema URI is always linked to the most recent release of the schema that represents 
the highest version of the namespace that has been published. For example, on December 31, 2009 



ConfigurationManagement:2 Service Template Version 1.01 16 

Copyright UPnP Forum © 2012.  All rights reserved. 

(20091231), the undated schema URI “…/dm/cms.xsd” might be linked to the schema that is otherwise 
known as “…/dm/cms-v1-20091231.xsd”. However, on September 06, 2010 (20100906), that same 
undated schema URI might be linked to the schema that is otherwise known as “…/dm/cms-v2-
20100906.xsd”. When referencing a schema URI within an XML instance document or a referencing XML 
schema document, the following usage rules apply:  

• All instance documents, whether generated by a service or a control point, MUST use Form 3. 

• All UPnP DM published schemas that reference other UPnP DM schemas MUST also use Form 
3. 

Within an XML instance document, the definition for the schemaLocation attribute comes from the XML 
Schema namespace “http://www.w3.org/2002/XMLSchema-instance”. A single occurrence of the attribute 
can declare the location of one or more schemas. The schemaLocation attribute value consists of a 
whitespace separated list of values that is interpreted as a namespace name followed by its schema location 
URL. This pair-sequence is repeated as necessary for the schemas that need to be located for this instance 
document.  

In addition to the schema URI naming and usage rules described above, each released schema MUST 
contain a version attribute in the <schema> root element. Its value MUST correspond to the format:  

ver “-” yyyymmdd  where ver and yyyymmdd are described above.  

The version attribute provides self-identification of the namespace version and release date of the schema 
itself. For example, within the original schema released for the “cms” namespace (…/cms-v1-
20091231.xsd), the <schema> root element might contain the following attribute: version="1-
20091231". 

1.6.2. Namespace Usage Examples 
The schemaLocation attribute for XML instance documents comes from the XML Schema instance 
namespace “http:://www.w3.org/2001/XMLSchema-instance”. A single occurrence of the attribute can 
declare the location of one or more schemas. The schemaLocation attribute value consists of a 
whitespace separated list of values: namespace name followed by its schema location URL. This pair-
sequence is repeated as necessary for the schemas that need to be located for this instance document.  

Example: 

Sample CMS XML Instance Document. Note that the references to the UPnP DM schemas do not contain 
any version or release date information. In other words, the references follow Form 3 from above. 
Consequently, this example is valid for all releases of the UPnP DM service specifications. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<cms:ParameterValueList xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 
<Parameter> 
<ParameterPath…</ParameterPath> 
<Value>…</Value> 
… 
</cms:ParameterValueList> 
 



ConfigurationManagement:2 Service Template Version 1.01 17 

Copyright UPnP Forum © 2012.  All rights reserved. 

1.7. Vendor Defined Extensions 
In compliance with the UPnP Device Architecture approach, vendors MAY define their own extensions for 
this service to provide custom functionalities to devices.  

Whenever vendors create additional vendor-defined state variables, actions or other XML elements and 
attributes, their assigned names and XML representation MUST follow the naming conventions and XML 
rules as specified in [UDA], Section 2.5, “Description: Non-standard vendor extensions”. 

The same “X_” rule described in [UDA] MUST be used whenever vendors create additional vendor-
defined attributes, data types and so on. Their assigned names and XML representation MUST follow the 
naming conventions and XML rules as specified below: 

• Attributes (see 2.3.2) supported by Parameters can be extended adding vendor defined attributes. 
Such attributes MUST be named using the “X_” prefix as described above. 

• Data types (see 2.3.2.1) can be extended adding vendor defined enumeration values, extending the list 
of possible values for Parameters. All new enumeration values MUST be named using the “X_” 
prefix as described above. 

• The Data Model (see 0 for further details) can be extended adding vendor defined Parameters 
whereas their name must be defined using the using the “X_” prefix as described above. Vendors can 
also add subtrees anywhere in the supported Data Model adding new non standard Nodes named with 
the same “X_” rule. In this case, the contained Nodes are scoped by the parent node and do not need 
to be named using the “X_” rule. 



ConfigurationManagement:2 Service Template Version 1.01 18 

Copyright UPnP Forum © 2012.  All rights reserved. 

2. Service Modeling Definitions 

2.1. ServiceType 
The following service type identifies a service that is compliant with this template: 

 urn:schemas-upnp-org:service:ConfigurationManagement:2. 

2.2. Key Concepts 
The CMS (ConfigurationManagement:2 Service) manages configuration of a Parent Device by means of 
actions that take effect on Parent Device Parameters: the concept of Parameter is therefore at the center of 
CMS. 

A Parameter has two basic properties: 

• Its name, that uniquely identifies a Parameter managed by CMS actions. 
• Its value, that represent the actual value of the Parameter read from the Parent Device or to be set on 

the Parent Device by CMS actions. 
The Parameters that a Parent Device supports are defined with the concept of Data Model, basically a 
hierarchical set of unique Parameter names with the associated Parameter definition properties (e.g. 
syntax type, description, default value, allowed values). This specification of CMS defines a basic Data 
Model including a set of mandatory and optional Parameters; other Parameters not defined in the CMS 
basic Data Model may be provided by the Parent Device, as additional Parameters defined by other UPnP 
DCPs or as vendor specific Parameters. The definition of such Data Model extensions could be imported 
from other UPnP Working Committees (e.g. a Data Model defined by the UPnP AV WC) or other 
organizations (e.g. BBF STBService defined in TR-135 from the Broadband Forum). Refer to  Appendix 
C: Mapping rules for Other  for further details. 

Parameters in the Data Model also have attributes containing additional information about the 
Parameters. Examples of attributes are the type (e.g.: the Parameter is a string, a number or something 
else), the Access rules (e.g.: the Parameter is read only or read write) and so on. 

Parameter names, Parameter values and Paramter attributes are exchanged among the control point and 
the Parent Device using input and output action arguments. Their syntax is XML based on an XSD defined 
in this specification. Parameter names’ syntax used in the XML fragments is defined using EBNF-style 
grammar. 

2.2.1. Data Model Management Basics 
Parameters in the Data Model (see Appendix B: ) are modeled using a hierarchical structure like a logical 
tree, quite similar to directories and files in a file system. The control point can read and write their values 
by specifying a name that uniquely identifies the Parameter. The CMS actions defined in this UPnP 
service type reference Parameters with the “name-value pair” approach, i.e.: 

• When reading parameters, the control point sends to the Parent Device a request with a list of 
Parameter names to be read from the Parent Device, and the Parent Device responds to the control 
point with a list of pairs of {Parameter name; Parameter value}. 

• When writing parameters, the control point sends to the Parent Device a request with a list of pairs of 
{Parameter name; Parameter value} to be changed on the Parent Device. 

• When creating object instances the control point sends to the Parent Device a request with the name of 
the parent of the object to be created and the Parent Device responds with the object instance 



ConfigurationManagement:2 Service Template Version 1.01 19 

Copyright UPnP Forum © 2012.  All rights reserved. 

identifier. The control point can then initialize the parameters in the new object instance by passing to 
the Parent Device a list of pairs of {Parameter name; Parameter value} to be configured. 

• When deleting object instances the control point sends to the Parent Device a request with the name of 
the object to be deleted and the Parent Device will remove the object instance, all its parameters, and 
any sub-objects. 

2.2.2. Security 
ConfigurationManagement operations can be protected by an OPTIONAL Security Feature based on 
DeviceProtection:1 [DPS].  If the Security Feature is supported, then the DeviceProtection:1 [DPS] 
support is CONDITIONALLY REQUIRED. But there is no requirement for the DeviceProtection:1 to 
belong to the same UPnP device containing this ConfigurationManagement service instance (which is 
defined as Parent Device thorough this document). The Parent Device thus refers to UPnP device that 
contains the ConfigurationManagement service instance, regardless of the Security Feature is also 
supported or not. 

Actions that do not return sensitive information, change the device configuration, or affect normal device 
operation are referred to as Non-Restrictable actions and can always be invoked by all control points. 

All other actions are referred to as Restrictable actions.  If the OPTIONAL Security Feature (based on 
DeviceProtection:1 [DPS]) is not supported, all actions can be invoked by all control points.  If the 
Security Feature is supported, Restrictable actions can only be invoked if the control point is appropriately 
authorized. Table 2-18  specifies which actions are Non-Restrictable and Restrictable. 

The terms Role List and Restricted Role List are defined by DeviceProtection:1.  Each action has an 
associated Role List; a control point that possesses a Role in the Role List can unconditionally invoke the 
action.  Some actions also have a Restricted Role List; a control point that does not possess a Role in the 
Role List but does possess a Role in the Restricted Role List might be able to invoke the action (it’s up to 
the action definition to specify this). 

The Public Role is defined by DeviceProtection:1.  All control points automatically possess the Public 
Role, and all control points can unconditionally invoke all actions that have a Role List of “Public”.  
Therefore: 

• If the Security Feature is not supported, behavior is the same as if the feature was supported and 
all actions had a Role List of “Public” and an empty Restricted Role List. 

• Regardless of whether or not the Security Feature is supported, all Non-Restrictable actions have 
a Role List of “Public” and an empty Restricted Role List. 

For Restrictable actions, this specification defines RECOMMENDED values for the Role Lists and 
Restricted Role Lists.  Device manufacturers are permitted to choose different values. 

2.2.3. Alarming 
The optional Alarming Feature, when supported, provides a mechanism to allow control points to be 
warned as some relevant changes occur in the Data Model Parameter values (e.g.: a critical fault, a 
warning, a significant event, ...). This warning mechanism, which makes use of the eventing provided by 
the [UDA], requires the support of some state variables, actions and attributes in order to be implemented:  

• AlarmOnChange attribute. Refer to the specific section 2.3.2.6 for details. 

• AlarmsEnabled state variable. Refer to the specific section 2.5.7 for details. 

• GetAlarmsEnabled() and SetAlarmsEnabled() actions. Refer to the specific sections 2.7.17 
and   2.7.18 for details. 



ConfigurationManagement:2 Service Template Version 1.01 20 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.3. Syntax for Parameter Names 
Various Parent Device management actions need to handle Nodes in the Data Model tree. Thus, in order to 
specify the input and output arguments of these actions, an appropriate syntax is necessary. This section 
describes the glossary of basic terms and the syntax. 

 

Figure 1: example of structured tree excerpted from the CMS data model. 

Examples in this section are taken from the Data Model defined in Appendix B:  and from [SMS] when 
necessary. 

2.3.1.1. Definition of Terms 
Because of its hierarchical nature, the Data Model can be represented as a logical tree of Nodes. The 
relationship between two consecutive and connected Nodes is a parent-child relationship. 

Below there is the list of the terms used to describe the Nodes and their structure: 

Node: This represents any element of the Data Model tree. A Node may have a parent Node as well as 
children Nodes. All Nodes have a name, and each Node can be uniquely identified by a sequence of Nodes 
(in a parent to child relationship) from the origin (i.e. the Root of the tree) to that specific Node. The 
different kinds of Nodes such as listed below: 



ConfigurationManagement:2 Service Template Version 1.01 21 

Copyright UPnP Forum © 2012.  All rights reserved. 

Root: this is a special Node in the Data Model tree because all other Nodes are descendant of the 
Root Node. The Root has no parent Node. The Root is always identified by the name / (the slash 
symbol).  

Leaf: this kind of Node has a parent Node but does not have children Nodes. A specific property 
of Leaf Nodes is that they have an associated value. 

SingleInstance: this is an intermediate Node which has one parent and may have one or more 
named children Nodes forming a sub-tree below this Node. 

MultiInstance: this is a special intermediate Node which can contain a collection of Instance 
Nodes (in the same way a table contains rows). 

Instance: this Node represents a sort of table row belonging to the parent MultiInstance Node. 
This table row (which is indeed a sub-tree of the Data Model) can be created at run-time and 
added as an instance to the MultiInstance Node. The Instance Node can also be dynamically 
deleted as well. 

Path: is a string representation of the sequence of Nodes starting with the Root Node and ending at the 
Node of interest.  Specifically it’s the concatenation of the Node names. Due to the tree structure of the 
Data Model, a Path from the Root to a Node is unique. 

Parameter: the Parameter is a piece of information in the Data Model and is identified by its name which 
is a fully qualified name starting from the Root Node, passing by static or dynamically created 
intermediate Nodes, and ending to the Leaf Node (which is therefore uniquely identified) that contains 
actual value: only Parameters have values. The Parameter name is the corresponding Leaf Node’s path. 
For example, in terms of Path, the Parameter name is equivalent to a Path from the Root to the Leaf. 

Some Parameters are read-only (i.e. the control point can only read their values) and some others are 
writable (i.e. the control point can both read and change their values). 

Figure 1 shows an example hierarchy from the Data Model. There is the Root Node / that includes all 
other Nodes in the tree. The DeviceInfo is a SingleInstance containing another SingleInstance 
Capabilities and a Leaf SoftwareVersion. The IPInterface Node is a MultiInstance 
containing two instances identified with the numbers 3 and 5. Each instance of the IPInterface 
MultiInstance Node has the same content: a Leaf named SystemName. The complete list of Parameters 
represented in Figure 1 is: 

/UPnP/DM/DeviceInfo/SoftwareVersion 
/UPnP/DM/DeviceInfo/PhysicalDevice/HardwareVersion 
/UPnP/DM/Configuration/Network/IPInterface/3/SystemName 
/UPnP/DM/Configuration/Network/IPInterface/5/SystemName 
 

The following list is an example of all possible path types: 

/UPnP/DM/DeviceInfo/SoftwareVersion                    /* root */ 
                                                      /* following are paths from root …*/   
/UPnP/                                                  /* … to SingleInstance node*/ 
/UPnP/DM/                                               /* …to SingleInstance node*/ 
/UPnP/DM/DeviceInfo/SoftwareVersion           /* …to Leaf node*/ 
/UPnP/DM/DeviceInfo/PhysicalDevice/                     /* …to SingleInstance node*/ 
/UPnP/DM/DeviceInfo/PhysicalDevice/HardwareVersion      /* …to Leaf node*/ 
/UPnP/DM/Configuration/                                 /* …to SingleInstance node*/ 
/UPnP/DM/Configuration/Network/                         /* …to SingleInstance node*/ 
/UPnP/DM/Configuration/Network/IPInterface/             /* …to MultiInstance node*/ 
/UPnP/DM/Configuration/Network/IPInterface/3/           /* …to Instance node 3*/ 
/UPnP/DM/Configuration/Network/IPInterface/3/SystemName /* …to Leaf node*/ 
/UPnP/DM/Configuration/Network/IPInterface/5/           /* …to Instance node 5*/ 
/UPnP/DM/Configuration/Network/IPInterface/5/SystemName /* …to Leaf node*/ 
 



ConfigurationManagement:2 Service Template Version 1.01 22 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.3.1.2. Definition of Grammar 
In order to represent the Parameters from the structured Data Model tree into the flat XML fragment of 
action arguments, the following EBNF-style syntax [EBNF] grammar is defined. 

The grammar described herein is normative and is defined in the XML schema: Appendix A: XML schema 
(Normative). 

The grammar can be used to match a sequence of characters in order to verify whether it corresponds to a 
syntactically correct sequence of Nodes from the Root to a Node or symmetrically to produce a 
syntactically correct sequence of character which corresponds to a sequence of Nodes from the Root to a 
Node. Parent-child relationship between Nodes is represented in the sequence of character by the “/” 
symbol between the parent Node name (on the left side of the “/”) and the child Node name (on the right 
side of the “/”). 

The grammar defined below is organized in four set of rules. The first set contains rules for the basic 
syntactical definitions named “Basic matching rules”. Then there is a short set named “Auxiliary rules” 
with internal definitions. The third set is named “Matching rules for specific types of paths” and contains 
specific rules for the basic terms defined below.  

The fourth set is named “Matching rules for composite paths” and contains rules (i.e. PartialPath, 
ContentPath, StructurePath and ParameterInitializationPath) to define the syntax for paths whereas the 
most of them are a choice of a combination of the path types defined above. Such rules are needed to 
provide the strongest type checking as possible for action arguments, defined via A_ARG_TYPE_ state 
variables.  

/* Basic matching rules */ 
Alpha       ::= [a-zA-Z] 
Numeric     ::= [0-9] | [1-9][0-9]+ 
SpecialChar ::= "_"  
Wildchar    ::= "#" 
 
NodeName  ::= NCName /* as defined in [XML-NCName], see  
                        “Restrictions to NCName” in the text below. */ 
LeafName  ::= NodeName 
 
SingleInstanceNodeName ::= NodeName "/"      
MultiInstanceNodeName  ::= NodeName "/" 
Instance               ::= Numeric "/" 
InstanceAlias          ::= Wildchar "/" 
 
/* Auxiliary rules */ 
 
InternalNode ::= SingleInstanceNodeName | 
                 MultiInstanceNodeName Instance 
InternalAlias ::= SingleInstanceNodeName | 
                  MultiInstanceNodeName InstanceAlias 
 
 
/* Matching rules for specific types of paths */ 
RootPath           ::= "/" 
ParameterPath      ::= RootPath InternalNode* LeafName 
SingleInstancePath ::= RootPath | RootPath InternalNode* 
SingleInstanceNodeName 
MultiInstancePath  ::= RootPath InternalNode* MultiInstanceNodeName 
InstancePath       ::= RootPath InternalNode* MultiInstanceNodeName 
                       Instance 
InstanceAliasPath  ::= RootPath InternalAlias* SingleInstanceNodeName | 
                       RootPath InternalAlias* MultiInstanceNodeName | 



ConfigurationManagement:2 Service Template Version 1.01 23 

Copyright UPnP Forum © 2012.  All rights reserved. 

                       RootPath InternalAlias* LeafName 
 
/* Matching rules for composite paths */ 
PartialPath       ::= RootPath |  
                      SingleInstancePath |  
                      MultiInstancePath |  
                      InstancePath 
ContentPath       ::= PartialPath | ParameterPath 
StructurePath     ::= RootPath InternalAlias* LeafName? 
ACLDataPath       ::= RootPath | 
                      InstanceAliasPath | 
                      PartialPath 
ParameterInitializationPath      ::= SingleInstanceNodeName* LeafName 
 
 
Basic Matching Rules 

Restrictions to NCName: the NCName in [XML-NCName] leads to a large number of possible characters 
that can be used for Node names. Due to some constraints in Data Models from other organizations 
(see Appendix C: Mapping rules for Other Organizations) the “.” and “-“ characters MUST NOT be used. 

Matching Rules for Specific Types of Paths 

• RootPath: to define the syntax for the Root Node. RootPath always matches/produce the “/”. 
• SingleInstancePath: to define the syntax for a path starting from the Root Node and ending with a 

SingleInstance Node. Therefore SingleInstancePath always defines paths ending with a NodeName 
(which is a SingleInstance Node) followed by the “/” symbol. SingleInstancePath and 
MultiInstancePath (defined below) are syntactically identical. SingleInstancePath is used, for 
example, when retrieving the values of all its descendants using a single GetValues() action 
invocation. 

• MultiInstancePath: to define the syntax for a path starting from the Root Node and ending with a 
MultiInstance Node. Therefore MultiInstancePath always defines paths ending with a NodeName 
(which is a MultiInstance Node) followed by the “/” symbol. SingleInstancePath (defined above) and 
MultiInstancePath are syntactically identical. MultiInstancePath is used, for example, when creating a 
new Instance Node using the CreateInstance() action. 

• InstancePath: to define the syntax for a path starting from the Root Node and ending with a Instance 
Node (a MultiInstancePath followed by an Instance Node name). Therefore InstancePath always 
defines paths ending with a Node name (which is an Instance Node) followed by the “/” symbol. 
InstancePath is used, for example, to delete an existing Instance using the DeleteInstance() action. 

• ParameterPath: to define the syntax for a path starting from the Root Node and ending with a Leaf 
Node: which is the fully qualified name for the Parameter. ParameterPaths are used, for example, in 
the name-value pairs when setting the value of a Parameter.   

• InstanceAliasPath: to define the syntax for a path starting from the Root Node and always including at 
least one InstanceAlias Node. Such path end either with a SingleInstance, a MultiInstance or a Leaf 
Node. 

Matching Rules for Composite Paths 

• PartialPath: is a path from the Root to a Node in the Data Model tree which is not a Leaf. PartialPath 
is indeed either a RootPath or a SingleInstancePath or a MultiInstancePath or an InstancePath. The 
partial path always ends with a slash symbol. PartialPath is used in A_ARG_TYPE_PartialPath state 
variable. Examples of PartialPaths are: 

/ 
/UPnP/DM/Configuration/Network/ 
/UPnP/DM/Configuration/Network/IPInterface/ 
/UPnP/DM/Configuration/Network/IPInterface/2/ 



ConfigurationManagement:2 Service Template Version 1.01 24 

Copyright UPnP Forum © 2012.  All rights reserved. 

/UPnP/DM/Configuration/Network/IPInterface/5/IPv4/ 
 
• ContentPath: is a path from the Root to a Node in the Data Model tree which can be either the Root or 

a SingleInstance Node or a MultiInstance Node or a Instance Node or a Leaf. In other words the 
ContentPath can be either a PartialPath or a Parameter (i.e. ParameterPath) and include all Node 
types except the InstanceAlias. ContentPath is used in A_ARG_TYPE_ContentPathList state 
variable. 

• ParameterInitializationPath: is a sequence of Nodes starting from SingleInstance Node and ending to 
the Leaf Node. In other words it is a ParameterPath which starts from a SingleInstance Node rather 
than from the Root Node. The sequence of SingleInstance Nodes on the left of the Leaf Node can be 
empty. This ParameterInitializationPath is specifically used in 
A_ARG_TYPE_ParameterInitialValueList.  ParameterInitializationPaths do not begin with the “/”. 
Examples of valid ParameterInitializationPaths are: 

SystemName 
IPv4/IPAddress 
IPv4/AddressingType 
AddressingType 
 

• StructurePath: is a path from the Root to a Node which includes (in case Instance Nodes are included 
in the path) the wild-chars # instead of table Instances, that are therefore forbidden. StructurePath is 
used when browsing the actual Data Model tree, hence the wild-char # means “every instances” that 
could belong to the MultiInstance Node. A valid StructurePath can end with a wild-char, a 
SingleInstance Node or Leaf Node.  Due to the StructurePath syntax, when no Instance Node is 
included in the path, a PartialPath or even a ParameterPath are also StructurePaths. StructurePath is 
used in A_ARG_TYPE_StructurePath and A_ARG_TYPE_StructurePathList state variables. Examples 
of StructurePaths are: 

/ 
/UPnP/DM/DeviceInfo/ 
/UPnP/DM/DeviceInfo/PhysicalDevice/HardwareVersion 
… 
/UPnP/DM/Configuration/Network/Interface/#/ 
/UPnP/DM/Configuration/Network/Interface/#/IPv4/IPAddress 
 
• ACLDataPath: is a path from the Root to either the Root itself, a SingleInstance, a MultiInstance or a 

Leaf Node which might include the # wild-chars or Instance Nodes (but these can never be mixed 
within the same path). ACLDataPath is used when retrieving the ACL permission lists from the actual 
Data Model tree. ACLDataPath is used in the A_ARG_TYPE_ACLDataPathList and 
A_ARG_TYPE_ACL state variables. Examples of ACLDataPath are: 

/ 
/UPnP/DM/DeviceInfo/ 
/UPnP/DM/DeviceInfo/PhysicalDevice/HardwareVersion 
… 
/UPnP/DM/Configuration/Network/Interface/ 
/UPnP/DM/Configuration/Network/Interface/#/IPv4/IPAddress 
/UPnP/DM/Configuration/Network/Interface/5/ 
/UPnP/DM/Configuration/Network/Interface/5/IPv4/IPAddress 
 

2.3.2. Attributes 
Attributes are used to specify properties of Nodes, such as, for example, the data type of a Leaf or the 
access permission to create a new instance of a MultiInstance Node. 



ConfigurationManagement:2 Service Template Version 1.01 25 

Copyright UPnP Forum © 2012.  All rights reserved. 

Values of attributes are managed using CMS actions in the same way that Parameters are: the XML 
fragments in specific actions’ arguments carry the attribute values. 

There are two types of attributes: 

• ReadOnly: the attribute value is specified in the Data Model definition and cannot be explicitly 
changed by the control pointduring the lifetime of the Parent Device. 

• ReadWrite: the attribute value is up to the Parent Device implementation and can be dynamically 
changed by the control point using the SetAttributes() action, see section 2.7.10. When the control 
point changes the value of one or more attributes, an event associated with the 
AttributeValuesUpdate state variable is generated. This is because, for example, other control 
points have to be informed if they potentially will not receive any more change notifications for 
some Parameter they are interested in. Data Model definitions may contain default values for 
ReadWrite attributes. 

For the purposes of CMS the following attributes are defined for Nodes: 

Table 2-4: Nodes attributes 

Name Type Value type Values 

Type ReadOnly String string, 

int, 

unsignedInt, 

long, 

unsignedLong, 

boolean, 

dateTime, 

base64, 

hexBinary 

Access ReadOnly String readWrite, 

readOnly 

Version ReadOnly unsignedInt 0,1,2,… 

EventOnChange ReadWrite Boolean 1, 

0. 

MIMEType ReadOnly String (see 
section 2.3.2.5) 

AlarmOnChange ReadWrite Boolean 1, 

0. 

Non-standard attributes 
implemented by an UPnP 
vendor go here. 

TBD TBD TBD 

 



ConfigurationManagement:2 Service Template Version 1.01 26 

Copyright UPnP Forum © 2012.  All rights reserved. 

Depending on Node types, attributes can be required (Req.), optional (Opt.) or not applicable (N/A), and 
have different meaning.  If the attribute is required means that its value MUST be returned using the 
GetAttributes() action and their default values MUST be specified in the Data Models. 

Table 2-5: Requirements for attributes 

 Root Leaf SingleInstanc
e 

MultiInstanc
e 

Instance 

Type N/A Req. N/A N/A N/A 

Access N/A Req. N/A Req. Req. 

Version N/A Opt. N/A Opt. N/A 

EventOnChange N/A Req. N/A Req. N/A 

MIMEType N/A Opt. N/A N/A N/A 

AlarmOnChang
e 

N/A Opt. N/A N/A N/A 

 

Attributes supported by Parameters can be extended adding vendor defined attributes, as described in 1.7. 

2.3.2.1. Type 
This REQUIRED attribute describes the Parameters type, making use of a limited subset of the SOAP data 
types (see Appendix B: ). 

In the case of Data Model extensions, each vendor/organization is then responsible for defining its own 
rules to integrate new Data Model definitions. Rules refer to syntax renaming (see Appendix C: Mapping 
rules for Other …) and type conversion for [SOAP] encoding. 

For some numerical types (e.g.: int, long, …), a value range may be given using the form 
<type>[Min:Max], where the Min and Max values are inclusive. If either Min or Max are missing, this 
indicates no limit. For example, unsignedInt[3:] means all valid 4 bytes unsigned integers from 3 to 
4294967295. A “k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768. 

For types expressed as subset of the ISO 8601 (e.g. dateTime and Time stamps in this specification) used 
to describe relative time since reboot, the value MUST be expressed in UTC (Universal Coordinated Time) 
unless explicitly stated otherwise in the definition of a Parameter of this type. If absolute time is not 
available to the Parent Device, it SHOULD instead indicate the relative time since boot, where the boot 
time is assumed to be the beginning of the first day of January of year 1, or 0001-01 -01T00:00:00. For 
example, 2 days, 3 hours, 4 minutes and 5 seconds since boot would be expressed as 0001-01-
03T03:04:05. Relative time since boot MUST be expressed using an untimezoned representation. Any 
untimezoned value with a year value less than 1000 MUST be interpreted as a relative time since boot. If 
the time is unknown or not applicable, the following value representing “Unknown Time” MUST be used: 
0001-01 -01T00:00:00Z. 



ConfigurationManagement:2 Service Template Version 1.01 27 

Copyright UPnP Forum © 2012.  All rights reserved. 

Table 2-6:Type attribute values description 

Type Description 

string Unicode string. For strings listed in this specification, a minimum and 
maximum allowed length can be listed using the form string(Min:Max), where 
Min and Max are the minimum and maximum string length in characters. If 
either Min or Max are missing, this indicates no limit, and if Min is missing 
the colon can also be omitted, as in string(Max). Multiple comma-separated 
ranges can be specified, in which case the string length MUST be in one of 
the ranges. A “k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, 
e.g. 32k means 32768. 

For strings in which the content is an enumeration, the longest enumerated 
value iImplicitly determines the maximum length. 

When transporting a string value within an XML document, any characters 
which are special to XML MUST be escaped as specified by the XML 
specification [XML]. Additionally, any characters other than printable ASCII 
characters, i.e. any characters whose decimal ASCII representations are 
outside the (inclusive) ranges 9-10 and 32-126, SHOULD be escaped as 
specified by the XML specification.  

int Integer in the range –2147483648 to +2147483647, inclusive. See the 
introductory text for details on range specifications. 

long Long integer in the range –9223372036854775808 to 
9223372036854775807, inclusive. See the introductory text for details on 
range specifications. 

unsignedInt Unsigned integer in the range 0 to 4294967295, inclusive. See the 
introductory text for details on range specifications. 

unsignedLong Unsigned long integer in the range 0 to 18446744073709551615, inclusive. 
See the introductory text for details on range specifications. 

boolean Boolean, where the allowed values are “0”, “1”, “true”, and “false”. The 
values “1” and “true” are considered interchangeable, where both 
equivalently represent the logical value true. Similarly, the values “0” and 
“false” are considered interchangeable, where both equivalently represent 
the logical value false. 

It is STRONGLY RECOMMENDED to use “0” and “1”. 

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime 
type. Interpreted as a relative time since boot (see introductory text for more 
details on usage of ISO 8601 date-time format). 

base64 Base64 encoded binary (no line-length limitation). 

A minimum and maximum allowed length can be listed per string types using 
the form base64(Min:Max), where Min and Max are the minimum and 
maximum length in characters before Base64 encoding. If either Min or Max 
are missing, this indicates no limit, and if Min is missing the colon can also be 
omitted, as in base64(Max). Multiple commaseparated ranges can be 
specified, in which case the length MUST be in one of the ranges. A “k” or 
“K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 
32768. 



ConfigurationManagement:2 Service Template Version 1.01 28 

Copyright UPnP Forum © 2012.  All rights reserved. 

Type Description 

hexBinary Hex encoded binary. 

A minimum and maximum allowed length can be listed per string using the 
form hexBinary(Min:Max), where Min and Max are the minimum and 
maximum length in characters before Hex Binary encoding. If either Min or 
Max are missing, this indicates no limit, and if Min is missing the colon can 
also be omitted, as in hexBinary(Max). Multiple commaseparated ranges can 
be specified, in which case the length MUST be in one of the ranges. A “k” or 
“K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 
32768. 

 

All IPv4 addresses and subnet masks MUST be represented as strings in IPv4 dotted-decimal notation. All 
IPv6 addresses and subnet masks MUST be represented using any of the 3 standard textual representations 
as defined in [RFC 3513], sections 2.2.1, 2.2.2 and 2.2.3. Both lower-case and upper-case letters can be 
used. Use of the lower-case letters is RECOMMENDED. Examples of valid IPv6 address textual 
representations: 

• 1080:0:0:800:ba98:3210:11aa:12dd 

• 1080::800:ba98:3210:11aa:12dd 

• 0:0:0:0:0:0:13.1.68.3 

Unspecified or inapplicable IP addresses and subnet masks MUST be represented as empty strings unless 
otherwise specified by the Parameter definition.  

All MAC addresses are represented as strings of 12 hexadecimal digits (digits 0-9, letters A-F or a-f) 
displayed as six pairs of digits separated by colons. Unspecified or inapplicable MAC addresses MUST be 
represented as empty strings unless otherwise specified by the Parameter definition. 

In case of enumeration Parameters, which have string type, new enumeration values can be added by 
vendors. In compliance with the UPnP Device Architecture approach, enumeration values that are defined 
as vendor proprietary extensions must begin with the prefix X_.  

The value of Type attribute MUST be specified in each Data Model definition. 

2.3.2.2. Access 
The Access attribute is REQUIRED and is used to specify whether a control point can or not change the 
value of a Parameter as well as create and delete an Instance Node. This section explains the meaning of 
the Access attribute, therefore there are the following cases: 

• Read/Write access for a parameter. In this case it is associated with a Leaf Node. 
• Read/Write access for a MultiInstance and Instance Nodes. Read access means the Instance Nodes of 

the MultiInstance Node can only be addressed by reading actions. Concerning Write access: 
• The argument of CreateInstance() action is a MultiInstance Node, therefore a MultiInstance Node 

having Write access means that Instances can be created. This attribute has to be specified in the 
MultiInstance Nodes of the data model. 

• The argument of DeleteInstance() action is an Instance Node, therefore an Instance Node having 
Write access means that Instances can be deleted. This attribute has to be specified in the Instance 
Nodes of the data model. 

• Instance Nodes may have different access attribute value in comparison with their MultiInstance 
as it is explained in the table below. 



ConfigurationManagement:2 Service Template Version 1.01 29 

Copyright UPnP Forum © 2012.  All rights reserved. 

Possible values for this attribute are readOnly and readWrite. 

In case a Parameter needs to be written and not to be read (e.g. a typical example is a Parameter which is a 
password), it is suggested to the Data Models’ designers to specify that, when read password values the 
empty string might be returned instead of a read error. 

The data model definition specifies the “highest” right Access to a parameter, but right applies at run-time 
may be more restrictive. For example, a data model definition might not specify any right restriction but a 
implementation can enforce a readOnly permission. 

Table 2-7: Access Attribute Semantics 

Node Value Description 

Root readWrite N/A 

readOnly N/A 

Leaf readWrite The value of the parameter associated with this Leaf Node can be 
read using the GetValues() and GetSelectedValues() actions and can 
be written using the SetValues() action. 

readOnly The value of the parameter associated with this Leaf Node can be 
read using the GetValues() and GetSelectedValues() actions. If the 
control point attempts a write operation on the Parameter using the 
SetValues() action the Parent Device returns an error and the action 
fails. 

SingleInstance readWrite N/A 

readOnly N/A 

MultiInstance readWrite New Instance Nodes can be created using the CreateInstance() 
action. 

readOnly An attempt to create a new Instance Node using the CreateInstance() 
action fails and the Parent Device returns an error. 

Instance readWrite An existing Instance Node can be deleted using the DeleteInstance() 
action. 

readOnly An attempt to delete an existing instance using the DeleteInstance() 
action fails and the Parent Device returns an error. 

 

Leaf and MultiInstance Nodes having readOnly Access attribute value are completely under control of the 
Parent Device, therefore there is no way for the control point to change their values using CMS actions. 

The value of Access attribute MUST be specified in each Data Model definitions. 

Note  if the Security Feature is also supported, the value of the Access attribute of a Node (which is a 
ReadOnly property, see definitions in 2.3.2) adds a requirement on the Node permission lists, as it is 
explained in 2.4.5 and defined in Table 2-12. 

2.3.2.3. EventOnChange 
This attribute has effect on the ConfigurationUpdate state variable. It is associated with some Leaf and 
MultiInstance Nodes and indicates whether the ConfigurationUpdate must be updated and therefore the 
corresponding event must be generated. 



ConfigurationManagement:2 Service Template Version 1.01 30 

Copyright UPnP Forum © 2012.  All rights reserved. 

This attribute is CONDITIONALLY REQUIRED if the Data Model specification requires events on 
change of Parameter values. Indeed, the Common Objects specified in this service as well as Data Models 
specified in other UPnP services and Data Models specified elsewhere (e.g. vendor extension Data Models 
or Data Models defined by other organizations) have to define whether a Leaf or a MultiInstance Node 
supports the EventOnChange attribute. Different implementations can anyway support this attribute for 
Leaf or MultiInstance Nodes even though this EventOnChange attribute is not explicitly required in the 
Data Model specification: if EventOnChange is not specifically required this does not mean that an 
implementation can not support it. 

The EventOnChange attribute value for a Parameter is not related to the Access attribute value of the same 
Parameter. Therefore, readOnly Parameters can also support the EventOnChange attribute. 

The EventOnChange attribute value MUST be persistent hence the CMS must maintain its value when 
disappears from the network and reappears again later sending the ssdp:alive message. Therefore, after the 
service reappears on the network, the control point will receive the notification on change for the same 
Parameters unless: 

• Another control point has changed the attribute values in the meantime, or 
• One or more software modules containing the implementation of such Parameters was removed or 

replaced with a new one, or 
• The entire Parent Device firmware has been changed. 
The following table defines the semantics for Nodes which implement the attribute. Refer to 
ConfigurationUpdate (see section 0) state variable and the relationship between state variables 
(section 2.5.23) for further details. 

The default value of EventOnChange attribute SHOULD be specified in Data Model definitions; otherwise 
default values are implementation specific. 

Table 2-8: EventOnChange Attribute Semantics 

Node Value Description 

Root 1 N/A 

0 N/A 

Leaf 1 If the value of the parameter associated with this Leaf Node 
changes its value the ConfigurationUpdate state variable must 
be updated and therefore an event must be sent to the 
subscribed CPs. 

0 If the value of the parameter associated with this Leaf Node 
changes its value the ConfigurationUpdate state variable must 
not be updated. 

SingleInstance 1 N/A 

0 N/A 

MultiInstance 1 If a new Instance Node for this MultiInstance Node is created 
the ConfigurationUpdate state variable must be updated and 
therefore an event must be sent to the subscribed CPs. 

If an existing Instance Node for this MultiInstance Node is 
deleted the ConfigurationUpdate state variable must be updated 
and therefore an event must be sent to the subscribed CPs. 



ConfigurationManagement:2 Service Template Version 1.01 31 

Copyright UPnP Forum © 2012.  All rights reserved. 

Node Value Description 

0 If a new Instance Node for this MultiInstance Node is created 
the ConfigurationUpdate state variable must not be updated. 

If an existing Instance Node for this MultiInstance Node is 
deleted the ConfigurationUpdate state variable must not be 
updated. 

Instance 1 N/A 

0 N/A 

2.3.2.4. Version 
This OPTIONAL attribute may be used to keep track on data model value changes (Parameter value 
change and/or instance creation/deletion). The Version is an attribute specific for Leaf Nodes and 
MultiInstance Nodes. Whenever a Parameter changes its value or an Instance of a MultiInstance Node is 
created or deleted, the associated Version attribute assumes the new value of the 
CurrentConfigurationVersion state variable. Since multiple changes are possible; i.e., that more than a 
single Parameter is changed using the same SetValue() action whether to group multiple changes in a 
single update of the CurrentConfigurationVersion implementation dependent. 

The Version attribute value MUST be persistent, hence the CMS must maintain its value when disappears 
from the network and reappears again later sending the ssdp::alive message. 

The version attribute can therefore be used for version control; i.e., Nodes which support the version 
attribute could be considered as under version control. 

If the Version attribute is supported, the Data Model specifies for which Nodes it is mandatory. Nodes 
which have Version attribute are considered under version control. 

The Data Model specified in this service and in other services which support CMS and Data Model 
extensions defines a minimum list of Parameters (specifically Leaf and MultiInstance Nodes) which must 
support the Version attribute, when the Version attribute is implemented by the Parent Device. In case the 
Version attribute is supported, no partial implementation is permitted concerning the list of Parameters: all 
the required ones from the specification must have the Version attribute support or none have the Version 
attribute supported. The control point can use the GetAttributes() to know whether a Parameter or a 
MultiInstance Node supports the attribute. 

The following table summarizes the Version attribute semantics. Refer to the CurrentConfigurationVersion 
(see section 2.5.2) and the relationship between state variables section (section 2.5.23) for further details. 

Table 2-9: Version Attribute Semantics 

Node Description 

Root N/A 

Leaf If the value of the parameter associated with this Leaf Node changes 
its value the Version attribute value assumes the same value of the 
CurrentConfigurationVersion state variable. 

SingleInstance N/A 



ConfigurationManagement:2 Service Template Version 1.01 32 

Copyright UPnP Forum © 2012.  All rights reserved. 

Node Description 

MultiInstance Version attribute value assumes the same value of the 
CurrentConfigurationVersion state variable when: 

- A new Instance Node for this MultiInstance Node is created, 

- An existing Instance Node for this MultiInstance Node is deleted. 

Instance N/A 
 

The following example clarifies how the Version attribute may be implemented by the Parent Device, in 
order to realize the expected behavior. Suppose that 0 is the starting value for 
CurrentConfigurationVersion and three Nodes (supporting the Version attribute) are involved: node_1, 
node_2 and node_3. As the first Node is modified, the example sequence starts: 

• Step 1: node_2 is modified, hence 

CurrentConfigurationVersion is updated to 1, 

Version(node_1) is left unchanged at its starting value 0, 

Version(node_2) is set to CurrentConfigurationVersion value, so its value becomes 1, 

Version(node_3) is left unchanged to its default starting value 0. 

• Step 2: node_3 is modified, hence 

CurrentConfigurationVersion is updated to 2, 

Version(node_1) is left unchanged at its starting value 0, 

Version(node_2) is set left unchanged to its previous value 1, 

Version(node_3) is set to CurrentConfigurationVersion value, so its value become 2. 

• Step 3: node_2 is modified once again, hence 

CurrentConfigurationVersion is updated to 3, 

Version(node_1) is left unchanged at its starting value 0, 

Version(node_2) is set to CurrentConfigurationVersion value, so its value become 3, 

Version(node_3) is set left unchanged to its previous value 2. 

2.3.2.5. MIMEType 
This OPTIONAL attribute describes the MIME type for Parameters whose Type attribute value is string. 
MIME is a standardized way of describing the type of content in a file. It is composed of 2 parts, a type and 
a subtype. The MIMEType attribute, when supported, must be associated with Parameters only, hence it 
applies to Leaf Nodes. 

Standard values for this attribute are defined in [IANA-MIME]. Example MIMEType valid values are: 

application/pdf 
text/plain, 
text/xml, 
text/html, 



ConfigurationManagement:2 Service Template Version 1.01 33 

Copyright UPnP Forum © 2012.  All rights reserved. 

audio/3gpp 
image/jpeg 
video/mpeg 
video/mp4 etc. 
video/MP4V-ES 
 

Vendor extensions are permitted by providing more values for such attribute. Since the MIMEType is 
application oriented, the generic control point can ignore the syntax and meaning values for such attribute 
and treat them as is was a simple string of characters. 

2.3.2.6 AlarmOnChange 
This OPTIONAL attribute defines define whether a specific Parameter in the Data Model is able to inform 
the control point about value changes by sending its last updated value within a specific event. The 
AlarmOnChange attribute is CONDITIONALLY REQUIRED in case the Alarming Feature is supported. 

The AlarmOnChange attribute has an effect on the ConfigurationUpdate state variable. This attribute can 
be enabled for Leaf Nodes and indicates whether the ConfigurationUpdate state variable will be updated 
also with the “alarm” information for the Parameter, and therefore the corresponding event must be 
generated for carrying updated values for these Leaf Nodes. The eventing behaviour of 
ConfigurationUpdate is under the control of the EventOnChange Parameter. 

The Common Objects specified in this service, as well as Data Models specified in other UPnP services 
and Data Models specified elsewhere (e.g. vendor extension Data Models or Data Models defined by other 
organizations), must define whether a Leaf Node MUST support the AlarmOnChange attribute. Different 
implementations can anyway support this attribute for Leaf Nodes even though this AlarmOnChange 
attribute is not explicitly required in the Data Model specification: if AlarmOnChange is not specifically 
required this does not mean that an implementation can not support it. 

The AlarmOnChange attribute value MUST be persistent, hence the CMS has to maintain its value when it 
disappears from the network and reappears again later sending the ssdp:alive message. Therefore, after the 
service reappears on the network, the control point will continue receiving the notification on change for a 
Parameter with AlarmOnChange set to 1 unless: 

• Another control point has changed the attribute value in the meantime, or 
• The parameter is no more part of the data model due to some change on the device side (e.g. firmware 

upgrade, software update, local administration). 
Parameters supporting the AlarmOnChange attribute must be chosen carefully, in order not to have too 
many possible events and Parameters to be sent for the associated ConfigurationUpdate state variable. 
Such Parameters should change their values at a rate which would not interfere with or compromise the 
normal operation of the device.  

The following table defines the semantics for Nodes which implement this attribute. Refer to 
ConfigurationUpdate (see section 2.4.1) state variable and the relationship between state variables (section 
2.4.22) for further details. 

The default value of AlarmOnChange attribute SHOULD be specified in Data Model definitions; 
otherwise default values are implementation specific. 

Table 2-10: AlarmOnChange Attribute Semantics 

Node Value Description 

Root 1 N/A 



ConfigurationManagement:2 Service Template Version 1.01 34 

Copyright UPnP Forum © 2012.  All rights reserved. 

Node Value Description 

0 N/A 

Leaf 1 If the parameter associated with this Leaf Node changes its 
value, and the overall alarming feature (AlarmsEnabled state 
variable) is enabled , when the ConfigurationUpdate state 
variable is updated, the pair {name;value}, for the “alarm” 
info related to the parameter, must be added to 
ConfigurationUpdate state variable, before an event is sent to 
the subscribed CPs. 

0 If the parameter associated with this Leaf Node changes its 
value, when the ConfigurationUpdate state variable is updated, 
no “alarm” info related to the parameter must be included. 

SingleInstance 1 N/A 

0 N/A 

MultiInstance 1 N/A 

0 N/A 

Instance 1 N/A 

0 N/A 
 

2.3.3. Instance Nodes as Primary Keys and Unique Keys Extension 
Instance Node names, which are unsigned integers, are the primary key to uniquely identify sub-tree 
instances of a MultiInstance Node in the Data Model. The syntax of instance Nodes has been defined in 
section 2.3.1.2. This means that a control point is able to address a specific instance in the Data Model 
when reading or writing some of its children Nodes. For example, the Parameter: 

/UPnP/DM/Configuration/Network/IPInterface/15/IPv4/IPAddress 

addresses the IPAddress Leaf Node which is contained in the Instance number 15 within the 
MultiInstance Interface. Therefore the number 15 is the value of the primary key for this Instance. 

As an additional and OPTIONAL feature to address instances, the Parent Device MAY offer the unique 
key extension. Unique keys allow the control point to address instances using value of specific Leaf Nodes 
rather than using instance numbers only, therefore unique keys uniquely identify instances. 

In case the Parent Device implements the unique key it MUST support the following extension to the 
grammar: 

Instance          ::= Numeric "/" | UniqueKey "/" 
UniqueKey         ::= "{" UniqueKeyMatches "}" 
UniqueKeyMatches  ::= UniqueKeyMatch |  
                      UniqueKeyMatch “;” UniqueKeyMatches 
UniqueKeyMatch    ::= ParameterInitializationPath “=” ParameterValue 
ParameterValue    ::= /* The value to be compared. It must be a valid 
                         literal for the data type, and strings must  
                         be escaped. */ 
 
As it is defined in the grammar above, unique keys may be composed by one or more Parameter as it must 
be specified in the Data Model. This means that in case the Parent Device supports the unique key 



ConfigurationManagement:2 Service Template Version 1.01 35 

Copyright UPnP Forum © 2012.  All rights reserved. 

addressing, the vendor must specify in the Data Model which are the Leaf Nodes contained in the 
MultiInstance Node that are used to make the unique key. 

For example, given again the following Parameter instanced in the Data Model: 

/UPnP/DM/Configuration/Network/IPInterface/15/IPv4/IPAddress 

Supposing its value is "239.255.255.250" whereas the value of 

/UPnP/DM/Configuration/Network/IPInterface/15/SystemName 

within the same Interface instance is “AdvertisementInterface”. The Parent Device might offer 
another way to address the IPAddress Parameter. Indeed, if the Parent Device also supports unique keys, 
and the SystemName is defined as unique key, the control point may also use the following syntax to 
address the same Parameter: 

/UPnP/…/IPInterface/{SystemName=”AdvertisementInterface”}/IPv4/IPAddress 

The unique key addressing is an extension and MUST NOT replace the basic primary key addressing 
using the Instance Node.  

In order to guarantee backward compatibility for control points which does not support such extended 
addressing mechanism, if the control point does not make use of unique keys in action arguments (i.e. it 
uses the primary key addressing), the Parent Device MUST not use unique keys in the responses (i.e. it 
must use the primary key addressing).  

In case this unique key extension is supported by the device, the Data Model of the device MUST specify 
in its description which Parameters are unique keys for a specific MultiInstance Node. 

This syntax extension for primary keys MUST be supported by Parent Devices when they import Data 
Models which make use of non numeric values to identify Instance Nodes;i.e., wherever the Data Model 
does not use a device-assigned unsigned integer to identify object instances (see: Appendix C: Mapping 
rules for Other …). 

2.3.4. Time stamps 
Time stamps are used in this specification, specifically in the CSV strings used in some state variables to 
inform the CPs about some relevant event. Valid values for time stamps are defined in section 1.4.1. 

2.4. Security Feature 
Section 2.2.2 explained that, when the Security Feature is supported, Restrictable actions can have 
Restricted Role Lists and that, for such actions, a control point that does not possess a Role in the Role List 
but does possess a Role in the Restricted Role List might be able to invoke the action (see also Table 2-18).  
This decision is made by consulting the ConfigurationManagement:2 access control list (ACL, described 
in the following sections) associated with Nodes in the Data Model. The Access Control List is therefore 
relevant only for the  Restrictable actions having the Restricted Role List not empty, and, consequently, 
only for control points that do not possess Roles in the Role List but do possess Roles in the Restricted Role 
List. 

2.4.1. ACLs 
ACLs are used to specify permissions, for Restrictable actions, to perform operations on Nodes.  Such 
permissions are associated with Roles and define, for example, whether a control point can read the value 
of a Leaf or delete an existing Instance of a MultiInstance Node. 



ConfigurationManagement:2 Service Template Version 1.01 36 

Copyright UPnP Forum © 2012.  All rights reserved. 

An ACL associated with a Node can contain, depending on the Node type, three different types of 
permission lists controlling what the control point can do with such Node. These three types of lists are 
defined as follows: 

• List: defines the permission to read the names of Nodes/Paths. If the control point possesses a 
Role which is included in this list, then the name of this Node can be read by the control point 
using the action: GetSupportedParameters(). The List permission is therefore used by the Parent 
Device to hide or reveal part of the Data Model structure. For example, a Parent Device owned by 
a vendor might want to completely hide the presence of a private portion of the Data Model to 
non authorized control points in the home network. 

• Read: defines the permission to read values from the Parameters in the Data Model and to browse 
Instances. If the control point possesses a Role which is included in this list, the value of a Leaf 
Node or the value of Instance Nodes can be read by the control point using the actions: 
GetInstances(), GetValues(), GetSelectedValues() and GetAttributes(). The Read permission is 
therefore used by the Parent Device to hide or reveal Instances and to hide or reveal Parameter or 
attribute values in the Data Model. For example, a Parent Device owned by the customer might 
want to protect the access to private Data Model content (e.g. contacts in the Address Book), by 
hiding Instances to some control points. 

• Write: defines the permission to change values of Parameters in the Data Model and to create or 
delete Instances. If the control point possesses a Role which is included in this list, the value of 
this Parameter can be changed by the control point (using the SetValues() action), a new Instance 
can be created (using the CreateInstance() action) or an an existing Instance can be deleted 
(using the DeleteInstance() action). The Write permission is therefore used by the Parent Device 
to allow or deny the modification of Parameter values and the creation or deletion of Instances in 
the Data Model. For example, a Parent Device owned by a service provider might want to protect 
the access of a critical portion of the Data Model (e.g. WAN configuration Parameters), by 
denying access to some Parameters/Instances to unauthorized control points. 

Each permission list in the ACL of a Node can contain a list of the required Roles, for the TLS session 
between the control point and the Parent Device (see: [DPS], section 2.7 Service Behavioral Model). 

There are no special requirements about the internal implementation of the ACL.  This chapter describes 
the ACL functionality and how it can be represented to control points.  

2.4.2. Hierarchy of ACLs 
In order to preserve consistency, there is a hierarchy between permission lists associated with Nodes, 
which leads to the following requirements: 

• If the control point has Write permission on a Node, it MUST implicitly have Read permission for 
the same Node, when Read permission is applicable to such Node. This is because it is not 
permitted to change the value of a Node without having the permission to read it first. 

• If the control point has Read permission on a Node, it MUST implicitly have List permission for 
the same Node, when List permission is applicable to such Node. This is because it is considered 
not consistent to read, for example, the value of a Parameter without having the permission to use 
(and know) its name. 

 



ConfigurationManagement:2 Service Template Version 1.01 37 

Copyright UPnP Forum © 2012.  All rights reserved. 

List

Read

Write

Public

Basic dm:userAdmin

dm:3PartyAdmin

 

Figure 2: example of permissions’ hierarchy. 

For example (see Figure 2), in terms of Roles assigned to the ACL of a Node, the requirements defined 
above can also be stated as: 

• All the Roles listed for the Write permission (dm:ThirdPartyAdmin, in the example Figure 2) 
MUST also be listed for the Read permission. 

• All the Roles listed for the Read permission (Basic, dm:userAdmin, dm:ThirdPartyAdmin) MUST 
also be listed for the List permission. 

• The Roles listed for the List permission are: Public, Basic, dm:userAdmin, dm:ThirdPartyAdmin. 
 

Considering the hierarchical nature of Data Models and the fact that Nodes are always managed using 
Paths, which are sequences of Nodes from the Root (see details in 2.3.1.1), the effect (to the control point) 
of the ACL associated with a particular Node is related to the ACL associated with its parent Node (except 
for the Root Node). Therefore, for consistency, the following requirement must be applied: 

• If an ACL (List, Read or Write permission list) of a Node contains a Role, then all the ancestor of 
such Node, supporting the same type of ACL, MUST contain the same Role. 

For example from Appendix B: Data Model Requirements (Normative), if the List permission list of the 
Leaf Node SoftwareVersion (in /UPnP/DM/DeviceInfo/SoftwareVersion) contains the 
Basic Role, then also the List permission lists of its ancestor Root, UPnP, DM and DeviceInfo Nodes 
must contain the Basic Role. Otherwise the SoftwareVersion will not be listable by Basic control 
points. 

Notice that this is not a constraint on the internal implementations but just the perspective of the control 
point when reading the ACLs.  

2.4.3. ACLs for Instance and InstanceAlias Nodes 
The presence of MultiInstance Nodes in the Data Model leads to some specific considerations. Since Data 
Models are a hierarchical trees of Nodes (see 2.2.1 and 2.3), MultiInstance Nodes always contain (in the 
parent-child relationship) one or other of the following: 

• A single InstanceAlias Node: that represents the placeholder for dynamically creatable/deletable 
Instance Nodes. And, furthermore, an InstanceAlias Node can not have an Instance Node within 
its ancestors or descendants.  

• Zero or more Instance Nodes: that represent the dynamically created instances of the 
corresponding InstanceAlias Node. And, furthermore, an Instance Node can not have an 
InstanceAlias Node within its ancestors or descendants.  

 



ConfigurationManagement:2 Service Template Version 1.01 38 

Copyright UPnP Forum © 2012.  All rights reserved. 

Therefore, the presence of the first MultiInstance Node in the Path starting from the Root Node, causes the 
subsequent subtrees to be either one of the followings: 

• Template Subtree: a subtree belonging to at least one parent InstanceAlias Node. A Template 
Subtree can contain only SingleInstance, MultiInstance, InstanceAlias and Leaf Nodes. In other 
words, Nodes having at least one InstanceAlias Node in its ancestors are part of a Template 
Subtree. 

• Instance Subtree: a subtree which does not belong to any parent InstanceAlias Node. An Instance 
Subtree can contain only SingleInstance, MultiInstance, Instance and Leaf Nodes. In other words, 
Nodes having at least one Instance Node in its ancestors are part of a Instance Subtree. 

 

This distinction, obviously, does not apply if in the Path from the Root Node to the considered Node there 
are no MultiInstance Nodes. 

 

…

DU

#

...instance
subtree...

5

...template
subtree...

GetSupportedParameters()
GetACLData()

GetInstances()
Get/SetValues()

GetSelectedValues()
Create/DeleteInstances()

Get/SetAttributes()
GetACLData()

/

ACL List
ACL Read, Write

NO MultiInstance
Nodes here

MultiInstance
Node

 

Figure 3: ACLs for MultiInstance Node’s descendants. 

Two such different situations, where the presence of a MultiInstance Node causes the following part of the 
Data Model to be either a Template or an Instance Subtree are shown together in Figure 3:  

• In the first case, represented on the left side, the MultiInstance Node contains the InstanceAlias 
Node and, therefore, it is followed by the Template Subtree. The Nodes in the Template Subtree 
are accessible using the GetSupportedParameters() and GetACLData() actions.  

• In the second case, represented on the right side of the figure, the MultiInstance Node contains an 
Instance Nodes and, therefore, it is followed by an Instance Subtree. The Nodes in the Instance 
Subtree are accessible, for example, using the actions GetInstances(), Get/SetValues()  and so on, 
including the GetACLData() action.  



ConfigurationManagement:2 Service Template Version 1.01 39 

Copyright UPnP Forum © 2012.  All rights reserved. 

Notice that if the Path does not contain MultiInstance Node then the two cases above can not be 
distinguished and are exactly the same. 

The distinction between the two different cases above leads to the following implicit requirements: 

• ACLs associated with Nodes in Template Subtrees MUST contain only the List permission list, if 
the Node can support the List permission list. 

• ACLs associated with Nodes in Instance Subtrees MUST contain the Read and/or the Write 
permission lists, depending on the Node type and MUST NOT contain the List permission list. 

• ACLs associated with Nodes that are neither in a Template Subtree nor in an Instance Subtree, can 
contain the List , Read and Write permission list, depending of whether the type of the Node 
supports the List , Read and Write permission list. 

 

2.4.4. Dynamic creation of ACLs for Instance Nodes 
Concerning the dynamic creation of new Instance Nodes as children of a MultiInstance Node, it is not 
possible to specify a generic rule that can be valid for all the implementations. This means that when a new 
Instance Node is created (using a CMS action or other out of scope means), a new Instance Subtree 
belonging to it is consequently created: it is up to the device implementation to assign the ACLs associated 
with newly created  Nodes in this new Instance Subtree, as is shown in the example of Figure 4. 
Furthermore, Nodes in different Instance Subtrees from the same Template Subtree can have different 
ACLs.  

Contact

#

/

NickName

ACL

…

ACL

Contact

3

/

NickName

ACL

…

ACL

ACL

Implementation
dependent

Implementation
dependent

Implementation
dependent

Template
Subtree

Instance
Subtree

 

Figure 4: Example of ACLs in case of Instance Node creation. 

 

As different Instance Nodes, belonging to the same MultiInstance Node, can have different ACLs, this 
means that some control points might have unmatched information when browsing the Instance Nodes and 
reading the number of Instances. See section B.2 NumberOfEntries parameters for details. 



ConfigurationManagement:2 Service Template Version 1.01 40 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.4.5. Requirements for ACLs 
The ACL associated with a Node is also related to its Access attribute (see: 2.3.2.2). The Access attribute is 
a ReadOnly (see definitions in 2.3.2) property of the Node (it can not be changed at runtime) defining 
whether, for example, a specific Leaf Node can be written (readWrite) or only read (readOnly). Therefore, 
to preserve the consistency, when the Security Feature is also supported, there are some requirements in 
order to properly associate permission lists to Nodes, depending on the Access attribute value (see :Table 2-
12). As an example of consistency, this means that a readOnly Node will never have the Write ACL list. 

Furthermore, as different kind of Paths are managed via different kinds of CMS actions, ACLs associated 
with Nodes have therefore effects on the actions’ behaviour (i.e.: ACL’s values and control point Role 
influences the output arguments of such actions). 

The following table summarizes the association between permission types and the CMS Restrictable 
actions that are used to manage the Data Model (see also section 2.7). The N/A (Not Applicable) means 
that the action behavior is not influenced by the permission type, because of the argument types of such 
action. Refer to each action’s description for further details about the types of Paths managed.  

Table 2-11: Relationship between permissions and Restrictable actions 

Permission Action Description 
List GetSupportedParameters() This action is used to retrieve the names of all 

supported parameters (it returns StructurePaths), 
including the structure of tables (i.e.: MultiInstance 
Nodes) which are represented using Aliases instead 
of Instance Nodes.  

GetACLData() This action is used to retrieve the ACL information 
associated with ACLDataPaths, which might 
include the structure of tables (i.e.: MultiInstance 
Nodes) represented using Aliases instead of 
Instance Nodes. 

GetInstances() N/A 

GetValues() 

GetSelectedValues() 

GetAttributes() 

SetValues() 

CreateInstance() 

DeleteInstance() 

SetAttributes() 

Read GetSupportedParameters() N/A 

GetInstances() These actions are used to read Instances of 
MultiInstance Nodes (GetInstances()), to read 
values of Parameters (GetValues() and 
GetSelectedValues()) or to read values of attributes 
(GetAttributes()) in data model.  

 

GetValues() 

GetSelectedValues() 

GetAttributes() 



ConfigurationManagement:2 Service Template Version 1.01 41 

Copyright UPnP Forum © 2012.  All rights reserved. 

Permission Action Description 
GetACLData() This action is used to retrieve the ACL information 

associated with ACLDataPaths, which might 
include Instances of MultiInstance Nodes. 

SetValues() N/A 

CreateInstance() 

DeleteInstance() 

SetAttributes() 

Write GetSupportedParameters() N/A 

GetInstances() 

GetValues() 

GetSelectedValues() 

GetAttributes() 

GetACLData() 

SetValues() These actions are used to change values of 
Parameters (SetValues()), to create/delete Instances 
of MultiInstance Nodes (CreateInstance() and 
DeleteInstance())  or to change attribute values 
(SetAttributes()). 

 

CreateInstance() 

DeleteInstance() 

SetAttributes() 

 

The following Table 2-12 summarizes the requirements for permissions. Depending on Node types and 
Access attribute values, the permission lists can be applicable ( ) or not applicable (-) as a specific 
property associated with such Node. The symbol (#) means that the value of the Access attribute does not 
influence the permissions. The column named Subtree is used to specify the different permission lists when 
the Node is either in a Template Subtree or in an Instance Subtree or none of above (i.e. no parent 
MultInstance Nodes). 

For example, as SingleInstance Nodes do not have values that can be read/write, the Read and Write 
permission types are not applicable to SingleInstance Nodes. The same is tue for the Access attribute, as it 
describes whether a value can be changed or not: for example, a MultiInstance Node having the readOnly 
Access attribute, means that such a Node can not be used in the CreateInstance() action’s argument (to 
create a new Instance), therefore the Write permission is not applicable as a specific property of such Node. 

Table 2-12: Requirements for permissions 

Node Type Subtree Access Permission   
   List Read Write 

Root - # - - 

SingleInstance None # - - 



ConfigurationManagement:2 Service Template Version 1.01 42 

Copyright UPnP Forum © 2012.  All rights reserved. 

Node Type Subtree Access Permission   
Template 
Subtree 

# - - 

Instance 
Subtree 

# - - - 

MultiInstance None readOnly - - 

readWrite -  

Template 
Subtree 

readOnly - - 

readWrite - - 

Instance 
Subtree 

readOnly - - - 

readWrite - -  

Instance None readOnly - - 

readWrite -  

Template 
Subtree 

readOnly - - - 

readWrite - - - 

Instance 
Subtree 

readOnly - - 

readWrite -  

Leaf None readOnly - 

readWrite  

Template 
Subtree 

readOnly - - 

readWrite - - 

Instance 
Subtree 

readOnly - - 

readWrite -  

 

As it has been stated in section 2.3, Nodes in the Data Model are addressed using Paths as action 
arguments, and Paths are sequences of Nodes. Therefore if a control point needs to invoke some 
Restrictable action, it must posses the Role required for using such Paths as input arguments, with respect 
to the requirements described in the previous sections 2.4.2 (Hierarchy of ACLs) and  2.4.3 (ACLs for 
Instance and InstanceAlias Nodes). Furthermore also the responses provided to the control point depend on 
the control point’s Role.  

Details will be explained in section 2.7. 

2.4.6. Roles for the examples 
For the purposes of the examples in this specification document, the following Roles will be herein used:  

• Public: see definition in [DEVICE] and in section 2.2.2. 



ConfigurationManagement:2 Service Template Version 1.01 43 

Copyright UPnP Forum © 2012.  All rights reserved. 

• Basic: see definition in [DEVICE]. 

• xxxAdmin: more restrictive than the Basic Role, providing more secured access to action/argument 
values. Examples of xxxAdmin Role’s priviledges could be the same as defined for 
dm:ThirdPartyAdmin or dm:UserAdmin (see definition in [DEVICE]). 

• Admin: this is the most restrictive Role, and MUST NOT be included in the RestrictedRoleList. 
see definition in [DEVICE] and in section 2.2.2. 

2.4.7. Representations of ACL 
The ACL is a specific property of Nodes in the Data Model. 

Control points can make use of the GetACLData() action to retrieve the ACL associated with the Nodes, as 
it is explained in the action description. 

 

Settings

Power

CurrentPowerLevel LowBatteryAlarmLevel

AddressBook

Contact

#

NickName

/

CurrentPowerSource

UPnP

PHONE

List Public

List Public

List Public

List Public

List Public

List Public
Write Basic xxxAdmin

List Public

Read Basic xxxAdmin
Write xxxAdmin

Read xxxAdmin
Write xxxAdmin

List Public 
Read Basic xxxAdmin

List Public
Read Basic xxxAdmin
Write Basic xxxAdmin

3

Identification

NickName

List Public

Identification

List Public

Battery

List Public

List Public
Read Basic xxxAdmin

 

Figure 5: example of data model Nodes with associated ACLs. 

The Figure 5 shows an example of Data Model Nodes with their associated ACLs. The permission lists in 
the ACLs have been defined considering the rules in Table 2-12. 

The complete description of the Data Model excerpt in Figure 5, using the A_ARG_TYPE_ACL type is: 

<ACL> 
<ACLEntry> 

<ACLDataPath>/</ACLDataPath> 



ConfigurationManagement:2 Service Template Version 1.01 44 

Copyright UPnP Forum © 2012.  All rights reserved. 

<List>Public</List> 
</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/</ACLDataPath> 
<List>Public</List> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/</ACLDataPath> 
<List>Public</List> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/Settings/</ACLDataPath> 
<List>Public Basic xxxAdmin</List> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/Settings/Power/</ACLDataPath> 
<List>Public</List> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/Settings/Power/Battery/</ACLDataPath> 
<List>Public</List> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/Settings/Power/Battery/CurrentPowerLevel<
/ACLDataPath> 
<List>Public</List> 
<Read>Basic xxxAdmin</Read> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/Settings/Power/Battery/LowBatteryAlarmLev
el</ACLDataPath> 
<List>Public</List> 
<Read>Basic xxxAdmin</Read> 
<Write>Basic xxxAdmin</Write> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/Settings/Power/CurrentPowerSource</ACLDat
aPath> 
<List>Public</List> 
<Read>Basic xxxAdmin</Read> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/AddressBook/</ACLDataPath> 
<List>Public</List> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/AddressBook/Contact/</ACLDataPath> 
<List>Public</List> 
<Read>Basic xxxAdmin</Read> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/AddressBook/Contact/#/Identification/ 
</ACLDataPath> 
<List>Public</List> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/AddressBook/Contact/#/Identification/Nick
Name</ACLDataPath> 
<List>Public</List> 

</ACLEntry> 



ConfigurationManagement:2 Service Template Version 1.01 45 

Copyright UPnP Forum © 2012.  All rights reserved. 

<ACLEntry> 
<ACLDataPath>/UPnP/PHONE/AddressBook/Contact/3/</ACLDataPath> 
<Read>Basic xxxAdmin</Read> 
<Write>xxxAdmin</Write> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/AddressBook/Contact/3/Identification/Nick
Name</ACLDataPath> 
<Read>xxxAdmin</Read> 
<Write>xxxAdmin</Write> 

</ACLEntry> 
</ACL> 
 

2.4.7.1. Factorization 
The complete ACL description of the Data Model results in quite a long representation for even a 
relatively simple Data Model. Thus it is suggested to the device to make use of the factorization of ACLs, 
whenever it is possible. The factorization is a mechanism to simplify the ACLs’ representation using the 
following recursive rule: 

• If a given Node and all its descendants contain the same Roles in their permission list, then such 
permission list can be factorized and associated with the given Node instead to its descendants. 
The factorized ACL, as it collects information from different types of Nodes, can include 
permission lists which are not directly applicable to such Node (see Table 2-12). For example, 
in Figure 6, the Root Node has a factorized ACL and contains the Read and Write permission lists, 
even though they are not applicable for the Root Node. 

 
From the control point perspective, if a given Node has a factorized permission list, this means that all its 
descendant Nodes will have the same permission list, when such permission list is applicable (see Table 2-
12). 

For example, there could be an extremely homogeneous Data Model, whereas the ACLs associated might 
be described by the following rules: 

• all the List ACL list in the Data Model contain Public Role, 
• all the Read ACL list in the Data Model contain Basic and xxxAdmin Roles, 
• all the Write ACL list in the Data Model contain xxxAdmin Role only. 

 

Such Data Model’s ACLs can be described as in Figure 6. In the figure, the Read and Write permission 
lists are written in italics to highlight that they are not properties associated with the Root Node (for 
consistency with Table 2-12:  they are indeed factorized from their descendant Nodes. 

 

/
List Public
Read Basic xxxAdmin
Write xxxAdmin

 

Figure 6: example of factorization for homogeneous ACLs. 

The minimal factorized representation of such Data Model’s ACLs would therefore be the following one: 

<ACL> 
<ACLEntry> 

<ACLDataPath>/</ACLDataPath> 
<List factorized=”1”>Public</List> 



ConfigurationManagement:2 Service Template Version 1.01 46 

Copyright UPnP Forum © 2012.  All rights reserved. 

<Read factorized=”1”>Basic xxxAdmin</Read> 
<Write factorized=”1”>xxxAdmin</Write> 

</ACLEntry> 
</ACL> 
  

2.4.7.2. Overriding 
The factorized representation uses the override mechanism, therefore a Node factorizes all its descendant 
unless there is something different specified for some of them.  

 

Settings

Power

CurrentPowerLevel LowBatteryAlarmLevel

AddressBook

Contact

#

NickName

/

CurrentPowerSource

UPnP

PHONE

List Public
Read Basic xxxAdmin
Write Basic xxxAdmin

Read Basic xxxAdmin
Write xxxAdmin

Read xxxAdmin
Write xxxAdmin

3

Identification

NickName

Identification

Battery

 

Figure 7: example of ACLs’ factorization. 

The Figure 7 shows one possible factorization of the example in Figure 5. Its description, using the 
A_ARG_TYPE_ACL type, is: 

<ACL> 
<ACLEntry> 

<ACLDataPath>/</ACLDataPath> 
<List factorized=”1”>Public</List> 
<Read factorized=”1”>Basic xxxAdmin</Read> 
<Write factorized=”1”>Basic xxxAdmin</Write> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/AddressBook/Contact/3/</ACLDataPath> 
<Read factorized=”1”>Basic xxxAdmin</Read> 



ConfigurationManagement:2 Service Template Version 1.01 47 

Copyright UPnP Forum © 2012.  All rights reserved. 

<Write factorized=”1”>xxxAdmin</Write> 
</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/AddressBook/Contact/3/Identification/Nick
Name</ACLDataPath> 
<Read>xxxAdmin</Read> 
<Write>xxxAdmin</Write> 

</ACLEntry> 
</ACL> 
 

This means that, starting from the Root Node, all the ACL list, when supported (see the rules in Table 2-
12), of its descendant contain the same Roles as follows: 

<ACLEntry> 
<List factorized=”1”>Public</List> 
<Read factorized=”1”>Basic xxxAdmin</Read> 
<Write factorized=”1”>Basic xxxAdmin</Write> 

</ACLEntry> 
 

The Node /UPnP/PHONE/AddressBook/Contact/3/, overrides the ACL in the Root Node with the 
new ACL list: 

<ACLEntry> 
<ACLDataPath>/UPnP/PHONE/AddressBook/Contact/3/</ACLDataPath> 
<Read factorized=”1”>Basic xxxAdmin</Read> 
<Write factorized=”1”>xxxAdmin</Write> 

</ACLEntry> 
 

And so on.  

Notice that NickName simply overrides its ancestors but does not factorize, because it is a Leaf Node and 
does not have further descendants. 

2.4.8. Device Requirements 
The Parent Device, which contains this CMS instance supporting the Security Feature, MUST apply the 
requirements described in the following procedure. 

1. If the Role List or the Restricted Role List of the invoked action are not empty, then the action MUST 
be invoked over a TLS connection by the control point, otherwise the Parent Device MUST return the 
error 606 “Action not authorized” to such control point. 

2. The parent device MUST check whether the Role assigned to the control point (over a TLS 
connection) is included in the Role List of the invoked action.  

2.1. If the control point Role is included in the action’s Role List, then the Parent Device MUST 
permit, to such control point, unconditional use of the action, regardless the ACLs assigned to 
Nodes in the Data Model.  

2.2. If the control point Role is not included in the action’s Role List, then the Parent Device MUST 
check whether the control point Role is included in the Restricted Role List. 

3. The parent device MUST check whether the Role assigned to the control point (over a TLS 
connection) is included in the Restricted Role List of the invoked action. 

3.1. If the control point Role is included in the action’s Restricted Role List, then the Parent Device 
MUST use the ACLs assigned to Nodes in the Data Model for: 



ConfigurationManagement:2 Service Template Version 1.01 48 

Copyright UPnP Forum © 2012.  All rights reserved. 

• Determining whether the Nodes in the action input arguments are permitted to such control 
point. If the ACL List or Read permission lists of at least one input Node does not include the 
control point Role, then the error 703 “No Such Name” MUST be returned. If the ACL Write 
permission list of at least one input Node does not include the control point Role, then the 
error 706 “Read Only Violation” MUST be returned. 

• Defining the proper action output arguments to such control point.  

3.2. If the control point Role is not included in the action’s Restricted Role List, then the Parent 
Device MUST return the error 606 “Action not authorized” and the check with the ACL contents 
is therefore not necessary. 

 

2.5. State Variables 
Unlike most other services, the ConfigurationManagement service is primarily Node-based as described 
above. The service state variables exist to support argument passing in the service actions. Information is 
not exposed directly through explicit state variables. Rather, a client retrieves ConfigurationManagement 
service information via the return arguments of the actions defined below. 

Reader Note: For a first-time reader, it may be more helpful to read the action definitions (see 2.7) before 
reading the state variable definitions (see 2.5). 

Table 2-13: State Variables 

Variable Name Req. 
or 
Opt.1

Data 
Type 

Allowed 
Value 2 

Default 
Value  

Eng. 
Units 

ConfigurationUpdate R string CSV(ui4, 
dateTime [, 
string]).See 
section 0 

  

CurrentConfigurationVersion R ui4 See 
section 2.5.2 

0  

SupportedDataModelsUpdate R string CSV(ui4, 
dateTime [, 
string]).See 
section 2.5.3 

  

SupportedParametersUpdate R string CSV(ui4, 
dateTime [, 
string]).See 
section 2.5.4 

  

AttributeValuesUpdate O string CSV(ui4, 
dateTime [, 
string]).See 
section 2.5.5 

  

 
 



ConfigurationManagement:2 Service Template Version 1.01 49 

Copyright UPnP Forum © 2012.  All rights reserved. 

Variable Name Req. 
or 
Opt.1

Data 
Type 

Allowed 
Value 2 

Default 
Value  

Eng. 
Units 

InconsistentStatus O boolean 0, 

1. 

See 
section 2.5.6 

0  

AlarmsEnabled CR4 boolean 0, 

1. 

See section 

2.5.7 

0  

A_ARG_TYPE_StructurePath R string Formatted 
string. See 
section 2.5.8 

  

A_ARG_TYPE_StructurePathList R string XML string. See 
section 2.5.9 

  

A_ARG_TYPE_PartialPath R string Formatted 
string. See 
section 2.5.10 

  

A_ARG_TYPE_ParameterValueList R string XML string. See 
section 2.5.11 

  

A_ARG_TYPE_NodeAttributeValueList R string XML string. See 
section 2.5.12 

  

A_ARG_TYPE_ParameterInitialValueList R string XML string. See 
section 2.5.13 

  

A_ARG_TYPE_Filter R string Formatted 
string. See 
section 2.5.14 

  

A_ARG_TYPE_SupportedDataModels R string XML string. See 
section 2.5.15 

  

A_ARG_TYPE_SearchDepth R ui4 See 
section 2.5.16 

0  

A_ARG_TYPE_ChangeStatus R string ChangesCommit
ted, 

ChangesApplied 

See 
section 2.5.17 

  

A_ARG_TYPE_InstancePathList R string XML string. See 
section 2.5.18 

  

A_ARG_TYPE_ContentPathList R string XML string. See 
section 2.5.19 

  



ConfigurationManagement:2 Service Template Version 1.01 50 

Copyright UPnP Forum © 2012.  All rights reserved. 

Variable Name Req. 
or 
Opt.1

Data 
Type 

Allowed 
Value 2 

Default 
Value  

Eng. 
Units 

A_ARG_TYPE_MultiInstancePath R string Formatted 
string. See 
section 2.5.20 

  

A_ARG_TYPE_InstancePath R string Formatted 
string. See 
section 2.5.21 

  

A_ARG_TYPE_NodeAttributePathList R string XML string. See 
section 2.5.22 

  

A_ARG_TYPE_ACLDataPathList CR3 string XML string. See 
section 2.5.23 

  

A_ARG_TYPE_ACL CR3 string XML string. See 
section 2.5.24 

  

Non-standard state variables implemented 
by an UPnP vendor go here. 

X TBD TBD TBD TBD 

1 R = REQUIRED, O = OPTIONAL, CR = CONDITIONALLY REQUIRED, X = Non-standard. 
2  CSV stands for Comma-Separated Value list. The type between brackets denotes the UPnP data type 
used for the elements inside the list (section 1.5.1). 
3 
REQUIRED if the Security Feature is supported. 

4 
REQUIRED if the Alarming Feature is supported. 

 

2.5.1. ConfigurationUpdate 
The ConfigurationUpdate state variable is REQUIRED. It keeps track of changes of all Nodes under 
version control; refer to the Version attribute (see section 2.3.2.4) for further details. It is a CSV (ui4, 
dateTime [, string]) list (1.5.1), where: 

• The first element of the CSV is the last value of CurrentConfigurationVersion state variable. 

• The second element of the CSV is the time stamp when the CurrentConfigurationVersion changed its 
value. Refer to section 2.3.4  for time stamp requirements. 

• In case the device supports the AlarmingFeature, the third element of the CSV is an XML string 
containing the list of pairs {ParameterPath; updated value} for the the alarmed Parameters (see 
also 2.3.2.6). This string is formatted as described in ARG_TYPE_ParameterValueList. 

• The control point must ignore what is returned in this CSV from the fourth element on, after the last 
trailing comma. The last trailing comma is not required. 

Example of valid ConfigurationUpdate is the following string: 

356,2007-10-24T05:41:00,<?xml…><cms:ParameterValueList…><Parameter> 
<ParameterPath>UPnP/PHONE/Settings/Power/Battery/LowBatteryAlarm</Parame
terPath><Value>1</Value></Parameter></cms:ParameterValueList> 
 



ConfigurationManagement:2 Service Template Version 1.01 51 

Copyright UPnP Forum © 2012.  All rights reserved. 

where the 356 is the value of CurrentConfigurationVersion and the 2007-10-24T05:41:00 is the 
time stamp when the CurrentConfigurationVersion changed its value. The last element is the 
ParameterValueList of the changed battery alarm. 

The value of ConfigurationUpdate MUST be persistent and survive as the CMS disappears from the 
network and reappears again later sending the ssdp::alive message. It is evented at a maximum rate of 5 
Hz (once every 0.2 seconds). 

Refer to the section 2.5.23 for further details. 

2.5.2. CurrentConfigurationVersion 
The CurrentConfigurationVersion state variable is REQUIRED. CurrentConfigurationVersion is of type 
ui4, starting from 0. It is incremented by one each time the value of a Leaf or MultiInstance Node 
supporting the Version attribute changes. 

Changes in the Parent Device configuration are defined as following: 

• The value of a Parameter (value associated with a Leaf Node) in the supported data model is changed 
because of the SetValues() action or some event that is outside of the UPnP scope, for example an 
external event like a user action (such as via the GUI) on the Parent Device. 

• An Instance Node is created or deleted in the supported data model because of CreateInstance() or 
DeleteInstance() actions or some event that is outside of the UPnP scope, for example an external 
event like a user action (wuch as via the GUI) on the Parent Device. For example, if a MultiInstance 
Node is under version control, each time a new Instance Node is created or an existing one is deleted, 
the CurrentConfigurationVersion is incremented by 1. 

• It is implementation specific whether each single change in the configuration Parameters leads to an 
increment or multiple value changes can be grouped to cause a single change in 
CurrentConfigurationVersion. For example, if SetValues() action invocation is used to change the 
value of 3 different Parameters, it is an implementation choice to define whether the 
CurrentConfigurationVersion is: 
• Incremented by 1 (one per action invocation), or 
• Incremented by 3 (one per Parameter value changed). 

The value of the Version attribute for each Parameter must be updated accordingly with the implemented 
behavior. From the example above: 

• If the CurrentConfigurationVersion is incremented by 1 (one per action invocation), the 
Parameters’Version attributes will have the same value, otherwise 

• If the CurrentConfigurationVersion is incremented by 3 (one per Parameter value changed), each 
Parameter will have a different Version attribute value. How the CurrentConfigurationVersion values 
are assigned to Parameters’ Version attribute values is an implementation choice. 

Actions that fail not cause any configuration state change, and therefore the CurrentConfigurationVersion 
does not change. 

When the maximum value of the ui4 type is reached, the sequence is restarted from 0. 

Refer to the section 2.5.23 for further details. 

2.5.3. SupportedDataModelsUpdate 
The SupportedDataModelsUpdate state variable is REQUIRED and keeps track of any changes in the 
supported Data Models (see section 2.5.15). This state variable allows a control point to know if there is a 
change in the list of supported Data Models as a result of firmware/software changes in the Parent Device 



ConfigurationManagement:2 Service Template Version 1.01 52 

Copyright UPnP Forum © 2012.  All rights reserved. 

as well as other external eventswhich are out of the scope of this service specification. 
SupportedDataModelsUpdate is a CSV (ui4, dateTime [, string]) list (1.5.1) where: 

• The first element of the CSV is a sequential counter that is incremented by 1 whenever there is a 
change in the supported data model list, 

• The second element of the CSV is the time stamp when the sequential counter changed its value. Refer 
to section 2.3.4  for time stamp’s requirements.  

• The control point must ignore what is returned in this CSV from the third element on, after the last 
trailing comma. The last trailing comma is not required 

Example of valid SupportedDataModelsUpdate is the following string: 

35,2008-10-24T05:45:30 

where the 35 is the value of the sequential counter and the 2008-10-24T05:45:30 is the time stamp 
when the sequential counter changed its value. 

This variable is evented and the event is moderated at a maximum rate of 1 Hz (once every 1.0 seconds). 

The SupportedDataModelsUpdate MUST be persistent and survive as the CMS disappears from the 
network and reappears again later sending the ssdp::alive message. 

2.5.4. SupportedParametersUpdate 
The SupportedParametersUpdate state variable is REQUIRED and keeps track of any changes in the list 
of supported Parameters of the Data Models supported by the Parent Device. This state variable allows a 
control point to know if there is a change on the list of the Parent Device supported Parameters, triggered 
by events out of the scope of this service specification like, for example, a firmware change, software 
modules change or end-user interaction. SupportedParametersUpdate is a CSV (ui4, dateTime [, string]) 
list (1.5.1), where: 

• The first element of the CSV is a sequential counter that is incremented by 1 whenever there’s a 
change in the supported Parameters, 

• The second element of the CSV is the time stamp when the sequential counter changed its value. Refer 
to section 2.3.4 for time stamp’s requirements. 

• The control point must ignore what is returned in this CSV from the third element on, after the last 
trailing comma. The last trailing comma is not required 

Example of valid SupportedParametersUpdate is the following string: 

59,2008-10-24T05:45:30 

where the 59 is the value of the sequential counter and the 2008-10-24T05:45:30 is the time stamp 
when the sequential counter changed its value. 

This variable is evented and the event is moderated at a maximum rate of 1 Hz (once every 1.0 seconds). 

The SupportedParametersUpdate MUST be persistent and survive as the CMS disappears from the 
network and reappears again later sending the ssdp::alive message. 

2.5.5. AttributeValuesUpdate 
The AttributeValuesUpdate state variable is OPTIONAL and keeps track of any changes in the attribute 
values for Parameters in the Data Models supported by the Parent Device. This state variable allows a 
control point to know if there is a change on some attribute values due to: 

• SetAttributes() action invocation (i.e., changes in attribute values from another control point), 



ConfigurationManagement:2 Service Template Version 1.01 53 

Copyright UPnP Forum © 2012.  All rights reserved. 

• Some event (some could be external and out of the scope of this service) causing some changes in the 
supported data model and therefore in the attribute values (e.g.: a firmware change, software modules 
change or end-user interaction (such as via a GUI)). 

AttributeValuesUpdate is a CSV (ui4, dateTime [, string]) list (1.5.1), where: 

• The first element of the CSV is a sequential counter that is incremented by 1 whenever there’s a 
change in the attribute values, 

• The second element of the CSV is the time stamp when the sequential counter changed its value. Refer 
to section 2.3.4 for time stamp’s requirements.  

• The control point must ignore what is returned in this CSV from the third element on, after the last 
trailing comma. The last trailing comma is not required 

Example of valid AttributeValuesUpdate is the following string: 

59,2008-10-24T05:45:30 

where the 59 is the value of the sequential counter and the 2008-10-24T05:45:30 is the time stamp 
when the sequential counter changed its value. 

This variable is evented and the event is moderated at a maximum rate of 1 Hz (once every 1.0 seconds). 

The AttributeValues MUST be persistent and survive as the CMS disappears from the network and 
reappears again later sending the ssdp::alive message. 

2.5.6. InconsistentStatus 
The InconsistentStatus state variable is OPTIONAL and keeps track whether the Parent Device 
configuration is consistent or not. As the control point uses SetValues(), CreateInstance(), DeleteInstance() 
or SetAttributes() action to change the configuration of the Parent Device, the Parent Device MAY use the 
Status argument (see the A_ARG_TYPE_ChangeStatus for further explanations) to return information 
about its internal status, concerning the consistency and the need to perform further operation (e.g.: a 
reboot of the operating system supporting this CMS) in order to apply all the changes.  

Table 2-14: allowedValueList for InconsistentStatus 

Value Req. or Opt. Description 

1 R The InconsistentStatus is set to 1 when the 
control point uses SetValues(), 
CreateInstance(), DeleteInstance() or 
SetAttributes() action and the Status argument 
value returned is ChangesCommitted. The 
InconsistentStatus may be also autonomously 
set to 1 by the Parent Device when the same 
internal condition occurs, due to some event 
which is out of the scope of UPnP DM. 

The default value for Inconsistent status is 0 
because as the Parent Device starts and 
therefore sends the ssdp::alive message, its 
internal status MUST be consistent. 



ConfigurationManagement:2 Service Template Version 1.01 54 

Copyright UPnP Forum © 2012.  All rights reserved. 

Value Req. or Opt. Description 

0 R The InconsistentStatus state variable is set 
back to its default value of 0 as soon as the 
status is once again consistent (e.g.: all 
pending changes have been applied). It’s up to 
the implementation to return to a consistent 
status (e.g. apply the changes) as soon as 
possible, and the status MUST be consistent 
whenever CMS is announced via ssdp::alive 
messages. 

 

InconsistentStatus is a global information of the Parent Device, whereas the A_ARG_TYPE_ChangeStatus  
returned by SetValues(), CreateInstance(), DeleteInstance() and SetAttributes() actions invocation is a local 
information strictly related to the action behavior. Therefore the A_ARG_TYPE_ChangeStatus returned by 
subsequent action invocations are not related one to each other. 

2.5.7. AlarmsEnabled 
The AlarmsEnabled state variable is OPTIONAL. It keeps track whether the overall “alarming” feature is 
enabled or not on the Parent Device. It is a bool state variable. The AlarmsEnabled state variable is 
CONDITIONALLY REQUIRED in case the Alarming Feature is supported. 

Table 2-15: allowedValueList for AlarmsEnabled 

Value Req. or Opt. Description 

1 R The AlarmsEnabled set to 1 will force the 
Parent Device from including the pair name-
value for “alarmed” parameters, if any, in the 
ConfigurationUpdate state variable. 

A parameter is “alarmed” if: 

• It supports the AlarmOnChange 
attribute, and 

• The value of its AlarmOnChange 
attribute is 1, and 

• It has changed its value since the last 
ConfigurationUpdate state variable 
event was sent. 

0 R The AlarmsEnabled set to 0 will prevent the 
Parent Device to include the pair name-value 
for “alarmed” parameters, when they change 
their value, in the ConfigurationUpdate state 
variable. 

 



ConfigurationManagement:2 Service Template Version 1.01 55 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.5.8. A_ARG_TYPE_StructurePath 
This state variable (defined for the purpose of specifying an action argument) represents a StructurePath. 
This means it must be correctly parsed (i.e. syntactically produced) using the grammar in section 2.3.1.2 
starting from the grammar rule named StructurePath. 

2.5.9. A_ARG_TYPE_StructurePathList 
This state variable (defined for the purpose of specifying an action argument) represents a list of 
StructurePaths. This means it must be correctly validated using the XML schema in Appendix A: XML 
schema. Each element of the list must be correctly parsed (i.e., syntactically produced) using the grammar 
in section 2.3.1.2 starting from the grammar rule named StructurePath. The specific portion of the schema 
to be considered is the one starting with the element named StructurePathList.  

<?xml version="1.0" encoding="UTF-8"?> 
<cms:StructurePathList  

xmlns:cms="urn: schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn: schemas-upnp-
org:dm:cms http://www.upnp.org/schemas/dm/cms.xsd"> 

<!--  The document contains a list of zero or more StructurePath 
elements. --> 
<StructurePath> 

Optional StructurePath element. 
</StructurePath> 
</cms:StructurePathList> 
 

The following XML file shows an A_ARG_TYPE_StructurePathList example: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<cms:StructurePathList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 
<StructurePath> 

/UPnP/DM/DeviceInfo/ 
</StructurePath> 
<StructurePath> 

/UPnP/DM/DeviceInfo/SoftwareVersion 
</StructurePath> 
<StructurePath> 

/UPnP/DM/DeviceInfo/PhysicalDevice/NetworkInterface/#/ 
</StructurePath> 

</cms:StructurePathList> 
 
In case the list of StructurePaths returned contains no elements, the valid XML file MUST be anyway 
returned as: 
 
<?xml version="1.0" encoding="UTF-8"?> 
<cms:StructurePathList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"/> 

http://www.upnp.org/schemas/dm/cms.xsd�


ConfigurationManagement:2 Service Template Version 1.01 56 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.5.10.A_ARG_TYPE_PartialPath 
This state variable (defined for the purpose of specifying an action argument) represents a PartialPath. 
This means it must be correctly parsed (i.e. syntactically produced) using the grammar in section 2.3.1.2 
starting from the grammar rule named PartialPath. 

2.5.11.A_ARG_TYPE_ParameterValueList 
This state variable (defined for the purpose of specifying an action argument) represents a list of pairs 
ParameterPath-value. This means it must be correctly validated using the XML schema in Appendix A: 
XML schema. Each <ParameterPath> element of the list must be correctly parsed (i.e. syntactically 
produced) using the grammar in section 2.3.1.2 starting from the grammar rule named ParameterPath. The 
specific portion of the schema to be considered is the one starting with the element named 
ParameterValueList. 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:ParameterValueList  

xmlns:cms="urn: schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn: schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

<!-- The document contains a list of zero or more Parameter elements.  
--> 
<Parameter> 
 <ParameterPath> 

Required ParameterPath.  
</ParameterPath> 
<Value> 

Required, the value of the given ParameterPath. 
</Value> 

</Parameter> 
</cms:ParameterValueList> 
 

The following XML file shows an A_ARG_TYPE_ParameterValueList example: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<cms:ParameterValueList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd”> 

<Parameter> 
<ParameterPath> 

/UPnP/DM/Configuration/Network/IPInterface/15/SystemName 
</ParameterPath> 
<Value>AdvertisementInterface</Value> 

</Parameter> 
<Parameter> 

<ParameterPath> 
/UPnP/DM/Configuration/Network/IPInterface/15/IPv4/IPAddress 

</ParameterPath> 
<Value>239.255.255.250</Value> 

</Parameter> 
</cms:ParameterValueList> 
 



ConfigurationManagement:2 Service Template Version 1.01 57 

Copyright UPnP Forum © 2012.  All rights reserved. 

In case the list of ParameterPath-Value pairs returned contains no elements, the valid XML file 
MUST be anyway returned, as: 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:ParameterValueList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"/> 

2.5.12.A_ARG_TYPE_NodeAttributeValueList 
This state variable (defined for the purpose of specifying an action argument) represents a list composed of 
either a ParameterPath, a MultiInstancePath or an InstancePath associated with one or more Parameter 
elements (<Type>, <Access> and so on: see section 2.3.2). This means it must be correctly validated 
using the XML schema in Appendix A: XML schema. Each <AttributePath> element of the list 
must be correctly parsed (i.e. syntactically produced) using the grammar in section 2.3.1.2 starting from 
respectively the grammar rules named ParameterPath, MultiInstancePath or InstancePath. The specific 
portion of the schema to be considered is the one starting with the element named NodeAttributeValueList. 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:NodeAttributeValueList  

xmlns:cms="urn: schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn: schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

<!-- The document contains a list of zero or more Node elements. --> 
<Node>  

<NodeAttributePath> 
Required NodeAttributePath. 

</NodeAttributePath> 
<Type>Optional value for Type attribute.</Type> 
<Access>Optional value for Access attribute.</Access> 
<Version>Optional value for Version attribute.</Version > 
<MIMEType>Optional value for MIMEType attribute.</MIMEType > 
<EventOnChange> 

Optional value for EventOnChange attribute. 
</EventOnChange> 
<AlarmOnChange> 

Optional value for AlarmOnChange attribute. 
</AlarmOnChange > 

</Node> 
</cms:NodeAttributeValueList> 
 

The following XML file shows an A_ARG_TYPE_NodeAttributeValueList example: 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:NodeAttributeValueList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

<Node>  
<!-- ParameterPath--> 
<NodeAttributePath> 

/UPnP/DM/DeviceInfo/SoftwareVersion 
</NodeAttributePath> 
<Type>String</Type> 



ConfigurationManagement:2 Service Template Version 1.01 58 

Copyright UPnP Forum © 2012.  All rights reserved. 

<Access>readWrite</Access> 
</Node> 
 
<Node>  

<!-- MultiInstancePath --> 
<NodeAttributePath> 

/UPnP/DM/DeviceInfo/PhysicalDevice/Interface/ 
</NodeAttributePath> 
<Type>MultiInstance</Type> 
<Access>readOnly</Access> 

</Node> 
 
<Node>  

<!-- InstancePath --> 
<NodeAttributePath> 

/UPnP/DM/Configuration/Network/Interface/3/ 
</NodeAttributePath> 
<Type>Instance</Type> 
<Access>readOnly</Access> 

</Node> 
</cms:NodeAttributeValueList> 
 
In case the list of Parameters returned contains no elements, the valid XML file MUST be anyway 
returned, as: 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:NodeAttributeValueList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"/> 

2.5.13.A_ARG_TYPE_ParameterInitialValueList 
This state variable (defined for the purpose of specifying an action argument) represents a specific XML 
fragment used to initialize children Nodes of a MultiInstance Node when creating a new Instance in the 
Parent Device (i.e. the Instance to be created is therefore not yet known by the control point). In other 
words, it allows the control point to indicate the initial values of the new Node in an efficient manner 
during MultiInstance Node creation.This state variable, when instanced in the proper action, must be 
correctly validated using the XML schema in Appendix A: XML schema. The specific portion of the 
schema to be considered is the one starting with the element named ParameterInitialValueList. The XML 
element named ParameterInitializationPath must be correctly matched/produced using the grammar in 
section 2.3.1.2 starting from the proper grammar rule named ParameterInitializationPath. Such 
ParameterInitializationPath list is used to initialize what is content within the Instance to be created: the 
ParameterInitializationPath is needed because the Leaf to be initialized could be contained in a 
SingleInstance Nodes (or a sequence of nested ones) instead of being a direct child of the Instance Node to 
be created. 

There is no MultiInstance Node which is creatable in CMS. For the purposes of this example to explain the 
syntax of the A_ARG_TYPE_ParameterInitialValueList state variable, the following MultiInstance Node is 
considered as it was creatable (i.e. as it had readWrite value for Access attribute): 

/UPnP/DM/Configuration/Network/IPInterface/ 

If the control point needs to create a new instance of the MultiInstance Node above, and needs to initialize 
at the same time the value of its child: 

/UPnP/DM/Configuration/Network/IPInterface/#/IPv4/IPAddress  
 



ConfigurationManagement:2 Service Template Version 1.01 59 

Copyright UPnP Forum © 2012.  All rights reserved. 

The specific portion of the schema to be considered is the one starting with the element named 
ParameterInitialValueList. 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:ParameterInitialValueList  

xmlns:cms="urn: schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn: schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

<!-- The document contains a list of one or more Node elements. --> 
<Node> 

<ParameterInitializationPath> 
Required ParameterInitializationPath for the  
parameter to be initialized. 

</ParameterInitializationPath> 
<Value> 

Required initialization value of the parameter. 
</Value> 

</Node> 
</cms:ParameterInitialValueList> 
 

The following XML fragment must be used: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<cms:ParameterInitialValueList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

<Node> 
<ParameterInitializationPath> 

IPv4/IPAddress 
</ParameterInitializationPath> 
<Value>239.255.255.250</Value> 

</Node> 
</cms:ParameterInitialValueList> 
 

2.5.14. A_ARG_TYPE_Filter 
This state variable is defined for the purpose of describing the GetSelectedValues() action argument and is 
used to reduce the size of the action response with a basic filtering functionality. There are some situations 
where, for example, the number of Instance Nodes is quite large and the control point is really interested 
only in retrieve some particular Nodes rather than reading all instances with GetInstances() or GetValues(). 
A filter is formed by a predicate on the value of a given Parameter. 

Filter strings syntax is described here formally using an EBNF-style grammar [EBNF] and is an extension 
of the given grammar for Parameters (see section 2.3.1.2). 

Filter    ::= 1 | Cond (LogOp Cond)* 
Cond      ::= ValueComparison |  
              ParametersComparison |  
              AttributeComparison 
ValueComparison      ::= StructurePath RelOp ParameterValue 
ParametersComparison ::= StructurePath RelOp ParameterPath 
AttributeComparison  ::= AttributeName RelOp AttributeValue 
 
AttributeName  ::= “Version”  



ConfigurationManagement:2 Service Template Version 1.01 60 

Copyright UPnP Forum © 2012.  All rights reserved. 

AttributeValue ::= /* the value to be compared must be a valid type for 
the AttributeName specified.*/ 
Numeric        ::= /* as defined in section 2.3.1.2 */ 
ParameterPath  ::= /* as defined in section 2.3.1.2 */ 
RelOp          ::= "<" | "<=" | "=" | "!=" | ">" | ">=" 
ParameterValue ::= /* the value to be compared must be a valid literal 
for the data type, and strings must be quoted -> the string must be 
escaped because they could contain some special chars.*/ 
LogOp          ::= 'and' | 'or' 
 
/************************************************************/ 
/*        Operator precedence and associativity             */ 
/* Listed in order of precendence (highest:40 to lowest:10) */ 
/*                                                          */ 
/* precedence       operator        associativity           */ 
/* 40               <,<=,>,>=       left-to-right           */ 
/* 30               =,!=            left-to-right           */ 
/* 20               and             left-to-right           */ 
/* 10               or              left-to-right           */ 
/*                                                          */ 
/************************************************************/ 
 
Examples of filters from the [SMS] Data Model. 

To retrieve the list of Parameters whereas the State of the DU is either Unresolved or Installing: 

/UPnP/DM/Software/DU/#/State = "Unresolved" or 
/UPnP/DM/Software/DU/#/State = "Installing" 
 
To retrieve the list of Parameters whereas the EUID is equal to 145: 

/UPnP/DM/Software/DU/#/EU/#/EUID = 145 
 
To retrieve the list of Parameters whereas the DUType is equal to “Firmware”: 

/UPnP/DM/Software/DU/#/DUType = "Firmware" 
 
The filter can also be used, when the Version attribute is implemented by the Parent Device, to retrieve 
Parameters that have a specific value (or range of values) for that attribute. 

For example, in case the control point receives an event due to the ConfigurationUpdate changes to 2395, 
if the control point needs to know which are the Parameters changed their value correspondingly with the 
ConfigurationUpdate event, it must query the Parent Device with GetSelectedValues() action using the 
filter:  

Version = 2395. 

For backwards compatibility, if the Parent Device does not implement the AttributeComparison grammar 
rule it MUST ignore such filtering condition assuming a logical “true” as result.  AttributeComparison 
grammar rule may be extended by Parent Device implementations because of the support for vendor 
specific attributes.  

2.5.15.A_ARG_TYPE_SupportedDataModels 
This state variable (defined for the purpose of specifying an action argument) represents a specific XML 
fragment used to define the table of the Parent Device’s supported Data Models. This state variable, when 
instanced in the action GetSupportedDataModels(), must be correctly validated using the XML schema 
in Appendix A: XML schema. The XML elements must be correctly parsed (i.e. syntactically produced) 



ConfigurationManagement:2 Service Template Version 1.01 61 

Copyright UPnP Forum © 2012.  All rights reserved. 

using the grammar in section 2.3.1.2 starting from the proper grammar rule named. The specific portion of 
the schema to be considered is the one starting with the element named SupportedDataModels.  

The SupportedDataModels table has the following columns: 

• URI: (REQUIRED) the URI indicates the following attributes of the supported data model: (a) the 
organization that defined it, (b) the specification in which it is defined, and (c) the version of the 
specification. URI format rules are specified independently for each organization. This URI relates 
only to the organization and the specification and does NOT indicate which part of the specification is 
supported by the Parent Device. 

• Location: (REQUIRED) is a SingleInstancePath identifying the attachment point of the supported 
data model into the Parent Device data model. Locations in the SupportedDataModels table need not 
be unique in order to let the same mounting point be used for different Data Models supported. 
Therefore given a Location for a supported data model, all the Parameter of such supported data 
model MUST have the same Location as a prefix starting from the Root Node. 

• URL: (OPTIONAL) refers to a resource that describes which parts of the specification are supported. 
URL format rules, and rules governing the referenced resource, are specified independently for each 
organization. Regardless of whether the URL is supplied the GetSupportedParameters() and 
GetAttributes() actions can return basic information about the supported data model. The URL can 
provide a mechanism suitable for CPs to retrieve more detailed information. 

• Description: (OPTIONAL) informative description of the supported data model. 
• SourceLocation: (OPTIONAL) is the path from the Root of the imported data model to the Node that 

is to be attached to Location with respect to the document where the data model is defined in the 
external location. The SourceLocation can be either a fully qualified path (i.e. a Path from the Root 
Node) or a relative path. If the SourceLocation is a fully qualified path the Location can be the empty 
string, otherwise the Location is the prefix to add to this SourceLocation to build the fully qualified 
path. 

The unique key for the SupportedDataModels table is the couple of the required elements (URI,Location), 
in order to uniquely identify each rows (i.e. instances of SubTree). 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:SupportedDataModels  

xmlns:cms="urn: schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn: schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

<!-- The document contains a list of one or more SubTree elements. --> 
<SubTree> 
 <URI> 

Required URI of the supported data model. 
</URI> 

     <Location> 
Required SingleInstancePath identifying the  
attachment point of the supported data model  
into the Parent Device data model. 

</Location> 
<URL> 

       Optional URL to the specification. 
</URL> 
<Description> 

       Optional description of the data model. 
</Description> 
<SourceLocation> 

       Optional Path from the Root of the imported data model 
to the Node that is to be attached to Location. 

</SourceLocation > 



ConfigurationManagement:2 Service Template Version 1.01 62 

Copyright UPnP Forum © 2012.  All rights reserved. 

</SubTree> 
</cms:SupportedDataModels> 
 

Example: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<cms:SupportedDataModels  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

  <SubTree> 
    <URI> 
      urn:UPnP:Parent Device:1:ConfigurationManagement:2 
    </URI> 
    <Location>/UPnP/DM/Configuration/</Location> 
    <Description> 
      UPnP Manageable Device common objects for CMS</Description> 
  </SubTree> 
  <SubTree> 
    <URI> 
      urn:UPnP:Parent Device:1:SoftwareManagement:1 
    </URI> 
    <Location>/UPnP/DM/Software/</Location> 
    <Description> 
      UPnP Manageable Device common objects for SMS 
    </Description> 
  </SubTree> 
  <SubTree> 
    <URI> 
      urn:broadband-forum-org:tr-135-1-0-0 
    </URI> 
    <Location>/BBF/STBService/</Location> 
    <URL>http://www.example.com/upnp/stb/bbf-stb-1-0.xml</URL> 
    <Description>TR-135 STBService Object</Description> 
  </SubTree> 
  <SubTree> 
    <URI> 
      urn:ietf:rfc:3729 
    </URI> 
    <Location>/IETF/MIB/APM/</Location> 
    <Description>RFC 3729 APM-MIB</Description> 
  </SubTree> 
  <SubTree> 
    <URI> 
      urn:Manufacturer:spec_v1.html 
    </URI> 
    <Location>/UPnP/DM/ DeviceInfo/X_CustomInfo/</Location> 
    <URL>http://www.example.com/Manufacturer/spec_v1.xml</URL> 
    <Description>Vendor extension</Description> 
  </SubTree> 
</cms:SupportedDataModels> 
 



ConfigurationManagement:2 Service Template Version 1.01 63 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.5.16.A_ARG_TYPE_SearchDepth 
This state variable (defined for the purpose of specifying an action argument) represents the depth of the 
search for the GetSupportedParameters() and GetInstances() actions, in terms of number of traversed 
Nodes, where each Node traversed represents a single level of depth. The usage of this argument is 
specified in the actions’ descriptions. 

2.5.17.A_ARG_TYPE_ChangeStatus 
This state variable (defined for the purpose of specifying an action argument) represents the status of the 
requested changes after one of the following action is performed: SetValues(), SetAttributes(), 
CreateInstance() or DeleteInstance(). 

Table 2-16: allowedValueList for A_ARG_TYPE_ChangeStatus 

Value Req. or Opt. Description 

ChangesCommitted R All changes required by the action have been 
validated and committed but some or all are 
not yet applied (for example, if a reboot of the 
underlying operating system is necessary 
before the new values are applied). 

ChangesApplied R All changes required by the action have been 
validated, committed and applied. 

 
It is strongly RECOMMENDED that devices implementations apply changes as they are requested by the 
control point and therefore return ChangesApplied rather than only commiting and leaving the device in an 
inconsistent status.  The exception to this recommendation is when the device delays applying changes 
because of the control point’s use of BMS::SetSequenceMode() as descrbed below. 

When the Parent Device returns the ChangesCommitted value to the control point it means that the internal 
status may be not completely consistent because of some further internal operations need to be executed 
before the status will return consistent. For example the new values have been saved somewhere but the 
Parent Device does not currently use them and an autonomous reboot is required in order to let the Parent 
Device read the new values and use them. In the opposite situation the Parent Device returns 
ChangesApplied because it starts immediately using the new values for the running configuration. 

It is not REQUIRED for the Parent Device to use both values: if the Parent Device is able to apply all 
changes immediately it will use the ChangesApplied value only. And this is the desired approach for all 
devices implementations. 

The status returned by the Parent Device could also be affected by the BMS::SetSequenceMode() [BMS] 
value. In case the BMS::SequenceMode is 1, a smart Parent Device MAY delay the application of changes 
until the BMS::SequenceMode values will return to 0 therefore it might return ChangesCommitted (instead 
of the ChangesApplied) during this phase.  

2.5.18.A_ARG_TYPE_InstancePathList 
This state variable (defined for the purpose of specifying an action argument) represents a list of 
InstancePaths. This means it must be correctly validated using the XML schema in Appendix A: XML 
schema. Each element of the list must be correctly parsed (i.e. syntactically produced) using the grammar 
in section 2.3.1.2 starting from the grammar rule named InstancePaths. The specific portion of the schema 
to be considered is the one starting with the element named InstancePathList.  

<?xml version="1.0" encoding="UTF-8"?> 
<cms:InstancePathList  



ConfigurationManagement:2 Service Template Version 1.01 64 

Copyright UPnP Forum © 2012.  All rights reserved. 

xmlns:cms="urn: schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn: schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

<!-- The document contains a list of zero or more InstancePath elements.  
--> 
<InstancePath> 

Required InstancePath. 
</InstancePath> 
</cms:InstancePathList> 
 

The following XML file shows an A_ARG_TYPE_InstancePathList example as: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<cms:InstancePathList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

<InstancePath> 
/UPnP/DM/Configuration/Network/Interface/5/ 

</InstancePath> 
</cms:InstancePathList> 
 
In case the list of InstancePaths returned contains no elements, the valid XML file MUST be anyway 
returned, as: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<cms:InstancePathList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"/> 

2.5.19.A_ARG_TYPE_ContentPathList 
This state variable (defined for the purpose of specifying an action argument) represents a list of 
ContentPaths. This means it must be correctly validated using the XML schema in Appendix A: XML 
schema. Each element of the list must be correctly parsed (i.e. syntactically produced) using the grammar 
in section 2.3.1.2 starting from the grammar rule named ContentPaths, therefore they could be RootPath, 
SingleInstancePaths, MultiInstancePaths, InstancePaths or ParameterPaths. The specific portion of the 
schema to be considered is the one starting with the element named ContentPathList. 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:ContentPathList  

xmlns:cms="urn: schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn: schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

<!-- The document contains a list of zero or more ContentPath elements. 
--> 
<ContentPath> 

Required ContentPath. 
</ContentPath> 
</cms:ContentPathList> 
 



ConfigurationManagement:2 Service Template Version 1.01 65 

Copyright UPnP Forum © 2012.  All rights reserved. 

The following XML file shows an A_ARG_TYPE_ContentPathList example as: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<cms:ContentPathList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

<!-- RootPath--> 
<ContentPath>/</ContentPath> 
 
<!-- SingleInstancePath--> 
<ContentPath> 

/UPnP/DM/DeviceInfo/ 
</ContentPath> 
 
<!--  MultiInstancePath --> 
<ContentPath> 

/UPnP/DM/DeviceInfo/PhysicalDevice/Interface/ 
</ContentPath> 
 
<!-- InstancePath --> 
<ContentPath> 

/UPnP/DM/Configuration/Network/Interface/3/ 
</ContentPath> 
 
<!-- ParameterPath --> 
<ContentPath> 

/UPnP/DM/Configuration/Network/Interface/15/IPv4/IPAddress 
</ContentPath> 
</cms:ContentPathList> 
 
In case the list of ContentPaths returned contains no elements, the valid XML file MUST be anyway 
returned, containing as: 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:ContentPathList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"/> 

 

2.5.20.A_ARG_TYPE_MultiInstancePath 
This state variable (defined for the purpose of specifying an action argument) represents a 
MultiInstancePath. This means it must be correctly parsed (i.e. syntactically produced) using the grammar 
in section 2.3.1.2 starting from the grammar rule named MultiInstancePath. 

2.5.21.A_ARG_TYPE_InstancePath 
This state variable (defined for the purpose of specifying an action argument) represents an InstancePath. 
This means it must be correctly parsed (i.e. syntactically produced) using the grammar in section 2.3.1.2 
starting from the grammar rule named InstancePath. 



ConfigurationManagement:2 Service Template Version 1.01 66 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.5.22.A_ARG_TYPE_NodeAttributePathList 
This state variable (defined for the purpose of specifying an action argument) represents a list of 
ParameterPaths mixed with MultiInstancePaths and InstancePaths, because attributes are related to them. 

This state variable must be correctly validated using the XML schema in Appendix A: XML schema. Each 
element of the list must be correctly parsed (i.e. syntactically produced) using the grammar in 
section 2.3.1.2 starting from the grammar rules named ParameterPath, MultiInstancePath or InstancePath. 
The specific portion of the schema to be considered is the one starting with the element named 
NodeAttributePathList. 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:NodeAttributePathList  

xmlns:cms="urn: schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn: schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

<!-- The document contains a list of zero or more NodeAttributePath 
elements. --> 
<NodeAttributePath> 

Required NodeAttributePath. 
</NodeAttributePath> 
</cms:NodeAttributePathList> 
 

The following XML file shows an A_ARG_TYPE_NodeAttributePathList example as: 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:NodeAttributePathList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 

 
<!-- ParameterPath--> 
<NodeAttributePath> 

/UPnP/DM/DeviceInfo/SoftwareVersion 
</NodeAttributePath> 
 
<!--  MultiInstancePath --> 
<NodeAttributePath> 

/UPnP/DM/DeviceInfo/PhysicalDevice/Interface/ 
</NodeAttributePath> 
 
<!-- InstancePath --> 
<NodeAttributePath> 

/UPnP/DM/Configuration/Network/Interface/3/ 
</NodeAttributePath> 
</cms:NodeAttributePathList> 
 

In case the list returned contains no elements, the valid XML file MUST be anyway returned, as: 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:NodeAttributePathList  

xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"/> 

 



ConfigurationManagement:2 Service Template Version 1.01 67 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.5.23.A_ARG_TYPE_ACLDataPathList 
The A_ARG_TYPE_ACLDataPathList state variable is REQUIRED when the device supports the Security 
Feature. It is introduced to provide Paths arguments in the GetACLData() action. Such Path type is the 
ACLDataPath, as defined in 2.3.1.2. 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:ACLDataPathList  

xmlns:cms="urn: schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-
org:dm:cms http://www.upnp.org/schemas/dm/cms.xsd"> 

<!-- The document contains a list of zero or more ACLDataPath elements. 
--> 
<ACLDataPath> 

Required ACLDataPath.  
</ACLDataPath> 
</cms:ACLDataPathList> 
 

The following example shows a generalized “template” for the format of the ACLDataPathList XML 
Document. The example shows the fields that need to be filled out when using this state variable. 

 

Example: 
<?xml version="1.0" encoding="UTF-8"?> 
<cms:ACLDataPathList  

xmlns="urn:schemas-upnp-org:dm:ConfigurationManagement" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn: schemas-upnp-
org:dm:cms http://www.upnp.org/schemas/dm/ConfigurationManagement-
v2.xsd"> 

      <ACLDataPath> 
  /UPnP/DM/Configuration/Network/IPInterface/3/ 
 </ACLDataPath> 
      <ACLDataPath> 
  /UPnP/DM/Configuration/Network/ 
 </ACLDataPath> 
      <ACLDataPath> 
  /UPnP/DM/DeviceInfo/PhysicalDevice/NetworkInterface/ 
 </ACLDataPath> 
      <ACLDataPath> 
  /UPnP/DM/DeviceInfo/SoftwareVersion 
 </ACLDataPath> 
</ cms:ACLDataPathList> 
 

2.5.24.A_ARG_TYPE_ACL 
The A_ARG_TYPE_ACL state variable is REQUIRED when the device supports the Security Feature. It is 
introduced to provide type information for the ACL argument in the GetACLData() and SetACLData() 
actions. This data structure encodes the access control policy to Nodes in the Data Model. Such Nodes are 
identified by generic Paths from the Root Node to the specific Node using the ACLDataPath grammar rule, 
as defined in 2.3.1.2. 

 
<?xml version="1.0" encoding="UTF-8"?> 

http://www.upnp.org/schemas/dm/cms.xsd�
http://www.w3.org/2001/XMLSchema-instance�
http://www.upnp.org/schemas/dm/ConfigurationManagement-v2.xsd�
http://www.upnp.org/schemas/dm/ConfigurationManagement-v2.xsd�


ConfigurationManagement:2 Service Template Version 1.01 68 

Copyright UPnP Forum © 2012.  All rights reserved. 

<cms:ACL  
xmlns:cms="urn: schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-
org:dm:cms http://www.upnp.org/schemas/dm/cms.xsd"> 

<!-- The document contains a list of zero or more ACLEntry elements. --> 
<ACLEntry> 
      <ACLDataPath> 

Required ACLDataPath addressing a Node in the Data Model. 
Following List, Read and Write optional elements carry 
Permission lists (when supported) information about such 
Node or, if the factorization is used, about such Node and 
all its descendant. 

</ACLDataPath> 
<List factorized=”Optional attribute to indicate whether this 

permission list is a result of factorization.  
If omitted or“0” means no factorization.  
If “1” means that one of the permission list is the  
result of factorization.”> 

Optional. List of Roles for List permission.  
This List element MUST be included if the List permission  
list is supported AND it is not empty. 

</List> 
<Read factorized=”Optional attribute to indicate whether this 

permission list is a result of factorization.  
If omitted or“0” means no factorization.  
If “1” means that one of the permission list is the  
result of factorization.”> 

Optional. List of Roles for Read permission. 
This Read element MUST be included if the Read permission  
list is supported AND it is not empty. 

</Read> 
<Write factorized=”Optional attribute to indicate whether this 

permission list is a result of factorization.  
If omitted or“0” means no factorization.  
If “1” means that one of the permission list is the  
result of factorization.”> 

Optional. List of Roles for Write permission. 
This Write element MUST be included if the Write permission  
list is supported AND it is not empty. 

</Write> 
</ACLEntry > 
</cms:ACL 
 

The following example shows a generalized “template” for the format of the ACL XML Document. The 
example the fields that need to be filled out when using this state variable. 

 

Example: 
<?xml version="1.0" encoding="UTF-8"?> 
<ACL xmlns="urn:schemas-upnp-org:dm:ConfigurationManagement" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-
org:dm:ConfigurationManagement http://www.upnp.org/schemas/dm/Configurat
ionManagement-v2.xsd"> 
    <ACLEntry> 
      <ACLDataPath> 
  /UPnP/DM/Configuration/Network/IPInterface/3/ 

http://www.upnp.org/schemas/dm/cms.xsd�
http://www.w3.org/2001/XMLSchema-instance�
http://www.upnp.org/schemas/dm/ConfigurationManagement-v2.xsd�
http://www.upnp.org/schemas/dm/ConfigurationManagement-v2.xsd�


ConfigurationManagement:2 Service Template Version 1.01 69 

Copyright UPnP Forum © 2012.  All rights reserved. 

 </ACLDataPath> 
      <Read>xxxAdmin</Read> 
      <Write>xxxAdmin</Write> 
    </ACLEntry> 
     <ACLEntry> 
      <ACLDataPath> 
  /UPnP/DM/Configuration/Network/IPInterface/#/ 
 </ACLDataPath> 
      <List factorized=”1”>Basic xxxAdmin</List> 
    </ACLEntry> 
   <ACL > 
      <ACLDataPath> 
  /UPnP/DM/DeviceInfo/PhysicalDevice/NetworkInterface/ 
 </ACLDataPath> 
      <List>Basic xxxAdmin</List> 
      <Read>xxxAdmin</Read> 
      <Write>xxxAdmin</Write> 
    </ACLEntry> 
</ACL> 
 

2.5.25.Relationships Between State Variables 
The SupportedDataModelsUpdate, SupportedParametersUpdate, ConfigurationUpdate and 
AttributeValuesUpdate  state variables may be related one to each other (e.g. changes in the Data Model 
supported can have side effects on the Parameters’ attribute values, although this is not required to be the 
case). Therefore it is up to the device to manage dependencies amongst these variables and generate events 
properly depending on the implementation.  

The value of the InconsistentStatus conditionally depends from the A_ARG_TYPE_ChangeStatus value 
returned by the Parent Device when the A_ARG_TYPE_ChangeStatus returned is ChangesCommitted; if 
the action causes internal inconsistencies because changes have not yet been applied, it can lead to 
inconsistency at the global level. 

The relationship and the sequence of internal operations between the ConfigurationUpdate, the 
CurrentConfigurationVersion and the attributes EventOnChange and Version are explained in the 
following diagrams. 

If the Node does not support the EventOnChange attribute, the ConfigurationUpdate must not be updated 
and therefore no event must be sent as the Node value changes. 

Node

Version

CurrentConfigurationVersion

change

1

2

3

 

Figure 8: sequence from the Version attribute perspective. 

The Figure 8 shows the sequence of operations in case the Version attribute only is supported by the Node. 
Internal steps as the Node value changes are the following: 



ConfigurationManagement:2 Service Template Version 1.01 70 

Copyright UPnP Forum © 2012.  All rights reserved. 

1. A change occurs to the Node, due to an action execution or some other event out of the UPnP 
protocol scope. 

2. If the Node supports the Version attribute, the CurrentConfigurationVersion must be updated 
(increased). 

3. The Version attribute value of the modified Node must be updated to the 
CurrentConfigurationVersion. 

Node
EventOnChange

ConfigurationUpdate

change

?    

event (ConfigurationUpdate)

1

2

2.1

2.2

 

Figure 9: sequence form the EventOnChange attribute perspective. 

The Figure 9 shows the sequence of operations in case the EventOnChange attribute only is supported by 
the Node. Internal steps as the Node value changes are the following: 

1. A change occurs to the Node, due to an action execution or some other event out of the UPnP protocol 
scope. 

2. If the Node supports the EventOnChange attribute and its value is 1: 

2.1. The ConfigurationUpdate must be updated as specified in section 0 (using the 
CurrentConfigurationVersion and the time stamp). 

2.2. The event corresponding to the ConfigurationUpdate state variable must be sent to the 
subscribed CPs. 

3. If the Node supports the EventOnChange attribute and its value is 0, the ConfigurationUpdate must 
not be updated and therefore no event must be sent. 



ConfigurationManagement:2 Service Template Version 1.01 71 

Copyright UPnP Forum © 2012.  All rights reserved. 

 

Node EventOnChange

Version

ConfigurationUpdate

CurrentConfigurationVersion

change

?    

event (ConfigurationUpdate)

1

2

3

4
4.1

4.3

AlarmOnChange

XML Updated 4.2

 

Figure 10: sequence when Version , EventOnChange and AlarmOnChange attributes are supported. 

The Figure 10 shows the sequence of operations in case the both the EventOnChange and Version 
attributes are supported by the Node. Internal steps as the Node value changes are the following: 

1. A change occurs to the Node, due to an action execution or some other event out of the UPnP protocol 
scope. 

2. The CurrentConfigurationVersion must be updated (increased). 

3. The Version attribute value of the modified Node must be updated to the 
CurrentConfigurationVersion. 

4. If the EventOnChange attribute value is 1: 

4.1. The new value of the ConfigurationUpdate must be created as specified in section 0 (using the 
CurrentConfigurationVersion and the time stamp). 

4.2.  If the AlarmOnChange is supported and its value is 1, the value-pair of the changed Parameter is 
added into the XML String of ConfigurationUpdate. 

4.3 The event corresponding to the ConfigurationUpdate state variable must be sent to the subscribed 
CPs. 

5. If the EventOnChange attribute value is 0, the ConfigurationUpdate must not be updated and therefore 
no event must be sent. 

Steps numbered 3 and 4 are not a sequence and can be internally executed in parallel, depending on 
implementation choices. 



ConfigurationManagement:2 Service Template Version 1.01 72 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.6. Eventing and Moderation 

Table 2-17: Event Moderation  

Variable Name Evented Moderated
Event 

Max 
Event 
Rate1 

Logical 
Combination 

Min 
Delta 
per 
Event2 

ConfigurationUpdate Yes Yes 0.2 
seconds 

  

CurrentConfigurationVersion No No    

SupportedDataModelsUpdate Yes Yes 1.0 
second 

  

SupportedParametersUpdate Yes Yes 1.0 
second 

  

AttributeValuesUpdate Yes Yes 1.0 
second 

  

InconsistentStatus Yes Yes 1.0 
second 

  

AlarmsEnabled Yes Yes 1.0 
second 

  

Non-standard state variables 
implemented by an UPnP vendor go 
here. 

TBD TBD TBD TBD TBD 

1 Determined by N, where Rate = (Event)/(N secs). 
2 (N) * (allowedValueRange Step). 

2.6.1. Event Model 
This service definition is compliant with the UPnP Device Architecture version 1.0. [UDA]. 

2.6.2. Eventing and Security 
Some of the evented state variables can carry information about the structure and the content of the Data 
Model as the Security Feature is supported, For example, the ConfigurationUpdate state variable can 
include the Path of alarmed Parameters when they change their value. Evented state variables are sent in 
the clear to any subscribed control points, regardless of their associated Role. Therefore, if the Security 
Feature is used to hide Parameter names and values to some unauthorized control points, it should be a 
better practice not to let such Parameters being used as alarms being part of information that will be sent in 
the clear.  

2.7. Actions 
There are three categories of actions defined in this service. 

The first one is the “Data Models discovery” set of actions including the GetSupportedDataModels() and 
the GetSupportedParameters() actions. Using them properly, the CPs can discover the list of all supported 



ConfigurationManagement:2 Service Template Version 1.01 73 

Copyright UPnP Forum © 2012.  All rights reserved. 

Parameters of the Parent Device and where they come from (in the case of Data Models defined in other 
standardization organizations or other UPnP Working Committees). 

Once the control point has the knowledge of the list of supported Parameters, it can use the “status 
reading” set of actions to discover the current configuration state of the particular Parent Device. This set 
includes the actions GetInstances(), GetValues(), GetSelectedValues(), GetAttributes() and 
GetInconsistentStatus(). Also GetConfigurationUpdate(), GetSupportedDataModelsUpdateID(), 
GetSupportedParametersUpdateID() and GetAttributeValuesUpdateID(). 

The third category is the “configuration” set of actions used to change the current configuration state of 
the Parent Device. This set includes the actions SetValues(), CreateInstance(), DeleteInstance() and 
SetAttributes(). 

If the Parent Device supports the Security Feature, the GetACLData() is then required and this action 
belongs to both the Data Model discovery and status reading categories above. This is because the 
GetACLData() returns Paths including templates (as the GetSupportedParameters() action) and also 
returns Paths including instances (as the GetInstances() and GetValues() and so on actions). 

The configuration actions could fail because of race conditions whenever the control point is trying to 
change a Parameter or an instance concurrently used by other entities (e.g. another control point or some 
other external interface), or because the targeted resource is temporarily unavailable for some reasons. In 
these situations it is up to the Parent Device implementation to resolve the concurrent access to Parameters 
and therefore the Parent Device MAY momentary deny the configuration action returning a fault code 
indicating this specific condition. In this situation, the control point SHOULD NOT interpret the fault code 
as indicating that it can not perform such action but rather as a suggestion to retry the same action later, 
when the conflict will disappear or the resource is available. 

Table 2-18: Actions, lists actions, their device and control point support requirements, and their 
recommended Role List and Restricted Role List.  Only the standard DeviceProtection:1 Admin, Basic and 
Public Roles are mentioned, because the device manufacturer is free to choose how the 
dm:ThirdPartyAdmin and dm:UserAdmin Roles (defined in [DEVICE]) relate to the Admin and Basic 
Roles, and it would therefore be impossible to include them in the table. 

Section 2.2.2 defines Non-Restrictable and Restrictable actions and points out that all Non-Restrictable 
actions have a Role List of “Public” and an empty Restricted Role List.  The following table explicitly 
indicates which actions are Non-Restrictable. 

If the Security Feature is not supported, all actions are permitted, i.e. behavior is the same as if the action 
had a Role List of “Public”. And so there are no restrictions on the device responses: they MUST be the 
same regardless the control point which is invoking the action. 

 

Table 2-18: Actions 

Name Device 
R/O1 

Control 
Point R/O 

Recommended 
Role List2 

Recommended 
Restricted Role List3 

GetSupportedDataModels() R R Public4  

GetSupportedParameters() R R Admin Public 

Basic 

GetInstances() R R Admin Public 

Basic 



ConfigurationManagement:2 Service Template Version 1.01 74 

Copyright UPnP Forum © 2012.  All rights reserved. 

Name Device 
R/O1 

Control 
Point R/O 

Recommended 
Role List2 

Recommended 
Restricted Role List3 

GetValues() R R Admin Public 

Basic 

GetAttributes() R R Admin Public 

Basic 

GetConfigurationUpdate() R O Public4  

GetCurrentConfigurationVersion() R O Public4  

GetSupportedDataModelsUpdate() R O Public4  

GetSupportedParametersUpdate() R O Public4  

SetAttributes() O O Admin Public 

Basic 

GetInconsistentStatus() O O Public4  

GetSelectedValues() O O Admin Public 

Basic 

SetValues() O O Admin Public 

Basic 

CreateInstance() O O Admin Public 

Basic 

DeleteInstance() O O Admin Public 

Basic 

GetAttributeValuesUpdate() O O Public4  

GetAlarmsEnabled() CR6 O Public4  

SetAlarmsEnabled() CR6 O Admin Public 

Basic 

GetACLData() CR5 O Admin Public 

Basic 

Non-standard actions implemented by an 
UPnP vendor go here. 

    

1 R = REQUIRED, O = OPTIONAL, CR = CONDITIONALLY REQUIRED, X = Non-standard. 
2 The Role List contains Roles that are authorized to unconditionally invoke the corresponding action in all 
contexts.  For Restrictable actions, the device manufacturer can choose different values for the Role List. 
3 The Restricted Role List contains Roles that are authorized to invoke the corresponding action only in 
certain contexts.   See the individual action definitions for details.  For Restrictable actions, the device 
manufacturer can choose different values for the Restricted Role List. 



ConfigurationManagement:2 Service Template Version 1.01 75 

Copyright UPnP Forum © 2012.  All rights reserved. 

4 This action is Non-Restrictable.  For Non-Restrictable actions, the Role List MUST be “Public” and the 
Restricted Role List MUST be empty, i.e. the device manufacturer can not choose different values for the 
Role List or for the Restricted Role List. 
5 
REQUIRED if the Security Feature is supported. 

6 
REQUIRED if the Alarming Feature is supported. 

 

2.7.1. GetSupportedDataModels() 
This action can be used by the control point to know which the supported Data Models of the Parent 
Device are, including the Common Objects. The Parent Device returns to the control point an XML 
fragment containing basic information as the attachment points of the supported Data Model and its URI 
(which includes, for example, the name of the Data Model and the version). 

This action does not provide to the control point information concerning the implemented Parameters 
taken from the Data Models supported. For this purpose the control point must make use of the 
GetSupportedParameters() action using the Locations from GetSupportedDataModels() as StartingNode 
arguments. 

It’s important to note that this action basically deals with Data Model Location that can be interpreted as 
the common prefix for all Parameters imported from the Data Model. This works properly in case of both 
UPnP and vendor extensions compliant with this specification, but for Data Model imported from other 
organizations some conversion rules have been defined for the syntax and the semantic: see Appendix C: 
Mapping rules for Other . 

The ouput argument is defined as follows: 

SupportedDataModels 

The list of the supported Data Models of the Parent Device as in A_ARG_TYPE_SupportedDataModels 
definition.  

2.7.1.1. Arguments 

Table 2-19: Arguments for GetSupportedDataModels()  

Argument Direction relatedStateVariable 

SupportedDataModels OUT A_ARG_TYPE_SupportedDataModels 

2.7.1.1. Device Requirements 
If the Parent Device supports the Security Feature, as specified by DeviceProtection:1, the Parent Device 
MUST permit any control point that possesses any of the Roles in the action’s Role List to invoke this 
action. 

2.7.1.2. Dependency on State (if any) 
When the SMS is also implemented by the Parent Device, the installation and uninstallation of DUs may 
effect on the supported Data Model returned. 



ConfigurationManagement:2 Service Template Version 1.01 76 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.7.1.3. Effect on State (if any) 
 None 

2.7.1.4. Errors 

Table 2-20: Error Codes for GetSupportedDataModels () 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

2.7.2. GetSupportedParameters() 
Despite its name, this action deals with StructurePaths,  called Parameters to highlight the final purpose of 
the action (which is to inform the control point about the Parameters implemented by the device) rather 
than the terminology and the syntax of the returned strings (see section 2.3.1.1). This is the reason why in 
this action description the term Parameter is not written capitalized (i.e.: it does not strictly correspond to 
the definition given for Parameter). The results returned to the control point MUST be a set of 
StructurePaths which are: 

• Starting from the Root Node and ending to the Leaf Nodes. 

• Starting from the Root Node and ending to an internal Node (not Leaf Node). 

The Parent Device can support several Data Models as described in the GetSupportedDataModels() action. 
In each supported Data Models there could be mandatory Parameters as well as optional Parameters. The 
Parent Device MUST support every mandatory Parameter from the supported Data Models and MAY 
support some or all optional ones, therefore this action can be used to synchronize the control point and the 
Parent Device on the list of all supported Parameters. This means that, given a valid starting Node from 
one of the supported Data Models, the Parent Device will return to the control point the list of all possible 
(i.e. supported) Parameters descending from the given starting Node. The given starting Node in the Data 
Model is identified by a StructurePath from the Root to the Node. The Parameters listed by the Parent 
Device are StructurePaths from the Root to the Leaf Nodes. 

As it can be noticed by the grammar rule defining StructurePath, the MultiInstance Node is always 
followed by the InstanceAlias (see 2.3.1.2). This is strictly necessary because the StructurePath is basically 
used to discover the structure of the Data Model and the control point must be able to syntactically 
recognize whether a StructurePath ending with the “/” is a SingleInstance or a MultiInstance Node. 
Summarizing, StructurePaths which end with 

• /…/<node_name> are paths from the Root to a Leaf Node, 
• /…/<node_name>/ are paths from the Root to a SingleInstance Node, 
/…/<node_name>/#/ are paths from the Root to the MultiInstance Node (and following InstanceAlias). 

The input arguments are defined as follows: 

StartingNode 

The StartingNode provides to the Parent Device the Node where to start the browsing. Its type is defined in 
the related state variable description. Passing to the Parent Device a StartingNode which ends to a Leaf 



ConfigurationManagement:2 Service Template Version 1.01 77 

Copyright UPnP Forum © 2012.  All rights reserved. 

Node is not considered a syntactical error and can be used in case the control point specifically wants to 
validate the existence of that Leaf. 

SearchDepth 

Due to the tree structure of the supported Data Model, the unsigned integer argument SearchDepth is used 
to determine how many Nodes to be traversed before to stop the search when browsing.  

• SearchDepth = 0: means there is no limit to the depth of search. The Result must contain all 
StructurePaths from the StartingNode to the ending Leaf Nodes that are descendents of the 
StartingNode given. The search stops to the last Leaf Nodes. 

• SearchDepth > 0: means that at most SearchDepth number of Nodes must be traversed starting 
from the StartingNode. The Result will contain only valid StructurePaths from the Root Node that 
are descendents of the given StartingNode (there is at least the StartingNode in). Such paths can 
end either with a Leaf Node or an internal Node as SingleInstance or MultiInstance Node followed 
by the InstanceAlias as it will be clarified in the following explanation of the Result argument. 

The ouput argument is defined as follows: 

Result 

Unordered list of StructurePaths descending from the StructurePath given as StartingNode. Each path (i.e. 
sequence of Nodes in the parent-child relationship) in the returned list MUST be expressed as a valid 
StructurePath from the Root Node to and internal Node as well as a Leaf Node depending on the Data 
Model structure, the value of the SearchDepth and the StartingNode provided (see also the related state 
variable for the type description). This means a returned path may ends with the Root, a Leaf, a wildchar 
(following a MultiInstance Node) or a SingleInstance Node. 

There is a special consideration for SearchDepth and MultiInstance Nodes in valid StructurePaths 
returned. The control point uses this action to discover the structure of the Data Model, therefore as it is 
specified in section 2.3.1.1, the MultiInstance Node which ends the path must always be followed by the 
InstanceAlias, regardless of the SearchDepth, in order to be properly recognized by the control point. 

2.7.2.1. Arguments 
The paths returned by this action depends on the following conditions: 

• The ACLs associated with Nodes in the supported data model. 

• The Role possessed by the control point which is invoking this action. 

Table 2-21: Arguments for GetSupportedParameters()  

Argument Direction relatedStateVariable 

StartingNode IN A_ARG_TYPE_StructurePath 

SearchDepth IN A_ARG_TYPE_SearchDepth 

Result OUT A_ARG_TYPE_StructurePathList 
 

For example, if the Data Model of the Parent Device was the one represented in Figure 11: 



ConfigurationManagement:2 Service Template Version 1.01 78 

Copyright UPnP Forum © 2012.  All rights reserved. 

Software

DU

#

/

UPnP

DM

EUStateDUID

#

ExecutionStateEUID
 

Figure 11: excerpt from SMS data model structured tree. 

Using StartingNode = /UPnP/DM/Software/ the following StructurePaths will be returned by the 
Parent Device in the Result argument, using different SearchDepth values: 

SearchDepth = 0 and SearchDepth > 4 (all StructurePaths from Root Node to Leaf Nodes) 

/UPnP/DM/Software/DU/#/DUID 
/UPnP/DM/Software/DU/#/State 
/UPnP/DM/Software/DU/#/EU/#/EUID 
/UPnP/DM/Software/DU/#/EU/#/ExecutionState 
 
SearchDepth = 1 (DU is the rightmost Node and must be recognized as a MultiInstance Node, therefore the 
InstanceAlias is needed) 

/UPnP/DM/Software/DU/#/ 
 
SearchDepth = 2 

/UPnP/DM/Software/DU/#/ 

SearchDepth = 3 (EU is the rightmost Node and must be recognized as a MultiInstance Node, therefore the 
InstanceAlias is needed) 

/UPnP/DM/Software/DU/#/DUID 
/UPnP/DM/Software/DU/#/State 
/UPnP/DM/Software/DU/#/EU/# 
 
SearchDepth = 4 

/UPnP/DM/Software/DU/#/DUID 
/UPnP/DM/Software/DU/#/State 
/UPnP/DM/Software/DU/#/EU/# 



ConfigurationManagement:2 Service Template Version 1.01 79 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.7.2.2. Device Requirements 
If the Security Feature is supported by this CMS instance, then the Parent Device containing this CMS 
instance MUST apply the requirements defined in section 2.4.8. 

In addition to what is specified in section 2.4.8, in case the control point possesses a Role which is included 
in the Restricted Role List, the ACLs of Nodes in the Data Model MUST be used to control the access 
(permitted input argument values) and the action behavior (side effects and output argument values). 
Therefore, in this case, the following two conditions MUST be applied by the Parent Device, respectively 
for input and output action argument values: 

• The control point MUST possess a Role that authorizes use of the specified Path in StartingNode 
and value in SearchDepth input arguments: the Role possessed by the control point MUST be 
present in the List permission list of any Node (supporting the List permission list) in the given 
Path. If the control point is not authorized to use such Path as input argument, the action 
invocation MUST result in the 703 “No Such Name” error response. 

• The output argument of this action MUST be dependent from the control point’s Role, therefore 
the Parent Device can return only StructurePaths which satisfy the following condition: the 
control point Role is present in the List permission list of any Node in the StructurePath, when the 
List permission list is supported by the Node (see Table 2-12).  

2.7.2.3. Dependency on State (if any) 
When the SMS is also implemented by the Parent Device, the installation and uninstallation of DUs may 
effect on the supported Data Model returned. 

2.7.2.4. Effect on State (if any) 
 None 

2.7.2.5. Errors 

Table 2-22: Error Codes for GetSupportedParameters() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

606 Action not 
authorized 

The action requested requires authorization and the sender was not 
authorized. 

701 Invalid Argument 
Syntax 

The action failed because of the wrong syntax for the argument. 

703 No Such Name One or more Parameters given to action argument do not exist in 
the supported/implemented data model. 

800-899 TBD (Specified by UPnP vendor.) 

2.7.3. GetInstances() 
This action may be used by the control point to discover the list of Instance Nodes actually present on the 
Parent Device. Given a starting PartialPath, the Parent Device will return the list of all possible (if 
supported) PartialPaths descending from the given path.  



ConfigurationManagement:2 Service Template Version 1.01 80 

Copyright UPnP Forum © 2012.  All rights reserved. 

Concerning the PartialPaths returned, if the path includes a MultiInstance Node then all Instances are 
returned, but if there are no Instance Nodes the search for innermost Nodes must stop, as it will be clearer 
from the examples below. 

The input arguments are defined as follows: 

StartingNode 

The StartingNode is a PartialPath and provides to the Parent Device the Node where to start the browsing. 
A StartingNode ending with a Leaf Node is useless even though it is not considered an error. If the path 
provided to the Parent Device in the StartingNode does not exist (i.e.: its StructurePath does not belong to 
the list of supported StructurePaths) the Parent Device will respond with a fault. 

SearchDepth 

Since the MultiInstance Nodes in the supported Data Model can be nested, the unsigned integer argument 
SearchDepth is used to determine how many Nodes to be traversed before to stop the search when 
browsing. 

• SearchDepth = 0: the Result must contain all PartialPaths that are descendents of the 
StartingNode given, if there exists at least an Instance Node in the PartialPaths returned. The 
search stops at the last Instance Nodes. 

• SearchDepth > 0: the Result must contain all PartialPaths that are descendents of the 
StartingNode given, if there exists at least an Instance Node in the PartialPath returned, and such 
Instance Node is within SearchDepth levels of Nodes. Therefore the search stops after at most 
(but not exactly) SearchDepth levels of descendents where each Node traversed is considered a 
level. 

The ouput argument is defined as follows:  

Result 

Unordered list of InstancePaths, descended from the PartialPath given in StartingNode. The returned list 
can be empty if there are no children of the given StartingNode traversing at least one Instance in the path.  

2.7.3.1. Arguments 
The paths returned by this action depends on the following conditions: 

• The ACLs associated with Nodes in the supported data model. 

• The Role possessed by the control point which is invoking this action. 

• The ACLs associated with the instances (if any), which are descendant from the given paths (in the 
input argument). 

Table 2-23: Arguments for GetInstances() 

Argument Direction relatedStateVariable 

StartingNode IN A_ARG_TYPE_PartialPath 

SearchDepth IN A_ARG_TYPE_SearchDepth 

Result OUT A_ARG_TYPE_InstancePathList 
 

The following examples will clarify better the usage of these action’s arguments. 



ConfigurationManagement:2 Service Template Version 1.01 81 

Copyright UPnP Forum © 2012.  All rights reserved. 

Software

DU

3

/

UPnP

DM

EUStateDUID

5

EUStateDUID

7

ExecutionStateEUID
 

Figure 12: excerpt from SMS data model structured tree. 

Using StartingNode = /UPnP/DM/Software/ the following InstancePaths will be returned by the 
Parent Device in the Result argument, using different SearchDepth values: 

SearchDepth = 0 and SearchDepth > 3 (all InstancePaths from Root Node) 

/UPnP/DM/Software/DU/3/ 
/UPnP/DM/Software/DU/5/ 
/UPnP/DM/Software/DU/5/EU/7/ 
 
SearchDepth = 1 

Empty InstancePath list returned: there are no Instance Nodes within the SearchDepth=1 levels. 

 
SearchDepth = 2 

/UPnP/DM/Software/DU/3/ 
/UPnP/DM/Software/DU/5/ 
 
SearchDepth = 3 

/UPnP/DM/Software/DU/3/ 
/UPnP/DM/Software/DU/5/ 

2.7.3.2. Device Requirements 
If the Security Feature is supported by this CMS instance, then the Parent Device containing this CMS 
instance MUST apply the requirements defined in section 2.4.8. 

In addition to what is specified in section 2.4.8, in case the control point possesses a Role which is included 
in the Restricted Role List, the ACLs of Nodes in the Data Model MUST be used to control the access 
(permitted input argument values) and the action behavior (side effects and output argument values). 
Therefore, in this case, the following two conditions MUST be applied by the Parent Device, respectively 
for input and output action argument values: 



ConfigurationManagement:2 Service Template Version 1.01 82 

Copyright UPnP Forum © 2012.  All rights reserved. 

• The control point MUST possess a Role that authorizes use of the specified Path in StartingNode 
and value in SearchDepth input arguments: the Role possessed by the control point MUST be 
present in the Read permission list of any Node (supporting the Read permission list) in the given 
Path. If the control point is not authorized to use such Path as input argument, the action 
invocation MUST result in the 703 “No Such Name” error response. 

• The output argument of this action MUST be dependent from the control point’s Role, therefore 
the Parent Device can return only InstancePaths which satisfy the following condition: the control 
point Role is present in the Read permission list of any Node in the InstancePath, when the Read 
permission list is supported by the Node (see Table 2-12).  

2.7.3.3. Dependency on State (if any) 
The list of Parameters returned by the Parent Device depends on the object currently instanced. 

2.7.3.4. Effect on State (if any) 
 None 

2.7.3.5. Errors 

Table 2-24: Error Codes for GetInstances() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

606 Action not 
authorized 

The action requested requires authorization and the sender was not 
authorized. 

701 Invalid Argument 
Syntax 

The action failed because of the wrong syntax for the argument. 

703 No Such Name One or more Parameters given to action argument do not exist in 
the supported/implemented data model. 

800-899 TBD (Specified by UPnP vendor.) 

2.7.4. GetValues() 
The GetValues() action is used to retrieve the values of one or more Parameters from the Parent Device’s 
Data Model, by passing a list of Parameters. The action will return a list of the required Parameters 
associated with their values. To provide more flexibility, Parameters could be ParameterPaths or 
PartialPaths as explained below. 

The input argument is defined as follows: 

Parameters 

The control point passes to the Parent Device a list of ContentPaths. Getting the value of a ParameterPath 
in the list leads to a single Parameter-value pair, whereas getting the value of other types of allowed paths 
can lead to a list composed of multiple Parameter-value pairs. The control point may require the same 
Parameter twice (e.g. when the both parent and child are required in the Parameters argument); in this 
situation whether to reduce the number of Parameters returned to avoid duplications in the response is 
implementation dependent.  



ConfigurationManagement:2 Service Template Version 1.01 83 

Copyright UPnP Forum © 2012.  All rights reserved. 

The ouput argument is defined as follows: 

ParameterValueList 

The Parent Device must return a Parameter-value pair list, in which the Parameters are expressed as 
ParameterPaths, containing all descendant Parameters of the given ContentPath (if any), associated with 
their respective values. In other words, for each ContentPath provided in the input argument, the entire 
subtree starting from such Node is returned. The list can be empty if none of the required input paths leads 
to a Parameter with a value. 

2.7.4.1. Arguments 
The paths returned by this action depends on the following conditions: 

• The ACLs associated with Nodes in the supported data model. 

• The Role possessed by the control point which is invoking this action. 

• The ACLs associated with the instances (if any), which are descendant from the given paths (in the 
input argument). 

Table 2-25: Arguments for GetValues() 

Argument Direction relatedStateVariable 

Parameters IN A_ARG_TYPE_ContentPathList 

ParameterValueList OUT A_ARG_TYPE_ParameterValueList 
 

For example, given the following GetValues() action Parameters input argument: 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:ContentPathList xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 
<ContentPath>/UPnP/DM/DeviceInfo/</ContentPath> 
<ContentPath>/UPnP/DM/Monitoring/</ContentPath> 
</cms:ContentPathList> 
 

The GetValues() action response argument could be: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<cms:ParameterValueList xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 
<Parameter> 
<ParameterPath>/UPnP/DM/DeviceInfo/SoftwareVersion</ParameterPath> 
<Value>The First Manageable Device</Value> 
</Parameter> 
<Parameter> 
<ParameterPath>/UPnP/DM/DeviceInfo/ProvisioningCode</ParameterPath> 
<Value>UPnP enabled custom code</Value> 
</Parameter> 
… 



ConfigurationManagement:2 Service Template Version 1.01 84 

Copyright UPnP Forum © 2012.  All rights reserved. 

<Parameter> 
<ParameterPath>/UPnP/DM/DeviceInfo/PhysicalDevice/HardwareVersion</Param
eterPath> 
<Value>3.5</Value> 
… 
<Parameter> 
<ParameterPath>/UPnP/DM/DeviceInfo/Monitoring/OperatingSystem/CPUUsage</
ParameterPath> 
<Value>23</Value> 
… 
</cms:ParameterValueList> 

2.7.4.2. Device Requirements 
If the Security Feature is supported by this CMS instance, then the Parent Device containing this CMS 
instance MUST apply the requirements defined in section 2.4.8. 

In addition to what is specified in section 2.4.8, in case the control point possesses a Role which is included 
in the Restricted Role List, the ACLs of Nodes in the Data Model MUST be used to control the access 
(permitted input argument values) and the action behavior (side effects and output argument values). 
Therefore, in this case, the following two conditions MUST be applied by the Parent Device, respectively 
for input and output action argument values: 

• The control point MUST possess a Role that authorizes use of the specified Paths in Parameters 
input argument: the Role possessed by the control point MUST be present in the Read permission 
list of any Node (supporting the Read permission list) in the given Paths. If the control point is not 
authorized to use one of such Paths given as input argument, the action invocation MUST result 
in the 703 “No Such Name” error response. 

• The output argument of this action MUST be dependent from the control point’s Role, therefore 
the Parent Device can return only ParameterValueList whereas each Parameter in the list satisfies 
the following condition: the control point Role is present in the Read permission list of any Node 
in the Parameter name, when the Read permission list is supported by the Node (see Table 2-12).  

2.7.4.3. Dependency on State (if any) 
The list of Parameters returned by the Parent Device depends on the objects currently instantiated, if the 
ParameterValueList contain Instance Nodes. 

2.7.4.4. Effect on State (if any) 
None. 

2.7.4.5. Errors 

Table 2-26: Error Codes for GetValues  

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

606 Action not 
authorized 

The action requested requires authorization and the sender was not 
authorized. 



ConfigurationManagement:2 Service Template Version 1.01 85 

Copyright UPnP Forum © 2012.  All rights reserved. 

errorCode errorDescription Description 

702 Invalid XML 
Argument 

The action failed because of the wrong XML format in the 
argument. 

703 No Such Name One or more Parameters given to action argument do not exist in 
the supported/implemented data model. 

800-899 TBD (Specified by UPnP vendor.) 

2.7.5. GetSelectedValues()  
The GetSelectedValues() optional action is used to retrieve the values of one or more Parameters from the 
Parent Device Data Model, by passing to the Parent Device a filter, in order to provide to allow the control 
point to only retrieve values in which it has a specific interest. The Parent Device will return the list of the 
queried Parameters along with with their associated values.  

The input arguments are defined as follows: 

StartingNode 

The StartingNode is a StructurePath and may be used by the control point to narrow the possible responses 
in ParameterValueList to a specific subset of the Data Model; in this scenario, the device MUST return 
only Parameter Paths descending from the StartingNode.  

Filter 

The control point passes to the Parent Device a Filter argument as defined in the related state variable 
description. Only Parameters which satisfy the filter conditions will be returned. 

The ouput argument is defined as follows: 

ParameterValueList 

For each Parameter satisfying the given input filter, the Parent Device must return a Parameter-value pair 
list. The list is unordered and includes only Parameters descended from the StructurePath given in 
StartingNode. The returned list can be empty if there are no descendents from the given StartingNode for 
the response. 

2.7.5.1. Arguments 
The paths returned by this action depends on the following conditions: 

• The ACLs associated with Nodes in the supported data model. 

• The Role possessed by the control point which is invoking this action. 

• The ACLs associated with the instances (if any), which are descendant from the given paths (in the 
input argument). 

Table 2-27: Arguments for GetSelectedValues()  

Argument Direction relatedStateVariable 

StartingNode IN A_ARG_TYPE_StructurePath 

Filter IN A_ARG_TYPE_Filter 

ParameterValueList OUT A_ARG_TYPE_ParameterValueList  



ConfigurationManagement:2 Service Template Version 1.01 86 

Copyright UPnP Forum © 2012.  All rights reserved. 

 

Example 

Given the following example status in the Parent Device: 

/UPnP/DM/Software/DU/7/DUID = 21 
/UPnP/DM/Software/DU/7/State = "Installed" 
/UPnP/DM/Software/DU/7/EU/2/EUID = 2105 
/UPnP/DM/Software/DU/7/EU/2/ExecutionState = "Inactive" 
/UPnP/DM/Software/DU/12/DUID = 23 
/UPnP/DM/Software/DU/12/State = "Installed" 
/UPnP/DM/Software/DU/12/EU/7/EUID = 2372 
/UPnP/DM/Software/DU/12/EU/7/ExecutionState = "Active" 
 

If the control point needs to know all information of the EUs contained by the DU identified by 23, for 
example, it uses the following StructurePath as StartingNode value: 

/UPnP/DM/Software/DU/#/EU/#/  
 

And the following filter: 

/UPnP/DM/Software/DU/#/DUID = 23 
 

The ParameterValueList in the action response will contain the following Parameters descending from the 
StartingNode: 

/UPnP/DM/Software/DU/12/EU/7/EUID = 2372 
/UPnP/DM/Software/DU/12/EU/7/ExecutionState = "Active" 
 

The following Parameters: 

/UPnP/DM/Software/DU/12/DUID = 23 
/UPnP/DM/Software/DU/12/State = "Installed" 
 
will not be included in the response because /UPnP/DM/Software/DU/12/DUID is not descended 
from the StartingNode given: /UPnP/DM/Software/DU/#/EU/#/ 

2.7.5.2. Device Requirements 
If the Security Feature is supported by this CMS instance, then the Parent Device containing this CMS 
instance MUST apply the requirements defined in section 2.4.8. 

In addition to what is specified in section 2.4.8, in case the control point possesses a Role which is included 
in the Restricted Role List, the ACLs of Nodes in the Data Model MUST be used to control the access 
(permitted input argument values) and the action behavior (side effects and output argument values). 
Therefore, in this case, the following two conditions MUST be applied by the Parent Device, respectively 
for input and output action argument values: 

• The control point MUST possess a Role that authorizes use of the specified StructurePath in 
StartingNode and filter in Filter input arguments: the Role possessed by the control point MUST 
be present in the Read permission list of any Node (supporting the Read permission list) in the 
given StructurePaths. If the control point is not authorized to use such StructurePath as input 
argument, the action invocation MUST result in the “No Such Name” error response. 



ConfigurationManagement:2 Service Template Version 1.01 87 

Copyright UPnP Forum © 2012.  All rights reserved. 

• The output argument of this action MUST be dependent from the control point’s Role, therefore 
the Parent Device can return only ParameterValueList whereas each Parameter in the list satisfies 
the following condition: the control point Role is present in the Read permission list of any Node 
in the Parameter name, when the Read permission list is supported by the Node (see Table 2-12).   

2.7.5.3. Dependency on State (if any) 
The list of Parameters returned by the Parent Device depends on the objects currently instantiated if the 
ParameterValueList contain Instance Nodes. 

2.7.5.4. Effect on State (if any) 
None. 

2.7.5.5. Errors 

Table 2-28: Error Codes for GetSelectedValues()  

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

606 Action not 
authorized 

The action requested requires authorization and the sender was not 
authorized. 

701 Invalid Argument 
Syntax 

The action failed because of the wrong syntax for the argument. 

703 No Such Name One or more Parameters given to action argument do not exist in 
the supported/implemented data model. 

708 Resource 
Temporarily 
Unavailable 

The resources required for this action cannot be internally 
accessed due to a concurrency problem or some other temporarily 
problem in the Parent Device. 

800-899 TBD (Specified by UPnP vendor.) 
 

2.7.6. SetValues() 
The SetValues() optional action is used to modify the state of the Parent Device  by changing the value of 
one or more Parameters in the Parent Device  configuration. Each action is an independent transaction, 
and it MUST be possible to change more Parameters values at once through using one SetValues() action. 

There is a single response (either the SetValuesResponse() or the fault) to each SetValues() action, even 
when the action targets multiple Parameters. This means that, in case of success, all the changes must be 
saved by the Parent Device (commit) atomically in an all-or-nothing fashion. Otherwise, in case of failure 
to set one of the Parameters within the action, none of the required changes must be applied and the status 
of the Parent Device  must return the same as before the SetValues() action was invoked. 

If the Parameter is set more than once in the ParameterValueList argument, itis implementationspecific 
which value will be used. The Parent Device implementation MAY either accept multiple changes to the 
same Parameter in the same SetValues() action or to reject it with afault. 



ConfigurationManagement:2 Service Template Version 1.01 88 

Copyright UPnP Forum © 2012.  All rights reserved. 

The input argument is defined as follows: 

ParameterValueList 

The control point passes to the Parent Device a Parameter-value pair list, where the Parameter names are 
expressed as ParameterPaths. 

The ouput argument is defined as follows: 

Status 

Indicates whether the changes have been committed and applied or only committed. Depending on its 
internal capabilities (i.e., how the Parent Device manages and persistently saves configuration 
Parameters), the Parent Device informs the control point concerning its behavior after this SetValues() 
action terminates: 

• Status = ChangesCommitted  means that changes are not yet applied: the Parent Device has 
stored new values somewhere but it is still using the old ones for the current running status. For 
example, for some device/service implementations the underlying operating system could need to 
autonomously reboot (i.e. the CMS will disappear and reappear again in the network) after the 
action invocation before to apply the changes. The Parent Device will anyway return the new 
values to CPs for subsequent reading action as GetValues() or GetInstances() after this 
SetValues() invocation. 

• Status = ChangesApplied  means that changes have been applied and, for example, nothing else 
is needed by the Parent Device (e.g. the operating underlying system does not need to reboot). It 
is strongly recommended for Parent Device implementations to prefer this behavior rather than to 
delay the application of changes and use the ChangesCommitted. 

2.7.6.1. Arguments 

Table 2-29: Arguments for SetValues() 

Argument Direction relatedStateVariable 

ParameterValueList IN A_ARG_TYPE_ParameterValueList 

Status OUT A_ARG_TYPE_ChangeStatus 

2.7.6.2. Device Requirements 
If the Security Feature is supported by this CMS instance, then the Parent Device containing this CMS 
instance MUST apply the requirements defined in section 2.4.8. 

In addition to what is specified in section 2.4.8, in case the control point possesses a Role which is included 
in the Restricted Role List, the ACLs of Nodes in the Data Model MUST be used to control the access 
(permitted input argument values) and the action behavior (side effects and output argument values). 
Therefore, in this case, the following two conditions MUST be applied by the Parent Device, respectively 
for input and output action argument values: 

• The control point MUST possess a Role that authorizes use of the specified list of pairs 
ParameterPath-value in the ParameterValueList input argument: the Role possessed by the 
control point MUST be present in the Write permission list of any Node (supporting the Write 
permission list) in the given ParameterPaths. If the control point is not authorized to use such 
ParameterPaths as input argument, the action invocation MUST result in the 703 “No Such 
Name” error response. 



ConfigurationManagement:2 Service Template Version 1.01 89 

Copyright UPnP Forum © 2012.  All rights reserved. 

• As the action execution is authorized, the Status output argument of this action MUST be 
independent from the control point’s Role (i.e.: the response must be the same for all authorized 
control points).  

2.7.6.3. Dependency on State (if any) 
The list of Parameters to be set depends on the supported Parameters and on the Instance Nodes currently 
instanced. 

The resulting Status value and the action behavior MAY be affected by the BMS::SequenceMode state 
variable value. The BMS::SequenceMode is a hint the Parent Device MAY consider to decide whether it 
should commit changes whether to apply them directly as it normally does. This could be useful for 
configuration changes that may have side effects, e.g., the change of the IP address of the Parent Device. 
Whatever the decision to commit or apply directly the changes is, the control point will be informed using 
the Status output argument value. 

2.7.6.4. Effect on State (if any) 
The success of the action results in the change of Parent Device configuration state. The change may affect 
targeted Parameters and may alsohave side-effects. All the Parent Device state changes may result in an 
increment of CurrentConfigurationVersion and in a ConfigurationUpdate change for Parameters (Leaf and 
MultiInstance Nodes) which support the Version and the EventOnChange attributes. The change of 
ConfigurationUpdate may therefore follows in an event notified to service subscribers. Refer to the 
specific sections and section 2.5.23 for further details.  

If the device supports the Alarming Feature (section: 2.2.3), depending on the value of the AlarmsEnabled 
state variable and on the value of the AlarmOnChange attribute associated to the targeted Parameters that 
change their values, the ConfigurationUpdate state variable MUST also be updated accordingly (see details 
in 0).  

Failures do not result in any notification. A failure results only in an error message to the requestor. 

2.7.6.5. Errors 

Table 2-30: Error Codes for SetValues()  

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

606 Action not 
authorized 

The action requested requires authorization and the sender was not 
authorized. 

702 Invalid XML 
Argument 

The action failed because of the wrong XML format in the 
argument. 

703 No Such Name One or more Parameters given to action argument do not exist in 
the supported/implemented data model. 

704 Invalid Value Type The Parameter value has the wrong type. 

705 Invalid Value The Parameter value is invalid or out of range. 



ConfigurationManagement:2 Service Template Version 1.01 90 

Copyright UPnP Forum © 2012.  All rights reserved. 

errorCode errorDescription Description 

706 Read Only 
Violation 

The Parameter is read only and cannot be set, created or deleted. 

707 Multiple Set The same Parameter is set more than once in the same action. 

708 Resource 
Temporarily 
Unavailable 

The resources required for this action cannot be internally 
accessed due to a concurrency problem or some other temporarily 
problem in the Parent Device . 

800-899 TBD (Specified by UPnP vendor.) 

2.7.7. CreateInstance() 
The CreateInstance() optional action is used to modify the status of the Parent Device by addingexactly 
one new Instance Node to a MultiInstance Node into the Parent Device configuration. The new instance is 
created by passing to the Parent Device the PartialPath from the Root to the MultiInstance Node (refer to 
the MultiInstance grammar rules). The Parent Device will return the same PartialPath extended with the 
Instance Node identifier (refer to the Instance grammar rule) that it created. 

Using the ChildrenInitialization argument, the control point can also provide initializing values for some or 
all of the Leaf Nodes contained within the Instance Node to be created. 

If the same ParameterInitializationPath is included more than once in the ChildrenInitialization, resulting 
on a multiple initialization values for the same Parameters, it is implementation specific which value will 
be used. The Parent Device implementation MAY accept such multiple initialization values of the same 
Parameter in the same CreateInstance() action, reject the action with a fault. 

The input arguments are defined as follows: 

MultiInstanceName 

The MultiInstanceName argument contains the MultiInstancePath to identify where the Instance Node 
must be created. 

ChildrenInitialization 

The ChildrenInitialization is an XML fragment which specifies a list of name-value pairs where the names 
are ParameterInitializationPaths from Node of the given MultiInstance Node to the Leaf to be initialized, 
traversing zero or more SingleInstance Nodes (if the child Node to be initialized is nested within 
SingleInstance Nodes). The Nodes specified in the ChildrenInitialization list are optional (i.e. the list of 
initializing Nodes can be empty) and a partial subset of children is also permitted. The values are used to 
initialize, with the same CreateInstance() action, the Nodes contained in the Instance to be created. If the 
Parent Device provides the support for unique keys (see: 2.3.3), the ChildrenInitialization MUST be used 
to initialize all the Leaf Nodes that are part of the unique key. 

The ouput arguments are defined as follows: 

InstanceIdentifier 

The InstanceIdentifier is an InstancePath from the Root Node to the Instance Node already created. 

For example, if the control point wants to create a new Instance Node of a hypothetical User table, it must 
call the CreateInstance() action using “/User/” in the MultiInstanceName (to specify the 
MultiInstancePath). Supposing the Parent Device will create Instance number 27, it will respond to the 
control point the InstancePath “/User/27/” as output. 

Status 



ConfigurationManagement:2 Service Template Version 1.01 91 

Copyright UPnP Forum © 2012.  All rights reserved. 

See the related state variable for the type description. Depending on its internal capabilities (i.e.: how the 
Parent Device manages and persistently saves Instance Nodes), the Parent Device informs the control 
point concerning its behavior after this CreateInstance() action terminates: 

• Status = ChangesCommitted  means that changes are not yet applied: the Parent Device have 
stored the new Instance Node somewhere but it still using the old Instance Nodes for the current 
running status. For example, for some device/service implementations the underlying operating 
system could need to autonomously reboot (i.e. the CMS will disappear and reappear again in the 
network) after the action invocation before to create the new Instance Node and to apply 
initialization values for specified children Nodes. The Parent Device will anyway return the new 
values to CPs for subsequent reading action as GetInstances() or GetValues() after this 
CreateInstance() invocation. 

• Status = ChangesApplied  means that changes have been applied (the new Instance Node is 
created and initialization values for specified children Nodes have been applied) and, for example, 
nothing else is needed by the Parent Device (e.g. the operating underlying system does not need 
to reboot). It is strongly recommended for Parent Device implementations to prefer this behavior 
rather than to delay the application of changes and use the ChangesCommitted. 

2.7.7.1. Arguments 
The paths returned by this action depends on the following conditions: 

• The ACLs associated with Nodes in the supported data model. 

• The Role possessed by the control point which is invoking this action. 

• The ACLs associated with the instances (if any), which are descendant from the given paths (in the 
input argument). 

The ACL associated with the newly created InstanceNode depends on the ACL associated with its parent 
MultiInstance Node and on the device implementation. 

Table 2-31: Arguments for CreateInstance()  

Argument Direction relatedStateVariable 

MultiInstanceName IN A_ARG_TYPE_MultiInstancePath 

ChildrenInitialization IN A_ARG_TYPE_ParameterInitialVal
ueList 

InstanceIdentifier OUT A_ARG_TYPE_InstancePath 

Status OUT A_ARG_TYPE_ChangeStatus 

2.7.7.2. Device Requirements 
If the Security Feature is supported by this CMS instance, then the Parent Device containing this CMS 
instance MUST apply the requirements defined in section 2.4.8. 

In addition to what is specified in section 2.4.8, in case the control point possesses a Role which is included 
in the Restricted Role List, the ACLs of Nodes in the Data Model MUST be used to control the access 
(permitted input argument values) and the action behavior (side effects and output argument values). 
Therefore, in this case, the following two conditions MUST be applied by the Parent Device, for input and 
output action argument values: 

• For input arguments: the control point MUST possess a Role that authorizes use of the specified 
MultiInstancePath as MultiInstanceName input argument: the Role possessed by the control point 



ConfigurationManagement:2 Service Template Version 1.01 92 

Copyright UPnP Forum © 2012.  All rights reserved. 

MUST be present in the Write permission list of any Node (supporting the Write permission list) 
in the given MultiInstancePath. 

• For input arguments: the control point possesses a Role that authorizes use of the specified list of 
pairs ParameterInitializationPath-value optionally set in the ChildrenInitialization input 
argument: the Role possessed by the control point MUST be present in the Write permission list of 
any Node (supporting the Write permission list) in the given ParameterInitializationPaths. 

• If the control point is not authorized to use such Paths (the MultiInstancePath and the optionals 
ParameterInitializationPaths) as input arguments, the action invocation MUST result in the 703 
“No Such Name” error response. 

• As the action execution is authorized, InstancePath for InstanceIdentifier output argument and the  
Status output argument of this action MUST be independent from the control point’s Role (i.e.: 
the response must be the same for all authorized control points).It is up to the device 
implementation to compile the ACLs of the newly created Instance Node and all its descendants 
(see 2.4.4). 

2.7.7.3. Dependency on State (if any) 
The list of instantiable MultiInstance Nodes depends on the supported Parameters. 

The resulting Status value and the action behavior may be affected by the BMS::SequenceMode state 
variable value. The BMS::SequenceMode is a hint the Parent Device may consider to decide whether it 
should commit changes whether to apply them directly as it normally does. This could be useful for 
configuration changes that may have side effects, e.g., the change of the IP address of the Parent Device. 
Whatever the decision to commit or apply directly the changes is, the control point will be informed using 
the Status output argument value. 

2.7.7.4. Effect on State (if any) 
The success of the action results in the effective change of Parent Device configuration state. The change 
may affect targeted Parameters and may also have side-effects. All the Parent Device configuration state 
changes may result in an increment of CurrentConfigurationVersion and in a ConfigurationUpdate change 
for Parameters (Leaf and MultiInstance Nodes) which support the Version and the EventOnChange 
attributes. The change of ConfigurationUpdate may therefore follows in an event notified to service 
subscribers. Refer to the specific sections and section 2.5.23 for further details.  

If the device supports the Alarming Feature (section: 2.2.3), depending on the value of the AlarmsEnabled 
state variable and on the value of the AlarmOnChange attribute associated to the targeted Parameters that 
change their values, the ConfigurationUpdate state variable MUST also be updated accordingly (see details 
in 0).  

Failures do not result in any notification. A failure results only in an error message to the requestor. 

2.7.7.5. Errors 

Table 2-32: Error Codes for CreateInstance()  

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 



ConfigurationManagement:2 Service Template Version 1.01 93 

Copyright UPnP Forum © 2012.  All rights reserved. 

errorCode errorDescription Description 

606 Action not 
authorized 

The action requested requires authorization and the sender was not 
authorized. 

702 Invalid XML 
Argument 

The action failed because of the wrong XML format in the 
argument. 

703 No Such Name One or more Parameters given to action argument do not exist in 
the supported/implemented data model. 

704 Invalid Value Type The Parameter value has the wrong type. 

705 Invalid Value The Parameter value is invalid or out of range. 

706 Read Only 
Violation 

The Parameter is read only and cannot be set, created or deleted. 

707 Multiple Set The same Parameter is set more than once in the same action. 

708 Resource 
Temporarily 
Unavailable 

The resources required for this action cannot be internally 
accessed due to a concurrency problem or some other temporarily 
problem in the Parent Device . 

709 Resources 
Exceeded 

The instance cannot be created due to lack of internal resources. 

800-899 TBD (Specified by UPnP vendor.) 

2.7.8. DeleteInstance() 
The DeleteInstance() optional action is used to delete a exactly one Instance Node and all its content from 
the Parent Device configuration. 
The input argument is defined as follows: 

InstanceIdentifier 

The control point passes to the Parent Device an Instance Node identifier, expressed as an InstancePath 
from the Root to the Instance Node to be deleted.  

If the Instance Node contains some Nodes that cannot be deleted, for example a critical Parameter for the 
run-time behavior of the Parent Device or a nested MultiInstance Node that must be explicitly deleted first, 
then the appropriate error will be returned and the action fails. 

For example, to delete the Instance number 27 of the Network MultiInstance Node, the control point must 
call the DeleteInstance() action using  

/UPnP/DM/Configuration/Network/IPInterface/27/ 

as the InstanceIdentifier argument. 

If the Parent Device supports unique keys, the same Instance could also be addressed and deleted usingits 
unique key. For example, if the following Parameter is instanced in the Data Model: 

Value of  

/UPnP/DM/Configuration/Network/IPInterface/27/SystemName  

is "AdvertisementInterface" 



ConfigurationManagement:2 Service Template Version 1.01 94 

Copyright UPnP Forum © 2012.  All rights reserved. 

This means that Instance number 27 contains a Leaf named SystemName whose value is 
“AdvertisementInterface”. If the Parent Device support unique keys, and if and only if the 
SystemName is defined in the Data Model as the unique key, the control point MAY also use the 
following syntax to address and consequently delete the same Instance: 

/UPnP/DM/Configuration/Network/IPInterface/{SystemName="AdvertisementInt
erface"}/ 

Instead of 

/UPnP/DM/Configuration/Network/IPInterface/27/ 

The ouput argument is defined as follows: 

Status 

Depending on its internal capabilities (i.e.: how the Parent Device manages and persistently saves Instance 
Nodes), the Parent Device informs the control point concerning its behavior after this DeleteInstance() 
action terminates: 

• Status = ChangesCommitted  means that changes are not yet applied: the Parent Device have 
removed the existing Instance Node from somewhere (e.g. the persistent memory) but it still using 
the old Instance Nodes for the current running status. For example, for some device/service 
implementations the underlying operating system could need to autonomously reboot (i.e. the 
CMS will disappear and reappear again in the network) after the action invocation before to delete 
the existing Instance Node. The Parent Device will anyway return the new values to CPs for 
subsequent reading action as GetInstances() or GetValues() after this DeleteInstance() invocation. 

• Status = ChangesApplied  means that changes have been applied (the existing Instance Node is 
deleted) and, for example, nothing else is needed by the Parent Device (e.g. the operating 
underlying system does not need to reboot). It is strongly recommended for Parent Device 
implementations to prefer this behavior rather than to delay the application of changes and use the 
ChangesCommitted. 

2.7.8.1. Arguments 

Table 2-33: Arguments for DeleteInstance()  

Argument Direction relatedStateVariable 

InstanceIdentifier IN A_ARG_TYPE_InstancePath 

Status OUT A_ARG_TYPE_ChangeStatus 

2.7.8.2. Device Requirements 
If the Security Feature is supported by this CMS instance, then the Parent Device containing this CMS 
instance MUST apply the requirements defined in section 2.4.8. 

In addition to what is specified in section 2.4.8, in case the control point possesses a Role which is included 
in the Restricted Role List, the ACLs of Nodes in the Data Model MUST be used to control the access 
(permitted input argument values) and the action behavior (side effects and output argument values). 
Therefore, in this case, the following two conditions MUST be applied by the Parent Device, respectively 
for input and output action argument values: 

• The control point MUST possess a Role that authorizes use of the specified InstancePath as 
InstanceIdentifier input argument: the Role possessed by the control point MUST be present in the 
Write permission list of any Node (supporting the Write permission list) in the given InstancePath. 



ConfigurationManagement:2 Service Template Version 1.01 95 

Copyright UPnP Forum © 2012.  All rights reserved. 

If the control point is not authorized to use such InstancePath as input argument, the action 
invocation MUST result in the “No Such Name” error response. 

• As the action execution is authorized, the Status output argument of this action MUST be 
independent from the control point’s Role (i.e.: the response must be the same for all authorized 
control points).   

2.7.8.3. Dependency on State (if any) 
The Instance Nodes that can be deleted depends on the Instance Nodes currently instanced. 

The resulting Status value and the action behavior MAY be affected by the BMS::SequenceMode state 
variable value. The BMS::SequenceMode is a hint the Parent Device MAY consider to decide whether it 
should commit changes whether to apply them directly as it normally does. This could be useful for 
configuration changes that may have side effects, e.g., the change of the IP address of the Parent Device. 
Whatever the decision to commit or apply directly the changes is, the control point will be informed using 
the Status output argument value. 

2.7.8.4. Effect on State (if any) 
The success of the action results in the change of Parent Device configuration state. The change will affect 
targeted Parameters and MAY also have side-effects on other Parameters as well. All the Parent Device 
configuration state changes MAY result in CurrentConfigurationVersion incrementing and in a 
ConfigurationUpdate change for Parameters (Leaf and MultiInstance Nodes) which support the Version 
and the EventOnChange attributes. The change of ConfigurationUpdate MAY therefore be followed by an 
event notified to service subscribers. Refer to the specific sections and section 2.5.23 for further details.  

If the device supports the Alarming Feature (section: 2.2.3), depending on the value of the AlarmsEnabled 
state variable and on the value of the AlarmOnChange attribute associated to the targeted Parameters that 
change their values, the ConfigurationUpdate state variable MUST also be updated accordingly (see details 
in 0).  

 

Failures do not result in any notification. A failure results only in an error message to the requestor. 

2.7.8.5. Errors 

Table 2-34: Error Codes for DeleteInstance() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

606 Action not 
authorized 

The action requested requires authorization and the sender was not 
authorized. 

703 No Such Name One or more Parameters given to action argument do not exist in 
the supported/implemented data model. 

706 Read Only 
Violation 

The Parameter is read only and cannot be set, created or deleted. 



ConfigurationManagement:2 Service Template Version 1.01 96 

Copyright UPnP Forum © 2012.  All rights reserved. 

errorCode errorDescription Description 

708 Resource 
Temporarily 
Unavailable 

The resources required for this action cannot be internally 
accessed due to a concurrency problem or some other temporarily 
problem in the Parent Device. 

800-899 TBD (Specified by UPnP vendor.) 
 

2.7.9. GetAttributes() 
The GetAttributes() action is used to retrieve the attribute values of Parameters and MultiInstance Nodes 
from the Parent Device Data Model, by passing to the Parent Device a list of ParameterPaths, 
MultiInstancePaths or InstancePaths (see section 2.3.2 for further details on attributes). 

The Parent Device will return a list of Parameters and MultiInstance Node with their associated attribute 
values. 

As stated in section 2.3.2, not all Nodes support all attributes, therefore the attributes (and values) returned 
for a given Node depend on the attributes supported by such Node. 

The input argument is defined as follows: 

Parameters 

The control point passes to the Parent Device a list of: 

• ParameterPaths, 

• MultiInstancePaths or 

• InstancePaths. 

that could be mixed (see the related state variable for the type description). 

The control point MAY require the same Parameter twice: it’s up to the device implementation to define 
whether to reduce the number of Parameters returned to avoid duplications in the response. The list can be 
empty if none of the required paths leads to a Node which is supported by the Data Model and has at least 
one attribute.  

The ouput argument is defined as follows: 

NodeAttributeValueList 

The Parent Device MUST return an XML string, containing exactly the same list of paths that were 
provided as arguments with the list of  their associated attributes values. If a given path does not have 
attribute values the device must not include such a path in the returned list. 

2.7.9.1. Arguments 
The paths returned by this action depends on the following conditions: 

• The ACLs associated with Nodes in the supported data model. 

• The Role possessed by the control point which is invoking this action. 

• The ACLs associated with the instances (if any), which are descendant from the given paths (in the 
input argument). 



ConfigurationManagement:2 Service Template Version 1.01 97 

Copyright UPnP Forum © 2012.  All rights reserved. 

Table 2-35: Arguments for GetAttributes()  

Argument Direction relatedStateVariable 

Parameters IN A_ARG_TYPE_NodeAttributePathList 

NodeAttributeValueList OUT A_ARG_TYPE_NodeAttributeValueList 
 

Example 

For example, given the following GetAttributes() action input argument: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<cms:NodeAttributePathList xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 
<NodeAttributePath>/UPnP/DM/DeviceInfo/SoftwareVersion</NodeAttributePat
h> 
<NodeAttributePath>/UPnP/DM/DeviceInfo/PhysicalDevice/NetworkInterface/<
/NodeAttributePath> 
<NodeAttributePath>/UPnP/DM/Configuration/Network/IPInterface/3/</NodeAt
tributePath> 
</cms:NodeAttributePathList> 
 

The GetAttributes() action response argument could be: 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:NodeAttributeValueList xmlns:cms="urn:schemas-upnp-org:dm:cms" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms 
http://www.upnp.org/schemas/dm/cms.xsd"> 
<Node> 
<NodeAttributePath>/UPnP/DM/DeviceInfo/SoftwareVersion</NodeAttributePat
h> 
<Type>string(64)</Type> 
<Access>readWrite</Access> 
<EventOnChange>0</EventOnChange> 
</Node> 
 
<Node> 
<NodeAttributePath>/UPnP/DM/DeviceInfo/PhysicalDevice/NetworkInterface/<
/NodeAttributePath> 
<Access>readOnly</Access> 
<EventOnChange>1</EventOnChange> 
</Node> 
 
<Node> 
<NodeAttributePath>/UPnP/DM/Configuration/Network/Interface/3/</NodeAttr
ibutePath> 
<Access>readOnly</Access> 
<EventOnChange>1</EventOnChange> 
</Node> 
</cms:NodeAttributeValueList> 



ConfigurationManagement:2 Service Template Version 1.01 98 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.7.9.2. Device Requirements 
If the Security Feature is supported by this CMS instance, then the Parent Device containing this CMS 
instance MUST apply the requirements defined in section 2.4.8. 

In addition to what is specified in section 2.4.8, in case the control point possesses a Role which is included 
in the Restricted Role List, the ACLs of Nodes in the Data Model MUST be used to control the access 
(permitted input argument values) and the action behavior (side effects and output argument values). 
Therefore, in this case, the following two conditions MUST be applied by the Parent Device, respectively 
for input and output action argument values: 

• The control point MUST possess a Role that authorizes use of the specified Paths in Parameters 
input argument: the Role possessed by the control point MUST be present in the Read permission 
list of any Node (supporting the Read permission list) in the given Paths. If the control point is not 
authorized to use one of such Paths given as input argument, the action invocation MUST result 
in the 703 “No Such Name” error response. 

• The output argument of this action MUST be dependent from the control point’s Role, therefore 
the Parent Device can return only NodeAttributeValueList whereas each NodeAttributePath in the 
list satisfies the following condition: the control point Role is present in the Read permission list 
of any Node in the NodeAttributePath, when the Read permission list is supported by the Node 
(see Table 2-12). 

2.7.9.3. Dependency on State (if any) 
The list of Parameter attributes returned by the Parent Device depends on the supported Data Model and 
on the Instance Nodes currently instantiated. 

2.7.9.4. Effect on State (if any) 
None. 

2.7.9.5. Errors 

Table 2-36: Error Codes for GetAttributes() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

606 Action not 
authorized 

The action requested requires authorization and the sender was not 
authorized. 

702 Invalid XML 
Argument 

The action failed because of the wrong XML format in the 
argument. 

703 No Such Name One or more Parameters given to action argument do not exist in 
the supported/implemented data model. 

708 Resource 
Temporarily 
Unavailable 

The resources required for this action cannot be internally 
accessed due to a concurrency problem or some other temporarily 
problem in the Parent Device. 

800-899 TBD (Specified by UPnP vendor.) 



ConfigurationManagement:2 Service Template Version 1.01 99 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.7.10.SetAttributes() 
The SetAttributes() optional action is used to set the values of ReadWrite attributes for Parameters and 
MultiInstance Nodes from the Parent Device  Data Model, by passing to the Parent Device  a list of 
ParameterPaths or MultiInstancePaths (see section 2.3.2 for further details on attributes). 

There is a single response (either the SetAttributesResponse() or the fault) to multiple set commanded with 
the same SetAttributes() action because the response is related to the entire SetAttributes() action rather 
than to each set individually. This means that, in case of success, all the changes must be saved by the 
Parent Device (commit). Otherwise, in case of failure of one of the single set commanded within the same 
action invocation, none of the required changes must be applied and the status of the Parent Device must 
return the same as before the SetAttributes() action was invoked (rollback). 

The input argument is defined as follows: 

NodeAttributeValueList 

The control point passes to the Parent Device an XML string (see the related state variable for the type 
description) containing a mixture of MultiInstancePaths or ParameterPathsassociated with attribute values 
for ReadWrite attributes only (ReadOnly attributes cannot be changed, hence set, by the control point). 

Paths provided to the Parent Device can be: 

• MultiInstancePaths to set attribute values of intermediate MultiInstance Nodes, 

• ParameterPaths, to set attribute values of Leaf Nodes. 

As stated in section 2.3.2, only MultiInstance Nodes and Parameters (Leaf Nodes) have ReadWrite 
attributes and can be valid input arguments for the SetAttributes() action. 

InstancePaths are also allowed in NodeAttributeValueList argument but the Access attribute associated 
with InstancePaths are ReadOnly, therefore an attempt to set its value will cause a fault code returned by 
the device (e.g. “Read Only Violation”). 

The ouput argument is defined as follows: 

Status 

Depending on its internal capabilities (i.e.: how the Parent Device manages and persistently saves attribute 
values), the Parent Device informs the control point concerning its behavior after this SetAttributes() action 
terminates: 

• Status = ChangesCommitted  means that changes are not yet applied: the Parent Device have 
stored the new attribute values somewhere but it still using the old values for the current running 
status. For example, for some device/service implementations the underlying operating system 
could need to autonomously reboot (i.e. the CMS will disappear and reappear again in the 
network) after the action invocation to apply the changes The Parent Device will anyway return 
the new values to CPs for subsequent reading action as GetAttributes() after this 
SetAttributes().invocation. 

• Status = ChangesApplied  means that changes have been applied and, for example, nothing else 
is needed by the Parent Device (e.g. the operating underlying system does not need to reboot). It 
is strongly recommended for Parent Device implementations to prefer this behavior rather than to 
delay the application of changes and use the ChangesCommitted. 



ConfigurationManagement:2 Service Template Version 1.01 100 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.7.10.1.Arguments 

Table 2-37: Arguments for SetAttributes() 

Argument Direction relatedStateVariable 

NodeAttributeValueList IN A_ARG_TYPE_NodeAttributeValueList 

Status OUT A_ARG_TYPE_ChangeStatus 

2.7.10.2.Device Requirements 
If the Security Feature is supported by this CMS instance, then the Parent Device containing this CMS 
instance MUST apply the requirements defined in section 2.4.8. 

In addition to what is specified in section 2.4.8, in case the control point possesses a Role which is included 
in the Restricted Role List, the ACLs of Nodes in the Data Model MUST be used to control the access 
(permitted input argument values) and the action behavior (side effects and output argument values). 
Therefore, in this case, the following two conditions MUST be applied by the Parent Device, respectively 
for input and output action argument values: 

• The control point MUST possess a Role that authorizes use of the specified list of pairs 
NodeAttributePath-value in the NodeAttributeValueList input argument: the Role possessed by the 
control point MUST be present in the Write permission list of any Node (supporting the Write 
permission list) in the given NodeAttributePaths. If the control point is not authorized to use one 
of the NodeAttributePaths provided as input argument, the action invocation MUST result in the 
703 “No Such Name” error response. 

• As the action execution is authorized, the Status output argument of this action MUST be 
independent from the control point’s Role (i.e.: the response must be the same for all authorized 
control points).    

2.7.10.3.Dependency on State (if any) 
The list of attributes that can be set depends on the supported Data Model and on the Instance Nodes 
currently instanced. 

The resulting Status value and the action behavior MAY be affected by the BMS::SequenceMode state 
variable value. The BMS::SequenceMode is a hint the Parent Device MAY consider to decide whether it 
should commit changes whether to apply them directly as it normally does. This could be useful for 
configuration changes that may have side effects, e.g., the change of the IP address of the Parent Device. 
Whatever the decision to commit or apply directly the changes is, the control point will be informed using 
the Status output argument value. 

2.7.10.4.Effect on State (if any) 
The success of the action results in the effective change of Parent Device data. The change may affect 
targeted Parameters and may have side-effects. All the Parent Device data changes may result in an 
increment of CurrentConfigurationVersion and in a ConfigurationUpdate change for Parameters (Leaf and 
MultiInstance Nodes) which support the Version and the EventOnChange attributes. The change of 
ConfigurationUpdate may therefore follows in an event notified to service subscribers. Refer to the 
specific sections and section 2.5.23 for further details. 

If the device supports the Alarming Feature (section: 2.2.3), depending on the value of the AlarmsEnabled 
state variable and on the value of the AlarmOnChange attribute associated to the targeted Parameters that 
change their values, the ConfigurationUpdate state variable MUST also be updated accordingly (see details 
in 0).  



ConfigurationManagement:2 Service Template Version 1.01 101 

Copyright UPnP Forum © 2012.  All rights reserved. 

Failures do not result in any notification. A failure results only in an error message to the requestor. 

2.7.10.5.Errors 

Table 2-38: Error Codes for SetAttributes()  

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

606 Action not 
authorized 

The action requested requires authorization and the sender was not 
authorized. 

702 Invalid XML 
Argument 

The action failed because of the wrong XML format in the 
argument. 

703 No Such Name One or more Parameters given to action argument do not exist in 
the supported/implemented data model. 

704 Invalid Value Type The Parameter value has the wrong type. 

705 Invalid Value The Parameter value is invalid or out of range. 

706 Read Only 
Violation 

The Parameter is read only and cannot be set, created or deleted. 

708 Resource 
Temporarily 
Unavailable 

The resources required for this action cannot be internally 
accessed due to a concurrency problem or some other temporarily 
problem in the Parent Device. 

800-899 TBD (Specified by UPnP vendor.) 

2.7.11.GetInconsistentStatus() 
The GetInconsistentStatus() optional action can be used by CPs that have not subscribed to receive changes 
to the InconsistentStatus state variable in order to check whether the status of the Parent Device is 
consistent. This action MUST be implemented if the InconsistenStatus optional state variable is 
implemented. 

The ouput argument is defined as follows: 

StateVariableValue 

The Parent Device returns to the control point the value of the InconsistentStatus state variable. 

2.7.11.1.Arguments 

Table 2-39: Arguments for GetInconsistentStatus()  

Argument Direction relatedStateVariable 

StateVariableValue OUT InconsistentStatus 



ConfigurationManagement:2 Service Template Version 1.01 102 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.7.11.2.Device Requirements 
This action returns the value of an evented state variable.  This value is freely available to all control 
points, so, if the Security Feature is supported, this action is defined as Non-Restrictable and the Parent 
Device MUST permit all control points to invoke it, regardless of which Roles they possess. 

2.7.11.3.Dependency on State (if any) 
The value of the returned status depends on the value of the InconsistentStatus state variable. 

2.7.11.4.Effect on State (if any) 
None 

2.7.11.5.Errors 

Table 2-40: Error Codes for GetInconsistentStatus() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

2.7.12.GetConfigurationUpdate() 
The GetConfigurationUpdate() action can be used by CPs that have not subscribed to receive changes to 
the ConfigurationUpdate state variable in order to to read the value of the state variable.  

2.7.12.1.Arguments 

Table 2-41: Arguments for GetConfigurationUpdate()  

Argument Direction relatedStateVariable 

StateVariableValue OUT ConfigurationUpdate 

2.7.12.2.Device Requirements 
This action returns the value of an evented state variable.  This value is freely available to all control 
points, so, if the Security Feature is supported, this action is defined as Non-Restrictable and the Parent 
Device MUST permit all control points to invoke it, regardless of which Roles they possess. 

 

2.7.12.3.Dependency on State (if any) 
The value of the returned status depends on the value of the ConfigurationUpdate state variable. 

2.7.12.4.Effect on State (if any) 
None 



ConfigurationManagement:2 Service Template Version 1.01 103 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.7.12.5.Errors 

Table 2-42: Error Codes for GetConfigurationUpdate() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

2.7.13.GetCurrentConfigurationVersion() 
The GetCurrentConfigurationVersion() action can be used by CPs that have not subscribed to receive 
changes to the CurrentCOnfigurationVersion state variable in order  to read the value of the state variable.  

2.7.13.1.Arguments 

Table 2-43: Arguments for GetCurrentConfigurationVersion()  

Argument Direction relatedStateVariable 

StateVariableValue OUT CurrentConfigurationVersion 

2.7.13.2.Device Requirements 
This action returns the value of an evented state variable.  This value is freely available to all control 
points, so, if the Security Feature is supported, this action is defined as Non-Restrictable and the Parent 
Device MUST permit all control points to invoke it, regardless of which Roles they possess. 

2.7.13.3.Dependency on State (if any) 
The value of the returned status depends on the value of the CurrentConfigurationVersion state variable. 

2.7.13.4.Effect on State (if any) 
None 

2.7.13.5.Errors 

Table 2-44: Error Codes for GetCurrentConfigurationVersion() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

2.7.14.GetSupportedDataModelsUpdate() 
The GetSupportedDataModelsUpdate() action can be used by CPs that have not subscribed to receive 
changes to the SupportedDataModelsUpdate state variable in order to read the value of the state variable. 



ConfigurationManagement:2 Service Template Version 1.01 104 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.7.14.1.Arguments 

Table 2-45: Arguments for GetSupportedDataModelsUpdate()  

Argument Direction relatedStateVariable 

StateVariableValue OUT SupportedDataModelsUpdate 
 

2.7.14.2.Device Requirements 
This action returns the value of an evented state variable.  This value is freely available to all control 
points, so, if the Security Feature is supported, this action is defined as Non-Restrictable and the Parent 
Device MUST permit all control points to invoke it, regardless of which Roles they possess. 

2.7.14.3.Dependency on State (if any) 
The value of the returned status depends on the value of the SupportedDataModelsUpdate state variable. 

2.7.14.4.Effect on State (if any) 
None 

2.7.14.5.Errors 

Table 2-46: Error Codes for GetSupportedDataModelsUpdate() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

2.7.15.GetSupportedParametersUpdate() 
The GetSupportedParametersUpdate() action can be used by CPs that have not subscribed to the 
SupportedParametersUpdate events to read the value of the state variable. 

2.7.15.1.Arguments 

Table 2-47: Arguments for GetSupportedParametersUpdate()  

Argument Direction relatedStateVariable 

StateVariableValue OUT SupportedParametersUpdate 

2.7.15.2.Device Requirements 
This action returns the value of an evented state variable.  This value is freely available to all control 
points, so, if the Security Feature is supported, this action is defined as Non-Restrictable and the Parent 
Device MUST permit all control points to invoke it, regardless of which Roles they possess. 



ConfigurationManagement:2 Service Template Version 1.01 105 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.7.15.3.Dependency on State (if any) 
The value of the returned status depends on the value of the SupportedParametersUpdate state variable. 

2.7.15.4.Effect on State (if any) 
None 

2.7.15.5.Errors 

Table 2-48: Error Codes for GetSupportedParametersUpdate() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

2.7.16.GetAttributeValuesUpdate() 
The GetAttributeValuesUpdate() optional action can be used by CPs that have not subscribed to the 
AttributeValuesUpdate events to read the value of the state variable. This action MUST be implemented if 
the AttributeValuesUpdate optional state variable is implemented. 

2.7.16.1.Arguments 

Table 2-49: Arguments for GetAttributeValuesUpdate()  

Argument Direction relatedStateVariable 

StateVariableValue OUT AttributeValuesUpdate 

2.7.16.2.Device Requirements 
This action returns the value of an evented state variable.  This value is freely available to all control 
points, so, if the Security Feature is supported, this action is defined as Non-Restrictable and the Parent 
Device MUST permit all control points to invoke it, regardless of which Roles they possess. 

2.7.16.3.Dependency on State (if any) 
The value of the returned status depends on the value of the AttributeValuesUpdate state variable. 

2.7.16.4.Effect on State (if any) 
None 

2.7.16.5.Errors 

Table 2-50: Error Codes for GetAttributeValuesUpdate() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 



ConfigurationManagement:2 Service Template Version 1.01 106 

Copyright UPnP Forum © 2012.  All rights reserved. 

errorCode errorDescription Description 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

2.7.17.GetAlarmsEnabled() 
The GetAlarmingEnabled() action can be used check if the overall alarm functionality on the Parent Device 
is enabled of disabled. It basically reads the value of the state variable AlarmingEnabled. This action is 
OPTIONAL. 

2.7.17.1.Arguments 

Table 2-51: Arguments for GetAlarmsEnabled() 

Argument Direction relatedStateVariable 

StateVariableValue OUT AlarmsEnabled 

2.7.17.2.Device Requirements 
This action returns the value of an evented state variable.  This value is freely available to all control 
points, so, if the Security Feature is supported, this action is defined as Non-Restrictable and the Parent 
Device MUST permit all control points to invoke it, regardless of which Roles they possess. 

2.7.17.3.Dependency on State (if any) 
The value of the returned status is the value of the AlarmsEnabled state variable. 

2.7.17.4.Effect on State (if any) 
None 

2.7.17.5.Errors 

Table 2-52: Error Codes for GetAlarmsEnabled() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

2.7.18.SetAlarmsEnabled() 
The SetAlarmsEnabled()action can be used to enable or disable the overall alarm functionality on the 
Parent Device. This action is OPTIONAL. 

The input argument is defined as follows: 

StateVariableValue 

The value is set to 1 when the Parent Device must include the list of name-value for alarmed Parameters, 
as it sends the ConfigurationUpdate event. 



ConfigurationManagement:2 Service Template Version 1.01 107 

Copyright UPnP Forum © 2012.  All rights reserved. 

The value is set to 0 when the Parent Device must not include the list of name-value for alarmed 
Parameters, as it sends the ConfigurationUpdate event. 

2.7.18.1.Arguments 

Table 2-53: Arguments for SetAlarmsEnabled() 

Argument Direction relatedStateVariable 

StateVariableValue IN AlarmsEnabled 

2.7.18.2.Device Requirements 
If the Security Feature is supported by this CMS instance, then the Parent Device containing this CMS 
instance MUST apply the requirements defined in section 2.4.8. 

In addition to what is specified in section 2.4.8, in case the control point possesses a Role which is included 
in the Restricted Role List, it is up to the Parent Device to determine whether the control point can 
successfully invoke the action or to return the error code 606 “Action Not Authorized”. 

2.7.18.3.Dependency on State (if any) 
None 

2.7.18.4.Effect on State (if any) 
The action will change the value of the AlarmsEnabled state variable. 

2.7.18.5.Errors 

Table 2-54: Error Codes for SetAlarmsEnabled () 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

606 Action not 
authorized 

The action requested requires authorization and the sender was not 
authorized. 

708 Resource 
Temporarily 
Unavailable 

The resources required for this action cannot be internally 
accessed due to a concurrency problem or some other temporarily 
problem in the Parent Device. 

 

2.7.19.GetACLData() 
The GetACLData() action is used to retrieve the ACLs of Nodes from the Parent Device Data Model, by 
passing to the Parent Device a list of ACLDataPaths. The Parent Device will return a list of 
ACLDataPaths with their associated ACL. 

The input arguments are defined as follows: 

StartingNodes 



ConfigurationManagement:2 Service Template Version 1.01 108 

Copyright UPnP Forum © 2012.  All rights reserved. 

The StartingNodes provides to the Parent Device the list of Paths where to start the browsing. Its type is 
defined in the related state variable description. 

The ouput argument is defined as follows: 

ACL 

As a control point, having a specific Role assigned to the TLS session with the Parent Device, the ACL 
returned by the device contains the ACLs view from the perspective of such control point.  

The ACLDataPaths in the resulting ACL MUST have one of the Paths in the StartingNodes as prefix.  

2.7.19.1.Arguments 

Table 2-55: Arguments for GetACLData() 

Argument Direction Related State Variable 
StartingNodes IN A_ARG_TYPE_ACLDataPathLis

t 

ACL OUT A_ARG_TYPE_ACL 

 

For example, given the Data Model as in Figure 5, supposing a GetACLData() invocation with 

the following StartingNodes: 

<?xml version="1.0" encoding="UTF-8"?> 
<ACLDataPathList xmlns="urn:schemas-upnp-org:dm:ConfigurationManagement" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-
org:dm:ConfigurationManagement http://www.upnp.org/schemas/dm/Configurat
ionManagement-v2.xsd"> 
      <ACLDataPath> 
  /UPnP/Phone/AddressBook/ 
 </ACLDataPath> 
</ACLDataPathList> 
 

Depending on whether the control point is authenticated as Public, Basic or xxxAdmin Role, the result will 
be different. 

The Parent Device will return the following ACL to the control point authenticated with xxxAdmin Role:  

<?xml version="1.0" encoding="UTF-8"?> 
<ACL xmlns="urn:schemas-upnp-org:dm:ConfigurationManagement" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-
org:dm:ConfigurationManagement http://www.upnp.org/schemas/dm/Configurat
ionManagement-v2.xsd"> 

<ACLEntry> 
<ACLDataPath>/UPnP/Phone/AddressBook/</ACLDataPath> 
<List factorized=”1”>Public</List> 
<Read factorized=”1”>Basic xxxAdmin</Read> 
<Write factorized=”1”>Basic xxxAdmin</Write> 

</ACLEntry> 
<ACL> 

http://www.w3.org/2001/XMLSchema-instance�
http://www.upnp.org/schemas/dm/ConfigurationManagement-v2.xsd�
http://www.upnp.org/schemas/dm/ConfigurationManagement-v2.xsd�
http://www.w3.org/2001/XMLSchema-instance�
http://www.upnp.org/schemas/dm/ConfigurationManagement-v2.xsd�
http://www.upnp.org/schemas/dm/ConfigurationManagement-v2.xsd�


ConfigurationManagement:2 Service Template Version 1.01 109 

Copyright UPnP Forum © 2012.  All rights reserved. 

<ACLDataPath>/UPnP/PHONE/AddressBook/Contact/3/</ACLDataPath> 
<Read factorized=”1”>Basic xxxAdmin</Read> 
<Write factorized=”1”>xxxAdmin</Write> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/AddressBook/Contact/3/Identification/Nick
Name</ACLDataPath> 
<Read>xxxAdmin</Read> 
<Write>xxxAdmin</Write> 

</ACLEntry> 
</ACL> 
 

The Parent Device will return the following ACL to the control point authenticated with Basic Role. Notice 
that the returned Paths have the List and Read permission list containing the Basic Role and the Write 
permission list is not returned (with respect to the example above) because of the Basic Role is missing in 
the Write lists: 

<?xml version="1.0" encoding="UTF-8"?> 
<ACL xmlns="urn:schemas-upnp-org:dm:ConfigurationManagement" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-
org:dm:ConfigurationManagement http://www.upnp.org/schemas/dm/Configurat
ionManagement-v2.xsd"> 

<ACLEntry> 
<ACLDataPath>/UPnP/Phone/AddressBook/</ACLDataPath> 
<List>Public Basic xxxAdmin</List> 
<Read>Basic xxxAdmin</Read> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/AddressBook/Contact/3/</ACLDataPath> 
<Read factorized=”1”>Basic xxxAdmin</Read> 

</ACLEntry> 
<ACLEntry> 

<ACLDataPath>/UPnP/PHONE/AddressBook/Contact/3/Identification/Nick
Name</ACLDataPath> 
<Read>xxxAdmin</Read> 

</ACLEntry> 
</ACL> 
 

The Parent Device will return the following ACL to the control point authenticated with Public Role. 
Notice that the returned Paths have only the List ACL because such list is the only one containing the 
Public Role:  

<?xml version="1.0" encoding="UTF-8"?> 
<ACL xmlns="urn:schemas-upnp-org:dm:ConfigurationManagement" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:schemas-upnp-
org:dm:ConfigurationManagement http://www.upnp.org/schemas/dm/Configurat
ionManagement-v2.xsd"> 

<ACLEntry> 
<ACLDataPath>/UPnP/Phone/AddressBook/</ACLDataPath> 
<List factorized=”1”>Public Basic xxxAdmin</List> 

</ACLEntry> 
</ACL> 
 

http://www.w3.org/2001/XMLSchema-instance�
http://www.upnp.org/schemas/dm/ConfigurationManagement-v2.xsd�
http://www.upnp.org/schemas/dm/ConfigurationManagement-v2.xsd�
http://www.w3.org/2001/XMLSchema-instance�
http://www.upnp.org/schemas/dm/ConfigurationManagement-v2.xsd�
http://www.upnp.org/schemas/dm/ConfigurationManagement-v2.xsd�


ConfigurationManagement:2 Service Template Version 1.01 110 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.7.19.2.Device Requirements 
If the Security Feature is supported by this CMS instance, then the Parent Device containing this CMS 
instance MUST apply the requirements defined in section 2.4.8. 

In addition to what is specified in section 2.4.8, in case the control point possesses a Role which is included 
in the Restricted Role List, the ACLs of Nodes in the Data Model MUST be used to control the access 
(permitted input argument values) and the action behavior (side effects and output argument values). 
Therefore, in this case, the following two conditions MUST be applied by the Parent Device, respectively 
for input and output action argument values: 

• The control point MUST possess a Role that authorizes use of the specified Paths in 
StartingNodes input argument: the Role possessed by the control point MUST be present in the 
Read or List permission lists (depending on the type of Path, see 2.4.3) of any Node (supporting 
the Read/List permission lists) in the given Paths. If the control point is not authorized to use one 
of such Paths given as input argument, the action invocation MUST result in the 703 “No Such 
Name” error response. 

• The output argument of this action MUST be dependent from the control point’s Role, therefore 
the Parent Device can return only ACL whereas each ACLDataPath in the list satisfies the 
following condition: the control point Role is present in the Read or List permission lists 
(depending on the type of Path, see 2.4.3) of any Node in the ACLDataPaths, when the 
Read/Write permission lists are supported by the Node (see Table 2-12).  

2.7.19.3.Dependency on State (if any) 
The list of ACLs returned by the Parent Device depends on the supported Data Model and on the Role 
currently assigned to the control point. 

2.7.19.4.Effect on State (if any) 
None. 

2.7.19.5.Errors 

Table 2-56: Error Codes for GetACLData() 

errorCode errorDescription Description 
400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

606 Action not 
authorized 

The action requested requires authorization and the sender was not 
authorized. 

701 Invalid Argument 
Syntax 

The action failed because of the wrong syntax for the argument. 

703 No Such Name One or more Parameters given to action argument do not exist in 
the supported/implemented data model. 

800-899 TBD (Specified by UPnP vendor.) 
 

 



ConfigurationManagement:2 Service Template Version 1.01 111 

Copyright UPnP Forum © 2012.  All rights reserved. 

2.7.20.Non-Standard Actions Implemented by a UPnP Vendor 
To facilitate certification, non-standard actions implemented by UPnP vendors should be included in this 
service template. The UPnP Device Architecture [UDA] lists naming requirements for non-standard 
actions (see the section on Description). 

2.7.21.Common Error Codes  
The following table lists error codes common to actions for this service type. If an action results in multiple 
errors, the most specific error must be returned.  

Table 2-57: Common Error Codes 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture section on Control. 

500-599 TBD See UPnP Device Architecture section on Control. 

600-699 TBD See UPnP Device Architecture section on Control. 

606 Action not 
authorized 

The action requested requires authorization and the sender was not 
authorized. 

700  Reserved for future extensions 

701 Invalid Argument 
Syntax 

The action failed because of the wrong syntax for the argument. 

702 Invalid XML 
Argument 

The action failed because of the wrong XML format in the 
argument. 

703 No Such Name One or more Parameters given to action argument do not exist in 
the supported/implemented data model. 

704 Invalid Value Type The Parameter value has the wrong type. 

705 Invalid Value The Parameter value is invalid or out of range. 

706 Read Only 
Violation 

The Parameter is read only and cannot be set, created or deleted. 

707 Multiple Set The same Parameter is set more than once in the same action. 

708 Resource 
Temporarily 
Unavailable 

The resources required for this action cannot be internally 
accessed due to a concurrency problem or some other temporarily 
problem in the Parent Device. 

709 Resources 
Exceeded 

The instance cannot be created due to lack of internal resources. 

800-899 TBD (Specified by UPnP vendor.) 
 



ConfigurationManagement:2 Service Template Version 1.01 112 

Copyright UPnP Forum © 2012.  All rights reserved. 

Table 2-58: Error Codes Usage 

errorCode Usage 

606 Action not authorized 

This code has to be returned whenever the control point does not have the required permission to 
invoke the action.  

This error code MUST NOT be used when ACL are used to hide or protect information from the data 
model, and the control point does not have the priviledges to list, read or write the resource it is trying 
to respectively list, read or write. Use the 7xx error codes instead, in order not to reveal (through a 
security error response) the existence of some data model information that should be hidden.  

For example, if a control point tried to browse the Parameter /UPnP/DM/DeviceInfo/SoftwareVersion 
without having the needed List permission, if it returned the 606 response, the control would be able to 
infer that the Parameter existed. 

701 Invalid Argument Syntax 

This error has to be used in case a non-XML argument is provided with the wrong syntax.  

For example, if a control point uses an InstancePath instead of a StructurePath, when the StructurePath 
is required. 

702 Invalid XML Argument 

This error has to be used in case an XML argument provided by the control point is a non well-formed 
XML string or it contains other generic syntax errors.  

For example, the argument does not contain a mandatory XML element. 

703 No Such Name 

This error has to be returned in the following cases: 

• The provided Parameter or one of Instance Nodes it contains (if any) does not exist in the 
supported/implemented data model. 

• Due to ACL restriction, the control point does not have the permission to list, read or write the 
argument provided. 

For example, the control point is trying to address an Instance Node but it does not have the Read 
permission on it.  

704 Invalid Value Type 

This error has to be used in case the Parameter name is correct and the control point has the permission 
to use it but the type associated to its value mismatches what is required. This means that the value is 
syntactically invalid for the data type. 

For example, an invalid Integer string representation is provided when an Integer value is expected.  

705 Invalid Value 

This error occurs when the the Parameter name is correct, the control point has the permission to set it, 
the supplied value is syntactically correct for the data type, but the value provided is not valid for that 
Parameter. 

For example, in case the Parameter’s allowed values are a set of defined string, the control point 
provides a string which is not in that set. 



ConfigurationManagement:2 Service Template Version 1.01 113 

Copyright UPnP Forum © 2012.  All rights reserved. 

errorCode Usage 

706 Read Only Violation 

As the control point attempts to write a Parameter whereas its Access attribute value is ReadOnly, this 
causes a Read Only Violation error. This error has to be used also in case the ACL of the Parameter 
allows the list and read permission to the control point but denies the write. 

For example, statistical Parameters or NumberOfEntries counters are not writable, therefore as the 
control point tries to write them, the device returns this error.  

707 Multiple Set 

Multiple set of the same parameters in the same action should be refused using this error.  

708 Resource Temporarily Unavailable 

This is a very generic error that can be used by the device whenever, for internal and temporary 
reasons, it is not able to properly execute the invoked action. 

709 Resources Exceeded 

This error has to be used when an Instance Node cannot be created due to lack of internal resources. 
 

2.8. Theory of Operation 
This section walks through several scenarios to illustrate the various actions supported by the 
ConfigurationManagement service. 

2.8.1. Discovering of the Data Model 
The GetSupportedDataModels() and the GetSupportedParameters() actions allow a control point to 
discover the Data Model’s structure of a Parent Device. 

The GetSupportedDataModels() returns the list of all Data Model definitions supported by the device. 
Those definitions include at least the Common Objects, which is the definition of the minimal set of 
Parameters that are supported by all Parent Device instances. 

The Data Model of a device is composed by the Common Objects and might be enriched using more 
Parameters. Such Parameters might be described in other Data Model definitions and grouped in a global 
tree structure. This tree structure is not guaranteed to be the same for each Parent Device, that is why the 
GetSupportedDataModels() action returns also a location path where each Data Model definition is 
incorporated. 

The GetSupportedParameters() action allows a control point to discover which Parameters, in the 
structure of the supported Data Model, are currently supported by the device. The meaning (semantic) of 
each Parameter comes from the Data Model definition (e.g.: OMA-DM objects, TR-106) and should be 
known by the control point if it needs to properly manage them. 

Using the combination of GetSupportedDataModels() and GetSupportedParameters(), the control point 
can build an internal view of the entire Data Model structure supported by a Parent Device. 

 



ConfigurationManagement:2 Service Template Version 1.01 114 

Copyright UPnP Forum © 2012.  All rights reserved. 

 

Figure 13: sequence for discovering the supported data model and parameters.  

Here is a sequence of actions to achieve that goal (see Figure 13): 

1. Control point calls GetSupportedDataModels(), and receives as the result an XML formatted list of 
Data Model definitions currently supported by the device. Control point parses the XML returned 
value to retrieve all the definitions’ paths that it is able to understand. As a generic control point for 
MDs, it only have to understand the definition identified by the URI 
urn:UPnP:ManageableDevice:1:CommonObjects:1 which is the Common Objects' 
definition. The local path associated with this Data Model definition is ”/UPnP/DM”. A priori 
knowledge in the control point is needed to correctly interpret and manage the information about other 
Data Models. 

2. Control point calls GetSupportedParameters() using ”/UPnP/DM” as starting Node with 
SearchDepth set to 0. The control point limits the search to the sub-tree descendant of ”/UPnP/DM”. 
The search depth "0" means that the control point wants to retrieve the whole sub-tree. Alternatively, if 
the control point is interested to retrieve all the Parameters supported it has to call the 
GetSupportedParameters("/",0)  instead. 

At this stage, the control point knows the Common Objects structure currently supported by the Parent 
Device, i.e., it knows what optional Parameters are present or not. 

The list of supported Data Model definitions and supported Parameters can change during the lifetime of 
the device. Any change results in the generation of an event that allows a control point that has subscribed 
to events to know when it is useful to re-discover the Data Model. If the control point does not use an 
event based logic, then it is up to the control point the decide when to re-discover the Data Model.  

2.8.2. Management 
The Data Model is the right place to search information concerning the configuration and the actual state 
of the device. A control point can use the GetValues() and the optional SetValues() and 
GetSelectedValues() to operate a trouble-shooting session. In the following example let's assume that the 
SetValues() and the GetSelectedValues() actions are implemented and that the device is having problem 
communicating with services available on the Internet. In our example the device has got only one network 
interface also used for UPnP management, i.e., connectivity is available and only the internet access is 
having trouble. 



ConfigurationManagement:2 Service Template Version 1.01 115 

Copyright UPnP Forum © 2012.  All rights reserved. 

• Control point calls 
GetSelectedValues("…/UPnP/DM/Configuration/Network/IPInterface/1/IPv4/…",
,"") where the first argument is the common prefix of all Parameters that will be returned and the 
second argument is an empty filter. The common prefix, here, is the Root of the sub-tree containing 
the IP configuration of the network interface. 

• Control point checks the validity of the value of all returned Parameters. In our example everything is 
correct except that the value of the 
/UPnP/DM/Configuration/Network/IPInterface/1/IPv4/DNSServers Parameters 
is an empty string. This Parameter contains the list of DNS servers to query to resolve IP addresses. 
As the value is currently empty, the device is not able to resolve IP addresses and therefore to access 
properly the Internet services. 

• Control point calls 
SetValues(/UPnP/DM/Configuration/Network/IPInterface/1/IPv4/DNSServers, 
"212.123.195.200, 212.123.195.201") to update the configuration. The first argument is 
the Parameter to modify; the second argument is the new value to set. 

Alternatively, if the GetSelectedValues() action is not implemented by the device, the control point will call 
the GetValues() action with the list of Parameters to retrieve as input argument value. 

2.8.3. BMS Interaction 
The BMS::SetSequenceMode() action is an optional action of the BasicManagement:1 service (BMS). It 
allows a control point to indicate to the Parent Device that it plans to execute a sequence of actions. From 
the ConfigurationManagement Service (CMS) point of view, the sequence mode handled by the BMS is a 
hint that can be taken into account to decide not to instantly apply changes. This hint may, for instance, 
influence the behavior of the SetValues() action.  

When the control point needs to configure the Parent Device by executing a sequence of one or more 
configuration actions, the BMS::SetSequenceMode() action can be used to inform the Parent Device of the 
beginning and the end of such configuration session. This is really useful whenever the Parent Device 
needs to do some time-consuming operations (e.g. a reboot of the underlying operating system, which may 
happen in some simple devices), after the control point invokes actions like, for example, SetValues() or 
DeleteInstance(). Refer to [BMS] for further details on BMS::SetSequenceMode() action and its usage. 

Let's take as example a Parent Device targeting a Linux system. We assume that the update of the 
Parameter "/UPnP/DM/Configuration/Network/HostName" requires the reboot of the device 
to be applied. We also assume that the update of the Parameter 
"/UPnP/DM/Configuration/Network/IPInterface/#/IPv4/AddressingType" requires 
the reset of the network connection to be applied. The change of the "/UPnP/DM/DeviceInfo/ 
SoftwareVersion" Parameter can be applied instantly. The Control Point desires not to be interrupted 
while executing those 3 updates one after the other. It can then use the sequence mode to reduce the 
probability to see the Parent Device disappear before it can request all the changes it is planning to apply. 

• Control point calls BMS::SetSequenceMode(“1”). The control point informs the device it is planning 
to execute a sequence of actions and desires not to be interrupted by side effects of the appliance of 
configuration changes. 

• Control point calls SetValues("/UPnP/DM/Configuration/Network/HostName", 
"myNewHostName") to update the configuration. At this step the device should avoid to apply 
changes and therefore to reboot. 

• Control point calls 
SetValues("/UPnP/DM/Configuration/Network/IPInterface/1/IPv4/Addressing



ConfigurationManagement:2 Service Template Version 1.01 116 

Copyright UPnP Forum © 2012.  All rights reserved. 

Type","dhcp") to update the configuration. At this step the device should avoid to apply changes 
and therefore to reset the network connectivity. 

• Control point calls SetValues("/UPnP/DM/DeviceInfo/PhysicalDevice/Name 
","myNewName") to update configuration. At this step the device can apply changes. 

Control point calls BMS::SetSequenceMode(“0”). The control point informs the device it has completed the 
sequence of action call. The device can now apply all the changes not yet applied. The device will reboot 
as soon as possible which will cause the network connection to be reset. 

2.8.4. Eventing from Changes in Parameter Values 
The Data Model contains valuable information concerning the configuration of the device. Changes in the 
configuration may impact the behavior of the device. The eventing mechanism allows control point to be 
informed each time some Parameter values change. Let's take the example where a control point want to 
know each time a device changes its hostname. The information is store in the Data Model using the 
"/UPnP/DM/Configuration/Network/HostName" Parameter. 

• Control point calls SetAttributes(). The first argument is the path to the HostName Parameter and 
the value of the EventOnChange attribute set to 1. By doing so the control point asks the device to 
send an event each time the value of the HostName Parameter changes. 

• The hostname of the device is updated by any means, e.g. the call to SetValues() or due to a DHCP 
request. The Parent Device sends an event to all control points that have subscribed to events. The 
event contains the value and the timestamp of the last change of the CurrentConfigurationVersion 
state variable. 

• The control point calls GetValues("/UPnP/DM/Configuration/Network/HostName") to 
check if the value of the hostname has been changed. 

• Control point calls SetAttributes(). The first argument is the path to the HostName Parameter and 
the value of the EventOnChange attribute set to 0. By doing so the control point asks the device NOT 
to send an event each time the value of the HostName Parameter changes. 

• The hostname of the device is updated by any means, e.g. the call to SetValues() or due to a DHCP 
request. The Parent Device does not send any event. 

The eventing mechanism offered by the use of the EventOnChange attribute can be extended using the 
support of the version attribute. See next section for more details. 

2.8.5. Version Control 
Some Nodes of the Data Model support the Version attribute. When the related Parameter is updated, this 
attribute assumes the integer value of the CurrentConfigurationVersion state variable. The value of this 
attribute can be used as part of a filter in the GetSelectedValues() action call.This can be useful for a 
control point to compute the difference between the image of the Data Model it stored locally and the 
actual values read from the device.  

The version might also be used by the control point to retrieve which are the “last” changed Parameters 
unless it is able to associate a number (the version value) to something specific (a particular configuration 
session). In case the control point is interested to monitor which Parameter change its value on a 24 hours 
basis, it reads the CurrentConfigurationVersion and save its value and, after 24 hours queries the DM 
using GetSelectedValues() asking for all Parameters where the Version value is greater that the 
CurrentConfigurationVersion previously saved. In this way it would be able to determine which are the 
Parameters whose value changed in the meantime. 



ConfigurationManagement:2 Service Template Version 1.01 117 

Copyright UPnP Forum © 2012.  All rights reserved. 

In the following example, let's assume that all the Parameters we will deal with support the 
EventOnChange and the Version attribute.  

• Control point subscribes to ConfigurationManagement Service events. 

• The Parent Device sends to all subscribers the list of the evented state variables and their value. As 
part of this list, the ConfigurationUpdate state variable value contains the current configuration 
version. 

• Control point stores locally the value of the current configuration version for later use. 

• Control point calls SetAttributes(). The first argument is the list of paths to all the Parameters the 
control point is interested in and the value of the EventOnChange attribute set to 1 for all of them. By 
doing so the control point asks the device to send an event each time the value of one of these 
Parameters changes. 

• The hostname of the device is updated by any means, e.g. the call to SetValues() or due to a DHCP 
request. The ManageableDevie reflects the changes by incremented by one the 
CurrentConfigurationVersion state variable and by affecting this new value to the Version attribute of 
the newly updated Parameter. The Parent Device sends an event to all control points that have 
subscribed to events. The event contains the value and the timestamp of the last change of the 
CurrentConfigurationVersion state variable. 

• Control point detects the changes in the CurrentConfigurationVersion using the content of the event. 
It means that at least one Parameter that supports the Version attribute has been updated. 

Control point calls the GetSelectedValues() action to retrieve all the Parameters that have a version higher 
than the one it has stored when it received the initial event after subscription. It will allow the control point 
to get the latest values of the Parameters under version control all in once. 

2.8.6. MultiInstance Nodes Management 
The CreateInstance() and DeleteInstance() actions are optional. When supported it allows control points to 
create and delete instances, i.e., children of MultiInstance Nodes. These 2 actions can only be used on 
MultiInstance Nodes with readWrite accesses. The Common Objects does not bring a MultiInstanceNode 
with readWrite accesses; so for the sake of the example, we will assume that the hypothetical 
/UPnP/DM/Configuration/LocalUsersAndGroups/Users MultiInstance Node exists with the 
readWrite accesses. Each instance corresponds to a local user defined on the device. In the following 
example a control point will create a user B then delete an already existing user A. The discovery of the 
Data Model is considered as already done. 

• Control point calls 
CreateInstance("/UPnP/DM/Configuration/LocalUsersAndGroups/Users", 
"Login = sshuser"); where the first argument is the MultiInstance Node in which to create an 
instance. The second argument is the list of Parameters and their value for the initialization. 

• Control point calls 
GetInstances("/UPnP/DM/Configuration/LocalUsersAndGroups/Users",0,) 

• Control point calls 
DeleteInstance("/UPnP/DM/Configuration/LocalUsersAndGroups/Users/1"); 

2.8.7. SMS Interaction 
The Software Management Service (SMS) manages its own sub-tree in the Data Model. This sub-tree is 
often called the Software Data Model in the specification documents. The SMS::Install() and 



ConfigurationManagement:2 Service Template Version 1.01 118 

Copyright UPnP Forum © 2012.  All rights reserved. 

SMS::Uninstall() actions are respectively responsible of the creation and the deletion of instances in the 
Software Data Model. Those instances are children of the /UPnP/DM/Software/DU or 
/UPnP/DM/Software/DU/#/EU MultiInstance Nodes. Nodes created by the SMS are not different 
from any Node in the Data Model. Control points can manipulate them using the actions provided by the 
ConfigurationManagement Service. 

2.8.8. Consistency 
The ConfigurationManagement Service brings the notion of changes that are committed and changes that 
are applied. 

2.8.9. Managing the Phone Data Model 
This section explains several examples of how to use the CMS to manage the Phone Data Model, which 
might be supported by the Telephony Server [PHONE]. 

This section is not intended to explain the meaning of parameters in the Phone Data Model, but just to 
show some further and realistic examples of the CMS action usage. 

2.8.9.1. Retrieving all Contacts from the Address Book 
A Control Point can retrieve the whole set of contacts from the Address Book using the GetValues() action. 
This action takes a Parameters as an input argument which will identify the set of requested Parameters or 
a table name (i.e. a MultiInstance Node in CMS terminology). In the case of retrieving all the contacts from 
the Address Book, the input argument will identify the table name of the Address Book (i.e.: 
/UPnP/PHONE/AddressBook/). 

The TelCP invokes GetValues() with the Parameters argument as:  
<?xml version="1.0" encoding="UTF-8"?> 
<cms:ContentPathList 
 xmlns:cms="urn:schemas-upnp-org:dm:cms"  
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
 xsi:schemaLocation="urn:schemas-upnp-org:dm:cms  
                     http://www.upnp.org/schemas/dm/cms.xsd"> 
 <ContentPath>/UPnP/PHONE/AddressBook/Contact/</ContentPath> 
</cms:ContentPathList> 
 

The GetValues() returns the ParameterValueList output argument which will return all the contacts : 
<?xml version="1.0" encoding="UTF-8"?> 
<cms: ParameterValueList 
 xmlns:cms="urn:schemas-upnp-org:dm:cms"  
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
 xsi:schemaLocation="urn:schemas-upnp-org:dm:cms  
                     http://www.upnp.org/schemas/dm/cms.xsd"> 
<Parameter> 
 <ParameterPath>/UPnP/PHONE/AddressBook/Contact/3/Identification/Fo
rmattedName</ParameterPath> 
 <Value>Mr. John Doe</Value> 
</Parameter> 
<Parameter> 
 <ParameterPath>/UPnP/PHONE/AddressBook/Contact/3/Identification/Ni
ckName</ParameterPath> 
 <Value>MJD</Value> 
</Parameter> 
[. . .] 
<Parameter> 



ConfigurationManagement:2 Service Template Version 1.01 119 

Copyright UPnP Forum © 2012.  All rights reserved. 

 <ParameterPath>/UPnP/PHONE/AddressBook/Contact/3/Explanatory/Sound
/Value</ParameterPath> 
 <Value>MIICajCCAdOgAwIBAgICBEUwD…iBTeXN0</Value> 
</Parameter> 
<Parameter> 
 <ParameterPath>/UPnP/PHONE/AddressBook/Contact/25/Identification/F
ormattedName</ParameterPath> 
 <Value>Jane Doe Jr.</Value> 
</Parameter> 
<Parameter> 
 <ParameterPath>/UPnP/PHONE/AddressBook/Contact/25/Identification/N
ickName</ParameterPath> 
 <Value>Jane</Value> 
</Parameter> 
[. . .] 
<Parameter> 
 <ParameterPath>/UPnP/PHONE/AddressBook/Contact/25/Explanatory/Soun
d/Value</ParameterPath> 
 <Value>dzELMAkGA1UEBhMCVVMxLDA…qBgNVBAoTI05ldHNjYX</Value> 
</Parameter> 
</cms:ParameterValueList> 
 

2.8.9.2. Search for a Specific Contact 
The Control Point can use the GetSelectedValues() to search for a specific contact in the Address Book. 
The Filter input argument identifies the condition and the required piece of information.  This action 
returns the list of all Parameters, associated with their values, that satisfy the condition identified by the 
input arguments. 

The following example will clarify the use of the GetSelectedValues() action. 

For example, if the Control Point has to search for all information in the Address Book related to Mr. John 
Doe, whose well known nickname is MJD, it must use as StartingNode input argument the following value 

/UPnP/PHONE/AddressBook/Contact/#/ 
 
And, for the Filter input argument, the value must be  

/UPnP/PHONE/AddressBook/Contact/#/Identification/NickName = “MJD” 
 
It is possible that in the Address Book there could be: 

• No contact with the desired nickname, or  

• Only one contact with the desired nickname, or  

• Many contacts with the desired nickname. 

Therefore, the number of contact listed in the output argument depends on the Address Book content. The 
example of the response below shows the case where only one contact matches the required nickname. 
<?xml version="1.0" encoding="UTF-8"?> 
<cms: ParameterValueList 
 xmlns:cms="urn:schemas-upnp-org:dm:cms"  
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
 xsi:schemaLocation="urn:schemas-upnp-org:dm:cms  
                     http://www.upnp.org/schemas/dm/cms.xsd"> 
<Parameter> 
 <ParameterPath>/UPnP/PHONE/AddressBook/Contact/3/Identification/Fo
rmattedName</ParameterPath> 



ConfigurationManagement:2 Service Template Version 1.01 120 

Copyright UPnP Forum © 2012.  All rights reserved. 

 <Value>Mr. John Doe</Value> 
</Parameter> 
<Parameter> 
 <ParameterPath>/UPnP/PHONE/AddressBook/Contact/3/Identification/Ni
ckName</ParameterPath> 
 <Value>MJD</Value> 
</Parameter> 
[. . .] 
<Parameter> 
 <ParameterPath>/UPnP/PHONE/AddressBook/Contact/3/Explanatory/Sound
/Value</ParameterPath> 
 <Value>MIICajCCAdOgAwIBAgICBEUwD…iBTeXN0</Value> 
</Parameter> 
</cms:ParameterValueList> 

2.8.9.3. Managing Notifications for Changes in the Address Book 
A Control Point can subscribe to the event notification for any changes in the Address Book for example 
the addition of new contact entry, the deletion of a contact entry and so on. The Parameters in the Address 
Book are required to support the EventOnChange attribute. A Control Point must set EventOnChange 
attribute value to 1 (true) in order to receive the event on any changes in the Parameter values. A Control 
Point can invoke the SetAttributes() action to set the value of the EventOnChange attribute. The 
SetAttributes() action, with an input argument NodeAttributeValueList, can be used to set the 
EventOnChange attribute.  

The example below shows the value of the NodeAttributeValueList input argument, for setting the 
EventOnChange attribute of the Parameter 
/UPnP/PHONE/AddressBook/ContactNumberOfEntries to 1.  The attribute value of this 
Parameter is set to 1 for getting the notification on any addition or deletion of a contact entry in the 
Address Book.  
<?xml version="1.0" encoding="UTF-8"?> 
<cms:NodeAttributeValueList  
xmlns:cms="urn:schemas-upnp-org:dm:cms"  
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance  
xsi:schemaLocation="urn:schemas-upnp-org:dm:cms  
 http://www.upnp.org/schemas/dm/cms.xsd"> 

<Node> 
<NodeAttributePath> 

    /UPnP/PHONE/AddressBook/ContactNumberOfEntries 
  </NodeAttributePath> 
  <EventOnChange>1</EventOnChange> 
</Node> 
</cms:NodeAttributeValueList> 
 

Whenever there is an update in the number of contacts in the Address Book, the CMS generates the 
ConfigurationUpdate event to the Control Point. The Control Point can retrieve the updates on contact 
instances by calling the GetInstances() action with input argument SearchDepth set to 1 and the input 
argument StartingNode argument set to value:  

/UPnP/PHONE/AddressBook/Contact/ 
 

The GetInstances() action returns the Result output argument. For example, if the Address Book contains 
the contacts identified by the Instance identifiers 3, 4 and 7, then the value of the Result output argument 
will be as follows: 

<?xml version="1.0" encoding="UTF-8"?> 
<cms:InstancePathList  

http://www.w3.org/2001/XMLSchema-instance�


ConfigurationManagement:2 Service Template Version 1.01 121 

Copyright UPnP Forum © 2012.  All rights reserved. 

 xmlns:cms="urn:schemas-upnp-org:dm:cms"  
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
 xsi:schemaLocation="urn:schemas-upnp-org:dm:cms  
 http://www.upnp.org/schemas/dm/cms.xsd"> 
 <InstancePath> 
  /UPnP/PHONE/AddressBook/Contact/3/ 
 </InstancePath> 
 <InstancePath> 
  /UPnP/PHONE/AddressBook/Contact/4/ 
 </InstancePath> 
 <InstancePath> 
  /UPnP/PHONE/AddressBook/Contact/7/ 
 </InstancePath> 
</cms:InstancePathList> 
 

and the Control Point can check this list with its own local copy of the Address Book. 

2.8.10.Alarming 
This is another example from the Phone Data Model, specifically focused on the Alarming Feature. So, 
supposing that the Telephony Server [PHONE] supports the Alarming Feature, the following Parameter 

 
UPnP/PHONE/Settings/Power/Battery/LowBatteryAlarm 
 

can be used by the control point to be notified whenever the battery power level goes below a specified 
threshold (this is a configurable feature in the Phone Data Model). In this case, the control point has to set 
the AlarmOnChange attribute of the Parameter above to the value “1” (true) and it also has to subscribe to 
events. The alarming has also to be enabled invoking the SetAlarmsEnabled() action. 

As there is a change in the battery level value, and such value is less than the specified threshold, the 
ConfigurationUpdate event is sent with the following example content: 
 
“379,2007-10-24T05:41:00,<?xml…><cms:ParameterValueList…><Parameter> 
<ParameterPath>UPnP/PHONE/Settings/Power/Battery/LowBatteryAlarm</Parame
terPath><Value>1</Value></Parameter></cms:ParameterValueList>” 
 

And the control point can therefore read that the event sent is due to the battery level, without any further 
action to be invoked. 



ConfigurationManagement:2 Service Template Version 1.01 122 

Copyright UPnP Forum © 2012.  All rights reserved. 

3. XML Service Description 
<?xml version="1.0"?> 
<s:scpd xmlns:s="urn:schemas-upnp-org:service-1-0" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:schemas-
upnp-org:service-1-0 service-1-0.xsd"> 
  <specVersion> 
    <major>1</major> 
    <minor>0</minor> 
  </specVersion> 
  <actionList> 
    <action> 
      <name>GetSupportedDataModels</name> 
      <argumentList> 
        <argument> 
          <name>SupportedDataModels</name> 
          <direction>out</direction> 
          <relatedStateVariable>A_ARG_TYPE_SupportedDataModels</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <name>GetSupportedParameters</name> 
      <argumentList> 
        <argument> 
          <name>StartingNode</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_StructurePath</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>SearchDepth</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_SearchDepth</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>Result</name> 
          <direction>out</direction> 
          <relatedStateVariable>A_ARG_TYPE_StructurePathList</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <name>GetInstances</name> 
      <argumentList> 
        <argument> 
          <name>StartingNode</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_PartialPath</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>SearchDepth</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_SearchDepth</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>Result</name> 
          <direction>out</direction> 
          <relatedStateVariable>A_ARG_TYPE_InstancePathList</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <name>GetValues</name> 
      <argumentList> 
        <argument> 
          <name>Parameters</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_ContentPathList</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>ParameterValueList</name> 
          <direction>out</direction> 
          <relatedStateVariable>A_ARG_TYPE_ParameterValueList</relatedStateVariable> 



ConfigurationManagement:2 Service Template Version 1.01 123 

Copyright UPnP Forum © 2012.  All rights reserved. 

        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <Optional/> 
      <name>GetSelectedValues</name> 
      <argumentList> 
        <argument> 
          <name>StartingNode</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_StructurePath</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>Filter</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_Filter</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>ParameterValueList</name> 
          <direction>out</direction> 
          <relatedStateVariable>A_ARG_TYPE_ParameterValueList</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <Optional/> 
      <name>SetValues</name> 
      <argumentList> 
        <argument> 
          <name>ParameterValueList</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_ParameterValueList</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>Status</name> 
          <direction>out</direction> 
          <relatedStateVariable>A_ARG_TYPE_ChangeStatus</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <Optional/> 
      <name>CreateInstance</name> 
      <argumentList> 
        <argument> 
          <name>MultiInstanceName</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_MultiInstancePath</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>ChildrenInitialization</name> 
          <direction>in</direction> 
          
<relatedStateVariable>A_ARG_TYPE_ParameterInitialValueList</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>InstanceIdentifier</name> 
          <direction>out</direction> 
          <relatedStateVariable>A_ARG_TYPE_InstancePath</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>Status</name> 
          <direction>out</direction> 
          <relatedStateVariable>A_ARG_TYPE_ChangeStatus</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <Optional/> 
      <name>DeleteInstance</name> 
      <argumentList> 
        <argument> 
          <name>InstanceIdentifier</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_InstancePath</relatedStateVariable> 



ConfigurationManagement:2 Service Template Version 1.01 124 

Copyright UPnP Forum © 2012.  All rights reserved. 

        </argument> 
        <argument> 
          <name>Status</name> 
          <direction>out</direction> 
          <relatedStateVariable>A_ARG_TYPE_ChangeStatus</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <name>GetAttributes</name> 
      <argumentList> 
        <argument> 
          <name>Parameters</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_NodeAttributePathList</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>NodeAttributeValueList</name> 
          <direction>out</direction> 
          <relatedStateVariable>A_ARG_TYPE_NodeAttributeValueList</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <Optional/> 
      <name>SetAttributes</name> 
      <argumentList> 
        <argument> 
          <name>NodeAttributeValueList</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_NodeAttributeValueList</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>Status</name> 
          <direction>out</direction> 
          <relatedStateVariable>A_ARG_TYPE_ChangeStatus</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <Optional/> 
      <name>GetInconsistentStatus</name> 
      <argumentList> 
        <argument> 
          <name>StateVariableValue</name> 
          <direction>out</direction> 
          <relatedStateVariable>InconsistentStatus</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <name>GetConfigurationUpdate</name> 
      <argumentList> 
        <argument> 
          <name>StateVariableValue</name> 
          <direction>out</direction> 
          <relatedStateVariable>ConfigurationUpdate</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <name>GetCurrentConfigurationVersion</name> 
      <argumentList> 
        <argument> 
          <name>StateVariableValue</name> 
          <direction>out</direction> 
          <relatedStateVariable>CurrentConfigurationVersion</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <name>GetSupportedDataModelsUpdate</name> 
      <argumentList> 
        <argument> 
          <name>StateVariableValue</name> 



ConfigurationManagement:2 Service Template Version 1.01 125 

Copyright UPnP Forum © 2012.  All rights reserved. 

          <direction>out</direction> 
          <relatedStateVariable>SupportedDataModelsUpdate</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <name>GetSupportedParametersUpdate</name> 
      <argumentList> 
        <argument> 
          <name>StateVariableValue</name> 
          <direction>out</direction> 
          <relatedStateVariable>SupportedParametersUpdate</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <Optional/> 
      <name>GetAttributeValuesUpdate</name> 
      <argumentList> 
        <argument> 
          <name>StateVariableValue</name> 
          <direction>out</direction> 
          <relatedStateVariable>AttributeValuesUpdate</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <Optional/> 
      <name>GetAlarmsEnabled</name> 
      <argumentList> 
        <argument> 
          <name>StateVariableValue</name> 
          <direction>out</direction> 
          <relatedStateVariable>AlarmsEnabled</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <Optional/> 
      <name>SetAlarmsEnabled</name> 
      <argumentList> 
        <argument> 
          <name>StateVariableValue</name> 
          <direction>in</direction> 
          <relatedStateVariable>AlarmsEnabled</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <Optional/> 
      <name>GetACLData</name> 
      <argumentList> 
        <argument> 
          <name>StartingNodes</name> 
          <direction>in</direction> 
          <relatedStateVariable>A_ARG_TYPE_ACLDataPathList</relatedStateVariable> 
        </argument> 
        <argument> 
          <name>ACL</name> 
          <direction>out</direction> 
          <relatedStateVariable>A_ARG_TYPE_ACL</relatedStateVariable> 
        </argument> 
      </argumentList> 
    </action> 
  </actionList> 
  <serviceStateTable> 
    <stateVariable sendEvents="yes"> 
      <name>ConfigurationUpdate</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>CurrentConfigurationVersion</name> 
      <dataType>ui4</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="yes"> 



ConfigurationManagement:2 Service Template Version 1.01 126 

Copyright UPnP Forum © 2012.  All rights reserved. 

      <name>SupportedDataModelsUpdate</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="yes"> 
      <name>SupportedParametersUpdate</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="yes"> 
      <Optional/> 
      <name>AttributeValuesUpdate</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="yes"> 
      <Optional/> 
      <name>InconsistentStatus</name> 
      <dataType>boolean</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="yes"> 
      <Optional/> 
      <name>AlarmsEnabled</name> 
      <dataType>boolean</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_StructurePath</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_StructurePathList</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_PartialPath</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_ParameterValueList</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_NodeAttributeValueList</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_ParameterInitialValueList</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_Filter</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_SupportedDataModels</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_SearchDepth</name> 
      <dataType>ui4</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_ChangeStatus</name> 
      <dataType>string</dataType> 
      <allowedValueList> 
        <allowedValue>ChangesCommitted</allowedValue> 
        <allowedValue>ChangesApplied</allowedValue> 
      </allowedValueList> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_InstancePathList</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_ContentPathList</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 



ConfigurationManagement:2 Service Template Version 1.01 127 

Copyright UPnP Forum © 2012.  All rights reserved. 

      <name>A_ARG_TYPE_MultiInstancePath</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_InstancePath</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_NodeAttributePathList</name> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_ACLDataPathList</name> 
      <Optional/> 
      <dataType>string</dataType> 
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_ACL</name> 
      <Optional/> 
      <dataType>string</dataType> 
    </stateVariable> 
  </serviceStateTable> 
</s:scpd> 



ConfigurationManagement:2 Service Template Version 1.01 128 

Copyright UPnP Forum © 2012.  All rights reserved. 

Appendix A: XML schema (Normative) 
This appendix contains the XML normative schema to be used to check for the actions’ argument 
correctness. The XML schema below defines also the formal grammar described in 2.3.1.2. 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE CMS-XSD [ 
  <!ENTITY Numeric "([0-9]|([1-9][0-9]+))"> 
  <!ENTITY Wildchar "#"> 
  <!ENTITY Slash "/"> 
  <!ENTITY NodeName "([\i-[:-]][\c-[:\.-]]*)"> 
  <!ENTITY LeafName "&NodeName;"> 
  <!ENTITY SingleInstanceNodeName "(&NodeName;&Slash;)"> 
  <!ENTITY MultiInstanceNodeName "(&NodeName;&Slash;)"> 
  <!ENTITY Instance "(&Numeric;&Slash;)"> 
  <!ENTITY InstanceAlias "(&Wildchar;&Slash;)"> 
  <!ENTITY InternalNode 
"(&SingleInstanceNodeName;|(&MultiInstanceNodeName;&Instance;))"> 
  <!ENTITY InternalAlias 
"(&SingleInstanceNodeName;|(&MultiInstanceNodeName;&InstanceAlias;))"> 
  <!ENTITY RootPath "&Slash;"> 
  <!ENTITY ParameterPath "(&RootPath;&InternalNode;*&LeafName;)"> 
  <!ENTITY SingleInstancePath 
"(&RootPath;|(&RootPath;&InternalNode;*&SingleInstanceNodeName;))"> 
  <!ENTITY MultiInstancePath 
"(&RootPath;&InternalNode;*&MultiInstanceNodeName;)"> 
  <!ENTITY InstancePath 
"(&RootPath;&InternalNode;*&MultiInstanceNodeName;&Instance;)"> 
  <!ENTITY InstanceAliasPath "(&RootPath;&InternalAlias;*&LeafName;?)"> 
]> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
xmlns:cms="urn:schemas-upnp-org:dm:cms" targetNamespace="urn:schemas-
upnp-org:dm:cms" elementFormDefault="unqualified" 
attributeFormDefault="unqualified" version="2-20120216"> 
  <xs:simpleType name="Path"> 
    <xs:restriction base="xs:token"/> 
  </xs:simpleType> 
  <xs:simpleType name="RootPath"> 
    <xs:restriction base="cms:Path"> 
      <xs:pattern value="&RootPath;"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="ParameterPath"> 
    <xs:restriction base="cms:Path"> 
      <xs:pattern value="&ParameterPath;"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="SingleInstancePath"> 
    <xs:restriction base="cms:Path"> 
      <xs:pattern value="&SingleInstancePath;"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="MultiInstancePath"> 
    <xs:restriction base="cms:Path"> 
      <xs:pattern value="&MultiInstancePath;"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="InstancePath"> 
    <xs:restriction base="cms:Path"> 



ConfigurationManagement:2 Service Template Version 1.01 129 

Copyright UPnP Forum © 2012.  All rights reserved. 

      <xs:pattern value="&InstancePath;"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="ParameterOrMultiInstancePath"> 
    <xs:restriction base="cms:Path"> 
      <xs:pattern value="&ParameterPath;"/> 
      <xs:pattern value="&MultiInstancePath;"/> 
      <xs:pattern value="&InstancePath;"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="PartialPath"> 
    <xs:restriction base="cms:Path"> 
      <xs:pattern value="&RootPath;"/> 
      <xs:pattern value="&SingleInstancePath;"/> 
      <xs:pattern value="&MultiInstancePath;"/> 
      <xs:pattern value="&InstancePath;"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="ContentPath"> 
    <xs:restriction base="cms:Path"> 
      <xs:pattern value="&RootPath;"/> 
      <xs:pattern value="&SingleInstancePath;"/> 
      <xs:pattern value="&MultiInstancePath;"/> 
      <xs:pattern value="&InstancePath;"/> 
      <xs:pattern value="&ParameterPath;"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="StructurePath"> 
    <xs:restriction base="cms:Path"> 
      <xs:pattern value="&RootPath;(&InternalAlias;)*&LeafName;?"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="ParameterInitializationPath"> 
    <xs:restriction base="cms:Path"> 
      <xs:pattern value="&SingleInstanceNodeName;*&LeafName;"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="ACLDataPath"> 
    <xs:restriction base="cms:Path"> 
      <xs:pattern value="&RootPath;"/> 
      <xs:pattern value="&ParameterPath;"/> 
      <xs:pattern value="&SingleInstancePath;"/> 
      <xs:pattern value="&MultiInstancePath;"/> 
      <xs:pattern value="&InstancePath;"/> 
      <xs:pattern value="&InstanceAliasPath;"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:complexType name="RoleList"> 
    <xs:simpleContent> 
      <xs:extension base="xs:token"> 
        <xs:attribute name="Factorized" type="xs:boolean" 
use="optional"/> 
      </xs:extension> 
    </xs:simpleContent> 
  </xs:complexType> 
  <xs:complexType name="Value"> 
    <xs:simpleContent> 
      <xs:extension base="xs:anySimpleType"/> 
    </xs:simpleContent> 
  </xs:complexType> 



ConfigurationManagement:2 Service Template Version 1.01 130 

Copyright UPnP Forum © 2012.  All rights reserved. 

  <xs:complexType name="NodeAttribute"> 
    <xs:annotation> 
      <xs:documentation>Defines the possible list of attributes 
associated to a NodeAttributePath. </xs:documentation> 
    </xs:annotation> 
    <xs:sequence> 
      <xs:element name="NodeAttributePath" 
type="cms:ParameterOrMultiInstancePath"/> 
      <xs:element name="Type" minOccurs="0"> 
        <xs:simpleType> 
          <xs:restriction base="xs:token"> 
            <xs:enumeration value="string"/> 
            <xs:enumeration value="int"/> 
            <xs:enumeration value="long"/> 
            <xs:enumeration value="unsignedInt"/> 
            <xs:enumeration value="unsignedLong"/> 
            <xs:enumeration value="boolean"/> 
            <xs:enumeration value="dateTime"/> 
            <xs:enumeration value="base64"/> 
            <xs:enumeration value="hexBinary"/> 
          </xs:restriction> 
        </xs:simpleType> 
      </xs:element> 
      <xs:element name="Access" minOccurs="0"> 
        <xs:simpleType> 
          <xs:restriction base="xs:token"> 
            <xs:enumeration value="readWrite"/> 
            <xs:enumeration value="readOnly"/> 
          </xs:restriction> 
        </xs:simpleType> 
      </xs:element> 
      <xs:element name="Version" type="xs:unsignedInt" minOccurs="0"/> 
      <xs:element name="EventOnChange" type="xs:boolean" minOccurs="0"/> 
      <xs:element name="MIMEType" type="xs:token" minOccurs="0"/> 
      <xs:element name="AlarmOnChange" type="xs:boolean" minOccurs="0"/> 
    </xs:sequence> 
  </xs:complexType> 
  <xs:element name="StructurePathList"> 
    <xs:annotation> 
      <xs:documentation>Defines a list of 
StructurePaths.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
        <xs:element name="StructurePath" type="cms:StructurePath"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="ParameterValueList"> 
    <xs:annotation> 
      <xs:documentation>Defines a list of Parameter elements. Each 
Parameter element is a ParameterPath-Value pair.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
        <xs:element name="Parameter"> 
          <xs:complexType> 
            <xs:sequence> 
              <xs:element name="ParameterPath" 
type="cms:ParameterPath"/> 



ConfigurationManagement:2 Service Template Version 1.01 131 

Copyright UPnP Forum © 2012.  All rights reserved. 

              <xs:element name="Value" type="cms:Value"/> 
            </xs:sequence> 
          </xs:complexType> 
        </xs:element> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="NodeAttributeValueList"> 
    <xs:annotation> 
      <xs:documentation>Defines a list of Node elements. Each Node 
contains the NodeAttributePath (type: ParameterOrMultiInstancePath) 
element and values for its associated attributes.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
        <xs:element name="Node" type="cms:NodeAttribute"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="ParameterInitialValueList"> 
    <xs:annotation> 
      <xs:documentation>Defines a list of Node elements. Each Node 
element is a ParameterInitializationPath-Value pair.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence maxOccurs="unbounded"> 
        <xs:element name="Node"> 
          <xs:complexType> 
            <xs:sequence> 
              <xs:element name="ParameterInitializationPath" 
type="cms:ParameterInitializationPath"/> 
              <xs:element name="Value" type="cms:Value"/> 
            </xs:sequence> 
          </xs:complexType> 
        </xs:element> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="SupportedDataModels"> 
    <xs:annotation> 
      <xs:documentation>Defines a list of SubTree elements. Each SubTree 
element contains information about a supported data 
model.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence maxOccurs="unbounded"> 
        <xs:element name="SubTree"> 
          <xs:complexType> 
            <xs:sequence> 
              <xs:element name="URI" type="xs:anyURI"/> 
              <xs:element name="Location" 
type="cms:SingleInstancePath"/> 
              <xs:element name="URL" type="xs:anyURI" minOccurs="0"/> 
              <xs:element name="Description" type="xs:string" 
minOccurs="0"/> 
              <xs:element name="SourceLocation" type="xs:string" 
minOccurs="0"/> 
            </xs:sequence> 
          </xs:complexType> 
        </xs:element> 



ConfigurationManagement:2 Service Template Version 1.01 132 

Copyright UPnP Forum © 2012.  All rights reserved. 

      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="InstancePathList"> 
    <xs:annotation> 
      <xs:documentation>Defines a list of 
InstancePaths.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
        <xs:element name="InstancePath" type="cms:InstancePath"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="ContentPathList"> 
    <xs:annotation> 
      <xs:documentation>Defines a list of 
ContentPaths.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
        <xs:element name="ContentPath" type="cms:ContentPath"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="NodeAttributePathList"> 
    <xs:annotation> 
      <xs:documentation>Defines a list of NodeAttributePath (type: 
ParameterOrMultiInstancePath) nodes used to retrieve attribute 
values.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
        <xs:element name="NodeAttributePath" 
type="cms:ParameterOrMultiInstancePath"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="ACLDataPathList"> 
    <xs:annotation> 
      <xs:documentation>Defines a list of ACLDataPath (type: 
ACLDataPath) nodes used to retrieve ACL values from data model 
parameters.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
        <xs:element name="ACLDataPath" type="cms:ACLDataPath"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="ACL"> 
    <xs:annotation> 
      <xs:documentation>Defines a list of ACL associating the 
permissions list to ACLDataPaths.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
        <xs:element name="ACLEntry"> 
          <xs:complexType> 
            <xs:sequence> 



ConfigurationManagement:2 Service Template Version 1.01 133 

Copyright UPnP Forum © 2012.  All rights reserved. 

              <xs:element name="ACLDataPath" type="cms:ACLDataPath"/> 
              <xs:element name="List" type="cms:RoleList" 
minOccurs="0"/> 
              <xs:element name="Read" type="cms:RoleList" 
minOccurs="0"/> 
              <xs:element name="Write" type="cms:RoleList" 
minOccurs="0"/> 
            </xs:sequence> 
          </xs:complexType> 
        </xs:element> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
</xs:schema> 



ConfigurationManagement:2 Service Template Version 1.01 134 

Copyright UPnP Forum © 2012.  All rights reserved. 

Appendix B: Data Model Requirements (Normative) 
This appendix specifies the basic Data Model requirements for any CMS implementations. Data Model  is 
a list of Parameters maintained by the CMS that can be retrieved and, where applicable, changed by a 
control point. All CMS implementations SHALL provide all the required (R) Parameters. It’s left to the 
implementations to provide also the optional Parameters (not mandatory in Data Model specifications) 
and, if needed, custom extensions to the specified Data Models. 

Custom extension Parameters as well as Data Model offered by other UPnP services (whether they are 
part of UPnP DM or not) have to be defined in specific documents and are outside the scope of this CMS 
specification. 

Parameters herein defined (see 3.B.3 below) may be used for: software management, configuration 
management, diagnostic and performance monitoring, as summarized in the following descriptions. 

• Software management requires the description of the capabilities of the managed device. These 
capabilities are associated with the managed device and the firmware/software it maintains. Since they 
are may be associated with the hardware, they are not meant to change and they are not subject to third 
party configuration. They are often read-only Parameters. 

• Configuration management concerns the configuration Parameters of the environment that are 
provided to the devices. The configuration adapts the application – delivered by the software (possibly 
firmware) installed on the device – to the surrounding context: network, time zone, device location, 
user identity and preferences. This topic requires the management of Parameters writable by 
(authorized) device management actors. Indeed, configuration management requires the ability to 
retrieve the current values of the available device Parameters, either configuration Parameters or 
status Parameters: values retrieved are usually needed in order to appropriately update the device 
configuration. 

• Diagnostics is a function called punctually by the user or the device management system (i.e. the 
control point) at periodic time or at the time of dysfunctions detection. The diagnostics function is 
performed through the call of actions testing the capabilities or the applications of the device. ‘Ping’, 
‘traceroute’ are diagnostics operations testing the networking capabilities of the device. 

• Performance monitoring function continuously gathers statistics on the device usage (e.g., cpu usage, 
amount of free memory, application usage). Statistics concerns device Parameters that are frequently 
changing at runtime. The performance monitoring function is complementary to the diagnostics 
function. The diagnosis of problems on the device relies on both functions. Device diagnosis enables 
the Device Management system to take measures to face dysfunctions of the device. The semantics of 
diagnostics actions and the high frequency of the change of performance Parameters make these 
functions separate from Software management and configuration. 

B.1. Reserved namespaces 
In order to possibly avoid conflicts in Data Model definitions, some namespaces (i.e. common prefix 
PartialPath for Parameters) have been defined herein. This means that given a prefix for a Data Model as 
/reserved/ and the Data Model containing the definition of Parameter names p and m/#/f, the 
resulting names for them are the concatenations: /reserved/p and /reserved/m/#/f. 

Reserved prefixes are defined in the following table. When the reserved name cannot be defined a rule is 
recommended. 



ConfigurationManagement:2 Service Template Version 1.01 135 

Copyright UPnP Forum © 2012.  All rights reserved. 

Table 0-59: Reserved PartialPaths and rules for prefixes  

PartialPath Description 

/UPnP/DM/ Common prefix for all Parameters in the Parent Device data model as defined in this 
CMS document. 

/UPnP/DM/Softw
are/ 

Common prefix for all Parameters in the Parent Device data model as defined in this 
SMS document. 

/UPnP/<device>/ Whenever an UPnP device defines its own data model, the WC moniker MUST be 
used for the <device> placeholder. Consequently all its Parameters MUST have the 
name beginning with such prefix PartialPath. For example: /UPnP/PHONE/ might 
be the common prefix for all Parameters defined by the UPnP Telephony Working 
Committee. 

/…/X_<vendor>/ As stated in [1.7] vendor specific Data Models may be linked to any Node in the 
mandatory data model and MUST begin with X_ concatenated by the vendor domain 
name. In case of data model definition imported from another organization, it is also 
REQUIRED the use of X_ prefix. For example parameters in the data model which 
definitions are imported from the Broadband Forum should be prefixed by 
/X_Broadband_Forum/  

 

B.2. NumberOfEntries parameters 
As a requirement for Data Model designers, for any MultiInstance Node it MUST be added also a special 
Parameter to count the number of Instance Nodes. This Parameter MUST be named using the following 
convention: 

• /…/<MultiInstanceNodeName>NumberOfEntries 

where the <MultiInstanceNodeName> is the name of the MultiInstance Node. For example, in the 
Phone Data Model [PHONE] there is the Parameter: 

/UPnP/PHONE/AddressBook/ContactNumberOfEntries 

to count the number of instances of the following MultiInstance Node: 

/UPnP/PHONE/AddressBook/Contact/#/ 

In case the device supports the Security Feature, as a control point reads a Parameter representing 
NumberOfEntries (using GetValues() or GetSelectedValues() actions), its value MUST be consistent with 
the number of Instances visible to the control point as returned using the GetInstances() action.  

For example, consider that there are two contacts in the address book, belonging to the MultiInstance 
Node: 

/UPnP/PHONE/AddressBook/Contact/ 

Where the Instances counter is: 

/UPnP/PHONE/AddressBook/ContactNumberOfEntries = 2 

Supposing the following ACLs associated with the Instance Nodes: 

    … 
    <ACLEntry> 



ConfigurationManagement:2 Service Template Version 1.01 136 

Copyright UPnP Forum © 2012.  All rights reserved. 

      <ACLDataPath> 
  /UPnP/PHONE/AddressBook/Contact/3/ 
 </ACLDataPath> 
      <Read>dm:UserAdmin</Read> 
    </ACLEntry> 
     <ACLEntry> 
      <ACLDataPath> 
  /UPnP/PHONE/AddressBook/Contact/4/ 
 </ACLDataPath> 
      <Read>dm:ThirdPartyAdmin</Read> 
    </ACLEntry> 
    … 
 

The control point having the dm:UserAdmin Role can therefore see 1 out of 2 Instances (identified by the 
Instance Node 3) and the control point having the dm:ThirdPartyAdmin Role can see 1 out of 2 Instances 
as well (this time it is identified by the Instance Node 4).  

 

B.3. Common Objects 
All name in this table of Parameter definitions must be prefixed by /UPnP/DM/. 

Columns’ description: 

• Name: white rows contain Leaf names, whereas yellow rows contain StructurePath fragments from 
the common prefix to the SingleInstance or MultiInstance Node. 

• Type: the Type attribute value for Leaf Nodes, otherwise (yellow rows) it is specified whether the Node 
is SingleInstance or MultiInstance. 

• Acc.: stands for Access attribute value of the Node. Possible values are “W” (the Parameter is 
writable, or the Instance is creatable) and “-“ (the Parameter is read only). If a Parameter is writable 
means that it makes sense to write (i.e. configure) it, and therefore does not mean that it must be 
writable for all implementations. The control point should use the GetAttributes() action to verify what 
is implemented on the device. On the opposite side, if a Parameter is read only means that it does not 
make sense to write (i.e. configure) it, and therefore it must be read only for all implementations. 
Check with section 2.3.2.2 for further details concerning this attribute. 

• Req.:  stands for Required. Possible values are “R” (the Node implementation is required), “O” (the 
Node implementation is optional) and “CR” (the Node implementation is conditionally required).  

• Description: describes the Parameter meaning. 

• EOC: stands for EventOnChange. Indicates whether the EventOnChange attribute is supported by the 
Node and its default value. Note: Vendors can extend the list of the Parameters supporting the 
EventOnChange attribute. 

• Ver: stands for Version. Indicates when the Version attribute is supported, whether the Parameter 
MUST also support (R) it. The dash “-“ means that the support for that attribute is optional. 

 



Name Type Acc. Req Description EOC Ver 
/UPnP/DM/DeviceInfo/ SingleInstance - R This is the DeviceInfo section of the data model, as mentioned thorough the CMS document 

and contains general device information. 
- - 

FriendlyName string(64) W O FriendlyName in the Device Description, which is a writeable asset tracking identifier for the 
Device, i.e. a user friendly name for the device. 
It SHOULD be the primary friendly name, i.e typically it will be the root device friendly name. 

1 R 

ProvisioningCode string(64) W R Identifier of the primary service provider and other provisioning information. 1 - 

SoftwareVersion string(64) - R The current software version of the Parent Device. 1 R 

SoftwareDescription string(256) - R Describes the software for which the SoftwareVersion applies. 1 - 

UpTime unsignedInt - R Time in seconds since the Parent Device was started. - - 

/UPnP/DM/DeviceInfo/PhysicalDevice/ SingleInstance  CR Information related to the physical device. 
It MUST be provided when the Parent Device has access to the physical device. 

- - 

ContactInfo string(256) - O This Parameter shows mail address / telephone number for inquires. The user can inquire for 
the error (hardware / application error, not network one). 

- - 

Name string(64) W O User-assigned and writeable asset tracking identifier for the Device  1 R 

OwnerName string(64) W O Name of the principal owner of the device. - - 

Location string(256) W O A free-form string indicating the physical location of the device. - - 

HardwareVersion string(64) - R A string identifying the particular hardware model and version supporting the 
ManageableDevice. This value may be empty if such information is not available to the 
UPnP CMS. 

- - 

NetworkInterfaceNumberOfEntries unsignedInt - R Number of instances of network interfaces. 1 R 

/UPnP/DM/DeviceInfo/PhysicalDevice/DeviceID/ SingleInstance  R Unique physical device identifier. 
The triplet {ManufacturerOUI, ProductClass, SerialNumber} MUST be guaranteed unique by 
the device vendor at manufacturing time. 
This value MUST remain fixed over the lifetime of the device, including across firmware 
updates. 

- - 

ManufacturerOUI hexBinary(3:3) - R Organizationally unique identifier of the device manufacturer. The format is available at the 
following link: http://standards.ieee.org/regauth/oui/index.shtml. 

- - 

ProductClass string(64) - R Identifier of the class of product for which the serial number applies. This may be the same 
as in ModelName or ModelNumber defined in DDD. 

- - 

SerialNumber string(64) - R Serial number of the physical device. If SerialNumber is also present in the DDD, it MUST 
have the same value. 

- - 

/UPnP/DM/DeviceInfo/PhysicalDevice/NetworkInterfac
e/#/ 

MultiInstance  R Information related to the Physical Network Interfaces available on the device. - - 



ConfigurationManagement:2 Service Template Version 1.01 138 

Copyright UPnP Forum © 2012.  All rights reserved. 

Name Type Acc. Req Description EOC Ver 
SystemName string(64) - R Unique key. This is the name provided by the underlying system to the network interface. - - 

Description string(256) - O Textual description of the interface. It should contain the hardware description of the network 
interface card. 

- - 

MACAddress string(17) - R The MAC address of the physical interface. - - 

InterfaceType string - R Type of this physical interface. Enumeration of: 
“Ethernet” 
“USB” 
“802.11” 
“HSDPA” 
“HomePNA” 
“HomePlug” 
“MoCA” 
“G.hn” 
“UPA” 
“Other” 

- - 

/UPnP/DM/DeviceInfo/OperatingSystem/ SingleInstance  CR Information related to the operating system. 
It MUST be provided when the Parent Device has access to the operating system. 

- - 

SoftwareVersion string(64) - R A string identifying the version of the operating system. 1 R 

SoftwareDescription string(256) - R Describes the software for which the SoftwareVersion applies. The format is vendor specific 
and might contain, for example, information concerning the operating system name, the 
version, the name of the implementation, the version of this implementation, the type of the 
underlying processor and so on. 

1 - 

UpTime unsignedInt - R Time in seconds since the operating system has been started,  - - 

LastUpgradeDate dateTime - O Date of installation or of the last upgrade of the operating system. - - 

WillReboot boolean - R Indicates whether the BMS::Reboot() will reboot the operating system. - - 

WillBaselineReset boolean - R Indicates whether the BMS::BaselineReset() will reset the operating system and other 
system level resources and settings. 

- - 

/UPnP/DM/DeviceInfo/ExecutionEnvironment/ SingleInstance  CR Information related to the targeted Execution Environment [SMS]. 
It MUST be provided when the Parent Device has access to targeted Execution Environment 
and the Execution Environment is not the Operating System. 

- - 



ConfigurationManagement:2 Service Template Version 1.01 139 

Copyright UPnP Forum © 2012.  All rights reserved. 

Name Type Acc. Req Description EOC Ver 
Status string - R Current operational status of the targeted Execution Environment [SMS]. Allowed values are: 

”Initializing” 
“Up” 
“Up_but_about_to_reboot” : sub-state of UP 

1 R 

UpTime unsignedInt - R Time in seconds since the Execution Environment [SMS]. has been started,. - - 

SoftwareVersion string(64) - R A string identifying the software/firmware version of the running Execution Environment. 1 R 

SoftwareDescription string(64) - R Describes the targeted Execution Environment [SMS]. for the ManageableDevice. The 
format is vendor specific and might contain, for example, information concerning the 
execution environment standard name, the version of the standard, the name of the 
implementation, the version of this implementation, the type of the underlying processor and 
so on. 

1 - 

LastUpgradeDate dateTime - O Date of installation or of the last upgrade of the Execution Environment [SMS]. - - 

WillReboot boolean - R Indicates whether the BMS::Reboot() will reboot the Execution Environment [SMS]. - - 

WillBaselineReset boolean - R Indicates whether the BMS::BaselineReset() will reset the Execution Environment [SMS] and 
other system level resources and settings.. 

- - 

/UPnP/DM/Configuration/ SingleInstance  R Information related to the state of the device. The Parameters available in this sub-tree are 
the one a control point may want to modify in order to update the device's state or behavior. 

- - 

/UPnP/DM/Configuration/Network/ SingleInstance  CR Information related to the networking configuration. A control point will find here a means to 
configure the IP stack of the device. 
It MUST be provided when the Parent Device has access to the network configuration. 

- - 

HostName string(64) W R The host name of the device, which can be provided to a DHCP server and registered with a 
DNS server. 

1 R 

IPInterfaceNumberOfEntries unsignedInt - R Number of IP interface instances. - - 

/UPnP/DM/Configuration/Network/IPInterface/#/ MultiInstance  R Each instance of this sub-tree stands for an IP network interface identified by its system 
name. Each interface can be configured independently. 

- - 

SystemName string(64) - R Unique key. This is the name provided by the underlying system to the IP interface. 0 R 

/UPnP/DM/Configuration/Network/IPInterface/#/IPv4/ SingleInstance  R Data related to the IPv4 stack configuration. - - 

IPAddress string W R The current IP address assigned to this interface. 1 R 

AddressingType string W R The method used to assign an address to this interface.  Enumeration of: 
“DHCP” 
“Static” 
“AutoIP” 

0 R 



ConfigurationManagement:2 Service Template Version 1.01 140 

Copyright UPnP Forum © 2012.  All rights reserved. 

Name Type Acc. Req Description EOC Ver 
DNSServers string(256) W R Comma-separated list of IP address of the DNS servers for this interface. 0 R 

SubnetMask string W R The current subnet mask.  0 R 

DefaultGateway string W R The IP address of the current default gateway for this interface. 0 R 

/UPnP/DM/Configuration/Network/IPInterface/#/IPv6/ SingleInstance  O Data related to the IPv6 stack configuration. - - 

DNSServers string(256) W  Comma-separated list of IPv6 address of the DNS servers for this IP interface. 0 R 

DefaultGateway string W  The IPv6 address of the current default gateway for this IP interface. 0 R 

AddressNumberOfEntries unsignedInt - R Number of entries in the IPv6 addresses table. 1 - 

/UPnP/DM/Configuration/Network/IPInterface/#/IPv6/A
ddress/#/ 

MultiInstance  R IPv6 addresses configuration. - - 

IPAddress string W R This shows current IPv6 address for each IPv6 interface. 1 R 

IPAddressType string W R The type of the address. Enumeration of: 
“GlobalAddress” 
“LinkLocalAddress” 
“SiteLocalAddress” 

0 R 

AddressingType string W R The method used to assign an address to this interface. Enumeration of: 
“DHCP” 
“Static” 
"RA" 

0 R 

Prefix string W R The current prefix used for the IPv6 address. 0 R 

Temporary boolean W  A flag to determine if the IP address is temporary. 0 R 

AddressStatus string - O The current status of this address. Enumeration of: 
“Tentative” 
“Preferred” 
“Valid” 
“Invalid” 

1 - 

/UPnP/DM/Monitoring/ SingleInstance  R This sub-tree contains the usage information related to resources available on the device. - - 

IPUsageNumberOfEntries unsignedInt - CR Number of entries in the IPUsage table. 1 - 

StorageNumberOfEntries unsignedInt - CR Number of entries in the Storage table. 1 - 

/UPnP/DM/Monitoring/OperatingSystem/ SingleInstance  CR Usage status of the available operating system resources. 
It MUST be provided when the Parent Device has access to the operating system. 

- - 



ConfigurationManagement:2 Service Template Version 1.01 141 

Copyright UPnP Forum © 2012.  All rights reserved. 

Name Type Acc. Req Description EOC Ver 
CurrentTime dateTime - R The current system date and time. - - 

CPUUsage unsignedInt [0:100] - R The total amount of the CPU currently being used rounded up to the nearest whole percent. - - 

MemoryUsage unsignedInt [0:100] - R The total amount of the memory currently being used rounded up to the nearest whole 
percent. 

- - 

/UPnP/DM/Monitoring/ExecutionEnvironment/ SingleInstance  CR Usage status of the available Execution Environment [SMS] resources. 
It MUST be provided when the Parent Device has access to the operating system and the 
Execution Environment is not the Operating System. 

- - 

CPUUsage unsignedInt [0:100] - R The total amount of the CPU currently being used by the Execution Environment [SMS] 
rounded up to the nearest whole percent. 

- - 

MemoryUsage unsignedInt [0:100] - R The total amount of the memory currently being used by the Execution Environment [SMS] 
rounded up to the nearest whole percent. 

- - 

/UPnP/DM/Monitoring /IPUsage/#/ MultiInstance  CR IP interface status and throughput statistics. 
It MUST be provided when the Parent Device has access to the network statistics 
information. 

- - 

SystemName string(64) - R Unique key. Value of the corresponding IP interface’s 
/UPnP/DM/Configuration/Network/IPInterface/#/SystemName parameter. 

- - 

Status string - R Status of the IP interface. Allowed values are: “UP”, “DOWN”. 1 R 

TotalPacketsSent unsignedInt - R Total number of IP packets sent over this IP interface since the interface last came up. - - 

TotalPacketsReceived unsignedInt - R Total number of IP packets received over this IP interface since the interface last came up. - - 

/UPnP/DM/Monitoring/ Storage/#/ MultiInstance - CR Status of the device storage (e.g. Flash memory, Disks). This Parameter doesn’t want to 
interfere with the Storage WC, and can be used, for example, in trouble-shooting where 
there is not enough space to play a media content. 

- - 

PointNode string - R System path of the mount point where the storage is mounted on. - - 

Usage unsignedInt [0:100] - R The total amount of the disk space currently being utilized rounded up to the nearest whole 
percent. 

- - 

 



 

Appendix C: Mapping rules for Other Organizations 
(Informative) 
Rules for mapping an organization’s Data Model to UPnP DM have to be specified independently for each 
organization.   

Note that, in order for it to be possible to use Data Models defined by other organizations, it is necessary 
that CMS actions and concepts map well to the actions and concepts envisaged by those other 
organizations.  For example, BBF Data Models are defined to work with TR-069, so it is important that 
CMS actions and concepts map well to TR-069 Data Model operations and concepts.  Similarly, OMA 
Data Models are defined to work with OMA-DM, and MIBs are defined to work with SNMP.  Therefore, 
the Data Model mapping rules MUST also consider the mapping of protocol operations and concepts. 

This section presents a fairly complete set of BBF (TR-069) mapping rules, and an outline of possible 
OMA (OMA-DM) and MIB (SNMP) mapping rules.   

C.1. BBF (TR-069) Mapping Rules 
These rules are divided into the following categories: 

• Name: rules for mapping BBF object and Parameter names to UPnP DM names (rules are to be 
applied in order). Note that UPnP DM name rules are similar to BBF ones allowing any name that 
is a valid XML NCName (no-colon name) except that (for obvious reasons) it doesn’t permit dots 
and hyphens “-“.  

• Type: rules for mapping BBF data types to UPnP DM data types. 
• List: rules for mapping BBF lists to UPnP DM lists. 
• Reference: rules for mapping BBF Data Model references to UPnP DM Data Model references. 

 

ID Category Description 

1 Name  If name begins with dot, remove it. The current CMS document does not describes 
relative paths, but the obvious syntax is that a path that starts “/” (i.e. the Root) is 
absolute and that all other paths are relative.  Therefore (recall that all non-Leaf 
Node names end with “/”), a full path for CMS is just the concatenation of a partial 
path and a relative path, as in “/BBF/” + “STBService/XXX/” must be transformed 
in “/BBF/STBService/XXX/”. 

2 Name  If name begins with Device. or InternetGatewayDevice., remove it 
(including the dot). 

3 Name  If name begins with Services., remove it (including the dot). 

4 Name  Replace dot separators with slashes. 

5 Name  Replace “{i}” placeholders with “#”. The “#” symbol is used in two contexts: (a) 
to indicate in the Data Model description that an object is multi-instance and (b) 
when actions are used to manage the Data Model, to represent the concept of “all” 
instance Nodes. 

6 Type  No mapping necessary, except that if BBF definition uses a named type, such as 
IPAddress, this is treated as a textual convention, e.g. IPAddress would be 
treated as “string, format xxx, representing IP address”. 



ConfigurationManagement:1 Service Template Version 1.01 143 

Copyright UPnP Forum © 2012.  All rights reserved. 

ID Category Description 

7 List No mapping necessary, because comma-separated list are considered as string in 
CMS. 

8 Reference For relative references (references that are within the BBF Data Model definition), 
all the above name mapping rules apply.  In addition, append a slash (if necessary) 
to non Leaf Node references (BBF object references are not dot-terminated). 

9 Reference For absolute references (references outside the BBF Data Model definition), it is 
not possible to give a general rule. Such references are rare, but occasionally a 
Parameter might reference something in a common object (e.g. in DeviceInfo), or 
there might be a reference to another Service object (e.g. TR-135 STBService 
instances can reference TR-140 StorageService instances). If such a requirement 
arises, the requirement must be stated in plain English, e.g. in the following (taken 
from TR-135 and translated following UPnP DM grammar rules): 

“References the corresponding StorageService  instance, or an object contained 
within such an instance, e.g. a PhysicalMedium, LogicalVolume or Folder 
instance.  The value is the full hierarchical name of the corresponding object.  
Example: Device/Services/StorageService/1”. 

 

TR-069 Data Model operations and concepts already map well to CMS actions and concepts. CMS 
instance numbers may start at 0 therefore TR-069 proxies should map them by adding 1 to go from CMS to 
TR-069 and by subtracting 1 to go the other way. 

C.2. OMA (OMA-DM) Mapping Rules 
These rules are in draft version. Further improvement could be provided in subsequent versions of this 
ConfigurationManagement Service Template: 

 

ID Category Description 

1  Name  If name begins with dot, remove it. “/” is considered to be the Root Node in 
CMS.  

2 Name  CMS never uses absolute path names; it always uses names relative to the Root 
Node. The leading “./” in OMA names is always omitted. 

3 Name  Path names don’t end with “/” in OMA. So add a trailing “/” to these names. 

4 Property 

Type. All Nodes have a Type property in OMA which corresponds to the 
optional MIMEType attribute in CMS.  The Type attribute of a Leaf Node is 
always the MIME type of the current object value.  The Type property of interior 
Nodes is either a Management Object Identifier URI or it has no value. 

5 Property 
Optionally OMA DM Nodes have a “Title” property which can be used by the 
Server to assign a human readable alias to a Node. This will be ignored by the 
CMS. 

6 Data Type XML data of Leaf Nodes, to be treated as string input for CMS. 



ConfigurationManagement:1 Service Template Version 1.01 144 

Copyright UPnP Forum © 2012.  All rights reserved. 

ID Category Description 

7  There is no explicit concept of table, or of unique key and the grammar extension 
has to be specified. 

8  There is no concept of instance number in OMA. 

 

C.3. MIB (SNMP) Mapping Rules 
These rules are in draft version. Further improvement could be provided in subsequent versions of this 
ConfigurationManagement Service Template: 

• SNMP doesn’t use path names as such, but a hierarchy can be inferred by (a) regarding objects not 
in tables as being at the top level, (b) regarding tables with index columns that are all within the 
table as being top-level tables, (c) regarding tables with index columns that are in other tables as 
being either top-level tables with additional index columns (necessary if the external indices are 
not all in the same table), or else nested within the table that contains the external indices (possible 
only if all external indices are in the same table). 

• FYI there is an unofficial (private) BBF tool that can convert a MIB definition into a BBF DM 
XML document.  It does not implement all of the above logic, but it easily could do, and it acts as 
a proof of concept. 

• SNMP doesn’t support instance numbers.  Instead, table rows are always accessed via index (key) 
value. 

• Mandatory SNMP operations map well to UPnP DM ones (except that there is no CreateAnd-
Set() operation). 

• would be an implicit unique key in tables, so could always reference rows via {name}, as at 
present; similarly for SNMP). 



ConfigurationManagement:1 Service Template Version 1.01 145 

Copyright UPnP Forum © 2012.  All rights reserved. 

Appendix D: Version History (Informative) 
ConfigurationManagement:1 

• Original 

ConfigurationManagement:2 

The ConfigurationManagement:1 Service has been extended by adding the following new features. 

• Alarming. The new optional AlarmOnChange (2.3.2.6) attribute enables the device to inform 
control point when some Parameters change their values. This feature can be enabled/disabled 
using the AlarmsEnabled (2.5.7) state variable and the associated actions GetAlarmsEnabled() and 
SetAlarmsEnabled() (2.7.17 and 2.7.18).  

• Security. The optional Security Feature, using the ACL mechanism (2.4 and 2.7.19), provides a 
way to protect the device from being managed by non authorized control point. 



ConfigurationManagement:1 Service Template Version 1.01 146 

Copyright UPnP Forum © 2012.  All rights reserved. 

Appendix E: Examples for ACL (Informative) 
For better clarify the usage of ACL and their representation (e.g.: factorization), this appendix shows some 
Python example programs to execute some simulation and tests. The following Python software is provided 
“as-is” and “with its all faults”. A basic knowledge of Python programming is required to understand the 
source code. 

E.1. ACL Module 
The ACL Module defines the ACL class for the management of permission lists. 

#***********************************************************************
******* 
# Module: ACL 
#***********************************************************************
******* 
 
class ACL: 
    """ 
    """ 
 
    def __init__(self, *roles): 
        """ 
        """ 
        self.factorized = False 
        self.roles = set() 
        for role in roles: 
            self.roles.add(role) 
 
    def doesContainRole(self, role): 
        """ 
        """ 
        if role is None: 
            return True 
        return role in self.roles 
 
    def doesContainACL(self, acl): 
        """ 
        """ 
        for role in acl.roles: 
            if not self.doesContainRole(role): 
                return False 
        return True 
 
    def isSame(self, acl): 
        """ 
        """ 
        if len(acl.roles) != len(self.roles): 
            return False 
        for role in self.roles: 
            if not acl.doesContainRole(role): 
                return False 
        return True 
 
    def setFactorized(self, factorized): 
        """ 
        """ 



ConfigurationManagement:1 Service Template Version 1.01 147 

Copyright UPnP Forum © 2012.  All rights reserved. 

        self.factorized = factorized 
 
    def isFactorized(self): 
        """ 
        """ 
        return self.factorized 
     
    def clone(self): 
        """ 
        """ 
        acl = ACL() 
        for role in self.roles: 
            acl.roles.add(role) 
        acl.setFactorized(self.isFactorized()) 
        return acl 
 
    def toString(self): 
        """ 
        """ 
        s = "" 
        if self.factorized: 
            s = s + "(+)" 
        s = s + "[" 
        for r in self.roles: 
            s = s + " " + r  
        return s + "]" 

E.2. Node Module 
The Node Module defines the Node class for the management of Nodes in the Data Model. 

#***********************************************************************
******* 
# Module: Node 
#***********************************************************************
******* 
 
from ACL import ACL 
 
LIST = "List" 
READ = "Read" 
WRITE = "Write" 
 
class Node: 
    """ 
    """ 
 
    def __init__(self, name): 
        """ 
        """ 
        self.nodeName = name 
        self.children = None 
 
        self.acl = dict() 
        self.acl[LIST] = None 
        self.acl[READ] = None 
        self.acl[WRITE] = None 
 
    def addChildren(self, *childrenNodes): 



ConfigurationManagement:1 Service Template Version 1.01 148 

Copyright UPnP Forum © 2012.  All rights reserved. 

        """ 
        """ 
        if len(childrenNodes) > 0: 
            if self.children is None: 
                self.children = set() 
            for c in childrenNodes: 
                self.children.add(c) 
 
    def addACLList(self, acl): 
        """ 
        """ 
        self.acl[LIST] = acl 
 
    def addACLRead(self, acl): 
        """ 
        """ 
        self.acl[READ] = acl 
 
    def addACLWrite(self, acl): 
        """ 
        """ 
        self.acl[WRITE] = acl 
 
    def dump(self, parentPath=""): 
        """ 
        """ 
        thisPath = self._getPathName(parentPath)  
        print "<" + thisPath + ">\n\t" + self._dumpACLs() 
        if self.children is not None: 
            for child in self.children: 
                child.dump(thisPath) 
 
    def getACLData(self, role, parentPath=""): 
        """ 
        """ 
        thisPath = self._getPathName(parentPath)  
        result = self._getACLs(role) 
        if result is not None: 
            print "<" + thisPath + ">\n\t" + result 
        if self.children is not None: 
            for child in self.children: 
                child.getACLData(role, thisPath) 
         
    def getFactorizedACLData(self, role): 
        """ 
        """ 
        dataModelClone = self._clone() 
        dataModelClone._factorizeACLs() 
        dataModelClone.getACLData(role) 
     
    def checkConsistency(self, parentPath="", aclList=None, 
aclRead=None, aclWrite=None): 
        """ 
        """ 
        thisPath = self._getPathName(parentPath) 
        if not self._isNodeConsistent(): 
            print "Node: " + thisPath + " is internally inconsistent." 
            return False 
        if not self._checkACLConsistency(aclList, self._getACL(LIST)): 



ConfigurationManagement:1 Service Template Version 1.01 149 

Copyright UPnP Forum © 2012.  All rights reserved. 

            print "Node: " + thisPath + " is inconsistent from parent in 
List ACL." 
            return False 
        if not self._checkACLConsistency(aclRead, self._getACL(READ)): 
            print "Node: " + thisPath + " is inconsistent from parent in 
Read ACL." 
            return False 
        if not self._checkACLConsistency(aclWrite, self._getACL(WRITE)): 
            print "Node: " + thisPath + " is inconsistent from parent in 
Write ACL." 
            return False 
        if self._getACL(LIST) is not None: 
            aclList = self._getACL(LIST) 
        if self._getACL(READ) is not None: 
            aclRead = self._getACL(READ) 
        if self._getACL(WRITE) is not None: 
            aclWrite = self._getACL(WRITE) 
        if self.children is None: 
            return True 
        for child in self.children: 
            if not child.checkConsistency(thisPath, aclList, aclRead, 
aclWrite): 
                return False 
        return True 
     
    def dfVisit(self): 
        """ 
        """ 
        print "dfVisit: " + self.toString() 
        if self.children is None: 
            return 
        for child in self.children: 
            child.dfVisit() 
     
    def toString(self): 
        """ 
        """ 
        s = "(<" + self.nodeName + ">" 
        for aclType in self.acl.keys(): 
            acl = self._getACL(aclType)  
            if acl is not None: 
                s = s + " " + aclType +  ":" + acl.toString() 
        return s + ")" 
 
    def _getPathName(self, parentPath): 
        # 
        thisPath = parentPath + self.nodeName 
        if self.children is not None: 
            thisPath = thisPath + "/" 
        return thisPath 
 
    def _isNodeConsistent(self): 
        # 
        aclList = self._getACL(LIST) 
        aclRead = self._getACL(READ) 
        aclWrite = self._getACL(WRITE) 
        if not self._checkACLConsistency(aclList, aclRead): 
            return False 
        if not self._checkACLConsistency(aclList, aclWrite): 
            return False 



ConfigurationManagement:1 Service Template Version 1.01 150 

Copyright UPnP Forum © 2012.  All rights reserved. 

        if not self._checkACLConsistency(aclRead, aclWrite): 
            return False 
        return True 
 
    def _checkACLConsistency(self, containerACL, containedACL): 
        # 
        if (containerACL is not None) and (containedACL is not None): 
            # Public role in ACL means every roles are also implicitly 
included 
            return containerACL.doesContainRole("Public") or 
containerACL.doesContainACL(containedACL) 
        else: 
            return True 
         
    def _clone(self): 
        # 
        newNode = Node(self.nodeName)            
        for aclType in self.acl.keys(): 
            acl = self._getACL(aclType)  
            if acl is not None: 
                newNode._setACL(aclType, acl.clone()) 
                 
        if self.children is not None: 
            for child in self.children: 
                newNode.addChildren(child._clone()) 
        return newNode 
 
    def _getACL(self, aclType): 
        # 
        return self.acl.get(aclType) 
 
    def _setACL(self, aclType, acl): 
        # 
        self.acl[aclType] = acl        
 
    def _getACLs(self, role): 
        # 
        failure = True 
        result = " ACL{" 
        for aclType in self.acl.keys(): 
            acl = self._getACL(aclType)  
            if acl is not None: 
                #All CPs implicitly have Public role 
                if (role is None) or acl.doesContainRole(role) or 
acl.doesContainRole("Public"): 
                    failure = False 
                    result = result + " " + aclType +  ":" + 
acl.toString() 
        result = result + "}" 
        if failure: 
            return None 
        else: 
            return result 
 
    def _dumpACLs(self): 
        # 
        result = " ACL{" 
        for aclType in self.acl.keys(): 
            result = result + " " + aclType +  ":"  
            acl = self._getACL(aclType)  



ConfigurationManagement:1 Service Template Version 1.01 151 

Copyright UPnP Forum © 2012.  All rights reserved. 

            if acl is None: 
                result = result + "N/A" 
            else: 
                result = result + acl.toString() 
        result = result + "}" 
        return result     
                         
    def _haveChildrenSameACL(self, aclType): 
        # 
        start = True 
        referenceACL = None 
        for child in self.children: 
            if start: 
                referenceACL = child._getACL(aclType) 
                start = False 
            else: 
                childACL = child._getACL(aclType) 
                if (referenceACL is None) and (childACL is None): 
                    pass 
                elif (referenceACL is None) and (childACL is not None): 
                    referenceACL = childACL 
                elif (referenceACL is not None) and (childACL is None): 
                    pass 
                elif (referenceACL is not None) and (childACL is not 
None): 
                    if not referenceACL.isSame(childACL): 
                        return False 
                    else: 
                        pass 
                else: 
                    return False 
        return True 
 
    def _getChildrenACL(self, aclType): 
        # 
        resultACL = None 
        for child in self.children: 
            nextACL = child._getACL(aclType) 
            if nextACL is not None: 
                resultACL = nextACL 
            if resultACL is not None: 
                if resultACL.isFactorized(): 
                    return resultACL 
        return resultACL 
 
 
    def _factorizeACL(self, aclType): 
        # 
        if self.children is None: 
            return 
        if self._haveChildrenSameACL(aclType): 
            factorizedACL = self._getACL(aclType) 
            childrenACL = self._getChildrenACL(aclType) 
            if (factorizedACL is None) & (childrenACL is None): 
                return 
            elif (factorizedACL is None) & (childrenACL is not None): 
                factorizedACL = childrenACL.clone() 
                factorizedACL.setFactorized(True) 
                self._setACL(aclType, factorizedACL) 
                self._removeChildrenACL(aclType) 



ConfigurationManagement:1 Service Template Version 1.01 152 

Copyright UPnP Forum © 2012.  All rights reserved. 

            elif (factorizedACL is not None) & (childrenACL is None): 
                return 
            else: 
                if factorizedACL.isSame(childrenACL): 
                    factorizedACL.setFactorized(True) 
                    self._removeChildrenACL(aclType) 
                else: 
                    return 
 
    def _factorizeACLs(self): 
        # 
        if self.children is not None: 
            for child in self.children: 
                child._factorizeACLs() 
        for aclType in self.acl.keys(): 
            self._factorizeACL(aclType) 
 
    def _removeChildrenACL(self, aclType): 
        # 
        for child in self.children: 
            child._setACL(aclType, None) 
 

E.3. Data Model Module 
This module defines the Data Model from the example in Figure 5: example of data model Nodes with 
associated ACLs.. 

#***********************************************************************
******* 
# Module: Node 
#***********************************************************************
******* 
 
from Node import Node 
 
def createDataModel(): 
    """ 
    """ 
    root = Node("") 
    UPnP = Node("UPnP") 
    PHONE = Node("PHONE") 
    Settings = Node("Settings") 
    Power = Node("Power") 
    Battery = Node("Battery") 
    CurrentPowerSource = Node("CurrentPowerSource") 
    CurrentPowerLevel = Node("CurrentPowerLevel") 
    LowBatteryAlarmLevel = Node("LowBatteryAlarmLevel") 
    AddressBook = Node("AddressBook") 
    Contact = Node("Contact") 
    Contact_t = Node("#") 
    Contact_3 = Node("3") 
    Contact_t_Identification = Node("Identification") 
    Contact_t_NickName = Node("NickName") 
    Contact_3_Identification = Node("Identification") 
    Contact_3_NickName = Node("NickName") 
     
    root.addChildren(UPnP) 



ConfigurationManagement:1 Service Template Version 1.01 153 

Copyright UPnP Forum © 2012.  All rights reserved. 

    UPnP.addChildren(PHONE) 
    PHONE.addChildren(Settings, AddressBook) 
    Settings.addChildren(Power) 
    Power.addChildren(Battery, CurrentPowerSource) 
    Battery.addChildren(CurrentPowerLevel, LowBatteryAlarmLevel) 
    AddressBook.addChildren(Contact) 
    Contact.addChildren(Contact_t, Contact_3) 
    Contact_t.addChildren(Contact_t_Identification, Contact_t_NickName) 
    Contact_3.addChildren(Contact_3_Identification, Contact_3_NickName) 
 
    root.addACLList(ACL("Public")) 
    UPnP.addACLList(ACL("Public")) 
    PHONE.addACLList(ACL("Public")) 
    Settings.addACLList(ACL("Public")) 
    Power.addACLList(ACL("Public")) 
    Battery.addACLList(ACL("Public")) 
    CurrentPowerSource.addACLList(ACL("Public")) 
    CurrentPowerSource.addACLRead(ACL("Basic", "xxxAdmin")) 
    CurrentPowerLevel.addACLList(ACL("Public")) 
    CurrentPowerLevel.addACLRead(ACL("Basic", "xxxAdmin"))     
    LowBatteryAlarmLevel.addACLList(ACL("Public")) 
    LowBatteryAlarmLevel.addACLRead(ACL("Basic", "xxxAdmin")) 
    LowBatteryAlarmLevel.addACLWrite(ACL("Basic", "xxxAdmin")) 
    AddressBook.addACLList(ACL("Public")) 
    Contact.addACLList(ACL("Public")) 
    Contact.addACLWrite(ACL("Basic", "xxxAdmin")) 
    Contact_3.addACLRead(ACL("Basic", "xxxAdmin")) 
    Contact_3.addACLWrite(ACL("xxxAdmin")) 
    Contact_t_Identification.addACLList(ACL("Public")) 
    Contact_t_NickName.addACLList(ACL("Public")) 
    Contact_3_NickName.addACLRead(ACL("xxxAdmin")) 
    Contact_3_NickName.addACLWrite(ACL("xxxAdmin")) 
 
    return root 

E.4. Test Module 
A basic test using this simulator can be executed by invoking the test() function below. 

import sys 
from DataModel import * 
 
dataModel = createDataModel() 
 
def testGetACLData(role): 
    if role is None: 
        roleName = "Admin" 
    else: 
        roleName = role 
    print "\n*" 
    print "* GetACLData result for role " + roleName + ":"  
    print "*" 
    dataModel.getACLData(role) 
        
    print "\n*" 
    print "* GetACLData (factorized) result for role " + roleName + ":" 
    print "*" 
    dataModel.getFactorizedACLData(role) 
     



ConfigurationManagement:1 Service Template Version 1.01 154 

Copyright UPnP Forum © 2012.  All rights reserved. 

 
def test(): 
    print "\n+------------------+" 
    print "| START SIMULATION |" 
    print "+------------------+" 
     
    print "\n*" 
    print "* Data model dump:" 
    print "*" 
    dataModel.dump() 
     
    print "\n*" 
    print "* Consistency check:" 
    print "*" 
    if dataModel.checkConsistency(): 
        print "\nOK, the data model is consistent." 
    else: 
        print "\nERR: the data model not consistent: simulation 
aborted." 
        return 
 
    for role in (None, "Public", "Basic", "xxxAdmin", "UnknownRole"): 
        testGetACLData(role) 
 
    print "\nEnd of simulation."  
     
if __name__ == "__main__": 
    argv = sys.argv 
    nArgs = len(argv) 
    if nArgs == 1: 
        test() 
    else: 
        for role in argv[1:]: 
            testGetACLData(role)     

E.5. Test Examples 
This document shows examples that can be generated using the Python software from the previous sections 
The data-model can be changed to perform more tests and examples. Details in the examples below, that 
are not relevant for the explaination, are omitted (see “[…]”) from the Python output or highlighted in bold 
when needed, for the benefit of an easier reading.  

The Data Model can be wrongly defined to check for ACL consistency. Here there are some examples of 
how this works. 

First a Role “WRONG-ROLE-HERE” has been added to the 
/UPnP/PHONE/AddressBook/Contact/3/ Node in the Data Model.  

+------------------+ 
| START SIMULATION | 
+------------------+ 
 
* 
* Data model dump: 
* 
… 
</UPnP/PHONE/AddressBook/Contact/3/>  

ACL{ Read:[ xxxAdmin Basic] Write:[ WRONG-ROLE-HERE xxxAdmin] 
List:N/A} 



ConfigurationManagement:1 Service Template Version 1.01 155 

Copyright UPnP Forum © 2012.  All rights reserved. 

… 
 
* 
* Consistency check: 
* 
Node: /UPnP/PHONE/AddressBook/Contact/3/ is internally inconsistent. 
 
ERR: the data model not consistent: simulation aborted. 
 

Then a “WRONG-ROLE-HERE” has been added to the 
/UPnP/PHONE/AddressBook/Contact/3/NickName Node. 

+------------------+ 
| START SIMULATION | 
+------------------+ 
 
* 
* Data model dump: 
* 
</> ACL:{ Read:N/A Write:N/A List:[ Public]} 
… 
</UPnP/PHONE/AddressBook/Contact/3/NickName>  

ACL{ Read:[ WRONG-ROLE-HERE xxxAdmin] Write:[ xxxAdmin] List:N/A} 
… 
 
* 
* Consistency check: 
* 
Node: /UPnP/PHONE/AddressBook/Contact/3/NickName is inconsistent from 
parent in Read ACL. 
 
ERR: the data model not consistent: simulation aborted. 
 

The following are the case when the data-model is then consistent and the getACLData is executed using 
different Roles. The examples show both the results without the factorization and with the factorization. 
Factorized permission lists are identified by the symbol “(+)”. 

+------------------+ 
| START SIMULATION | 
+------------------+ 
 
* 
* Data model dump: 
* 
</> 
  ACL{ Read:N/A Write:N/A List:[ Public]} 
</UPnP/> 
  ACL{ Read:N/A Write:N/A List:[ Public]} 
</UPnP/PHONE/> 
  ACL{ Read:N/A Write:N/A List:[ Public]} 
</UPnP/PHONE/AddressBook/> 
  ACL{ Read:N/A Write:N/A List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/> 
  ACL{ Read:N/A Write:[ xxxAdmin Basic] List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/#/> 
  ACL{ Read:N/A Write:N/A List:N/A} 
</UPnP/PHONE/AddressBook/Contact/#/Identification> 



ConfigurationManagement:1 Service Template Version 1.01 156 

Copyright UPnP Forum © 2012.  All rights reserved. 

  ACL{ Read:N/A Write:N/A List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/#/NickName> 
  ACL{ Read:N/A Write:N/A List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/3/> 
  ACL{ Read:[ xxxAdmin Basic] Write:[ xxxAdmin] List:N/A} 
</UPnP/PHONE/AddressBook/Contact/3/NickName> 
  ACL{ Read:[ xxxAdmin] Write:[ xxxAdmin] List:N/A} 
</UPnP/PHONE/AddressBook/Contact/3/Identification> 
  ACL{ Read:N/A Write:N/A List:N/A} 
</UPnP/PHONE/Settings/> 
  ACL{ Read:N/A Write:N/A List:[ Public]} 
</UPnP/PHONE/Settings/Power/> 
  ACL{ Read:N/A Write:N/A List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/> 
  ACL{ Read:N/A Write:N/A List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/CurrentPowerLevel> 
  ACL{ Read:[ xxxAdmin Basic] Write:N/A List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/LowBatteryAlarmLevel> 
  ACL{ Read:[ xxxAdmin Basic] Write:[ xxxAdmin Basic] 
List:[ Public]} 
</UPnP/PHONE/Settings/Power/CurrentPowerSource> 
  ACL{ Read:[ xxxAdmin Basic] Write:N/A List:[ Public]} 
 
* 
* Consistency check: 
* 
 
OK, the data model is consistent. 
 
* 
* GetACLData result for role Admin: 
* 
</> 
  ACL{ List:[ Public]} 
</UPnP/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/> 
  ACL{ Write:[ xxxAdmin Basic] List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/#/Identification> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/#/NickName> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/3/> 
  ACL{ Read:[ xxxAdmin Basic] Write:[ xxxAdmin]} 
</UPnP/PHONE/AddressBook/Contact/3/NickName> 
  ACL{ Read:[ xxxAdmin] Write:[ xxxAdmin]} 
</UPnP/PHONE/Settings/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/CurrentPowerLevel> 
  ACL{ Read:[ xxxAdmin Basic] List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/LowBatteryAlarmLevel> 



ConfigurationManagement:1 Service Template Version 1.01 157 

Copyright UPnP Forum © 2012.  All rights reserved. 

  ACL{ Read:[ xxxAdmin Basic] Write:[ xxxAdmin Basic] 
List:[ Public]} 
</UPnP/PHONE/Settings/Power/CurrentPowerSource> 
  ACL{ Read:[ xxxAdmin Basic] List:[ Public]} 
 
* 
* GetACLData (factorized) result for role Admin: 
* 
</> 
  ACL{ Read:(+)[ xxxAdmin Basic] Write:(+)[ xxxAdmin Basic] 
List:(+)[ Public]} 
</UPnP/PHONE/AddressBook/Contact/3/> 
  ACL{ Write:(+)[ xxxAdmin]} 
</UPnP/PHONE/AddressBook/Contact/3/NickName> 
  ACL{ Read:[ xxxAdmin]} 
 
* 
* GetACLData result for role Public: 
* 
</> 
  ACL{ List:[ Public]} 
</UPnP/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/#/Identification> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/#/NickName> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/CurrentPowerLevel> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/LowBatteryAlarmLevel> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/CurrentPowerSource> 
  ACL{ List:[ Public]} 
 
* 
* GetACLData (factorized) result for role Public: 
* 
</> 
  ACL{ List:(+)[ Public]} 
 
* 
* GetACLData result for role Basic: 
* 
</> 
  ACL{ List:[ Public]} 
</UPnP/> 
  ACL{ List:[ Public]} 



ConfigurationManagement:1 Service Template Version 1.01 158 

Copyright UPnP Forum © 2012.  All rights reserved. 

</UPnP/PHONE/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/> 
  ACL{ Write:[ xxxAdmin Basic] List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/#/Identification> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/#/NickName> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/3/> 
  ACL{ Read:[ xxxAdmin Basic]} 
</UPnP/PHONE/Settings/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/CurrentPowerLevel> 
  ACL{ Read:[ xxxAdmin Basic] List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/LowBatteryAlarmLevel> 
  ACL{ Read:[ xxxAdmin Basic] Write:[ xxxAdmin Basic] 
List:[ Public]} 
</UPnP/PHONE/Settings/Power/CurrentPowerSource> 
  ACL{ Read:[ xxxAdmin Basic] List:[ Public]} 
 
* 
* GetACLData (factorized) result for role Basic: 
* 
</> 
  ACL{ Read:(+)[ xxxAdmin Basic] Write:(+)[ xxxAdmin Basic] 
List:(+)[ Public]} 
 
* 
* GetACLData result for role xxxAdmin: 
* 
</> 
  ACL{ List:[ Public]} 
</UPnP/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/> 
  ACL{ Write:[ xxxAdmin Basic] List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/#/Identification> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/#/NickName> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/3/> 
  ACL{ Read:[ xxxAdmin Basic] Write:[ xxxAdmin]} 
</UPnP/PHONE/AddressBook/Contact/3/NickName> 
  ACL{ Read:[ xxxAdmin] Write:[ xxxAdmin]} 
</UPnP/PHONE/Settings/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/> 



ConfigurationManagement:1 Service Template Version 1.01 159 

Copyright UPnP Forum © 2012.  All rights reserved. 

  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/CurrentPowerLevel> 
  ACL{ Read:[ xxxAdmin Basic] List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/LowBatteryAlarmLevel> 
  ACL{ Read:[ xxxAdmin Basic] Write:[ xxxAdmin Basic] 
List:[ Public]} 
</UPnP/PHONE/Settings/Power/CurrentPowerSource> 
  ACL{ Read:[ xxxAdmin Basic] List:[ Public]} 
 
* 
* GetACLData (factorized) result for role xxxAdmin: 
* 
</> 
  ACL{ Read:(+)[ xxxAdmin Basic] Write:(+)[ xxxAdmin Basic] 
List:(+)[ Public]} 
</UPnP/PHONE/AddressBook/Contact/3/> 
  ACL{ Write:(+)[ xxxAdmin]} 
</UPnP/PHONE/AddressBook/Contact/3/NickName> 
  ACL{ Read:[ xxxAdmin]} 
 
* 
* GetACLData result for role UnknownRole: 
* 
</> 
  ACL{ List:[ Public]} 
</UPnP/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/#/Identification> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/AddressBook/Contact/#/NickName> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/CurrentPowerLevel> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/Battery/LowBatteryAlarmLevel> 
  ACL{ List:[ Public]} 
</UPnP/PHONE/Settings/Power/CurrentPowerSource> 
  ACL{ List:[ Public]} 
 
* 
* GetACLData (factorized) result for role UnknownRole: 
* 
</> 
  ACL{ List:(+)[ Public]} 
 
End of simulation. 
 
 



ConfigurationManagement:1 Service Template Version 1.01 160 

Copyright UPnP Forum © 2012.  All rights reserved. 

 

 

 

 

 

 


	1. Overview and Scope
	1.1. Introduction
	1.2. References
	1.3. Glossary
	1.4. Notation
	1.4.1. Data Types
	1.4.2. Strings Embedded in Other Strings

	1.5. Derived Data Types
	1.5.1. Comma Separated Value (CSV) Lists
	1.5.2. Embedded XML Documents

	1.6. Management of XML Namespaces in Standardized DCPs
	1.6.1. Namespace Names, Namespace Versioning and Schema Versioning
	1.6.2. Namespace Usage Examples

	1.7. Vendor Defined Extensions

	2. Service Modeling Definitions
	2.1. ServiceType
	2.2. Key Concepts
	2.2.1. Data Model Management Basics
	2.2.2. Security
	2.2.3. Alarming

	2.3. Syntax for Parameter Names
	2.3.1.1. Definition of Terms
	2.3.1.2. Definition of Grammar
	2.3.2. Attributes
	2.3.3. Instance Nodes as Primary Keys and Unique Keys Extension
	2.3.4. Time stamps

	2.4. Security Feature
	2.4.1. ACLs
	2.4.2. Hierarchy of ACLs
	2.4.3. ACLs for Instance and InstanceAlias Nodes
	2.4.4. Dynamic creation of ACLs for Instance Nodes
	2.4.5. Requirements for ACLs
	2.4.6. Roles for the examples
	2.4.7. Representations of ACL
	2.4.7.1. Factorization
	2.4.7.2. Overriding

	2.4.8. Device Requirements

	2.5. State Variables
	2.5.25. Relationships Between State Variables

	2.6. Eventing and Moderation
	2.6.1. Event Model
	2.6.2. Eventing and Security

	2.7. Actions
	2.7.1.1. Arguments
	2.7.1.1. Device Requirements
	2.7.1.2. Dependency on State (if any)
	2.7.1.3. Effect on State (if any)
	2.7.1.4. Errors
	2.7.2.1. Arguments
	2.7.2.2. Device Requirements
	2.7.2.3. Dependency on State (if any)
	2.7.2.4. Effect on State (if any)
	2.7.2.5. Errors
	2.7.3.1. Arguments
	2.7.3.2. Device Requirements
	2.7.3.3. Dependency on State (if any)
	2.7.3.4. Effect on State (if any)
	2.7.3.5. Errors
	2.7.4.1. Arguments
	2.7.4.2. Device Requirements
	2.7.4.3. Dependency on State (if any)
	2.7.4.4. Effect on State (if any)
	2.7.4.5. Errors
	2.7.5.1. Arguments
	2.7.5.2. Device Requirements
	2.7.5.3. Dependency on State (if any)
	2.7.5.4. Effect on State (if any)
	2.7.5.5. Errors
	2.7.6.1. Arguments
	2.7.6.2. Device Requirements
	2.7.6.3. Dependency on State (if any)
	2.7.6.4. Effect on State (if any)
	2.7.6.5. Errors
	2.7.7.1. Arguments
	2.7.7.2. Device Requirements
	2.7.7.3. Dependency on State (if any)
	2.7.7.4. Effect on State (if any)
	2.7.7.5. Errors
	2.7.8.1. Arguments
	2.7.8.2. Device Requirements
	2.7.8.3. Dependency on State (if any)
	2.7.8.4. Effect on State (if any)
	2.7.8.5. Errors
	2.7.9.1. Arguments
	2.7.9.2. Device Requirements
	2.7.9.3. Dependency on State (if any)
	2.7.9.4. Effect on State (if any)
	2.7.9.5. Errors
	2.7.10.1. Arguments
	2.7.10.2. Device Requirements
	2.7.10.3. Dependency on State (if any)
	2.7.10.4. Effect on State (if any)
	2.7.10.5. Errors
	2.7.11.1. Arguments
	2.7.11.2. Device Requirements
	2.7.11.3. Dependency on State (if any)
	2.7.11.4. Effect on State (if any)
	2.7.11.5. Errors
	2.7.12.1. Arguments
	2.7.12.2. Device Requirements
	2.7.12.3. Dependency on State (if any)
	2.7.12.4. Effect on State (if any)
	2.7.12.5. Errors
	2.7.13.1. Arguments
	2.7.13.2. Device Requirements
	2.7.13.3. Dependency on State (if any)
	2.7.13.4. Effect on State (if any)
	2.7.13.5. Errors
	2.7.14.1. Arguments
	2.7.14.2. Device Requirements
	2.7.14.3. Dependency on State (if any)
	2.7.14.4. Effect on State (if any)
	2.7.14.5. Errors
	2.7.15.1. Arguments
	2.7.15.2. Device Requirements
	2.7.15.3. Dependency on State (if any)
	2.7.15.4. Effect on State (if any)
	2.7.15.5. Errors
	2.7.16.1. Arguments
	2.7.16.2. Device Requirements
	2.7.16.3. Dependency on State (if any)
	2.7.16.4. Effect on State (if any)
	2.7.16.5. Errors
	2.7.17.1. Arguments
	2.7.17.2. Device Requirements
	2.7.17.3. Dependency on State (if any)
	2.7.17.4. Effect on State (if any)
	2.7.17.5. Errors
	2.7.18.1. Arguments
	2.7.18.2. Device Requirements
	2.7.18.3. Dependency on State (if any)
	2.7.18.4. Effect on State (if any)
	2.7.18.5. Errors
	2.7.19.1. Arguments
	2.7.19.2. Device Requirements
	2.7.19.3. Dependency on State (if any)
	2.7.19.4. Effect on State (if any)
	2.7.19.5. Errors
	2.7.20. Non-Standard Actions Implemented by a UPnP Vendor
	2.7.21. Common Error Codes 

	2.8. Theory of Operation
	2.8.1. Discovering of the Data Model
	2.8.2. Management
	2.8.3. BMS Interaction
	2.8.4. Eventing from Changes in Parameter Values
	2.8.5. Version Control
	2.8.6. MultiInstance Nodes Management
	2.8.7. SMS Interaction
	2.8.8. Consistency
	2.8.9. Managing the Phone Data Model
	2.8.9.1. Retrieving all Contacts from the Address Book
	2.8.9.2. Search for a Specific Contact
	2.8.9.3. Managing Notifications for Changes in the Address Book

	2.8.10. Alarming


	3. XML Service Description
	Appendix A: XML schema (Normative)
	Appendix B: Data Model Requirements (Normative)
	B.1. Reserved namespaces
	B.2. NumberOfEntries parameters
	B.3. Common Objects

	Appendix C: Mapping rules for Other Organizations (Informative)
	C.1. BBF (TR-069) Mapping Rules
	C.2. OMA (OMA-DM) Mapping Rules
	C.3. MIB (SNMP) Mapping Rules

	Appendix D: Version History (Informative)
	Appendix E: Examples for ACL (Informative)
	E.1. ACL Module
	E.2. Node Module
	E.3. Data Model Module
	E.4. Test Module
	E.5. Test Examples


