
© 2014, UPnP

Forum. All rights Reserved.

MultiScreenArchitecture:1

For UPnP Version 1.0
Status: Standardized DCP (SDCP)
Date: September 30, 2014
Service Template Version 3.0

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee
of the UPnP Forum, pursuant to Section 2.1(c)(v) of the UPnP Forum Membership Agreement.
UPnP Forum Members have rights and licenses defined by Section 3 of the UPnP Forum
Membership Agreement to use and reproduce the Standardized DCP in UPnP Compliant
Devices. All such use is subject to all of the provisions of the UPnP Forum Membership
Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL
PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS
ARE PROVIDED "AS IS" AND "WITH ALL FAULTS". THE UPNP™ FORUM MAKES NO
WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO
THE STANDARDIZED DCPS, INCLUDING BUT NOT LIMITED TO ALL IMPLIED
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A
PARTICULAR PURPOSE, OF REASONABLE CARE OR WORKMANLIKE EFFORT, OR
RESULTS OR OF LACK OF NEGLIGENCE.

© 2014, UPnP

Forum. All rights Reserved.

Authors Company

Clarke Stevens CableLabs

Wouter van der Beek Cisco Systems Inc.

Seung R. Yang (Chair) LG Electronics

Anders Klemets Microsoft

Nicholas Frame TP Vision

Note: The UPnP Forum in no way guarantees the accuracy or completeness of this author list and in no

way implies any rights for or support from those members listed. This list is not the specif ications’
contributor list that is kept on the UPnP Forum’s website.

© 2014, UPnP

Forum. All rights Reserved.

CONTENTS

1 Scope .. 2

2 Normative references .. 3

3 Terms, definitions, symbols and abbreviations ... 3

4 Notations and Conventions .. 5

4.1 Notation .. 5

4.1.1 Data Types ... 5

4.1.2 Strings Embedded in Other Strings ... 6

4.2 Derived Data Types .. 6

4.2.1 CSV Lists ... 6

4.2.2 XML Document ... 7

4.2.3 XML Fragment .. 8

4.3 Management of XML Namespaces in Standardized DCPs 8

4.3.1 Namespace Prefix Requirements .. 9

4.3.2 Namespace Names, Namespace Versioning and Schema Versioning 10

4.3.3 Namespace Usage Examples ... 12

4.4 Vendor-defined Extensions ... 12

4.4.1 Vendor-defined Action Names .. 12

4.4.2 Vendor-defined State Variable Names ... 12

4.4.3 Vendor-defined XML Elements and attributes ... 13

5 Multi-Screen Architectural Overview ... 13

5.1 Screen Device ... 13

5.2 Screen Control Point .. 13

No table of figures entries found.

Table 1 — CSV Examples ... 7

Table 2 — Namespace Definitions .. 9

Table 3 — Schema-related Information ... 9

Table 4 — Default Namespaces for the Multi-Screen Specifications 10

1 Scope

Today multi-screen/second-screen solutions are proliferating. However, each is a proprietary
vertical for particular vendor(s). Therefore users expectations aren’t being met:

 Seamless interoperability across vendors.

 Ability for second screen integrated usages rather than 100s of different apps.

The UPnP Multi-Screen Device Control Protocols (DCPs) provide an open interface to enable
this interoperability between devices and applications, i.e. enable time-sensitive and
interactive services, including implementation-specific applications, among various display
devices.

This document describes the overall Multi -Screen Architecture, which forms the foundation for
the UPnP Multi-Screen Device and Service templates. The Multi -Screen Architecture defines
the general interaction between UPnP control points and UPnP devices defined by the UPnP
Multi-Screen DCPs.

© 2014, UPnP

Forum. All rights Reserved.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.

[1] – UPnP Device Architecture, version 1.0, UPnP Forum, October 15, 2008.
Available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-

20081015.pdf.
Latest version available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.0.pdf.

[2] – ApplicationManagement:1, UPnP Forum, September 30, 2014.
Available at: http://www.upnp.org/specs/ms/UPnP-ms-ApplicationManagement-v1-Service-
20140930.pdf.
Latest version available at: http://www.upnp.org/specs/ms/UPnP-ms-ApplicationManagement-
v1-Service.pdf.

[3] – ApplicationManagement:2, UPnP Forum, September 30, 2014.
Available at: http://www.upnp.org/specs/ms/UPnP-ms-ApplicationManagement-v2- Service-
20140930.pdf.
Latest version available at: http://www.upnp.org/specs/ms/UPnP-ms-ApplicationManagement-
v2-Service.pdf.

 [4] – ScreenDevice:1, UPnP Forum, September 30, 2014.
Available at: http://www.upnp.org/specs/ms/UPnP-ms-ScreenDevice-v1-Device-20140930.pdf.
Latest version available at: http://www.upnp.org/specs/ms/UPnP-ms-ScreenDevice-v1-
Device.pdf.

 [5] – ScreenDevice:2, UPnP Forum, September 30, 2014.
Available at: http://www.upnp.org/specs/ms/UPnP-ms-ScreenDevice-v2-Device-20140930.pdf.
Latest version available at: http://www.upnp.org/specs/ms/UPnP-ms-ScreenDevice-v2-
Device.pdf.

 [6] – XML Schema Part 1: Structures, Second Edition, Henry S. Thompson, David Beech,
Murray Maloney, Noah Mendelsohn, W3C Recommendation, 28 October 2004.
Available at: http://www.w3.org/TR/2004/REC-xmlschema-1-20041028.

[7] – XML Schema Part 2: Data Types, Second Edition, Paul V. Biron, Ashok Malhotra, W3C
Recommendation, 28 October 2004.
Available at: http://www.w3.org/TR/2004/REC-xmlschema-2-20041028.

[8] – The “xml:” Namespace, November 3, 2004.
Available at: http://www.w3.org/XML/1998/namespace.

[9] – Namespaces in XML, Tim Bray, Dave Hollander, Andrew Layman, eds., W3C
Recommendation, January 14, 1999.
Available at: http://www.w3.org/TR/1999/REC-xml-names-19990114.

[10] – XML Schema for FeatureList XML Structures, UPnP Forum, September 30, 2014.
Available at: http://www.upnp.org/ schemas/ms/FeatureList-v1-20140930.xsd.
Latest version available at: http://www.upnp.org/ schemas/ms/FeatureList.xsd.

 [11] – XML Schema for AppInfoList XML Structures , UPnP Forum, September 30, 2014.
Available at: http://www.upnp.org/ schemas/ms/AppInfoList-v2-20140930.xsd.
Latest version available at: http://www.upnp.org/ schemas/ms/AppInfoList.xsd.

3 Terms, definitions, symbols and abbreviations

For the purposes of this document, the terms and definitions given in [1] and the following
apply.

http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20081015.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20081015.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ApplicationManagement-v1-Service-20140930.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ApplicationManagement-v1-Service-20140930.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ApplicationManagement-v1-Service.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ApplicationManagement-v1-Service.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ApplicationManagement-v2-%20Service-20140930.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ApplicationManagement-v2-%20Service-20140930.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ApplicationManagement-v2-Service.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ApplicationManagement-v2-Service.pdf
http://upnp.org/specs/ms/UPnP-ms-ScreenDevice-v1-Device.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ScreenDevice-v1-Device.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ScreenDevice-v1-Device.pdf
http://upnp.org/specs/ms/UPnP-ms-ScreenDevice-v2-Device.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ScreenDevice-v2-Device.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ScreenDevice-v2-Device.pdf
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028
http://www.w3.org/XML/1998/namespace
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://upnp.org/%20schemas/ms/FeatureList-v1.xsd
http://upnp.org/%20schemas/ms/FeatureList.xsd
http://upnp.org/%20schemas/ms/AppInfoList-v2.xsd
http://upnp.org/%20schemas/ms/AppInfoList.xsd

© 2014, UPnP

Forum. All rights Reserved.

3.1 Provisioning terms (abbreviated forms are used only in tables)

3.1.1
allowed
A
The definition or behavior is allowed.

3.1.2
conditionally allowed
CA
The definition or behavior depends on a condition. If the specified condition is met, then the
definition or behavior is allowed, otherwise it is not allowed.

3.1.3
conditionally required
CR
The definition or behavior depends on a condition. If the specified condition is met, then the
definition or behavior is required. Otherwise the definition or behavior is allowed as default
unless specifically defined as not allowed.

3.1.4
required
R
The definition or behavior is required.

3.1.5
R/A
Used in a table column heading to indicate that each abbreviated entry in the column declares
the provisioning status of the item named in the entry's row.

3.1.6
X
Vendor-defined, non-standard.

3.1.7
-D
Declares that the item referred to is deprecated, when it is appended to any of the other
abbreviated provisioning terms.

3.1.8
Screen Device
A UPnP component used to provide various interactive services with other display device(s)
which is (are) implemented with Screen Control Point(s). Designed to be controlled by and
interact with Screen Control Point(s). See subclause 5.1 for details.

3.1.9
Screen Control Point
A UPnP component used to provide various interactive services with other display device(s)
which is (are) implemented with Screen Device(s). Designed to control and interact with
Screen Device(s) with direct input from end-users. See subclause 5.2 for details.

© 2014, UPnP

Forum. All rights Reserved.

3.1.10
Multi-Screen Service

Time-sensitive and interactive services, including implementation-specific applications, among
various display devices. The display devices can be categorized into the main screen device
and companion screen device by the roles and usages of the specific applications.

3.1.11

Main screen device :

Usually the main screen device is assumed as a lean-back display device such as a TV or
set-top box which is controlled by companion screen devices. But any display device such as
a smart phone, tablet, etc. can be a main screen device depending on usage scenarios.

3.1.12

Companion screen device

Usually the companion screen device is assumed as a lean-forward & handheld display
device such as a smart phone or tablet which controls main screen devices. But any display
device such as a TV or set-top box, etc. can be a main screen device depending on usage
scenarios.

3.1.13
CSV list (or CSV)
comma separated value list
list—or one-dimensional array—of values contained in a string and separated by commas

3.2 Symbols

3.2.1
::
signifies a hierarchical parent-child (parent::child) relationship between the two objects
separated by the double colon. This delimiter is used in multiple contexts, for example:
Service::Action(), Action()::Argument, parentXMLElement::childXMLElement.

4 Notations and Conventions

4.1 Notation

 UPnP interface names defined in the UPnP Device Architecture specification [1] are
styled in green bold underlined text.

 UPnP interface names defined outside of the UPnP Device Architecture specification
[1] are styled in red italic underlined text.

 Some additional non-interface names and terms are styled in italic text.

 Words that are emphasized are also styled in italic text. The difference between italic
terms and italics for emphasis will be apparent by context.

 Strings that are to be taken literally are enclosed in “double quotes”.

4.1.1 Data Types

Data type definitions come from three sources:

 All state variable and action argument data types are defined in the UPnP Device
Architecture specification [1].

 Basic data types for properties are defined in the XML Schema Part 2: Data Types [7].

 Additional data types are defined in the XML schema(s) (see [10], [11]) for their
associated service(s).

For UPnP Device Architecture defined boolean data types, it is strongly recommended to use
the value “0” for false, and the value “1” for true. However, when used as input arguments, the
values “false”, “no”, “true”, “yes” may also be encountered and shall be accepted.
Nevertheless, it is strongly recommended that all boolean state variables and output
arguments be represented as “0” and “1”.

© 2014, UPnP

Forum. All rights Reserved.

For XML Schema defined Boolean data types, it is strongly recommended to use the value “0”
for false, and the value “1” for true. However, when used as input properties, the values
“false”, “true” may also be encountered and shall be accepted. Nevertheless, it is strongly
recommended that all Boolean properties be represented as “0” and “1”.

4.1.2 Strings Embedded in Other Strings

Some string variables and arguments described in this document contain substrings that shall
be independently identifiable and extractable for other processing. This requires the definition
of appropriate substring delimiters and an escaping mechanism so that these delimiters can
also appear as ordinary characters in the string and/or its independent substrings. This
document uses embedded strings in two contexts – Comma Separated Value (CSV) lists (see
subclause 4.2.1) and property values in search criteria strings. Escaping conventions use the
backslash character, “\” (character code U+005C), as follows:

a) Backslash (“\”) is represented as “\\” in both contexts.

b) Comma (“,”) is

1) represented as “\,” in individual substring entries in CSV lists

2) not escaped in search strings

c) Double quote (“"”) is

1) not escaped in CSV lists

2) not escaped in search strings when it appears as the start or end delimiter of a
property value

3) represented as “\"” in search strings when it appears as a character that is part of the
property value

4.2 Derived Data Types

This subclause defines a derived data type that is represented as a string data type with
special syntax. This specification uses string data type definitions that originate from two
different sources. The UPnP Device Architecture [1] defined string data type is used to define
state variable and action argument string data types. The XML Schema namespace is used
to define property xsd:string data types. The following definition applies to both string data
types.

4.2.1 CSV Lists

The UPnP Multi-Screen DCPs use state variables, action arguments and properties that
represent lists – or one-dimensional arrays – of values. The UPnP Device Architecture,
Version 1.0 [1], does not provide for either an array type or a list type, so a list type is defined
here. Lists may either be homogeneous (all values are the same type) or heterogeneous (all
values can be of different types). Lists may also consist of repeated occurrences of
homogeneous or heterogeneous subsequences, all of which have the same syntax and
semantics (same number of values, same value types and in the same order). The data type
of a homogeneous list is string or xsd:string and denoted by CSV (x), where x is the type of
the individual values. The data type of a heterogeneous list is also string or xsd:string and
denoted by CSV (x, y, z), where x, y and z are the types of the individual values. If the
number of values in the heterogeneous list is too large to show each type individually, that
variable type is represented as CSV (heterogeneous), and the variable description includes
additional information as to the expected sequence of values appearing in the list and their
corresponding types. The data type of a repeated subsequence list is string or xsd:string and
denoted by CSV ({a,b,c},{x, y, z}), where a, b, c, x, y and z are the types of the individual
values in the subsequence and the subsequences may be repeated zero or more times.

 A list is represented as a string type (for state variables and action arguments) or
xsd:string type (for properties).

 Commas separate values within a list.

© 2014, UPnP

Forum. All rights Reserved.

 Integer values are represented in CSVs with the same syntax as the integer data type
specified in [1] (that is: allowed leading sign, allowed leading zeroes, numeric US-
ASCII)

 Boolean values are represented in state variable and action argument CSVs as either
“0” for false or “1” for true. These values are a subset of the defined boolean data
type values specified in [1]: 0, false, no, 1, true, yes.

 Escaping conventions for the comma and backslash characters are defined in 4.1.2.

 White space before, after, or interior to any numeric data type is not allowed.

 White space before, after, or interior to any other data type is part of the value.

Table 1 — CSV Examples

Type refinement of
string

Value Comments

CSV (int) or
CSV (xsd:integer)

“1,-5,006,0,+7” List of 5 integers.

CSV (boolean) or
CSV (xsd:Boolean)

“0,1,1,0” List of 4 booleans

CSV (string) or
CSV (xsd:string)

“multi,screen” List of 2 strings

CSV (string) or
CSV (xsd:string)

“Smith\, Fred,Jones\, Davey” List of 2 names,

“Smith, Fred” and
“Jones, Davey”

CSV (i4,string,ui2) or

CSV (xsd:int,

xsd:string,
xsd:unsignedShort)

“-29837, string with leading blanks,0” Note that the second value

is “ string with leading
blanks”

CSV (i4) or
CSV (xsd:int)

“3, 4” Illegal CSV. White space

is not allowed as part of
an integer value.

CSV (string) or
CSV (xsd:string)

“,,” List of 3 empty string
values

CSV (heterogeneous) “Alice,Marketing,5,Sue,R&D,21,Dave,Finance,7” List of unspecif ied number
of people and associated

attributes. Each person is
described by 3 elements: a
name string, a department

string and years-of-
service ui2 or a name
xsd:string, a department

xsd:string and years-of-
service
xsd:unsignedShort.

4.2.2 XML Document

An XML document is a string that represents a valid XML 1.0 document according to a
specific schema. Every occurrence of the phrase “XML Document” is italicized and preceded
by the document’s root element name (also italicized), as listed in column 3, “Valid Root
Element(s)” of Table 3.

For example, the phrase AppInfoList XML Document refers to a valid XML 1.0 document
according to the XML Schema for AppInfoList [11]. Such a document comprises a single
<AppInfoList …> root element, and it is allowed to be preceded by the XML declaration <?xml

version="1.0" …?>.

This string will therefore be of one of the following two forms:

“<AppInfoList …>…</AppInfoList>”

or

© 2014, UPnP

Forum. All rights Reserved.

“<?xml …?><AppInfoList …>…</AppInfoList>”

4.2.3 XML Fragment

An XML fragment is a sequence of XML elements that are valid direct or indirect child
elements of the root element according to a specific schema. Every occurrence of the phrase
“XML Fragment” is italicized and preceded by the document’s root element name (also
italicized), as listed in column 3, “Valid Root Element(s)” of Table 3, “ — Schema-related
Information”.

The following are examples of AppInfoList XML Fragments:

“<runningStatus …>…</runningStatus>”

or

“<apptoAppInfo…>…</apptoAppInfo >”

or

“< friendlyName>Sunrise</friendlyName>”

4.3 Management of XML Namespaces in Standardized DCPs

UPnP specifications make extensive use of XML namespaces. This enables separate DCPs,
and even separate components of an individual DCP, to be designed independently and still
avoid name collisions when they share XML documents. Every name in an XML document
belongs to exactly one namespace. In documents, XML names appear in one o f two forms:
qualified or unqualified. An unqualified name (or no-colon-name) contains no colon (“:”)
characters. An unqualified name belongs to the document’s default namespace. A qualified
name is two no-colon-names separated by one colon character. The no-colon-name before
the colon is the qualified name’s namespace prefix, the no-colon-name after the colon is the
qualified name’s “local” name (meaning local to the namespace identified by the namespace
prefix). Similarly, the unqualified name is a local name in the default namespace.

The formal name of a namespace is a URI. The namespace prefix used in an XML document
is not the name of the namespace. The namespace name shall be globally unique. It has a
single definition that is accessible to anyone who uses the namespace. It has the same
meaning anywhere that it is used, both inside and outside XML documents. The namespace
prefix, however, in formal XML usage, is defined only in an XML document. It shall be locally
unique to the document. Any valid XML no-colon-name may be used. And, in formal XML
usage, different XML documents may use different namespace prefixes to refer to the same
namespace. The creation and use of the namespace prefix was standardized by the W3C
XML Committee in [9] strictly as a convenient local shorthand replacement for the full URI
name of a namespace in individual documents.

All of the namespaces used in this specification are listed in Table 2 and Table 3. For each
such namespace, Table 2 gives a brief description of it, its name (a URI) and its defined
“standard” prefix name. Some namespaces included in these tables are not directly used or
referenced in this document. They are included for completeness to accommodate those
situations where this specification is used in conjunction with other UPnP specifications to
construct a complete system of devices and services. For example, since the Scheduled
Recording Service depends on and refers to the ContentDirectory service, the predefined “srs:”
namespace prefix is included. The individual specifications in such collections all use the
same standard prefix. The standard prefixes are also used in Table 3 to cross-reference
additional namespace information. This second table includes each namespace’s valid XML
document root element(s) (if any), its schema file name, versioning information (to be
discussed in more detail below), and a link to the entry in Clause 2 for its associated schema.

The normative definitions for these namespaces are the documents referenced in Table 2.
The schemas are designed to support these definitions for both human understanding and as
test tools. However, limitations of the XML Schema language itself make it difficult for the
UPnP-defined schemas to accurately represent all details of the namespace definitions. As a

© 2014, UPnP

Forum. All rights Reserved.

result, the schemas will validate many XML documents that are not valid according to the
specifications.

The Working Committee expects to continue refining these schemas after specification
release to reduce the number of documents that are validated by the schemas while violating
the specifications, but the schemas will still be informative, supporting documents. Some
schemas might become normative in future versions of the specifications.

Table 2 — Namespace Definitions

Standard

Name-
space
Prefix Namespace Name Namespace Description

Normative

Definition
Document
Reference

Multi-Screen Working Committee defined namespaces

featurelist urn:schemas-upnp-org:ms:FeatureList FeatureList state variable for

ApplicationManagement
[10]

appinfolist urn:schemas-upnp-org:ms:AppInfoList AppInfoList state variable for

ApplicationManagement
[11]

Externally defined namespaces

xsd http://www.w3.org/2001/XMLSchema XML Schema Language 1.0 [6], [7]

xsi http://www.w3.org/2001/XMLSchema-
instance

XML Schema Instance Document
schema

2.6 & 3.2.7 in [6]

xml http://www.w3.org/XML/1998/namesp
ace

The “xml:” Namespace [8]

Table 3 — Schema-related Information

Standard

Name-
space
Prefix

Relative URI and

File Name

a

● Form 1, Form 2,
Form3 Valid Root Element(s) Schema Reference

Multi-Screen Working Committee Defined Namespaces

featurelist FeatureList-vn-
yyyymmdd.xsd

FeatureList -vn.xsd

FeatureList.xsd

<FeatureList> [10]

appinfolist AppInfoList-vn-
yyyymmdd.xsd

AppInfoList -vn.xsd

AppInfoList.xsd

<AppInfoList> [11]

Externally Defined Namespaces

xsd

n/a <schema> [6], [7]

xsi

n/a 2.6 & 3.2.7 in [6]

xml

n/a [8]

a Absolute URIs are generated by prefixing the relative URIs with "http://www.upnp.org/schemas/av/"

4.3.1 Namespace Prefix Requirements

There are many occurrences in this specification of string data types that contain XML names
(property names). These XML names in strings will not be processed under namespace-aware
conditions. Therefore, all occurrences in instance documents of XML names in strings shall
use the standard namespace prefixes as declared in Table 2. In order to properly process the
XML documents described herein, control points and devices shall use namespace-aware
XML processors [9] for both reading and writing. As allowed by [9], the namespace prefixes
used in an instance document are at the sole discretion of the document creator. Therefore,
the declared prefix for a namespace in a document may be different from the standard prefix.
All devices shall be able to correctly process any valid XML instance document, even when it
uses a non-standard prefix for ordinary XML names. However, it is strongly recommended

http://www.upnp.org/schemas/av/

© 2014, UPnP

Forum. All rights Reserved.

that all devices use these standard prefixes for all instance documents to avoid confusion on
the part of both human and machine readers. These standard prefixes are used in all
descriptive text and all XML examples in this and related UPnP specifications. However, each
individual specification may assume a default namespace for its descriptive text. In that case,
names from that namespace may appear with no prefix.

The assumed default namespace, if any, for each UPnP Multi-Screen specification is given in
Table 4.

Note: all UPnP Multi-Screen schemas declare attributes to be “unqualified”, so namespace
prefixes are never used with Multi-Screen Working Committee defined attribute names.

Table 4 — Default Namespaces for the Multi-Screen Specifications

Multi-Screen Specification Name Default Namespace Prefix

ApplicationManagement appinfolist

4.3.2 Namespace Names, Namespace Versioning and Schema Versioning

The UPnP Multi-Screen service specifications define several data structures (such as state
variables and action arguments) whose format is an XML instance document that complies
with one or more specific XML schemas, which define XML namespaces. Each namespace is
uniquely identified by an assigned namespace name. The namespace names that are defined
by the Multi-Screen Working Committee are URNs. See Table 2 for a current list of
namespace names. Additionally, each namespace corresponds to an XML schema document
that provides a machine-readable representation of the associated namespace to enable
automated validation of the XML (state variable or action parameter) instance documents.

Within an XML schema and XML instance document, the name of each corresponding
namespace appears as the value of an xmlns attribute within the root element. Each xmlns

attribute also includes a namespace prefix that is associated with that namespace in order to
qualify and disambiguate element and attribute names that are defined within different
namespaces. The schemas that correspond to the listed namespaces are identified by URI
values that are listed in the schemaLocation attribute also within the root element (see

4.3.3).

In order to enable both forward and backward compatibility, namespace names are
permanently assigned and shall not change even when a new version of a specification
changes the definition of a namespace. However, all changes to a namespace definition shall
be backward-compatible. In other words, the updated definition of a namespace shall not
invalidate any XML documents that comply with an earlier definition of that same namespace.
This means, for example, that a namespace shall not be changed so that a new element or
attribute becomes required in a conforming instance document. Although namespace names
shall not change, namespaces still have version numbers that reflect a specific set of
definitional changes. Each time the definition of a namespace is changed, the namespace’s
version number is incremented by one.

Whenever a new namespace version is created, a new XML schema document (.xsd) is
created and published so that the new namespace definition is represented in a machine -
readable form. Since a XML schema document is just a representation of a namespace
definition, translation errors can occur. Therefore, it is sometime necessary to re-release a
published schema in order to correct typos or other namespace representation errors. In
order to easily identify the potential multiplicity of schema releases for the same namespace,
the URI of each released schema shall conform to the following format (called Form 1):

Form 1: "http://www.upnp.org/schemas/ms/" schema-root-name "-v" ver "-" yyyymmdd
where

 schema-root-name is the name of the root element of the namespace that this
schema represents.

 ver corresponds to the version number of the namespace that is represented by the
schema.

© 2014, UPnP

Forum. All rights Reserved.

 yyyymmdd is the year, month and day (in the Gregorian calendar) that this schema
was released.

Table 3 identifies the URI formats for each of the namespaces that are currently defined by
the UPnP Multi-Screen Working Committee.

As an example, the original schema URI for the “rcs-event” namespace (that was released
with the original publication of the UPnP AV service specifications in the year 2002) was
“http://www.upnp.org/schemas/av/rcs-event-v1-20020625.xsd”. When the UPnP AV service
specifications were subsequently updated in the year 2006, the URI for the updated version of
the “rcs-event” namespace was “http://www.upnp.org/schemas/av/rcs-event-v2-20060531.xsd”.
However, in 2006, the schema URI for the newly created “srs-event” namespace was
“http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd”. Note the version field for the
“srs-event” schema is “v1” since it was first version of that namespace whereas the version
field for the “rcs-event” schema is “v2” since it was the second version of that namespace.

In addition to the dated schema URIs that are associated with each namespace, each
namepace also has a set of undated schema URIs. These undated schema URIs have two
distinct formats with slightly different meanings:

Form 2: “http://www.upnp.org/schemas/ms/” schema-root-name “-v” ver

where ver is described above.

Form 3: “http://www.upnp.org/schemas/ms/” schema-root-name

Form 2 of the undated schema URI is always linked to the most recent release of the schema
that represents the version of the namespace indicated by ver. For example, the undated URI
“…/av/rcs-event-v2.xsd” is linked to the most recent schema release of version 2 of the “rcs-
event” namespace. Therefore, on May 31, 2006 (20060531), the undated schema URI was
linked to the schema that is otherwise known as “…/av/rcs-event-v2-20060531.xsd”.
Furthermore, if the schema for version 2 of the “rcs-event” namespace was ever re-released,
for example to fix a typo in the 20060531 schema, then the same undated schema URI
(“…/av/rcs-event-v2.xsd”) would automatically be updated to link to the updated version 2
schema for the “rcs-event” namespace.

Form 3 of the undated schema URI is always linked to the most recent release of the schema
that represents the highest version of the namespace that has been published. For example,
on June 25, 2002 (20020625), the undated schema URI “…/av/rcs-event.xsd” was linked to
the schema that is otherwise known as “…/av/rcs-event-v1-20020625.xsd”. However, on May
31, 2006 (20060531), that same undated schema URI was linked to the schema that is
otherwise known as “…/av/rcs-event-v2-20060531.xsd”.

When referencing a schema URI within an XML instance document or a referencing XML
schema document, the following usage rules apply:

 All instance documents, whether generated by a service or a control point, shall use
Form 3.

 All UPnP Multi-Screen published schemas that reference other UPnP Multi-Screen
schemas shall also use Form 3.

Within an XML instance document, the definition for the schemaLocation attribute comes

from the XML Schema namespace “http://www.w3.org/2002/XMLSchema-instance”. A single
occurrence of the attribute can declare the location of one or more schemas. The
schemaLocation attribute value consists of a whitespace separated list of values that is

interpreted as a namespace name followed by its schema location URL. This pair -sequence is
repeated as necessary for the schemas that need to be located for this instance document.

In addition to the schema URI naming and usage rules described above, each released
schema shall contain a version attribute in the <schema> root element. Its value shall

correspond to the format:

ver “-” yyyymmdd where ver and yyyymmdd are described above.

http://www.upnp.org/schemas/av/rcs-event-v1-20020625.xsd
http://www.upnp.org/schemas/av/rcs-event-v2-20060531.xsd
http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd

© 2014, UPnP

Forum. All rights Reserved.

The version attribute provides self-identification of the namespace version and release date

of the schema itself. For example, within the original schema released for the “rcs-event”
namespace (…/rcs-event-v2-20020625.xsd), the <schema> root element contains the

following attribute: version="2-20020625".

4.3.3 Namespace Usage Examples

The schemaLocation attribute for XML instance documents comes from the XML Schema

instance namespace “http://www.w3.org/2002/XMLSchema-instance”. A single occurrence of
the attribute can declare the location of one or more schemas. The schemaLocation

attribute value consists of a whitespace separated list of values: namespace name fo llowed
by its schema location URL. This pair-sequence is repeated as necessary for the schemas
that need to be located for this instance document.

Example 1:

Sample DIDL-Lite XML Instance Document . Note that the references to the UPnP AV
schemas do not contain any version or release date information. In other words, the
references follow Form 3 from above. Consequently, this example is valid for all releases of
the UPnP AV service specifications.

<?xml version="1.0" encoding="UTF-8"?>

<DIDL-Lite

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"

 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/

 http://www.upnp.org/schemas/av/didl-lite.xsd

 urn:schemas-upnp-org:metadata-1-0/upnp/

 http://www.upnp.org/schemas/av/upnp.xsd">

 <item id="18" parentID="13" restricted="0">

 ...

 </item>

</DIDL-Lite>

4.4 Vendor-defined Extensions

Whenever vendors create additional vendor-defined state variables, actions or properties,
their assigned names and XML representation shall follow the naming conventions and XML
rules as specified below.

4.4.1 Vendor-defined Action Names

Vendor-defined action names shall begin with “X_”. Additionally, it should be followed by an
ICANN assigned domain name owned by the vendor followed by the underscore character
(“_”). It shall then be followed by the vendor-assigned action name. The vendor-assigned
action name shall not contain a hyphen character (“-”, 2D Hex in UTF-8) nor a hash character
(“#”, 23 Hex in UTF-8). Vendor-assigned action names are case sensitive. The first character
of the name shall be a US-ASCII letter (“A”-“Z”, “a”-“z”), US-ASCII digit (“0”-“9”), an
underscore (“_”), or a non-experimental Unicode letter or digit greater than U+007F.
Succeeding characters shall be a US-ASCII letter (“A”-“Z”, “a”-“z”), US-ASCII digit (“0”-“9”), an
underscore (“_”), a period (“.”), a Unicode combiningchar, an extender, or a non-experimental
Unicode letter or digit greater than U+007F. The first three letters shall not be “XML” in any
combination of case.

4.4.2 Vendor-defined State Variable Names

Vendor-defined state variable names shall begin with “X_”. Additionally, it should be followed
by an ICANN assigned domain name owned by the vendor, followed by the underscore
character (“_”). It shall then be followed by the vendor-assigned state variable name. The
vendor-assigned state variable name shall not contain a hyphen character (“-”, 2D Hex in
UTF-8). Vendor-assigned action names are case sensitive. The first character of the name
shall be a US-ASCII letter (“A”-“Z”, “a”-“z”), US-ASCII digit (“0”-“9”), an underscore (“_”), or a

© 2014, UPnP

Forum. All rights Reserved.

non-experimental Unicode letter or digit greater than U+007F. Succeeding characters shall be
a US-ASCII letter (“A”-“Z”, “a”-“z”), US-ASCII digit (“0”-“9”), an underscore (“_”), a period (“.”),
a Unicode combiningchar, an extender, or a non-experimental Unicode letter or digit greater
than U+007F. The first three letters shall not be “XML” in any combination of case.

4.4.3 Vendor-defined XML Elements and attributes

UPnP vendors may add non-standard elements and attributes to a UPnP standard XML
document, such as a device or service description. Each addition shall be scoped by a
vendor-owned XML namespace. Arbitrary XML shall be enclosed in an element that begins
with “X_,” and this element shall be a sub element of a standard complex type. Non-standard
attributes may be added to standard elements provided these attributes are scoped by a
vendor-owned XML namespace and begin with “X_”.

5 Multi-Screen Architectural Overview

In most UPnP scenarios, a control point controls the operation of one or more UPnP devices
in order to accomplish the desired behavior. Although the control point is managing multiple
devices, all interactions occur in isolation between the control point and each device. The
control point coordinates the operation of each device to achieve an overall, synchronized,
end-user effect. The individual devices do not interact directly with each another. All of the
coordination between the devices is performed by the control point and not the devices
themselves.

Figure 1 – Typical UPnP Device Interaction Model

Figure 2 – UPnP Multi-Screen Interaction Model: SD and SCP

5.1 Screen Device

A UPnP component used to provide various interactive services with other display device(s)
which is (are) implemented with Screen Control Point(s). Designed to be controlled by and
interact with Screen Control Point(s) as Figure 2.

In order to support basic multi-screen services, it is encouraged to be implemented for a Main
screen device, e.g., a lean-back display device such as a TV or set-top box which is
controlled by Companion screen devices as Figure 3.

In order to support extended multi-screen services which require more sophisticated
interactions, it is encouraged to be implemented also for a Companion screen device, e.g., a
lean-forward & handheld display device such as a smart phone or tablet which controls Main
screen devices as Figure 4.

See [2], [3], [4] and [5] for details of the associated services and the requirements.

5.2 Screen Control Point

A UPnP component used to provide various interactive services with other display device(s)
which is (are) implemented with Screen Device(s). Designed to control and interact with
Screen Device(s) with direct input from end-users as Figure 2.

© 2014, UPnP

Forum. All rights Reserved.

In order to support basic multi-screen services, it is encouraged to be implemented for a
Companion screen device, e.g., a lean-forward & handheld display device such as a smart
phone or tablet which controls Main screen devices as Figure3.

In order to support extended multi-screen services which require more sophisticated
interactions, it is encouraged to be implemented also for a Main screen device, e.g., a lean-
back display device such as a TV or set-top box which is controlled by Companion screen
devices as Figure 4.

Figure 3 – Basic Multi-Screen Architecture

Figure 4 – Extended Multi-Screen Architecture

