

ConnectionManager:1 Service Template Version
1.01
For UPnP™ Version 1.0
Status: Standardized DCP
Date: June 25, 2002

This Standardized DCP has been adopted as a Standardized DCP by the Steering
Committee of the UPnP™ Forum, pursuant to Section 2.1(c)(ii) of the UPnP™ Forum
Membership Agreement. UPnP™ Forum Members have rights and licenses defined by
Section 3 of the UPnP™ Forum Membership Agreement to use and reproduce the
Standardized DCP in UPnP™ Compliant Devices. All such use is subject to all of the
provisions of the UPnP™ Forum Membership Agreement.

THE UPNP™ FORUM TAKES NO POSITION AS TO WHETHER ANY
INTELLECTUAL PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS.
THE STANDARDIZED DCPS ARE PROVIDED "AS IS" AND "WITH ALL
FAULTS". THE UPNP™ FORUM MAKES NO WARRANTIES, EXPRESS, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE STANDARDIZED DCPS,
INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A
PARTICULAR PURPOSE, OF REASONABLE CARE OR WORKMANLIKE
EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE.

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

Authors Company
Shannon Chan Microsoft
Alec Dara-Abrams Sony Electronics
Mike Dawson OpenGlobe
John Kai Fu Pioneer
Fernando Matsubara Mitsubishi Electric
Jean Moonen Philips Electronics
Yasser Rasheed Intel
Dale Sather Microsoft
Eugene Shteyn Philips Electronics

ConnectionManager:1 Service Template Version 1.0.1 2

Contents

CONNECTIONMANAGER:1 SERVICE TEMPLATE VERSION 1.01..1

1. OVERVIEW AND SCOPE ..4
1.1. EXTERNAL DEPENDENCIES ...4

2. SERVICE MODELING DEFINITIONS ..5
2.1. SERVICETYPE...5
2.2. STATE VARIABLES ...5

2.2.1. SourceProtocolInfo..5
2.2.2. SinkProtocolInfo..6
2.2.3. CurrentConnectionIDs ..6
2.2.4. A_ARG_TYPE_ConnectionStatus ...6
2.2.5. A_ARG_TYPE_ConnectionManager...6
2.2.6. A_ARG_TYPE_Direction ..6
2.2.7. A_ARG_TYPE_ProtocolInfo ...6
2.2.8. A_ARG_TYPE_ConnectionID...6
2.2.9. A_ARG_TYPE_AVTransportID...6
2.2.10. A_ARG_TYPE_RcsID..6

2.3. EVENTING AND MODERATION ..7
2.4. ACTIONS...7

2.4.1. GetProtocolInfo...7
2.4.2. PrepareForConnection..8
2.4.3. ConnectionComplete ...9
2.4.4. GetCurrentConnectionIDs...10
2.4.5. GetCurrentConnectionInfo..11
2.4.6. Common Error Codes..12

2.5. THEORY OF OPERATION ...12
2.5.1. Purpose..12
2.5.2. ProtocolInfo Concept ..13
2.5.3. Typical Control Point Operations ...14
2.5.4. Relation to Devices without ConnectionManagers ...14

3. XML SERVICE DESCRIPTION ..16

4. TEST...20

5. APPENDIX A – PROTOCOL-SPECIFICS ...21
5.1.1. Application to ‘HTTP GET’ - streaming ...21
5.1.2. Application to RTSP/RTP/UDP streaming..21
5.1.3. Application to device-internal streaming ..22
5.1.4. Application to IEC61883 streaming ..23
5.1.5. Application to vendor-specific streaming..25

List of Tables
Table 1: State Variables ..5
Table 2: Event Moderation..7
Table 3: Actions ..7

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 3

Table 4: Arguments for GetProtocolInfo ..7
Table 5: Arguments for PrepareForConnection ..8
Table 6: Arguments for ConnectionComplete...9
Table 7: Arguments for GetCurrentConnectionIDs ..10
Table 8: Arguments for GetCurrentConnectionInfo ...11
Table 9: Common Error Codes..12
Table 10: Defined Protocol Info for ConnectionManager:1 ...13

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 4

1. Overview and Scope
This service definition is compliant with the UPnP Device Architecture version 1.0.

This service-type enables modeling of streaming capabilities of A/V devices, and binding of those
capabilities between devices. Each device that is able to send or receive a stream according to the UPnP
AV device model [ref to dev model] will have 1 instance of the ConnectionManager service. This service
provides a mechanism for control points to:

1. Perform capability matching between source/server devices and sink/renderer devices,

2. Find information about currently ongoing transfers in the network,

3. Setup and teardown connections between devices (when required by the streaming protocol).

The ConnectionManager service is generic enough to properly abstract different kinds of streaming
mechanisms, such as HTTP-based streaming, RTSP/RTP-based and 1394-based streaming.

The ConnectionManager enables control points to abstract from physical media interconnect technology
when making connections. The term ‘stream’ used in this service template refers to both analog and digital
data transfer.

1.1. External dependencies
This standard references the following external documents:

• Hypertext Connection Protocol – HTTP/1.1 (http://www.ietf.org/rfc/rfc2616.txt)

• MIME (Multipurpose Internet Mail Extensions) (http://www.ietf.org/rfc/rfc1341.txt)

• Real Time Streaming Protocol (RTSP) (http://www.ietf.org/rfc/rfc2326.txt)

• Realtime Transport Protocol (RTP) (http://www.ietf.org/rfc/rfc1889.txt)

• IEC 61883 Consumer Audio/Video Equipment – Digital Interface - Part 1 to 5
(http://www.iec.ch/).

• IEC-PAS 61883 Consumer Audio/Video Equipment – Digital Interface - Part 6
(http://www.iec.ch/).

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc1341.txt
http://www.ietf.org/rfc/rfc2326.txt
http://www.ietf.org/rfc/rfc1889.txt
http://www.iec.ch/)
http://www.iec.ch/)

ConnectionManager:1 Service Template Version 1.0.1 5

2. Service Modeling Definitions

2.1. ServiceType
The following service type identifies a service that is compliant with this template:

 urn:schemas-upnp-org:service:ConnectionManager:1

2.2. State Variables

Table 1: State Variables

Variable Name Req.
or
Opt.1

Data
Type

Allowed Value Default
Value

Eng.
Units

SourceProtocolInfo R string CSV2 (string)
SinkProtocolInfo R string CSV (string)
CurrentConnectionIDs R string CSV (ui4)
A_ARG_TYPE_ConnectionStat
us

R string “OK”,
“ContentFormatMismatch”,
“InsufficientBandwidth”,
“UnreliableChannel”,
“Unknown”

n/a n/a

A_ARG_TYPE_ConnectionMan
ager

R string n/a n/a

A_ARG_TYPE_Direction R string “Output”,
“Input”

n/a n/a

A_ARG_TYPE_ProtocolInfo R string n/a n/a
A_ARG_TYPE_ConnectionID R i4 n/a n/a
A_ARG_TYPE_AVTransportID R i4 n/a n/a
A_ARG_TYPE_RcsID R i4 n/a n/a
1 R = Required, O = Optional, X = Non-standard.

2.2.1. SourceProtocolInfo
This variable contains a comma-separated list of information on protocols this ConnectionManager
supports for “sourcing” (sending) data, in its current state. Besides the traditional notion of the term
‘protocol’, the protocol-related information provided by the connection also contains other information
such as supported content formats. See the Theory of Operation (Section 2.5.2) for a general discussion on
the notion of protocol info. See the table in Section 2.5.2 for specific allowed values for this state variable.

2 CSV stands for Comma-Separated Value list. The type between brackets denotes the UPnP data type used
for the elements inside the list. CSV is defined more formally in the ContentDirectory service template.

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 6

2.2.2. SinkProtocolInfo
This variable contains a comma-separated list of information on protocols this ConnectionManager
supports for “sinking” (receiving) data, in its current state. The format and allowed value list are the same
as for the SourceProtocolInfo state variable.

2.2.3. CurrentConnectionIDs
Comma-separated list of references to current active Connections. This list may change without explicit
actions invoked by Control points, for example, by out-of-band cleanup or termination of finished
connections.

If optional action PrepareForConnection is not implemented then this state variable should be set to “0”.

2.2.4. A_ARG_TYPE_ConnectionStatus
The current status of the Connection referred to by variable A_ARG_TYPE_ConnectionID. This status
may change dynamically due to changes in the network.

2.2.5. A_ARG_TYPE_ConnectionManager
This state variable is introduced to provide type information for the “PeerConnectionManager” parameter
in actions PrepareForConnection and GetCurrentConnectionInfo. A ConnectionManager reference takes
the form of a UDN/Service-Id pair (the slash is the delimiter). A control point can use UPnP discovery
(SSDP) to obtain a ConnectionManager’s description document from the UDN. Subsequently, the
ConnectionManager’s service description can be obtained by using the serviceId part of the reference.

2.2.6. A_ARG_TYPE_Direction
This state variable is introduced to provide type information for the “Direction” parameter in action
PrepareForConnection.

2.2.7. A_ARG_TYPE_ProtocolInfo
This state variable is introduced to provide type information for the “Protocol” parameter in actions
PrepareForConnection and GetCurrentConnectionInfo.

2.2.8. A_ARG_TYPE_ConnectionID
This state variable is introduced to provide type information for the “ConnectionID” parameter in actions:
PrepareForConnection, ConnectionComplete and GetCurrentConnectionInfo.

2.2.9. A_ARG_TYPE_AVTransportID
This state variable is introduced to provide type information for the “AVTransportID” parameter in
actions: PrepareForConnection and GetCurrentConnectionInfo. It identifies a logical instance of the
AVTransport service associated with a Connection. See [ref to Device Model] for more information.

2.2.10.A_ARG_TYPE_RcsID
This state variable is introduced to provide type information for the “RcsID” parameter in actions:
PrepareForConnection and GetCurrentConnectionInfo. It identifies a logical instance of the Rendering
Control service associated with a Connection. See [ref to Device Model] for more information.

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 7

2.3. Eventing and Moderation

Table 2: Event Moderation

Variable Name Evented Moderated
Event

Max Event
Rate1

Logical
Combination

Min Delta
per Event2

SourceProtocolInfo Yes No n/a n/a n/a

SinkProtocolInfo Yes No n/a n/a n/a

CurrentConnectionIDs Yes No n/a n/a n/a
1 Determined by N, where Rate = (Event)/(N secs).
2 (N) * (allowedValueRange Step).

2.4. Actions
Immediately following this table is detailed information about these actions, including short descriptions of
the actions, the effects of the actions on state variables, and error codes defined by the actions.

Table 3: Actions

Name Req. or Opt. 1
GetProtocolInfo R
PrepareForConnection O
ConnectionComplete O
GetCurrentConnectionIDs R
GetCurrentConnectionInfo R

1 R = Required, O = Optional, X = Non-standard.

2.4.1. GetProtocolInfo
Returns the protocol-related info that this ConnectionManager supports in its current state, as a comma-
separate list of strings according to Table 2.

2.4.1.1. Arguments

Table 4: Arguments for GetProtocolInfo

Argument Direction relatedStateVariable
Source OUT SourceProtocolInfo

Sink OUT SinkProtocolInfo

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 8

2.4.1.2. Dependency on State (if any)

2.4.1.3. Effect on State (if any)

2.4.1.4. Errors
None.

2.4.2. PrepareForConnection
This action is used to allow the device to prepare itself to connect to the network for the purposes of
sending or receiving media content (e.g. a video stream). The RemoteProtocolInfo parameter identifies the
protocol, network, and format that should be used to transfer the content. Its value corresponds to one of
the ProtocolInfo entries returned by the GetProtocolInfo() action from the remote device. If the remote
device does not implement GetProtocolInfo(), then the RemoteProtocolInfo parameter should be set to one
of the ProtocolInfo entries returned by the GetProtocolInfo() action on the local device.

2.4.2.1. Arguments

Table 5: Arguments for PrepareForConnection

Argument Direction relatedStateVariable
RemoteProtocolInfo IN A_ARG_TYPE_Protocol

Info

PeerConnectionManager IN A_ARG_TYPE_Connect
ionManager

PeerConnectionID IN A_ARG_TYPE_Connect
ionID

Direction IN A_ARG_TYPE_Directio
n

ConnectionID OUT A_ARG_TYPE_Connect
ionID

AVTransportID OUT A_ARG_TYPE_AVTran
sportID

RcsID OUT A_ARG_TYPE_RcsID

2.4.2.2. Dependency on State (if any)

2.4.2.3. Effect on State (if any)
Prepares the device to stream content to or from the specified peer ConnectionManager, according to the
specified direction and protocol information. The PeerConnectionManager identifies the
ConnectionManager service on the other side of the connection. The PeerConnectionID identifies the
specific connection on that ConnectionManager service. This information allows a control point to “link” a
connection on device A to the corresponding connection on device B, via action
GetCurrentConnectionInfo. If the PeerConnectionID is not known by a control point (e.g., this is the first
of the two PrepareForConnection actions, or the peer device doesn’t implement PrepareForConnection)
then this value should be set to reserved value ‘-1’.

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 9

Returns a locally unique ID for the established Connection (ConnectionID parameter), and adds that ID to
state variable CurrentConnectionIDs. This ID might be used by a control point to manually terminate the
established Connection through (optional) action ConnectionComplete. It can also be used to retrieve
information associated with the Connection via action GetCurrentConnectionInfo. Value -1 is reserved,
and should not be returned.

Optionally returns a virtual instance ID of a local AVTransport service (AVTransportID parameter). This
ID should be passed as an input parameter to the local AVTransport service action invocations. If the
returned ID is –1 (reserved value), then there is no AVTransport service on this device that can be used to
control the established connection. This is dependent on the ‘push’ or ‘pull’ nature of the streaming
protocol.

Optionally returns a virtual instance ID of a local RenderingControl service (RcsID parameter). This ID
should be passed as an input parameter to the local RenderingControl service action invocations. If the
returned ID is –1 (reserved value), then there is no RenderingControl service on this device, for example,
because the device is a source device (MediaServer) rather than a sink device (MediaRenderer).

Due to local restrictions on the device running the ConnectionManager, variable “ProtocolInfo’ may
change (e.g., certain physical ports on the device are not available anymore for new connections) as a result
of this action.

2.4.2.4. Errors

errorCode errorDescription Description
402 Invalid Args One of following: not enough IN arguments, too many IN

arguments, no IN argument by that name, one or more IN
arguments are of the wrong data type. See also the UPnP Device
Architecture.

707 Not in network The connection cannot be established because the
ConnectionManagers are not part of the same physical network.

701 Incompatible
protocol info

The connection cannot be established because the protocol info
parameter is incompatible.

702 Incompatible
directions

The connection cannot be established because the directions of the
involved ConnectionManagers (source/sink) are incompatible.

703 Insufficient
network resources

The connection cannot be established because there are
insufficient network resources (bandwidth, channels, etc.).

704 Local restrictions The connection cannot be established because of local restrictions
in the device. This might happen, for example, when physical
resources on the device are already in use by other connections.

705 Access denied The connection cannot be established because the client is not
permitted to access the specified ConnectionManager.

2.4.3. ConnectionComplete
A control point should call the ConnectionComplete action for all connections that it created via
PrepareForConnection to ensure that all resources associated with the connection are freed up. In addition,
a ConnectionManager may implemented ‘automatic’ or ‘autonomous’ closing of connections, in a protocol
and vendor-specfic way, see Appendix A for details.

2.4.3.1. Arguments

Table 6: Arguments for ConnectionComplete

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 10

Argument Direction relatedStateVariable
ConnectionID IN A_ARG_TYPE_Connect

ionID

2.4.3.2. Dependency on State (if any)

2.4.3.3. Effect on State (if any)
Remove the connection referenced by parameter ConnectionID by modifying state variable
CurrentConnectionIDs, and (if necessary) perform any protocol-specific cleanup actions such as releasing
network resources. See the Appendix for protocol specifics.

Due to local restrictions on the device running the ConnectionManager, variables “SourceProtocolInfo’
and “SinkProtocolInfo’ may change (e.g., certain physical ports on the device are freed up for new
connections).

2.4.3.4. Errors

errorCode errorDescription Description
402 Invalid Args One of following: not enough IN arguments, too many IN

arguments, no IN argument by that name, one or more IN
arguments are of the wrong data type. See also the UPnP Device
Architecture.

706 Invalid connection
reference

The connection reference argument does not refer to a valid
connection established by this service.

2.4.4. GetCurrentConnectionIDs
Returns a comma-separated list of ConnectionIDs of currently ongoing Connections. A ConnectionID can
be used to manually terminate a Connection via action ConnectionComplete, or to retrieve additional
information about the ongoing Connection via action GetCurrentConnectionInfo.

2.4.4.1. Arguments

Table 7: Arguments for GetCurrentConnectionIDs

Argument Direction relatedStateVariable
ConnectionIDs OUT CurrentConnectionIDs

2.4.4.2. Dependency on State (if any)

2.4.4.3. Effect on State (if any)

2.4.4.4. Errors
None.

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 11

2.4.5. GetCurrentConnectionInfo
Returns associated information of the connection referred to by the ‘ConnectionID’ parameter. The
‘AVTransportID’ and ‘PeerConnectionManager’ parameters may be NULL (empty string) in cases where
the connection has been setup completely out of band, e.g., not involving a PrepareForConnection action.

If optional action PrepareForConnection is not implemented then (limited) connection information can be
retrieved for ConnectionID 0. The device should return all known information:

• RcsID should be 0 or –1

• AVTransportID should be 0 or –1

• ProtocolInfo should contain accurate information if it is known, other it should be NULL (empty
string)

• PeerConnectionManager should be NULL (empty string)

• PeerConnectionID should be –1

• Direction should be Input or Output

• Status should be OK or Unknown

2.4.5.1. Arguments

Table 8: Arguments for GetCurrentConnectionInfo

Argument Direction relatedStateVariable
ConnectionID IN A_ARG_TYPE_ ConnectionID

RcsID OUT A_ARG_TYPE_RcsID

AVTransportID OUT A_ARG_TYPE_ AVTransportID

ProtocolInfo OUT A_ARG_TYPE_ ProtocolInfo

PeerConnectionManager OUT A_ARG_TYPE_ConnectionManag
er

PeerConnectionID OUT A_ARG_TYPE_ConnectionID

Direction OUT A_ARG_TYPE_Direction

Status OUT A_ARG_TYPE_ConnectionStatus

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 12

2.4.5.2. Dependency on State (if any)

2.4.5.3. Effect on State (if any)

2.4.5.4. Errors

errorCode errorDescription Description
402 Invalid Args One of following: not enough IN arguments, too many IN

arguments, no IN argument by that name, one or more IN
arguments are of the wrong data type. See also the UPnP Device
Architecture.

706 Invalid connection
reference

The connection reference argument does not refer to a valid
connection established by this service.

2.4.6. Common Error Codes
The following table lists error codes common to actions for this service type. If an action results in multiple
errors, the most specific error should be returned.

Table 9: Common Error Codes

errorCode errorDescription Description
401 Invalid Action See UPnP Device Architecture section on Control.
402 Invalid Args See UPnP Device Architecture section on Control.
404 Invalid Var See UPnP Device Architecture section on Control.
501 Action Failed See UPnP Device Architecture section on Control.
600-699 TBD Common action errors. Defined by UPnP Forum Technical

Committee.
701-799 Common action errors defined by the UPnP Forum working

committees.
800-899 TBD (Specified by UPnP vendor.)

2.5. Theory of Operation

2.5.1. Purpose
The purpose of the ConnectionManager is to enable control points to:

1. perform capability matching between source/server devices and sink/renderer device. This
involves both:

a. content-format matching (e.g., mp3 – mp3)

b. transport (streaming) protocol matching (e.g., http – http)

2. find information about currently ongoing streams in the network, e.g.

a. find the source device sending content to a given renderer device

b. find the renderer devices served by a given source device or content resource

c. find all streams going on in the network

3. setup and teardown connections between devices (when required by the streaming protocol)

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 13

2.5.2. ProtocolInfo Concept
While the UPnP Architecture describes, and prescribes, many aspects of devices that are required for a
certain level of interoperability, it does not describe anything related to streaming between devices. The
purpose of the ConnectionManager service is to make these aspects of devices explicit, so that control
points are able to make intelligent choices, present intelligent user interfaces, and initiate (and terminate)
streams between controlled devices via UPnP actions. While the actual stream of the data ‘packets’ occurs
outside of a UPnP-defined protocol such as SOAP, SOAP is used to initiate (and terminate) the stream.

The ConnectionManager service defines the notion of “Protocol Info” as information needed by a control
point in order to determine (a certain level of) compatibility between the streaming mechanisms of two
UPnP controlled devices. For example, it contains the transport protocols supported by a device, for input
or output, as well as other information such as the content formats (encodings) that can be sent, or
received, via the transport protocols. Note that, while UPnP prescribes the use of HTTP for controlling
devices via SOAP, it does not require HTTP to be used for all kinds (Audio and Video) streaming in a
UPnP network.

In the context of this document, the term “protocol info” is used to describe as a string formatted as:

<protocol>’:’ <network>’:’<contentFormat>’:’<additionalInfo>

where each of the 4 elements may be a ‘*’. Control points can match protocol info by (protocol
independent) string comparison operations on the <protocol>, <network> and <contentFormat> elements,
taking into account the ‘*” wildcard which ‘matches’ with anything. The <additionalInfo> part does not
need to match between source and sink. Its purpose is to convey any additional information needed to set
up the out of band stream (e.g., 1394 addresses). The table below summarizes how the protocol info strings
are defined for the protocols currently standardized by the ConnectionManager service, as well as for
vendor-defined protocols. Section 5 provides a more detailed explanation per protocol.

Table 10: Defined Protocol Info for ConnectionManager:1

Protocol Network Content Format

Additional Info Reference

http-get Not needed (use ‘*’),
since all devices
supporting http are
part of the same IP
network.

MIME-type.

Not needed, use ‘*”. Section 5.1.1

rtsp-rtp-udp Not needed (use ‘*’),
since all devices
supporting rtsp are
part of the same IP
network.

Name of RTP payload
type.

Not needed, use ‘*”. Section 5.1.2

internal IP address of the
device hosting the
ConnectionManager.

Vendor-defined, may
be ‘*’.

Vendor-defined, may
be ‘*’.

Section 5.1.3

iec61883 GUID of the 1394
bus’ Isochronous
Resource Manager.

Name standardized by
IEC61883.

GUID and PCR index
of the 1394 device.

Section 5.1.4

«registered
ICANN domain
name of
vendor »

Vendor-defined, may
be ‘*’.

Vendor-defined, may
be ‘*’.

Vendor-defined, may
be ‘*’.

Section 5.1.5

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 14

2.5.3. Typical Control Point Operations
This section briefly outlines some typical control point operations on a ConnectionManager service.

2.5.3.1. Establishing a new Connection
The process for establishing a streaming connection involves:

1. finding ConnectionManager services via SSDP,

2. determining compatibility between a source (sending) and a sink (receiving) device,

3. when implemented, calling the PrepareForConnection action on both source and sink devices,

4. when implemented, calling the ConnectionComplete action on both source and sink devices (after
the user is done with the connection).

Because a number of these steps are better described in a larger context involving specific device types and
other services as well, we refer to the ‘AV Framework’ document [ref to device model] for more
information.

2.5.3.2. Dealing with ongoing Connections
A number of interesting scenarios require a control point to find information about all currently ongoing
connections in the network, including those that it did not establish itself. This is supported by the
ConnectionManager as follows. Each connection explicitly established by any control point in the network
is identified by a ‘connection Id’ on both the source (sending) device and the sink (receiving) device. State
variable ‘CurrentConnectionIDs’ holds a comma-separated list of these Ids. Given an Id, a control point
can call GetConnectionInfo to obtain:

• The protocol info of the connection. This includes the streaming protocol and the content format.

• The ‘other end’ of the connection, expressed as a UDN/ServiceId pair. Using the UDN, a control
point can use SSDP to find the device description of the other UPnP device involved in the
connection. This way, a control point can find out, for example, that turning off a particular source
device is going to affect 1 or more sink devices.

• The connection status.

• The AVTransportID of the connection, which indicates the AVTransport service instance
controlling the playback and recording though the connection. This service can be used for many
purposes, for example to:

o subscribe to events in order to monitor the transport state

o actually change the transport state, e.g., stopping or pausing an existing stream

o obtain a URI reference to the content resource current flowing through the connection

o obtain any meta data embedded in the content resource flowing through the connection.

 See the AVTransport service description for more details.

• The RcsID of the connection, which indicates the RenderingControl service instance controlling
the rendering properties of the content. This can be used, for example, to implement a ‘mute all
streams’ function in a control point.

2.5.4. Relation to Devices without ConnectionManagers
In some cases, it is desirable to establish a stream connection between devices where one device
implements a UPnP ConnectionManager service, and the other device doesn't implement this service or
isn't even a UPnP device. In such cases, a control point can only call PrepareForConnection and
ConnectionComplete actions on first device. The 'PeerConnectionManager' input parameter to

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 15

PrepareForConnection is defined as the UDN of the connecting UPnP device followed by a slash ('/') and
the service ID of the connecting device's ConnectionManager service. In case the connecting UPnP device
has no ConnectionManager service, the service ID part of the parameter is left blank. In case the
connecting device is no UPnP device (e.g., an Internet streaming server), the whole
PeerConnectionManager parameter is left blank.

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 16

3. XML Service Description
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>GetProtocolInfo</name>
 <argumentList>
 <argument>
 <name>Source</name>
 <direction>out</direction>
<relatedStateVariable>SourceProtocolInfo</relatedStateVariable>
 </argument>
 <argument>
 <name>Sink</name>
 <direction>out</direction>
<relatedStateVariable>SinkProtocolInfo</relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 <action>
 <name>PrepareForConnection</name>
 <argumentList>
 <argument>
 <name>RemoteProtocolInfo</name>
 <direction>in</direction>
<relatedStateVariable>A_ARG_TYPE_ProtocolInfo</relatedStateVariable>
 </argument>
 <argument>
 <name>PeerConnectionManager</name>
 <direction>in</direction>
<relatedStateVariable>A_ARG_TYPE_ConnectionManager</relatedStateVariable
>
 </argument>
 <argument>
 <name>PeerConnectionID</name>
 <direction>in</direction>
<relatedStateVariable>A_ARG_TYPE_ConnectionID</relatedStateVariable>
 </argument>

 <argument>
 <name>Direction</name>
 <direction>in</direction>
<relatedStateVariable>A_ARG_TYPE_Direction</relatedStateVariable>
 </argument>
 <argument>
 <name>ConnectionID</name>
 <direction>out</direction>
<relatedStateVariable>A_ARG_TYPE_ConnectionID</relatedStateVariable>
 </argument>
 <argument>
 <name>AVTransportID</name>

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 17

 <direction>out</direction>
<relatedStateVariable>A_ARG_TYPE_AVTransportID</relatedStateVariable>
 </argument>
 <argument>
 <name>RcsID</name>
 <direction>out</direction>
<relatedStateVariable>A_ARG_TYPE_RcsID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>ConnectionComplete</name>
 <argumentList>
 <argument>
 <name>ConnectionID</name>
 <direction>in</direction>
<relatedStateVariable>A_ARG_TYPE_ConnectionID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetCurrentConnectionIDs</name>
 <argumentList>
 <argument>
 <name>ConnectionIDs</name>
 <direction>out</direction>
<relatedStateVariable>CurrentConnectionIDs</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetCurrentConnectionInfo</name>
 <argumentList>
 <argument>
 <name>ConnectionID</name>
 <direction>in</direction>
<relatedStateVariable>A_ARG_TYPE_ConnectionID</relatedStateVariable>
 </argument>
 <argument>
 <name>RcsID</name>
 <direction>out</direction>
<relatedStateVariable>A_ARG_TYPE_RcsID</relatedStateVariable>
 </argument>
 <argument>
 <name>AVTransportID</name>
 <direction>out</direction>
<relatedStateVariable>A_ARG_TYPE_AVTransportID</relatedStateVariable>
 </argument>
 <argument>
 <name>ProtocolInfo</name>
 <direction>out</direction>
<relatedStateVariable>A_ARG_TYPE_ProtocolInfo</relatedStateVariable>
 </argument>
 <argument>
 <name>PeerConnectionManager</name>
 <direction>out</direction>
<relatedStateVariable>A_ARG_TYPE_ConnectionManager</relatedStateVariable
>
 </argument>
 <argument>

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 18

 <name>PeerConnectionID</name>
 <direction>out</direction>
<relatedStateVariable>A_ARG_TYPE_ConnectionID</relatedStateVariable>
 </argument>
 <argument>
 <name>Direction</name>
 <direction>out</direction>
<relatedStateVariable>A_ARG_TYPE_Direction</relatedStateVariable>
 </argument>
 <argument>
 <name>Status</name>
 <direction>out</direction>
<relatedStateVariable>A_ARG_TYPE_ConnectionStatus</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="yes">
 <name>SourceProtocolInfo</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>SinkProtocolInfo</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>CurrentConnectionIDs</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ConnectionStatus</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>OK</allowedValue>
 <allowedValue>ContentFormatMismatch</allowedValue>
 <allowedValue>InsufficientBandwidth</allowedValue>
 <allowedValue>UnreliableChannel</allowedValue>
 <allowedValue>Unknown</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ConnectionManager</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Direction</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Input</allowedValue>
 <allowedValue>Output</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ProtocolInfo</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ConnectionID</name>
 <dataType>i4</dataType>

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 19

 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_AVTransportID</name>
 <dataType>i4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_RcsID</name>
 <dataType>i4</dataType>
 </stateVariable>
 </serviceStateTable>
</scpd>

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 20

4. Test
No semantics tests have been defined for this service.

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 21

5. Appendix A – Protocol-specifics

5.1.1. Application to ‘HTTP GET’ - streaming

5.1.1.1. ProtocolInfo definition
Streaming data via HTTP ‘GET’ is defined by the Internet standard Request For Comment document
entitled Hypertext Connection Protocol – HTTP/1.1 (http://www.ietf.org/rfc/rfc2616.txt). While, it is
certainly possible to use other HTTP methods such as PUT or POST, this document focuses on the HTTP
GET method. The protocol part of the protocol info is http. The ‘network’ part of the protocol info
string is not used for the HTTP case, an asterisk (‘*’) is used instead. The content format for http-get is
described by a MIME type, see http://www.ietf.org/rfc/rfc1341.txt.

An example of protocol information for http-get, in this case referring to an audio file, is:
http-get:*:audio/mpeg:*

5.1.1.2. Implementation of ConnectionManager::PrepareForConnection
Since HTTP is a stateless protocol, there is typically very little to do in the PrepareForConnection call. On
the MediaRenderer device (the receiving end of the HTTP stream), the PrepareForConnection call returns
an instance to the AVTransport instance to be used for transport control.

This action is optional for the HTTP protocol.

5.1.1.3. Implementation of ConnectionManager::ConnectionComplete
To manually teardown an ongoing Connection, a control point may invoke ConnectionComplete actions on
either the source or sink device. For HTTP Connections, many of the underlying TCP/IP socket
conventions for cleanup are utilized. In the case of a manual teardown via the method
ConnectionComplete, the device simply closes the TCP/IP socket used by the AVTransport associated with
the connection.

On the UPnP level, this will appear as an (evented) change in state variable CurrentConnectionIDs.

This action is optional for the HTTP protocol.

5.1.1.4. Automatic Connection Cleanup
Since control points may establish Connections, and then leave the UPnP network forever, protocols
supported by the ConnectionManager need to have a built-in automatic mechanism to ‘cleanup’ stale
connections. For HTTP Connections, automatic cleanup should be performed by the AVTransport
instance.

On the UPnP level, this will appear as an (evented) change in state variable CurrentConnectionIDs.

5.1.2. Application to RTSP/RTP/UDP streaming

5.1.2.1. ProtocolInfo definition
Streaming data via RTSP is defined by the Internet standard Request For Comment document entitled Real
Time Streaming Protocol. (http://www.ietf.org/rfc/rfc2326.txt). The actual Audio/Video data packets are
sent out-of-band with respect to RTSP. RTSP does not require a particular protocol for this. Since usually
RTP (http://www.ietf.org/rfc/rfc1889.txt) over UDP is used, we will define the protocol for RTSP-based
streams as rtsp-rtp-udp. This ensures that two ConnectionManagers that can send and receive RTSP

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc1341.txt
http://www.ietf.org/rfc/rfc2326.txt
http://www.ietf.org/rfc/rfc1889.txt

ConnectionManager:1 Service Template Version 1.0.1 22

also send and receive using the same Audio/Video data Connection protocol. RTP packets contain a
standardized 7-bit payload type identifier, see http://www.iana.org/assignments/rtp-parameters or
http://www.ietf.org/rfc/rfc1890.txt Each payload type has a unique encoding name. This payload type
name is used as the “content-format” of the protocol info string.

An example of protocol information for RTSP over RTP over UDP with MPEG video payload is:
rtsp-rtp-udp:*:MPV:*

5.1.2.2. Implementation of ConnectionManager::PrepareForConnection
Since RTSP sessions are maintained by the AVTransport service, there is typically very little to do in the
PrepareForConnection call. On the MediaRenderer device (the receiving end of the RTP stream), the
PrepareForConnection call returns an instance to the AVTransport.

This action is optional for the RTSP/RTP/UDP protocol.

5.1.2.3. Implementation of ConnectionManager::ConnectionComplete
To manually teardown an ongoing RTSP connection, a control point may invoke ConnectionComplete
actions on either the source or sink device. For RTSP sessions, many of the underlying socket conventions
for cleanup are utilized. In the case of a manual teardown via the method ConnectionComplete, the device
simply closes the RTSP session used by the AVTransport associated with the connection.

On the UPnP level, this will appear as an (evented) change in state variable CurrentConnectionIDs.

This action is optional for the RTSP/RTP/UDP protocol.

5.1.2.4. Automatic Connection Cleanup
Since control points may establish Connections, and then leave the UPnP network forever, protocols
supported by the ConnectionManager need to have a built-in automatic mechanism to ‘cleanup’ stale
connections. For RTSP Connections, automatic cleanup should be performed by the AVTransport instance.

On the UPnP level, this will appear as an (evented) change in state variable CurrentConnectionIDs.

5.1.3. Application to device-internal streaming
For the purpose of this service definition we define an ‘internal’ connection as a connection within a single
device. An example of such a connection is between a Tuner subsystem and a Display subsystem in a
conventional TV. Since this connection is internal to the device, no streaming data will flow on the UPnP
network, and the actual content-format used inside the device can be proprietary. The resulting protocol
info and content-URI that need to be defined for these types of connections can therefore be very simple.

An internal connection shall use protocol name ‘internal’. Within this protocol scope the network
identifier is defined as the device’s IP-address, as a string, in the well-known dotted decimal notation.

An example of protocol information for internal is:

internal:161.88.59.212:mpeg2:to-local-display

The implementation of the ‘PrepareForConnection’ and ‘ConnectionComplete actions for this protocol
type is proprietary (vendor specific).

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

http://www.iana.org/assignments/rtp-parameters
http://www.ietf.org/rfc/rfc1890.txt

ConnectionManager:1 Service Template Version 1.0.1 23

5.1.4. Application to IEC61883 streaming

5.1.4.1. ProtocolInfo Definition
The basis for real time data transmission on the IEEE 1394 bus using the iec61883 protocol is the
Common Isochronous Packet (CIP) which consists of a CIP header and data blocks embedded in an IEEE
1394 compliant isochronous packet. The stream types include all content formats supported by the family
of IEC 61883 Standards. These formats are uniquely identified by the FMT and FDF values in the CIP
header, The following table lists the formats supported by the IEC 61883-2 to 5 International Standards
and by IEC 61883-6 PAS (Publicly Available Specification i.e. not yet fulfilling all requirements for a
standard).

Content Format for Protocol: “iec61883” Description

UNKNOWN_STREAM
DVCR_STD_DEF_525_60 525_60 525-line system 29.97 Hz

DVCR_STD_DEF_625_50 625_50 625-line system 25 Hz

DVCR_STD_DEF_HI_COMPRESS_525_60

DVCR_STD_DEF_HI_COMPRESS_625_50

DVCR_HI_DEF_1125_60

DVCR_HI_DEF_1250_50

SMPTE_D7_525_60

SMPTE_D7_625_50 SMPTE V16.8-3D

MPEG2_TS

AUDIO_MUSIC_8_24_IEC_60958 Audio and music 32-bit data consisting of 8-bit
label and 24-bit data

AUDIO_MUSIC_8_24_RAW_AUDIO

AUDIO_MUSIC_8_24_MIdI

The network identifier for the iec61883 protocol uniquely identifies a set of connected IEEE 1394
devices. It is defined as a bin.hex encoding of the GUID (globally unique id) of the 1394 Isochronous
Resource Manager node. This uniquely identifies a single set of physically connected 1394 devices. This
identification is not persistent, and will, in general, change when 1394 devices are added to or removed
from the 1394 network. These changes will lead to changes in the ProtocolInfo state variable, and, through
eventing, interested control points will be notified of the new streaming possibilities of the new 1394
network segmentation.

IEC61883 connections are setup between iPCRs (input Plug Control Registers) and oPCRs (output Plug
Control Registers). A content item is Connectioned through an oPCR to one or more iPCRs on a different
device. An IEC61883 device can have 0 or more iPCRs and oPCRs.

The additionalInfo field identifies the PCR in the IEC61883 network, and is defined as follows:

<GUID>’;’<PCR-index>’

where

• <GUID> = bin.hex encoding of the device’s node_vendor_id and chip_id (2 quadlets,
together also referred to as GUID)

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 24

• <PCR-index> = zero-based integer index identifying the plug within the device

An example of protocol information for IEC61883 is:
iec61883:0000f00200001114:MPEG2_TS:00ba0091c9231222;0

5.1.4.2. Implementation of ConnectionManager::PrepareForConnection
In order to manage isochronous data transmission, IEC 61883 defines the concept of plug and specialized
registers called MPR (Master Plug Register) and PCR (Plug Control Register). These registers are used to
initiate and stop transmissions. The set of procedures to control the real time data flow by manipulating the
PCRs is called CMP (Connection Management Procedures). Data transmission between devices is possible
when an output plug on the source device is connected to an input plug on the sink device via an
isochronous channel. The data flow from a source device is controlled by the oMPR (output Master Plug
Register) of the device and one oPCR (output PCR). Similarly, the data flow to a sink device is controlled
by the iMPR (input MPR) and one iPCR (input PCR). The address map for these registers is well defined
in conformance with ISO/IEC 13213 (ANSI/IEEE 1212). Devices can modify PCR values of remote nodes
using asynchronous transactions.

After a control point finds a pair of compatible ConnectionManagers, the next step is to invoke UPnP
PrepareForConnection actions on the ConnectionManagers on both source and sink devices. The
IEC61883 connection will be established by the sink device. Given the protocol info it can locate the 1394
address of the source device (its GUID is part of the ‘additional info’ field of the protocol info string), and
program the appropriate oPCR register to initiate the streaming. The sink device is free to choose any of its
own iPCRs. The sink device shall follow the exact procedure defined by IEC61883, which includes the
allocation of 1394 bandwidth and a 1394 channel.. Upon subsequent 1394 bus resets, the sink device (the
device that established the connection) shall try to restore any existing connections that it has established.

Since 1394 is a ‘push’ protocol, it is the responsibility of the source device to return an AVTransport
instance id for transport control (play, pause, stop, etc.).

If the protocol info references an oPCR that is already in use, two situations occur:

• the same content-format already being streamed via the oPCR. In this case, the sink device will
perform an IEC61883 overlay connection.

• a different content-format is already being streamed via the oPCR. In this case, the sink device
will return an error.

IEC61883 broadcast-in and broadcast-out connections are not supported by the ConnectionManager.

5.1.4.3. Implementation of ConnectionManager::ConnectionComplete
To manually teardown an ongoing Connection, or to cleanup a Connection that has finished, a control
point may invoke ConnectionComplete actions on both source and sink devices. It is the responsibility of
the sink device (the device that established the connection) to perform the IEC61883 release connection
procedure, by:

Modifying corresponding fields of source oPCR and sink iPCR according to CMP procedures. •

• Deallocate 1394 resources: Bandwidth and Channel if oPCR becomes unconnected (i.e. breaking last
connection)

On the UPnP level, this will appear as an (evented) change in state variable CurrentConnectionIDs.

IEC61883 broadcast-in and broadcast-out connections are not supported by the ConnectionManager.

5.1.4.4. Automatic Connection Cleanup
Since control points may establish Connections, and then leave the UPnP network forever, protocols
supported by the ConnectionManager need to have a built-in automatic mechanism to ‘cleanup’ stale

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

ConnectionManager:1 Service Template Version 1.0.1 25

connections. For the IEC61883 protocol, an established connection will continue forever, until there is a so
called bus reset. A bus reset will occur when there is a change in the physical network topology, for
example, the network is split, joined with another network, or a device goes offline. After a bus reset, all
1394 resources are released, and all devices that established IEC61883 connections have 1 second to re-
establish them. Hence, the ConnectionManager on the sink device needs to check after a bus reset whether
the source device is still on the network, and if not, cleanup any internal state referring to this connection.
On the UPnP level, this will appear as an (evented) change in state variable CurrentConnectionIDs.

5.1.5. Application to vendor-specific streaming
To allow vendors to use their vendor-specific streaming protocols in a UPnP network in a controlled way,
the ConnectionManager defines the generic protocol info format for such protocols. The idea is to make
the <protocol> part of the string unique, by requiring the use of the vendor’s registered ICANN (Internet)
domain name (similar to its use in vendor-specific UPnP service- and device-types). The remaining fields
of the protocol info string (networkID, content-format and additional-info) are all vendor-specific, and may
be wildcards (‘*’).

An example of vendor-specific protocol information is:
company.com:*:company-format-A:optional-setup-info

The implementation of the ‘PrepareForConnection’ and ‘ConnectionComplete actions for this protocol
type is proprietary (vendor specific).

© 1999-2002 Contributing Members of the UPnP™ Forum. All rights Reserved.

	Overview and Scope
	External dependencies

	Service Modeling Definitions
	ServiceType
	State Variables
	SourceProtocolInfo
	SinkProtocolInfo
	CurrentConnectionIDs
	A_ARG_TYPE_ConnectionStatus
	A_ARG_TYPE_ConnectionManager
	A_ARG_TYPE_Direction
	A_ARG_TYPE_ProtocolInfo
	A_ARG_TYPE_ConnectionID
	A_ARG_TYPE_AVTransportID
	A_ARG_TYPE_RcsID

	Eventing and Moderation
	Actions
	GetProtocolInfo
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	PrepareForConnection
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	ConnectionComplete
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	GetCurrentConnectionIDs
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	GetCurrentConnectionInfo
	Arguments
	Dependency on State (if any)
	Effect on State (if any)
	Errors

	Common Error Codes

	Theory of Operation
	Purpose
	ProtocolInfo Concept
	Typical Control Point Operations
	Establishing a new Connection
	Dealing with ongoing Connections

	Relation to Devices without ConnectionManagers

	XML Service Description
	Test
	Appendix A – Protocol-specifics
	Application to ‘HTTP GET’ - streaming
	ProtocolInfo definition
	Implementation of ConnectionManager::PrepareForConnection
	Implementation of ConnectionManager::ConnectionComplete
	Automatic Connection Cleanup

	Application to RTSP/RTP/UDP streaming
	ProtocolInfo definition
	Implementation of ConnectionManager::PrepareForConnection
	Implementation of ConnectionManager::ConnectionComplete
	Automatic Connection Cleanup

	Application to device-internal streaming
	Application to IEC61883 streaming
	ProtocolInfo Definition
	Implementation of ConnectionManager::PrepareForConnection
	Implementation of ConnectionManager::ConnectionComplete
	Automatic Connection Cleanup

	Application to vendor-specific streaming

