
ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 1

ConnectionManager:3 Service
For UPnP Version 1.0
Status: Standardized DCP (SDCP)
Date: March 31, 2013
Service Template Version 3.0

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee
of the UPnP Forum, pursuant to Section 2.1(c)(ii) of the UPnP Forum Membership Agreement.
UPnP Forum Members have rights and licenses defined by Section 3 of the UPnP Forum
Membership Agreement to use and reproduce the Standardized DCP in UPnP Compliant
Devices. All such use is subject to all of the provisions of the UPnP Forum Membership
Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL
PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS
ARE PROVIDED "AS IS" AND "WITH ALL FAULTS". THE UPNP FORUM MAKES NO
WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO
THE STANDARDIZED DCPS, INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES
OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR
PURPOSE, OF REASONABLE CARE OR WORKMANLIKE EFFORT, OR RESULTS OR OF
LACK OF NEGLIGENCE.

© 2014, UPnP Forum. All rights Reserved.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 2

Authors Company

Alan Presser Allegrosoft

Wouter van der Beek Cisco Systems

Gary Langille Echostar

Gerrie Shults HP

Raj Bopardikar Intel

Nelson Kidd Intel

John Ritchie Intel

Mark Walker Intel

Keith Miller Intel

Richard Bardini Intel

Sungjoon Ahn LG Electronics

Changhyun Kim LG Electronics

Seung R. Yang (Co-Chair) LG Electronics

Masatomo Hori Matsushita Electric (Panasonic)

Matthew Ma Matsushita Electric (Panasonic)

Jack Unverferth Microsoft

Keith Miller (Co-Chair) Nokia

Wouter van der Beek Philips

Wim Bronnenberg Philips

Jeffrey Kang Philips

Geert Knapen Philips

Russell Berkoff Pioneer

Irene Shen Pioneer

Russell Berkoff (Vice-Chair) Samsung

Richard Bardini Sony

Norifumi Kikkawa Sony

Jonathan Tourzan Sony

Yasuhiro Morioka Toshiba

Jeffrey Kang TP Vision

Nicholas Frame TP Vision

Note: The UPnP Forum in no way guarantees the accuracy or completeness of this author list and in no way
implies any rights for or support from those members listed. This list is not the specifications’ contributor list
that is kept on the UPnP Forum’s website.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 3

CONTENTS

1 Scope .. 7

2 Normative references ... 7

3 Terms, definitions, symbols and abbreviations .. 10

3.1 Provisioning terms ... 10
3.2 Symbols .. 11

4 Notations and Conventions .. 11

4.1 Notation .. 11
4.1.1 Data Types .. 11
4.1.2 Strings Embedded in Other Strings .. 12
4.1.3 Extended Backus-Naur Form ... 12

4.2 Derived Data Types ... 13
4.2.1 Summary ... 13
4.2.2 CSV Lists .. 13

4.3 Management of XML Namespaces in Standardized DCPs 14
4.3.1 Namespace Prefix Requirements ... 19
4.3.2 Namespace Names, Namespace Versioning and Schema Versioning 20
4.3.3 Namespace Usage Examples .. 22

4.4 Vendor-defined Extensions .. 22
4.4.1 Vendor-defined Action Names ... 22
4.4.2 Vendor-defined State Variable Names ... 23
4.4.3 Vendor-defined XML Elements and attributes .. 23
4.4.4 Vendor-defined Property Names .. 23

5 Service Modeling Definitions ... 23

5.1 ServiceType .. 23
5.2 State Variables .. 24

5.2.1 State Variable Overview .. 24
5.2.2 SourceProtocolInfo .. 24
5.2.3 SinkProtocolInfo .. 25
5.2.4 CurrentConnectionIDs ... 25
5.2.5 FeatureList .. 25
5.2.6 ClockUpdateID .. 25
5.2.7 DeviceClockInfoUpdates .. 26
5.2.8 A_ARG_TYPE_ConnectionStatus .. 27
5.2.9 A_ARG_TYPE_ConnectionManager .. 27
5.2.10 A_ARG_TYPE_Direction.. 27
5.2.11 A_ARG_TYPE_ProtocolInfo ... 27
5.2.12 A_ARG_TYPE_ConnectionID .. 27
5.2.13 A_ARG_TYPE_AVTransportID .. 27
5.2.14 A_ARG_TYPE_RcsID .. 28
5.2.15 A_ARG_TYPE_ItemInfoFilter ... 28
5.2.16 A_ARG_TYPE_Result ... 29
5.2.17 A_ARG_TYPE_RenderingInfoList .. 30

5.3 Eventing and Moderation ... 35
5.4 Actions .. 36

5.4.1 Action Overview .. 36
5.4.2 GetProtocolInfo() ... 36

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 4

5.4.3 PrepareForConnection() .. 37
5.4.4 ConnectionComplete() ... 39
5.4.5 GetCurrentConnectionIDs() ... 40
5.4.6 GetCurrentConnectionInfo() ... 40
5.4.7 GetRendererItemInfo() ... 41
5.4.8 GetFeatureList() .. 42
5.4.9 Common Error Codes .. 43

6 XML Service Description .. 44

7 Test ... 48

Annex A (normative) Protocol Specifics ... 49

A.1 Application to HTTP Streaming .. 49
A.1.1 ProtocolInfo Definition ... 49
A.1.2 Implementation of PrepareForConnection() ... 49
A.1.3 Implementation of ConnectionComplete() .. 49
A.1.4 Automatic Connection Cleanup .. 49

A.2 Application to RTSP/RTP/UDP Streaming ... 50
A.2.1 ProtocolInfo Definition ... 50
A.2.2 Implementation of PrepareForConnection() ... 50
A.2.3 Implementation of ConnectionComplete() .. 50
A.2.4 Automatic Connection Cleanup .. 50

A.3 Application to Device-Internal Streaming ... 50
A.4 Application to IEC61883 Streaming ... 51

A.4.1 ProtocolInfo Definition ... 51
A.4.2 Implementation of PrepareForConnection() ... 52
A.4.3 Implementation of ConnectionComplete() .. 53
A.4.4 Automatic Connection Cleanup .. 53

A.5 Application to Vendor-specific Streaming .. 54
Annex B (normative) CM features ... 55

B.1 Introduction ... 55
B.2 Requirements for the CLOCKSYNC feature, Version 1 .. 55

Annex C (informative) Theory of Operation .. 62

C.1 Purpose .. 62
C.2 ProtocolInfo Concept ... 62

C.2.1 4th Field – <additionalInfo> .. 63
C.2.2 IEC61883 Exception .. 64
C.2.3 Formal EBNF for the 4th field ... 64
C.2.4 ProtocolInfo Conventions for Protected Content .. 65

C.3 Typical Control Point Operations ... 66
C.3.1 Introduction ... 66
C.3.2 Establishing a New Connection ... 67
C.3.3 Dealing with Ongoing Connections .. 67

C.4 Relation to Devices without ConnectionManagers ... 67
C.5 PrepareForConnection() and ConnectionComplete() .. 68

C.5.1 PrepareForConnection() .. 68
C.5.2 ConnectionComplete() ... 68
C.5.3 General Usage Model .. 68
C.5.4 Relationship to AVTransport and RenderingControl Services 69

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 5

C.5.5 ConnectionIDs ... 69
C.5.6 AVTransportIDs and RcsIDs .. 70

C.6 Determining if ContentDirectory items are playable ... 70
C.7 CLOCKSYNC feature .. 76

C.7.1 Examples of CLOCKSYNC feature .. 76
Annex D (informative) Bibliography .. 79

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 6

List of Tables

Table 1 — EBNF Operators .. 13

Table 2 — CSV Examples ... 14

Table 3 — Namespace Definitions .. 15

Table 4 — Schema-related Information ... 17

Table 5 — Default Namespaces for the AV Specifications ... 20

Table 6 — State Variables .. 24

Table 7 — allowedValueList for A_ARG_TYPE_ConnectionStatus .. 27

Table 8 — allowedValueList for A_ARG_TYPE_Direction .. 27

Table 9 — Event Moderation ... 35

Table 10 — Actions... 36

Table 11 — Arguments for GetProtocolInfo()... 36

Table 12 — Arguments for PrepareForConnection() .. 38

Table 13 — Error Codes for PrepareForConnection() .. 39

Table 14 — Arguments for ConnectionComplete() .. 39

Table 15 — Error Codes for ConnectionComplete() .. 40

Table 16 — Arguments for GetCurrentConnectionIDs() ... 40

Table 17 — Error Codes for GetCurrentConnectionIDs() ... 40

Table 18 — Arguments for GetCurrentConnectionInfo() .. 41

Table 19 — Error Codes for GetCurrentConnectionInfo() .. 41

Table 20 — Arguments for GetRendererItemInfo() .. 42

Table 21 — Error Codes for GetRendererItemInfo() .. 42

Table 22 — Arguments for GetFeatureList() .. 43

Table 23 — Error Codes for GetFeatureList() .. 43

Table 24 — Common Error Codes .. 44

Table A.1 — <contentFormat> for Protocol IEC61883 ... 52

Table B.1 — CM features .. 55

Table B.2 — Required characteristics of the CLOCKSYNC feature element 57

Table B.3 — Allowed values for the <syncProtocolID> element 59

Table B.4 — Allowed formats for the <masterClockID> element. 60

Table B.5 — Allowed values for the <supportedTimestamps> element. 60

Table C.1 — Defined Protocols and their associated ProtocolInfo Values 63

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 7

1 Scope

This service definition is compliant with the UPnP Device Architecture version 1.0 [14].

This service-type enables modeling of streaming capabilities of A/V devices, and binding of
those capabilities between devices. Each device that is able to send or receive a stream
according to the UPnP AV Architecture will have 1 instance of the ConnectionManager service.
This service provides a mechanism for control points to:

a) Perform capability matching between source/server devices and sink/renderer devices,
b) Find information about currently ongoing transfers in the network,
c) Setup and teardown connections between devices (when required by the streaming

protocol).
The ConnectionManager service is generic enough to properly abstract different kinds of
streaming mechanisms, such as HTTP-based streaming, RTSP/RTP-based and 1394-based
streaming.

The ConnectionManager enables control points to abstract from physical media interconnect
technology when making connections. The term ‘stream’ used in this service template refers to
both analog and digital data transfer.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.

[1] – XML Schema for RenderingControl AllowedTransformSettings, UPnP Forum, March 31,
2013.
Available at: http://www.upnp.org/schemas/av/AllowedTransformSettings-v1-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/AllowedTransformSettings.xsd.

[2] – AV Datastructure Template:1, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVDataStructureTemplate-v1-
20130331.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-
AVDataStructureTemplate-v1.pdf.

[3] – XML Schema for UPnP AV Common XML Data Types, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/schemas/av/av-v3-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/av.xsd.

[4] – XML Schema for UPnP AV Common XML Structures, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/schemas/av/avs-v3-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avs.xsd.

[5] – AVTransport:3, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service-20130331.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-
Service.pdf.

[6] – XML Schema for AVTransport LastChange Eventing, UPnP Forum, September 30, 2008.
Available at: http://www.upnp.org/schemas/av/avt-event-v2-20080930.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avt-event.xsd.

[7] – ContentDirectory:4, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service-
20130331.pdf.

© 2014, UPnP Forum. All rights Reserved.

http://www.upnp.org/schemas/av/AllowedTransformSettings-v1-20130331.xsd
http://www.upnp.org/schemas/av/AllowedTransformSettings.xsd
http://www.upnp.org/specs/av/UPnP-av-AVDataStructureTemplate-v1-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-AVDataStructureTemplate-v1-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1.pdf
http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1.pdf
http://www.upnp.org/schemas/av/av-v3-20130331.xsd
http://www.upnp.org/schemas/av/av.xsd
http://www.upnp.org/schemas/av/avs-v3-20130331.xsd
http://www.upnp.org/schemas/av/avs.xsd
http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service.pdf
http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service.pdf
http://www.upnp.org/schemas/av/avt-event-v2-20080930.xsd
http://www.upnp.org/schemas/av/avt-event.xsd
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service-20101231.pdf

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 8

Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-
Service.pdf.

[8] – XML Schema for ContentDirectory LastChange Eventing, UPnP Forum, September 30,
2008.
Available at: http://www.upnp.org/schemas/av/cds-event-v1-20080930.xsd.
Latest version available at: http://www.upnp.org/schemas/av/cds-event.xsd.

[9] – ConnectionManager:3, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service-
20130331.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-
Service.pdf.

[10] – XML Schema for ConnectionManager DeviceClockInfoUpdates, UPnP Forum,
December 31, 2010.
Available at: http://www.upnp.org/schemas/av/cm-deviceClockInfoUpdates-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/cm-deviceClockInfoUpdates.xsd.

[11] – XML Schema for ConnectionManager Features, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/cm-featureList-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/cm-featureList.xsd.

[12] – XML Schema for UPnP AV Dublin Core.
Available at: http://www.dublincore.org/schemas/xmls/simpledc20020312.xsd.

[13] – DCMI term declarations represented in XML schema language.
Available at: http://www.dublincore.org/schemas/xmls.

[14] – UPnP Device Architecture, version 1.0, UPnP Forum, October 15, 2008.
Available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-
20081015.pdf.
Latest version available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.0.pdf.

[15] – XML Schema for ContentDirectory Structure and Metadata (DIDL-Lite), UPnP Forum,
March 31, 2013.
Available at: http://www.upnp.org/schemas/av/didl-lite-v3-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/didl-lite.xsd.

[16] – XML Schema for ContentDirectory DeviceMode, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/dmo-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/dmo.xsd.

[17] – XML Schema for ContentDirectory DeviceModeRequest, UPnP Forum, December 31,
2010.
Available at: http://www.upnp.org/schemas/av/dmor-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/dmor.xsd.

[18] – XML Schema for ContentDirectory DeviceModeStatus, UPnP Forum, December 31,
2010.
Available at: http://www.upnp.org/schemas/av/dmos-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/dmos.xsd.

[19] – ISO/IEC 14977, Information technology - Syntactic metalanguage - Extended BNF,
December 1996.

[20] – XML Schema for ContentDirectory PermissionsInfo, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/pi-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/pi.xsd.

© 2014, UPnP Forum. All rights Reserved.

http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service.pdf
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service.pdf
http://www.upnp.org/schemas/av/cds-event-v1-20080930.xsd
http://www.upnp.org/schemas/av/cds-event.xsd
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service.pdf
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service.pdf
http://www.upnp.org/schemas/av/cm-deviceClockInfoUpdates-v1-20101231.xsd
http://www.upnp.org/schemas/av/cm-deviceClockInfoUpdates.xsd
http://www.upnp.org/schemas/av/cm-featureList-v1-20101231.xsd
http://www.upnp.org/schemas/av/cm-featureList.xsd
http://www.dublincore.org/schemas/xmls/simpledc20020312.xsd
http://www.dublincore.org/schemas/xmls/
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20081015.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20081015.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.upnp.org/schemas/av/didl-lite-v3-20130331.xsd
http://www.upnp.org/schemas/av/didl-lite.xsd
http://www.upnp.org/schemas/av/dmo-v1-20101231.xsd
http://www.upnp.org/schemas/av/dmo.xsd
http://www.upnp.org/schemas/av/dmor-v1-20101231.xsd
http://www.upnp.org/schemas/av/dmor.xsd
http://www.upnp.org/schemas/av/dmos-v1-20101231.xsd
http://www.upnp.org/schemas/av/dmos.xsd
http://www.upnp.org/schemas/av/pi-v1-20101231.xsd
http://www.upnp.org/schemas/av/pi.xsd

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 9

[21] – RenderingControl:3, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service-
20130331.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-
Service.pdf.

[22] –XML Schema for RenderingControl LastChange Eventing, UPnP Forum, December 31,
2010.
Available at: http://www.upnp.org/schemas/av/rcs-event-v3-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/rcs-event.xsd.

[23] – XML Schema for ConnectionManager RendererInfo, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/rii-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/rii.xsd.

[24] – XML Schema for AVTransport PlaylistInfo, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/schemas/av/rpl-v1-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/rpl.xsd.

[25] – ScheduledRecording:2, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service-
20130331.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-
Service.pdf.

[26] – XML Schema for ScheduledRecording Metadata and Structure, UPnP Forum, March 31,
2013.
Available at: http://www.upnp.org/schemas/av/srs-v2-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/srs.xsd.

[27] – XML Schema for ScheduledRecording LastChange Eventing, UPnP Forum, September
30, 2008.
Available at: http://www.upnp.org/schemas/av/srs-event-v1-20080930.xsd.
Latest version available at: http://www.upnp.org/schemas/av/srs-event.xsd.

[28] – XML Schema for RenderingControl TransformSettings, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/schemas/av/TransformSettings-v1-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/TransformSettings.xsd.

[29] – XML Schema for ContentDirectory Metadata, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/schemas/av/upnp-v4-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/upnp.xsd.

[30] – The “xml:” Namespace, November 3, 2004.
Available at: http://www.w3.org/XML/1998/namespace.

[31] – XML Schema for the “xml:” Namespace.
Available at: http://www.w3.org/2001/xml.xsd.

[32] – Namespaces in XML, Tim Bray, Dave Hollander, Andrew Layman, eds., W3C
Recommendation, January 14, 1999.
Available at: http://www.w3.org/TR/1999/REC-xml-names-19990114.

[33] – XML Schema Part 1: Structures, Second Edition, Henry S. Thompson, David Beech,
Murray Maloney, Noah Mendelsohn, W3C Recommendation, 28 October 2004.
Available at: http://www.w3.org/TR/2004/REC-xmlschema-1-20041028.

[34] – XML Schema Part 2: Data Types, Second Edition, Paul V. Biron, Ashok Malhotra, W3C
Recommendation, 28 October 2004.
Available at: http://www.w3.org/TR/2004/REC-xmlschema-2-20041028.

© 2014, UPnP Forum. All rights Reserved.

http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service.pdf
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service.pdf
http://www.upnp.org/schemas/av/rcs-event-v3-20101231.xsd
http://www.upnp.org/schemas/av/rcs-event.xsd
http://www.upnp.org/schemas/av/rii-v1-20101231.xsd
http://www.upnp.org/schemas/av/rii.xsd
http://www.upnp.org/schemas/av/rpl-v1-20130331.xsd
http://www.upnp.org/schemas/av/rpl.xsd
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service.pdf
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service.pdf
http://www.upnp.org/schemas/av/srs-v2-20130331.xsd
http://www.upnp.org/schemas/av/srs.xsd
http://www.upnp.org/schemas/av/srs-event-v1-20080930.xsd
http://www.upnp.org/schemas/av/srs-event.xsd
http://www.upnp.org/schemas/av/TransformSettings-v1-20130331.xsd
http://www.upnp.org/schemas/av/TransformSettings.xsd
http://www.upnp.org/schemas/av/upnp-v4-20130331.xsd
http://www.upnp.org/schemas/av/upnp.xsd
http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/xml.xsd
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 10

[35] – XML Schema for XML Schema.
Available at: http://www.w3.org/2001/XMLSchema.xsd.

[36] – IETF RFC 4122, A Universally Unique Identifier (UUID) URN Namespace, P. Leach,
Microsoft, M. Mealling, Refactored Networks LLC, R. Salz, DataPower Technology, Inc., July
2005.
Available at: http://www.ietf.org/rfc/rfc4122.txt.

[37] – Extensible Markup Language (XML) 1.0 (Third Edition), François Yergeau, Tim Bray,
Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, eds., W3C Recommendation, February 4,
2004.
Available at: http://www.w3.org/TR/2004/REC-xml-20040204.

[38] – HyperText Transport Protocol – HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, T. Berners-Lee, June 1999.
Available at: http://www.ietf.org/rfc/rfc2616.txt.

[39] – IETF RFC 1341, MIME (Multipurpose Internet Mail Extensions), N. Borenstein, N.
Freed, June 1992.
Available at: http://www.ietf.org/rfc/rfc1341.txt.

[40] – IEC 61883 Consumer Audio/Video Equipment – Digital Interface - Part 1 to 5.
Available at: http://www.iec.ch.

[41] – IEC-PAS 61883 Consumer Audio/Video Equipment – Digital Interface - Part 6.
Available at: http://www.iec.ch.

[42] – IEEE P802.1AS™ (Draft 7.0) - Timing and Synchronization for Time-Sensitive
Applications in Bridged Local Area Networks, Institute of Electrical and Electronics Engineers,
March 23, 2010.
Available at: http://www.ieee802.org/1/pages/802.1as.html.

[43] – IETF RFC 1305, Network Time Protocol (Version 3) Specification, Implementation and
Analysis, David L. Mills, March 1992.
Available at: http://www.ietf.org/rfc/rfc1305.txt.

[44] – IETF RFC 2030, Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and
OS, D Mills, October 1996.
Available at: http://www.ietf.org/rfc/rfc2030.txt.

[45] – IEEE-P1733™ (Draft 2.2) – Audio Video Bridge Layer 3 Transport Protocol,
International Institute of Electrical and Electronics Engineers, April 20, 2009.
Available at: http://grouper.ieee.org/groups/1733.

[46] – IETF RFC 3550, RTP: A Transport Protocol for Real-Time Applications, H. Schulzrinne,
S. Casner, R. Frederick, V. Jacobson, July 2003.
Available at: http://www.ietf.org/rfc/rfc3550.txt.

[47] – AVArchitecture:2, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v2-20130331.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v2.pdf.

3 Terms, definitions, symbols and abbreviations

For the purposes of this document, the terms and definitions given in [14] and the following
subclauses 3.1 and 3.2 apply.

 Provisioning terms

allowed
A
The definition or behavior is allowed.

© 2014, UPnP Forum. All rights Reserved.

http://www.w3.org/2001/XMLSchema.xsd
http://www.ietf.org/rfc/rfc4122.txt
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc1341.txt
http://www.iec.ch/
http://www.iec.ch/
http://www.ieee802.org/1/pages/802.1as.html
http://www.ietf.org/rfc/rfc1305.txt
http://www.ietf.org/rfc/rfc2030.txt
http://grouper.ieee.org/groups/1733
http://www.ietf.org/rfc/rfc3550.txt
http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v2-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v2.pdf

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 11

conditionally allowed
CA
The definition or behavior depends on a condition. If the specified condition is met, then the
definition or behavior is allowed, otherwise it is not allowed.

conditionally required
CR
The definition or behavior depends on a condition. If the specified condition is met, then the
definition or behavior is required. Otherwise the definition or behavior is allowed as default
unless specifically defined as not allowed.

required
R
The definition or behavior is required.

R/A
Used in a table column heading to indicate that each abbreviated entry in the column declares
the provisioning status of the item named in the entry's row.

X
Vendor-defined, non-standard.

-D
Declares that the item referred to is deprecated, when it is appended to any of the other
abbreviated provisioning terms.

CSV list (or CSV)
Comma separated value list. List—or one-dimensional array—of values contained in a string
and separated by commas

 Symbols

::
Signifies a hierarchical parent-child (parent::child) relationship between the two objects
separated by the double colon. This delimiter is used in multiple contexts, for example:
Service::Action(), Action()::Argument, parentProperty::childProperty.

4 Notations and Conventions

 Notation
• UPnP interface names defined in the UPnP Device Architecture specification [14] are styled

in green bold underlined text.

• UPnP interface names defined outside of the UPnP Device Architecture specification [14]
are styled in red italic underlined text.

• Some additional non-interface names and terms are styled in italic text.

• Words that are emphasized are also styled in italic text. The difference between italic terms
and italics for emphasis will be apparent by context.

• Strings that are to be taken literally are enclosed in “double quotes”.
 Data Types

Data type definitions come from three sources:

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 12

• All state variable and action argument data types are defined in [14].

• Basic data types for properties are defined in [34].

• Additional data types for properties are defined in the XML schema(s) (see [3]) associated
with this service.

For UPnP Device Architecture defined boolean data types, it is strongly recommended to use
the value “0” for false, and the value “1” for true. However, when used as input arguments, the
values “false”, “no”, “true”, “yes” may also be encountered and shall be accepted. Nevertheless,
it is strongly recommended that all boolean state variables and output arguments be
represented as “0” and “1”.

For XML Schema defined Boolean data types, it is strongly recommended to use the value “0”
for false, and the value “1” for true. However, when used as input properties, the values “false”,
“true” may also be encountered and shall be accepted. Nevertheless, it is strongly
recommended that all Boolean properties be represented as “0” and “1”.

 Strings Embedded in Other Strings
Some string variables and arguments described in this document contain substrings that shall
be independently identifiable and extractable for other processing. This requires the definition
of appropriate substring delimiters and an escaping mechanism so that these delimiters can
also appear as ordinary characters in the string and/or its independent substrings. This
document uses embedded strings in two contexts – Comma Separated Value (CSV) lists (see
subclause 4.2.2) and property values in search criteria strings. Escaping conventions use the
backslash character, “\” (character code U+005C), as follows:

a) Backslash (“\”) is represented as “\\” in both contexts.
b) Comma (“,”) is

1) represented as “\,” in individual substring entries in CSV lists
2) not escaped in search strings

c) Double quote (“"”) is
1) not escaped in CSV lists
2) not escaped in search strings when it appears as the start or end delimiter of a property

value
3) represented as “\"” in search strings when it appears as a character that is part of the

property value
 Extended Backus-Naur Form

Extended Backus-Naur Form is used in this document for a formal syntax description of certain
constructs. The usage here is according to the reference [19].

4.1.3.1 Typographic conventions for EBNF
Non-terminal symbols are unquoted sequences of characters from the set of English upper
and lower case letters, the digits “0” through “9”, and the hyphen (“-”). Character sequences
between 'single quotes' are terminal strings and shall appear literally in valid strings.
Character sequences between (*comment delimiters*) are English language definitions
or supplementary explanations of their associated symbols. White space in the EBNF is used
to separate elements of the EBNF, not to represent white space in valid strings. White space
usage in valid strings is described explicitly in the EBNF. Finally, the EBNF uses the following
operators in Table 1:

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 13

Table 1 — EBNF Operators

Operator Semantics

::= definition – the non-terminal symbol on the left is defined by one or more alternative
sequences of terminals and/or non-terminals to its right.

| alternative separator – separates sequences on the right that are independently allowed
definitions for the non-terminal on the left.

* null repetition – means the expression to its left may occur zero or more times.

+ non-null repetition – means the expression to its left shall occur at least once and may
occur more times.

[] optional – the expression between the brackets is allowed.

() grouping – groups the expressions between the parentheses.

- character range – represents all characters between the left and right character operands
inclusively.

 Derived Data Types
 Summary

Subclause 4.2 defines a derived data type that is represented as a string data type with special
syntax. This specification uses string data type definitions that originate from two different
sources. The UPnP Device Architecture defined string data type is used to define state variable
and action argument string data types. The XML Schema namespace is used to define property
xsd:string data types. The following definition in subclause 4.2.2 applies to both string data
types.

 CSV Lists
The UPnP AV services use state variables, action arguments and properties that represent lists
– or one-dimensional arrays – of values. The UPnP Device Architecture, Version 1.0 [14], does
not provide for either an array type or a list type, so a list type is defined here. Lists may either
be homogeneous (all values are the same type) or heterogeneous (all values can be of different
types). Lists may also consist of repeated occurrences of homogeneous or heterogeneous
subsequences, all of which have the same syntax and semantics (same number of values, same
value types and in the same order). The data type of a homogeneous list is string or xsd:string
and denoted by CSV (x), where x is the type of the individual values. The data type of a
heterogeneous list is also string or xsd:string and denoted by CSV (x, y, z), where x, y and z
are the types of the individual values. If the number of values in the heterogeneous list is too
large to show each type individually, that variable type is represented as CSV (heterogeneous),
and the variable description includes additional information as to the expected sequence of
values appearing in the list and their corresponding types. The data type of a repeated
subsequence list is string or xsd:string and denoted by CSV ({a,b,c},{x, y, z}), where a, b, c, x,
y and z are the types of the individual values in the subsequence and the subsequences may
be repeated zero or more times.

• A list is represented as a string type (for state variables and action arguments) or xsd:string
type (for properties).

• Commas separate values within a list.

• Integer values are represented in CSVs with the same syntax as the integer data type
specified in [14] (that is: allowed leading sign, allowed leading zeroes, numeric US-ASCII)

• Boolean values are represented in state variable and action argument CSVs as either “0”
for false or “1” for true. These values are a subset of the defined boolean data type values
specified in [14]: 0, false, no, 1, true, yes.

• Boolean values are represented in property CSVs as either “0” for false or “1” for true. These
values are a subset of the defined Boolean data type values specified in [34]: 0, false, 1,
true.

• Escaping conventions for the comma and backslash characters are defined in 4.1.2.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 14

• White space before, after, or interior to any numeric data type is not allowed.

• White space before, after, or interior to any other data type is part of the value.
Table 2 — CSV Examples

Type refinement of
string

Value Comments

CSV (string) or
CSV (xsd:string)

“+artist,-date” List of 2 property sort
criteria.

CSV (int) or
CSV (xsd:integer)

“1,-5,006,0,+7” List of 5 integers.

CSV (boolean) or
CSV (xsd:Boolean)

“0,1,1,0” List of 4 booleans

CSV (string) or
CSV (xsd:string)

“Smith\, Fred,Jones\, Davey” List of 2 names,
“Smith, Fred” and
“Jones, Davey”

CSV (i4,string,ui2) or
CSV (xsd:int,
xsd:string,
xsd:unsignedShort)

“-29837, string with leading blanks,0” Note that the second value
is “ string with leading
blanks”

CSV (i4) or
CSV (xsd:int)

“3, 4” Illegal CSV. White space
is not allowed as part of
an integer value.

CSV (string) or
CSV (xsd:string)

“,,” List of 3 empty string
values

CSV (heterogeneous) “Alice,Marketing,5,Sue,R&D,21,Dave,Finance,7” List of unspecified number
of people and associated
attributes. Each person is
described by 3 elements: a
name string, a department
string and years-of-
service ui2 or a name
xsd:string, a department
xsd:string and years-of-
service
xsd:unsignedShort.

 Management of XML Namespaces in Standardized DCPs
UPnP specifications make extensive use of XML namespaces. This enables separate DCPs,
and even separate components of an individual DCP, to be designed independently and still
avoid name collisions when they share XML documents. Every name in an XML document
belongs to exactly one namespace. In documents, XML names appear in one of two forms:
qualified or unqualified. An unqualified name (or no-colon-name) contains no colon (“:”)
characters. An unqualified name belongs to the document’s default namespace. A qualified
name is two no-colon-names separated by one colon character. The no-colon-name before the
colon is the qualified name’s namespace prefix, the no-colon-name after the colon is the
qualified name’s “local” name (meaning local to the namespace identified by the namespace
prefix). Similarly, the unqualified name is a local name in the default namespace.

The formal name of a namespace is a URI. The namespace prefix used in an XML document is
not the name of the namespace. The namespace name shall be globally unique. It has a single
definition that is accessible to anyone who uses the namespace. It has the same meaning
anywhere that it is used, both inside and outside XML documents. The namespace prefix,
however, in formal XML usage, is defined only in an XML document. It shall be locally unique
to the document. Any valid XML no-colon-name may be used. And, in formal XML usage,
different XML documents may use different namespace prefixes to refer to the same namespace.
The creation and use of the namespace prefix was standardized by the W3C XML Committee
in [32] strictly as a convenient local shorthand replacement for the full URI name of a
namespace in individual documents.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 15

All AV object properties are represented in XML by element and attribute names, therefore, all
property names belong to an XML namespace.

For the same reason that namespace prefixes are convenient in XML documents, it is
convenient in specification text to refer to namespaces using a namespace prefix. Therefore,
this specification declares a “standard” prefix for all XML namespaces used herein. In addition,
this specification expands the scope where these prefixes have meaning, beyond a single XML
document, to all of its text, XML examples, and certain string-valued properties. This expansion
of scope does not supersede XML rules for usage in documents, it only augments and
complements them in important contexts that are out-of-scope for the XML specifications. For
example, action arguments which refer to CDS properties, such as the SearchCriteria argument
of the Search() action or the Filter argument of the Browse() action, shall use the predefined
namespace prefixes when referring to CDS properties (“upnp:”, “dc:”, etc).

All of the namespaces used in this specification are listed in Table 3 and Table 4. For each
such namespace, Table 3 gives a brief description of it, its name (a URI) and its defined
“standard” prefix name. Some namespaces included in these tables are not directly used or
referenced in this document. They are included for completeness to accommodate those
situations where this specification is used in conjunction with other UPnP specifications to
construct a complete system of devices and services. For example, since the
ScheduledRecording service depends on and refers to the ContentDirectory service, the
predefined “srs:” namespace prefix is included. The individual specifications in such collections
all use the same standard prefix. The standard prefixes are also used in Table 4 to cross-
reference additional namespace information. Table 4 includes each namespace’s valid XML
document root element(s) (if any), its schema file name, versioning information (to be discussed
in more detail below), and a link to the entry in Clause 2 for its associated schema.

The normative definitions for these namespaces are the documents referenced in Table 3. The
schemas are designed to support these definitions for both human understanding and as test
tools. However, limitations of the XML Schema language itself make it difficult for the UPnP-
defined schemas to accurately represent all details of the namespace definitions. As a result,
the schemas will validate many XML documents that are not valid according to the specifications.

The Working Committee expects to continue refining these schemas after specification release
to reduce the number of documents that are validated by the schemas while violating the
specifications, but the schemas will still be informative, supporting documents. Some schemas
might become normative in future versions of the specifications.

Table 3 — Namespace Definitions

Standard
Name-
space
Prefix Namespace Name Namespace Description

Normative
Definition
Document
Reference

AV Working Committee defined namespaces

atrs urn:schemas-upnp-
org:av:AllowedTransformSettings

AllowedTransformSettings and
AllowedDefaultTransformSettings
state variables for
RenderingControl

[21]

av urn:schemas-upnp-org:av:av Common data types for use in AV
schemas

[3]

avdt urn:schemas-upnp-org:av:avdt Datastructure Template [2]

avs urn:schemas-upnp-org:av:avs Common structures for use in AV
schemas

[4]

avt-event urn:schemas-upnp-org:metadata-1-
0/AVT/

Evented LastChange state variable
for AVTransport

[5]

cds-event urn:schemas-upnp-org:av:cds-event Evented LastChange state variable
for ContentDirectory

[7]

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 16

Standard
Name-
space
Prefix Namespace Name Namespace Description

Normative
Definition
Document
Reference

cm-dciu urn:schemas-upnp-org:av:cm-
deviceClockInfoUpdates

Evented DeviceClockInfoUpdates
state variable for
ConnectionManager

[9]

cm-ftrlst urn:schemas-upnp-org:av:cm-
featureList

FeatureList state variable for
ConnectionManager

[9]

didl-lite urn:schemas-upnp-org:metadata-1-
0/DIDL-Lite/

Structure and metadata for
ContentDirectory

[7]

dmo urn:schemas-upnp.org:av:dmo Evented DeviceMode state
variable for ContentDirectory

[7]

dmor urn:schemas-upnp.org:av:dmor A_ARG_TYPE_DeviceModeReque
st state variable for
ContentDirectory

[7]

dmos urn:schemas-upnp.org:av:dmos DeviceModeStatus state variable
for ContentDirectory

[7]

pi urn:schemas-upnp.org:av:pi PermissionsInfo state variable for
ContentDirectory

[7]

rcs-event urn:schemas-upnp-org:metadata-1-
0/RCS/

Evented LastChange state variable
for RenderingControl

[21]

rii urn:schemas-upnp-org:av:rii A_ARG_TYPE_RenderingInfoList
state variable for
ConnectionManager

[9]

rpl urn:schemas-upnp-org:av:rpl A_ARG_TYPE_PlaylistInfo state
variable for AVTransport

[5]

srs urn:schemas-upnp-org:av:srs Metadata and structure for
ScheduledRecording

[25]

srs-event urn:schemas-upnp-org:av:srs-event Evented LastChange state variable
for ScheduledRecording

[25]

trs urn:schemas-upnp-
org:av:TransformSettings

TransformSettings and
DefaultTransformSettings state
variables for RenderingControl

[21]

upnp urn:schemas-upnp-org:metadata-1-
0/upnp/

Metadata for ContentDirectory [7]

Externally defined namespaces

dc http://purl.org/dc/elements/1.1/ Dublin Core [13]

xsd http://www.w3.org/2001/XMLSchema XML Schema Language 1.0 [33], [34]

xsi http://www.w3.org/2001/XMLSchema-
instance

XML Schema Instance Document
schema

[33] 2.6 & 3.2.7

xml http://www.w3.org/XML/1998/namesp
ace

The “xml:” Namespace [30]

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 17

Table 4 — Schema-related Information

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 18

Standard
Name-
space
Prefix

Relative URI and
File Name a

● Form 1, Form 2,
Form3 Valid Root Element(s) Schema Reference

AV Working Committee Defined Namespaces

atrs AllowedTransformSetting
s-vn-yyyymmdd.xsd
AllowedTransformSetting
s-vn.xsd
AllowedTransformSetting
s.xsd

<TransformList> [1]

av av-vn-yyyymmdd.xsd
av-vn.xsd
av.xsd

n/a [3]

avdt avdt-vn-yyyymmdd.xsd
avdt-vn.xsd
avdt.xsd

<AVDT> [2]

avs avs-vn-yyyymmdd.xsd
avs-vn.xsd
avs.xsd

<Capabilities>

<Features>

<stateVariableValuePairs>

[4]

avt-event avt-event-vn-
yyyymmdd.xsd
avt-event-vn.xsd
avt-event.xsd

<Event> [6]

cds-event cds-event-vn-
yyyymmdd.xsd
cds-event-vn.xsd
cds-event.xsd

<StateEvent> [8]

cm-dciu cm-
deviceClockInfoUpdates-
vn-yyyymmdd.xsd
cm-
deviceClockInfoUpdates
-vn.xsd
cm-
deviceClockInfoUpdates.
xsd

<DeviceClockInfoUpdates> [10]

cm-ftrlst cm-featureList-vn-
yyyymmdd.xsd
cm-featureList-vn.xsd
cm-featureList.xsd

<Features> [11]

didl-lite didl-lite-vn-
yyyymmdd.xsd
didl-lite-vn.xsd
didl-lite.xsd

<DIDL-Lite> [15]

dmo dmo-vn-yyyymmdd.xsd
dmo-vn.xsd
dmo.xsd

<DeviceMode> [16]

dmor dmor-vn-yyyymmdd.xsd
dmor-vn.xsd
dmor.xsd

<DeviceModeRequest> [17]

dmos dmos-vn-yyyymmdd.xsd
dmos-vn.xsd
dmos.xsd

<DeviceModeStatus> [18]

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 19

Standard
Name-
space
Prefix

Relative URI and
File Name a

● Form 1, Form 2,
Form3 Valid Root Element(s) Schema Reference

pi pi-vn-yyyymmdd.xsd
pi-vn.xsd
pi.xsd

<PermissionsInfo> [20]

rcs-event rcs-event-vn-
yyyymmdd.xsd
rcs-event-vn.xsd
rcs-event.xsd

<Event> [22]

rii rii-vn-yyyymmdd.xsd
rii-vn.xsd
rii.xsd

<rendererInfo> [23]

rpl rpl-vn-yyyymmdd.xsd
rpl-vn.xsd
rpl.xsd

<PlaylistInfo> [24]

trs TransformSettings-vn-
yyyymmdd.xsd
TransformSettings-
vn.xsd
TransformSettings.xsd

<TransformSettings> [28]

srs srs-vn-yyyymmdd.xsd
srs-vn.xsd
srs.xsd

<srs> [26]

srs-event srs-event-vn-
yyyymmdd.xsd
srs-event-vn.xsd
srs-event.xsd

<StateEvent> [27]

upnp upnp-vn-yyyymmdd.xsd
upnp-vn.xsd
upnp.xsd

n/a [29]

Externally Defined Namespaces

dc Absolute URL: http://dublincore.org/schemas/xmls/simpledc20021212.xsd [12]

xsd n/a <schema> [35]

xsi n/a n/a

xml n/a [31]

a Absolute URIs are generated by prefixing the relative URIs with "http://www.upnp.org/schemas/av/"

 Namespace Prefix Requirements
There are many occurrences in this specification of string data types that contain XML names
(property names). These XML names in strings will not be processed under namespace-aware
conditions. Therefore, all occurrences in instance documents of XML names in strings shall use
the standard namespace prefixes as declared in Table 3. In order to properly process the XML
documents described herein, control points and devices shall use namespace-aware XML
processors [32] for both reading and writing. As allowed by [32], the namespace prefixes used
in an instance document are at the sole discretion of the document creator. Therefore, the
declared prefix for a namespace in a document may be different from the standard prefix. All
devices shall be able to correctly process any valid XML instance document, even when it uses
a non-standard prefix for ordinary XML names. However, it is strongly recommended that all
devices use these standard prefixes for all instance documents to avoid confusion on the part
of both human and machine readers. These standard prefixes are used in all descriptive text
and all XML examples in this and related UPnP specifications. However, each individual

© 2014, UPnP Forum. All rights Reserved.

http://www.upnp.org/schemas/av/

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 20

specification may assume a default namespace for its descriptive text. In that case, names from
that namespace may appear with no prefix.

The assumed default namespace, if any, for each UPnP AV specification is given in Table 5.

Note: all UPnP AV schemas declare attributes to be “unqualified”, so namespace prefixes are
never used with AV Working Committee defined attribute names.

Table 5 — Default Namespaces for the AV Specifications

AV Specification Name Default Namespace Prefix

AVTransport avt-event

ConnectionManager n/a

ContentDirectory didl-lite

MediaRenderer n/a

MediaServer n/a

RenderingControl rcs-event

ScheduledRecording srs

 Namespace Names, Namespace Versioning and Schema Versioning
The UPnP AV service specifications define several data structures (such as state variables and
action arguments) whose format is an XML instance document that complies with one or more
specific XML schemas, which define XML namespaces. Each namespace is uniquely identified
by an assigned namespace name. The namespace names that are defined by the AV Working
Committee are URNs. See Table 3 for a current list of namespace names. Additionally, each
namespace corresponds to an XML schema document that provides a machine-readable
representation of the associated namespace to enable automated validation of the XML (state
variable or action parameter) instance documents.

Within an XML schema and XML instance document, the name of each corresponding
namespace appears as the value of an xmlns attribute within the root element. Each xmlns
attribute also includes a namespace prefix that is associated with that namespace in order to
qualify and disambiguate element and attribute names that are defined within different
namespaces. The schemas that correspond to the listed namespaces are identified by URI
values that are listed in the schemaLocation attribute also within the root element (see
subclause 4.3.3).

In order to enable both forward and backward compatibility, namespace names are permanently
assigned and shall not change even when a new version of a specification changes the
definition of a namespace. However, all changes to a namespace definition shall be backward-
compatible. In other words, the updated definition of a namespace shall not invalidate any XML
documents that comply with an earlier definition of that same namespace. This means, for
example, that a namespace shall not be changed so that a new element or attribute becomes
required in a conforming instance document. Although namespace names shall not change,
namespaces still have version numbers that reflect a specific set of definitional changes. Each
time the definition of a namespace is changed, the namespace’s version number is incremented
by one.

Whenever a new namespace version is created, a new XML schema document (.xsd) is created
and published so that the new namespace definition is represented in a machine-readable form.
Since a XML schema document is just a representation of a namespace definition, translation
errors can occur. Therefore, it is sometime necessary to re-release a published schema in order
to correct typos or other namespace representation errors. In order to easily identify the
potential multiplicity of schema releases for the same namespace, the URI of each released
schema shall conform to the following format (called Form 1):

Form 1: "http://www.upnp.org/schemas/av/" schema-root-name "-v" ver "-" yyyymmdd where

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 21

• schema-root-name is the name of the root element of the namespace that this schema
represents.

• ver corresponds to the version number of the namespace that is represented by the schema.

• yyyymmdd is the year, month and day (in the Gregorian calendar) that this schema was
released.

Table 4 identifies the URI formats for each of the namespaces that are currently defined by the
UPnP AV Working Committee.

As an example, the original schema URI for the “rcs-event” namespace (that was released with
the original publication of the UPnP AV service specifications in the year 2002) was
“http://www.upnp.org/schemas/av/rcs-event-v1-20020625.xsd”. When the UPnP AV service
specifications were subsequently updated in the year 2006, the URI for the updated version of
the “rcs-event” namespace was “http://www.upnp.org/schemas/av/rcs-event-v2-20060531.xsd”.
However, in 2006, the schema URI for the newly created “srs-event” namespace was
“http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd”. Note the version field for the
“srs-event” schema is “v1” since it was first version of that namespace whereas the version field
for the “rcs-event” schema is “v2” since it was the second version of that namespace.

In addition to the dated schema URIs that are associated with each namespace, each namepace
also has a set of undated schema URIs. These undated schema URIs have two distinct formats
with slightly different meanings:

Form 2: “http://www.upnp.org/schemas/av/” schema-root-name “-v” ver
where ver is described above.

Form 3: “http://www.upnp.org/schemas/av/” schema-root-name

Form 2 of the undated schema URI is always linked to the most recent release of the schema
that represents the version of the namespace indicated by ver. For example, the undated URI
“…/av/rcs-event-v2.xsd” is linked to the most recent schema release of version 2 of the “rcs-
event” namespace. Therefore, on May 31, 2006 (20060531), the undated schema URI was
linked to the schema that is otherwise known as “…/av/rcs-event-v2-20060531.xsd”.
Furthermore, if the schema for version 2 of the “rcs-event” namespace was ever re-released,
for example to fix a typo in the 20060531 schema, then the same undated schema URI
(“…/av/rcs-event-v2.xsd”) would automatically be updated to link to the updated version 2
schema for the “rcs-event” namespace.

Form 3 of the undated schema URI is always linked to the most recent release of the schema
that represents the highest version of the namespace that has been published. For example,
on June 25, 2002 (20020625), the undated schema URI “…/av/rcs-event.xsd” was linked to the
schema that is otherwise known as “…/av/rcs-event-v1-20020625.xsd”. However, on May 31,
2006 (20060531), that same undated schema URI was linked to the schema that is otherwise
known as “…/av/rcs-event-v2-20060531.xsd”.

When referencing a schema URI within an XML instance document or a referencing XML
schema document, the following usage rules apply:

• All instance documents, whether generated by a service or a control point, shall use Form
3.

• All UPnP AV published schemas that reference other UPnP AV schemas shall also use Form
3.

Within an XML instance document, the definition for the schemaLocation attribute comes from
the XML Schema namespace “http://www.w3.org/2002/XMLSchema-instance”. A single
occurrence of the attribute can declare the location of one or more schemas. The
schemaLocation attribute value consists of a whitespace separated list of values that is
interpreted as a namespace name followed by its schema location URL. This pair-sequence is
repeated as necessary for the schemas that need to be located for this instance document.

© 2014, UPnP Forum. All rights Reserved.

http://www.upnp.org/schemas/av/rcs-event-v1-20020625.xsd
http://www.upnp.org/schemas/av/rcs-event-v2-20060531.xsd
http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 22

In addition to the schema URI naming and usage rules described above, each released schema
shall contain a version attribute in the <schema> root element. Its value shall correspond to
the format:

ver “-” yyyymmdd where ver and yyyymmdd are described above.

The version attribute provides self-identification of the namespace version and release date
of the schema itself. For example, within the original schema released for the “rcs-event”
namespace (…/rcs-event-v2-20020625.xsd), the <schema> root element contains the following
attribute: version="2-20020625".

 Namespace Usage Examples
The schemaLocation attribute for XML instance documents comes from the XML Schema
instance namespace “http://www.w3.org/2002/XMLSchema-instance”. A single occurrence of
the attribute can declare the location of one or more schemas. The schemaLocation attribute
value consists of a whitespace separated list of values: namespace name followed by its
schema location URL. This pair-sequence is repeated as necessary for the schemas that need
to be located for this instance document.

Example 1:

Sample DIDL-Lite XML Instance Document. Note that the references to the UPnP AV schemas
do not contain any version or release date information. In other words, the references follow
Form 3 from above. Consequently, this example is valid for all releases of the UPnP AV service
specifications.

<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://www.upnp.org/schemas/av/didl-lite.xsd
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://www.upnp.org/schemas/av/upnp.xsd">
 <item id="18" parentID="13" restricted="0">
 ...
 </item>
</DIDL-Lite>

 Vendor-defined Extensions
Whenever vendors create additional vendor-defined state variables, actions or properties, their
assigned names and XML representation shall follow the naming conventions and XML rules
as specified below in subclauses 4.4.1 to 4.4.4.

 Vendor-defined Action Names
Vendor-defined action names shall begin with “X_”. Additionally, it should be followed by an
ICANN assigned domain name owned by the vendor followed by the underscore character (“_”).
It shall then be followed by the vendor-assigned action name. The vendor-assigned action name
shall not contain a hyphen character (“-”, 2D Hex in UTF-8) nor a hash character (“#”, 23 Hex
in UTF-8). Vendor-assigned action names are case sensitive. The first character of the name
shall be a US-ASCII letter (“A”-“Z”, “a”-“z”), US-ASCII digit (“0”-“9”), an underscore (“_”), or a
non-experimental Unicode letter or digit greater than U+007F. Succeeding characters shall be
a US-ASCII letter (“A”-“Z”, “a”-“z”), US-ASCII digit (“0”-“9”), an underscore (“_”), a period (“.”),
a Unicode combiningchar, an extender, or a non-experimental Unicode letter or digit greater
than U+007F. The first three letters shall not be “XML” in any combination of case.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 23

 Vendor-defined State Variable Names
Vendor-defined state variable names shall begin with “X_”. Additionally, it should be followed
by an ICANN assigned domain name owned by the vendor, followed by the underscore
character (“_”). It shall then be followed by the vendor-assigned state variable name. The
vendor-assigned state variable name shall not contain a hyphen character (“-”, 2D Hex in UTF-
8). Vendor-assigned action names are case sensitive. The first character of the name shall be
a US-ASCII letter (“A”-“Z”, “a”-“z”), US-ASCII digit (“0”-“9”), an underscore (“_”), or a non-
experimental Unicode letter or digit greater than U+007F. Succeeding characters shall be a US-
ASCII letter (“A”-“Z”, “a”-“z”), US-ASCII digit (“0”-“9”), an underscore (“_”), a period (“.”), a
Unicode combiningchar, an extender, or a non-experimental Unicode letter or digit greater than
U+007F. The first three letters shall not be “XML” in any combination of case.

 Vendor-defined XML Elements and attributes
UPnP vendors may add non-standard elements and attributes to a UPnP standard XML
document, such as a device or service description. Each addition shall be scoped by a vendor-
owned XML namespace. Arbitrary XML shall be enclosed in an element that begins with “X_,”
and this element shall be a sub element of a standard complex type. Non-standard attributes
may be added to standard elements provided these attributes are scoped by a vendor-owned
XML namespace and begin with “X_”.

 Vendor-defined Property Names
UPnP vendors may add non-standard properties to the ContentDirectory service. Each property
addition shall be scoped by a vendor-owned namespace. The vendor-assigned property name
shall not contain a hyphen character (“-”, 2D Hex in UTF-8). Vendor-assigned property names
are case sensitive. The first character of the name shall be a US-ASCII letter (“A”-“Z”, “a”-“z”),
US-ASCII digit (“0”-“9”), an underscore (“_”), or a non-experimental Unicode letter or digit
greater than U+007F. Succeeding characters shall be a US-ASCII letter (“A”-“Z”, “a”-“z”), US-
ASCII digit (“0”-“9”), an underscore (“_”), a period (“.”), a Unicode combiningchar, an extender,
or a non-experimental Unicode letter or digit greater than U+007F. The first three letters shall
not be “XML” in any combination of case.

5 Service Modeling Definitions

 ServiceType
The following service type identifies a service that is compliant with this template:

 urn:schemas-upnp-org:service:ConnectionManager:3

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 24

 State Variables
 State Variable Overview

Table 6 — State Variables

Variable Name R/A a Data
Type

Allowed Value Default
Value

Eng.
Units

SourceProtocolInfo R string CSV b (string)
See 5.2.2

SinkProtocolInfo R string CSV (string)
See 5.2.3

CurrentConnectionIDs R string CSV (ui4)
See 5.2.4

FeatureList R string Features XML Document
See 5.2.5

ClockUpdateID CR c ui4 See 5.2.6

DeviceClockInfoUpdates CR c string DeviceClockInfoUpdates
XML Document
See 5.2.7

A_ARG_TYPE_ConnectionStatus R string See 5.2.8

A_ARG_TYPE_ConnectionManager R string See 5.2.9

A_ARG_TYPE_Direction CR c string See 5.2.10

A_ARG_TYPE_ProtocolInfo R string See 5.2.11

A_ARG_TYPE_ConnectionID R i4 See 5.2.12

A_ARG_TYPE_AVTransportID R i4 See 5.2.13

A_ARG_TYPE_RcsID R i4 See 5.2.14

A_ARG_TYPE_ItemInfoFilter CR c string CSV (string)
See 5.2.15

A_ARG_TYPE_Result CR c string See 5.2.16

A_ARG_TYPE_RenderingInfoList CR c string See 5.2.17

Non-standard state variables implemented
by a UPnP vendor go here

X TBD TBD TBD TBD

Note: State variables A_ARG_TYPE_ConnectionID, A_ARG_TYPE_AVTransportID, and A_ARG_TYPE_RcsID are
specified as being of data type i4 to accommodate the fact that some actions require these arguments to contain
the special value -1. This special value is used as a return value to indicate that the service is not implemented on
the device or is not needed for a particular connection. It can also be used as an InstanceID input argument when
the actual InstanceID value is not (yet) known or the service does not exist.

Action GetCurrentConnectionIDs() in this specification and all InstanceIDs in other services (AVTransport service,
RenderingControl service, …) use data type ui4 to specify InstanceID variables. However, this does not present a
problem since a valid InstanceID value is always a non-negative integer and is always generated through an
argument that is of type i4, effectively limiting the valid range for any InstanceID to [0, 231-1]. This range always fits
in the valid range of an argument of data type ui4 (range is [0, 232-1]) so that an ‘out-of-range’ error will never occur
during assignment.

a For a device this column indicates whether the state variable shall be implemented or not, where R = required,
A = allowed, CR = conditionally required, CA = conditionally allowed, X = Non-standard, add -D when deprecated
(e.g., R-D, A-D).

b CSV stands for Comma-Separated Value list. The type between brackets denotes the UPnP data type used for
the elements inside the list. The CSV list concept is defined more formally in the ContentDirectory service
template.

c See referenced subclause for conditions under which the implementation of this state variable is required.

 SourceProtocolInfo
This required state variable contains a Comma-Separated Value (CSV) list of information on
protocols this ConnectionManager supports for ‘sourcing’ (sending) data, in its current state.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 25

(The content of the CSV list can change over time, for example due to local resource restrictions
on the device.) Besides the traditional notion of the term ‘protocol’, the protocol-related
information provided by the connection also contains other information such as supported
content formats. See Annex C for a general discussion on the notion of protocol info. See the
table in Annex C.2 for specific allowed values for this state variable. If the device does not
support sourcing data, this state variable shall be set to the empty string.

During normal operation, a MediaServer should ensure that there is consistency between what
is reported in the SourceProtocolInfo state variable and all the res@protocolInfo properties of
the items that populate the ContentDirectory; that is: at least all protocols that are used by any
of the content items should be enumerated in the SourceProtocolInfo state variable. (Wildcards
(“*”) can be used in SourceProtocolInfo to limit the number of entries in the CSV list.) Additional
protocols that are supported by the MediaServer but are not currently used by any of the content
items may also be listed.

Control points can use the SourceProtocolInfo CSV list to quickly find out what type of content
this MediaServer is capable of serving to the network.

 SinkProtocolInfo
This required state variable contains a Comma-Separated Value (CSV) list of information on
protocols this ConnectionManager supports for ‘sinking’ (receiving) data, in its current state.
(The content of the CSV list can change over time, for example due to local resource restrictions
on the device.) The format and allowed value list are the same as for the SourceProtocolInfo
state variable. If the device does not support ‘sinking’ data, this state variable shall be set to
the empty string.

A MediaRenderer can report temporary unavailability of a protocol (for example, codec not
available) by removing the appropriate entries from the SinkProtocolInfo CSV list.

 CurrentConnectionIDs
This required state variable contains a Comma-Separated Value list of references to current
active Connections. This list may change without explicit actions invoked by control points, for
example by out-of-band cleanup or termination of finished connections.

If allowed action PrepareForConnection() is not implemented then this state variable shall be
set to “0”, indicating that this ConnectionManager service only supports a single connection
identified by ConnectionID = 0.

 FeatureList
This required state variable enumerates the CM features (see Annex B) supported by this
ConnectionManager service. The value is a valid Features XML Document, according to [11].

• The root element of the document is <Features>. It contains zero or more child
<Feature> elements, each of which represents one ConnectionManager service feature
that is supported in this implementation.

• A <Feature> element shall have a version attribute and shall have a name attribute
containing the assigned name of the feature.

• A <Feature> element may have other attributes defined per each feature.

See the schema in [11] for more details on the structure.

 ClockUpdateID
This conditionally required state variable shall be supported if the CLOCKSYNC feature is
implemented. It is used to identify the current instance of the CLOCKSYNC feature. This state
variable is modified whenever a change occurs in the CLOCKSYNC feature of the device. A
change can be an addition or modification to the <DeviceClockInfo> element of the
CLOCKSYNC feature. The ClockUpdateID state variable contains a numeric value that is
incremented whenever change occurs in CLOCKSYNC feature of the device. Initial value of
ClockUpdateID state variable shall be zero (0).

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 26

 DeviceClockInfoUpdates
This conditionally required state variable shall be supported if the CLOCKSYNC feature is
implemented. It contains a DeviceClockInfoUpdates XML Document identifying changes to
ClockUpdateID state variable that have occurred since the last time the
DeviceClockInfoUpdates state variable was evented. The description of each feature is
contained within a child-element of the (one and only one) <DeviceClockInfoUpdates> root
element. The optional XML header <?xml version="1.0" ?> may precede the root element.

The following example shows a “template” for the format of the DeviceClockInfoUpdates state
variable. Additional elements and/or attributes may be added to future versions of this
specification. Furthermore, a 3rd-party vendor may add vendor-defined elements or attributes.

In order to eliminate element or attribute naming conflicts, the name of any vendor-defined
element or attribute shall follow the rules set forth in subclause 4.4.3. All control points should
gracefully ignore any element or attribute that it does not understand.

The following XML template includes the vendor character style which shows the fields that
need to be filled out by individual implementations.

<?xml version="1.0" encoding="utf-8"?>
<DeviceClockInfoUpdates
 xmlns="urn:schemas-upnp-org:av:cm-deviceClockInfoUpdates"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:cm-deviceClockInfoUpdates
 http://www.upnp.org/schemas/av/cm-deviceClockInfoUpdates.xsd">
 <DeviceClockInfoUpdate
 id="unique ID for this deviceClock instance"
 updateID="ClockUpdateID for this device"/>
 …
</DeviceClockInfoUpdates>

<xml>
Allowed. Case sensitive.

<DeviceClockInfoUpdates>

Required. Shall include a namespace declaration for the ConnectionManager service Feature List Schema
(“urn:schemas-upnp-org:av:cm-deviceClockInfoUpdates”). Vendor-defined attributes may be used with the
<deviceClockInfoUpdates> element. Vendor-defined elements are may be appear as children of the
<deviceClockInfoUpdates> element. This element shall include one or more of the following elements. This
namespace defines the following elements and attributes:

<DeviceClockInfoUpdate>

Required. This element includes the ClockUpdateID state variable identifying changes to the
CLOCKSYNC feature. Vendor-defined attributes may be used with the <deviceClockInfoUpdate>
element. Vendor-defined elements are may be appear as children of the <deviceClockInfoUpdate>
element.

Contains the following attributes:

id

Required. xsd:string. The ID of for the instance of the <deviceClockInfo> element which
has been updated (see B.2, Requirements for the CLOCKSYNC feature, Version 1).

updateID

Required. xsd:unsignedInt. Contains the value of the ClockUpdateID state variable that
resulted when the <deviceClockInfo> element was added or modified.

Example:

The following example shows update information for three different clock devices.

<?xml version="1.0" encoding="utf-8"?>
<deviceClockInfoUpdates
 xmlns="urn:schemas-upnp-org:av:cm-deviceClockInfoUpdates"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 27

 xsi:schemaLocation="
 urn:schemas-upnp-org:av:cm-deviceClockInfoUpdates
 http://www.upnp.org/schemas/av/cm-deviceClockInfoUpdates.xsd">
 <deviceClockInfoUpdate id="Clock#1" updateID="1" />
 <deviceClockInfoUpdate id="Clock#2" updateID="1" />
 <deviceClockInfoUpdate id="Clock#3" updateID="3" />
</deviceClockInfoUpdates>

 A_ARG_TYPE_ConnectionStatus
This required state variable is introduced to provide type information for the Status argument in
the GetCurrentConnectionInfo() action. This status may change dynamically due to changes in
the network.

Table 7 — allowedValueList for A_ARG_TYPE_ConnectionStatus

Value R/A

“OK” R

“ContentFormatMismatch” R

“InsufficienBandwidth” R

“UnreliableChannel” R

“Unknown” R

Vendor-defined X

 A_ARG_TYPE_ConnectionManager
This required state variable is introduced to provide type information for the
PeerConnectionManager argument in actions PrepareForConnection() and
GetCurrentConnectionInfo(). A ConnectionManager reference takes the form of a
UDN/serviceId pair (the slash is the delimiter). A control point can use UPnP discovery (SSDP)
to obtain a ConnectionManager’s description document from the UDN. Subsequently, the
ConnectionManager’s service description can be obtained by using the serviceId part of the
reference.

 A_ARG_TYPE_Direction
This conditionally required state variable shall be supported when the PrepareForConnection()
action is implemented. It is used to provide type information for the Direction argument in the
PrepareForConnection() action.

Table 8 — allowedValueList for A_ARG_TYPE_Direction

Value R/A

“Output” R

“Input” R

 A_ARG_TYPE_ProtocolInfo
This required state variable is introduced to provide type information for the RemoteProtocolInfo
argument in action PrepareForConnection() and the ProtocolInfo argument in action
GetCurrentConnectionInfo().

 A_ARG_TYPE_ConnectionID
This required state variable is introduced to provide type information for the ConnectionID
argument in actions PrepareForConnection(), ConnectionComplete() and
GetCurrentConnectionInfo().

 A_ARG_TYPE_AVTransportID
This required state variable is introduced to provide type information for the AVTransportID
argument in actions: PrepareForConnection() and GetCurrentConnectionInfo(). It identifies a

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 28

logical instance of the AVTransport service associated with a Connection. See AVTransport
specification [5], Annex B.6 for more information.

 A_ARG_TYPE_RcsID
This required state variable is introduced to provide type information for the RcsID argument in
actions PrepareForConnection() and GetCurrentConnectionInfo(). It identifies a logical instance
of the RenderingControl service associated with a connection. See RenderingControl
specification [21], subclause 1.2 and Annex A.1 for more information.

 A_ARG_TYPE_ItemInfoFilter
This conditionally required state variable shall be supported when the GetRandererItemInfo()
action is implemented. It is introduced to provide type information for the ItemInfoFilter
argument in the GetRendererItemInfo() action. The ItemInfoFilter argument applies to a
document using the schema [23] as the default namespace. The comma-separated list of
property specifiers indicates which metadata properties are to be returned in the
ItemRenderingInfo argument of the GetRendererItemInfo() action. Each property name shall
include the predefined namespace prefix for that property, except for the “rii:” namespace prefix
which is assumed by default. All dependent property names shall be fully qualified using the
double colon (“::”).

For example:

itemInfo::resPlaybackInfo::drmInfo

The ItemInfoFilter argument allows control points to control the complexity of the object
metadata properties that are returned within the ItemRenderingInfo argument of the
GetRendererItemInfo() action. Properties required by the schema [23] are always returned in
the ItemRenderingInfo output argument. The ItemInfoFilter argument allows a control point to
specify additional properties, not required by the schema [23] to be returned in
ItemRenderingInfo. The GetRenderingItemInfo() action should not return optional properties
unless they are explicitly requested in the ItemInfoFilter input argument.

Both independent and dependent properties may be included in the comma-separated
ItemInfoFilter argument. If the ItemInfoFilter argument is equal to “*”, all supported properties,
both required and allowed, from all namespaces are returned. An independent property or an
independent child property may be suffixed by the “#” U+0023 character. When present, this
suffix indicates that the actions associated with the A_ARG_TYPE_ItemInfoFilter argument
shall return all child properties descended from the indicated property.

The GetRenderingItemInfo() action shall also ignore optional properties requested in the
ItemInfoFilter input argument, which are not actually present in the matching objects.

The A_ARG_TYPE_ItemInfoFilter state variable is intended to follow semantics similar to those
defined for the A_ARG_TYPE_Filter state variable in the ContentDirectory service.

Example 1: The ItemInfoFilter argument in a GetRendererItemInfo() action is specified as
itemInfo::resPlaybackInfo::drmInfo#, indicating that the action should return digital
rights information for each res property.

Request:

GetRendererItemInfo(
"itemInfo::resPlaybackInfo::drmInfo#",
"<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://www.upnp.org/schemas/av/didl-lite.xsd

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 29

 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://www.upnp.org/schemas/av/upnp.xsd">
 <item id="Item_0002" parentID="13" restricted="0">
 <dc:title>Try a little tenderness</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/mpeg:*" size="3558000">
 http://168.192.1.1/audio197.mp3
 </res>
 </item>
</DIDL-Lite>")

Response:

GetRendererItemInfo(
"<rendererInfo xmlns="urn:schemas-upnp-org:av:rii"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:rii
 http://www.upnp.org/schemas/av/rii.xsd">
 <itemInfo itemID="Item_0002">
 <resPlaybackInfo resIndex="0" canPlay="1">
 <drmInfo drmProtected="1" drmStatus="OK">
 <drmSystem>
 <friendlyName>Not So Free Music</friendlyName>
 <ICANNName>OpenMobileAlliance.ORG</ICANNName>
 <systemName>DRM_REL_DD</systemName>
 <systemVersion>2.1</systemVersion>
 </drmSystem>
 <licenseRights type="play">
 <licenseUsageTimeRemaining>
 P5D20:00:00
 </licenseUsageTimeRemaining>
 <licenseSubscriptionTimeRemaining>
 P1D20:00:00
 </licenseSubscriptionTimeRemaining>
 <licenseUsageCountRemaining>4</licenseUsageCountRemaining>
 </licenseRights>
 </drmInfo>
 </resPlaybackInfo>
 </itemInfo>
</rendererInfo>")

 A_ARG_TYPE_Result
This conditionally required state variable shall be supported when the GetRendererItemInfo()
action is implemented. It is introduced to provide type information for the Result argument in
various actions. The structure of the Result argument is a DIDL-Lite XML Document:

• Optional XML declaration <?xml version="1.0" ?>

• <DIDL-Lite> is the root element.

• <item> is the element representing objects of class item and all its derived classes.

• Elements in the Dublin Core (“dc:”) and UPnP (“upnp:”) namespaces represent object
metadata.

• See the DIDL-Lite schema [15] for more details on the structure. The available properties
and their names are described in ContentDirectory specification [7], Annex B.

Note that since the value of Result is XML, it needs to be escaped (using the normal XML rules:
[36], and [37], 2.4 Character Data and Markup) before embedding in a SOAP response message.
In addition, when a value of type A_ARG_TYPE_Result is employed in a CSV list, commas (“,”)
that appear within XML CDATA shall be escaped as “\,”. See subclause 4.1.2.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 30

 A_ARG_TYPE_RenderingInfoList
This conditionally required state variable shall be supported when the GetRendererItemInfo()
action is implemented. It returns a document described by the schema [23], detailing whether
the render can play the indicated item formats. The structure of the document is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<rendererInfo
 xmlns="urn:schemas-upnp-org:av:rii"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:rii
 http://www.upnp.org/schemas/av/rii.xsd">

 <itemInfo
 itemID="object ID (@id property) of corresponding item">

 <resPlaybackInfo
 resID="res@id for item’s res property [if available]"
 resIndex="zero-based index of item’s res property "
 canPlay="boolean indicator that res property’s content is playable" >

 <drmInfo
 drmProtected="indicates whether this content-binary is DRM protected"
 drmStatus="indicator of DRM status for this res property">

 <drmSystem>
 <friendlyName>informative name of DRM system</friendlyName>
 <ICANNName>ICANN name of DRM system provider</ICANNName>
 <systemIdentifier>
 normative name of DRM system
 </systemIdentifier>
 <systemVersion>
 normative version of DRM system
 </systemVersion>
 </drmSystem>

 <licenseIdentifier>
 String identifying the DRM license instance.
 </licenseIdentifier>

 <licenseRights type ="play | copy | store | stream">

 <licenseSubscriptionTimeRemaining>

A duration indicating the amount of time remaining that the
end-user is allowed to begin using the license-right indicated
by the “type=” attribute or the <licenseRights> element.

 </licenseSubscriptionTimeRemaining>

 <licenseValidTimeRemaining>
 A duration indicating the amount of time remaining that the
 end-user is allowed to use the license right indicated by the
 “type=” attribute or the <licenseRights> element.
 </licenseValidTimeRemaining>

 <licenseUsageTimeRemaining>
 A duration indicating the amount of cumulative usage time
 remaining that the end-user is allowed to use the license right
 indicated by the “type=” attribute or the <licenseRights>
 element.
 </licenseUsageTimeRemaining>

 <licenseUsageCountRemaining>
 An integer indicating the number of times remaining that the
 end-user may use the license right indicated by the “type=”

© 2014, UPnP Forum. All rights Reserved.

http://www.w3.org/2001/XMLSchema-instance

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 31

 attribute or the <licenseRights> element.
 </licenseUsageCountRemaining>

 </licenseRights>

 </drmInfo>

 <playbackInfo

playbackCompatibility="A status code indicating the device’s ability
to play this content" />

 <videoStreamInfo
 outputResolution="Expected playback resolution" />

 <audioStreamInfo
 outputChannels="Expected number of audio output channels" />

 <imageStreamInfo
 outputResolution="Expected image output resolution" />

 </playbackInfo>

 <transformInfo>
 <TransformList
 xmlns="urn:schemas-upnp-org:av:AllowedTransformSettings"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "urn:schemas-upnp-org:av:AllowedTransformSettings
 http://www.upnp.org/schemas/av/AllowedTransformSettings.xsd">
 <transform name="Name of transform"
 shared="1 or 0 indicating shared ">
 <friendlyName>Friendly name of transform</friendlyName>
 <allowedValueRange
 unit="unit of the transform"
 scale="scale indication of the transform"

inactiveValue="value of the transform that does not result
in any effect on the (original) output">

 <minimum>minimum value</minimum>
 <maximum>maximum value</maximum>
 <step>increment value</step>
 </allowedValueRange>
 </transform>
 <transform name="Name of transform"
 shared="1 or 0 indicating shared">
 <friendlyName>Friendly name of transform</friendlyName>
 <allowedValueList
 unit="unit of the transform"
 scale="scale indication of the transform"

inactiveValue="value of the transform that does not result
in any effect on the (original) output">

 <allowedValue>enumerated value</allowedValue>
 <!-- other allowed values go here -->
 </allowedValueList>
 </transform>
 <!-- other transforms go here -->
 </TransformList>
 </transformInfo>
 </resPlaybackInfo>
 … Additional <resPlaybackInfo> elements [one per item <res> property] …

 </itemInfo>

 … Additional <itemInfo> [one per <item>] …

</rendererInfo>

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 32

?xml

Allowed. Case sensitive.

rendererInfo

Required. Shall include a namespace declaration for the schema (“urn:schemas-upnp-org:av:rii”) [23] and shall
include zero or more of the following elements.

itemInfo

Required. <XML>, Provides a description of the renderer’s ability to interpret and render a ContentDirectory
service item. It consist of a series of dependent elements that describe various aspects of the Rendering device
capabilities.

Note, each occurrence of this element corresponds to a ContentDirectory service item. If no ContentDirectory
service items are found, then this element shall be omitted.

@itemID

Required. xsd:string, For each <itemInfo> element the itemID attribute contains the value of the
@id property of a corresponding ContentDirectory service item.

resPlaybackInfo

Required. <XML>, Provides an overall status of the Renderer’s ability to play the content-binary
identified by the resIndex attribute of this element. In addition, the <resPlaybackInfo> element
includes dependent elements that describe specific characteristics of the content-binary.

Note, each occurrence of this element corresponds to a <res> element within the ContentDirectory
service item. If no <res> properties are found in the ContentDirectory service item then this element
shall be omitted.

@resID

Required. xsd:string, Returns the res@id property of the <res> element within the ContentDirectory
service item identified by the itemID attribute of the <itemInfo> element. If the ContentDirectory
service item res@id property is not present the “” value shall be returned for this attribute.

@resIndex

Required. xsd:unsignedInt, The index of the res property within the ContentDirectory service item
identified by the itemID attribute of the <itemInfo> element.

@canPlay

Required. xsd:boolean, Indicates whether the rendering device expects to be able to play the content-
binary identified by the resIndex attribute of the <resPlaybackInfo> element.

drmInfo

Allowed. <XML>, Provides an overall indication of the DRM status for the content-binary identified by
the resIndex attribute of the <resPlaybackInfo> parent element. In addition, this element may
contain detailed DRM system related information.

@drmProtected

Required. xsd:boolean, This property indicates whether the content-binary identified by the
resIndex attribute is DRM protected.

@drmStatus

Required. xsd:string, This property indicates the overall DRM status for the content-binary
identified by the resIndex attribute. Allowed values for the drmStatus attribute are defined
in the AVTransport specification [5]. See state variable DRMState.

drmSystem

Allowed. <XML>, Identifies the DRM system used to protect the content-binary identified by the
resIndex attribute.

friendlyName

Allowed. xsd:string Provides an informative name for the DRM system used to protect the
content-binary identified by the resIndex attribute. The value of this element is specified by
the device implementer.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 33

ICANNName

Required. xsd:string, Identifies the ICANN name for the DRM system used to protect the
content-binary identified by the resIndex attribute. The value of this element is specified by
the organization that defined the DRM system.

systemIdentifier

Allowed. xsd:string, Identifies the normative name for the DRM system used to protect the
content-binary identified by the resIndex attribute. The value of this element is specified by
the organization that defined the DRM system.

systemVersion

Allowed. xsd:string, Identifies the version for the DRM system used to protect the content-
binary identified by the resIndex attribute. The value of this element is specified by the
organization that defined the DRM system.

licenseIdentifier

Allowed, xsd:string, Identifies the DRM license instance for this content binary. The contents of this field
are vendor defined by the DRM system used to protect the content-binary identified by the resIndex
attribute.

licenseRights

Allowed, <XML>, Indicates the types of rendering operations this device is permitted to perform by the
DRM system for the content-binary identified by the resIndex attribute. The licenseRights element
may appear multiple times to provide license information for each license “right” conveyed by the content
provider.

@type

Required,xsd:string, Indicates the type of right the content-binary license provides. The
following license rights are defined:

“play”

Indicates that the content-binary license identified by the resIndex attribute allows
local playback (but not necessarily storage, copying or streaming of this item).

“store”

Indicates that the content-binary license identified by the resIndex attribute allows
making of an internal copy of this DRM protected item.

“copy”

Indicates that the content-binary license identified by the resIndex attribute allows
making of an external copy of this DRM protected item.

“stream”

Indicates that the content-binary license identified by the resIndex attribute allows
streaming of this DRM protected item over an encrypted link to an external device.

licenseUsageTimeRemaining

Allowed. xsd:string, Indicates the amount of cumulative playback time (duration) remaining on
the current DRM license. This playback time may be accumulated separate playback sessions.
This value is required to conform to the EBNF defined in ContentDirectory service [7], Annex
E.1.

For example: A video rental license may be available for 1 week but may only allow a 24-hour
viewing period. In this case, the <licensePlaybackTime> element value would be set to 24-
hours and begins to countdown when the content is first accessed. When this element value
counts down to zero, the content would no longer be available regardless of whether the
<licenseSubscriptionTimeRemaining> element indicated additional time is available.

licenseValidTimeRemaining

Allowed. xsd:string, Indicates the amount of “wall-clock” time duration that the current DRM
license will remain valid. This value is required to conform to the EBNF defined in
ContentDirectory service [7], Annex E.1.

licenseSubscriptionTimeRemaining

Allowed. xsd:string, Indicates the amount of time remaining that the duration content license
will be available to the end-user. This value is required to comform to the EBNF defined in
ContentDirectory service [7], Annex E.1. For example: A video rental license may be available

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 34

for 1 week but may only allow a 24-hour viewing period. In this case, the
<licenseSubscriptionTimeRemaining> element value would reflect the amount of time
remaining in the 7-day availability period of the content license.

licenseUsageCountRemaining

Allowed. xsd:unsignedInt, This element indicates the number of times remaining that the end-
user use this license right. This element should be omitted of there is no count restriction on
the current license right.

playbackInfo

Allowed. <XML>, Provides an overall indication of the rendering device’s ability to play the content-
binary identified by the resIndex attribute of the <resPlaybackInfo> parent element. In addition,
this element may contain detailed information concerning the rendering device’s capabilities to render
the content.

@playbackCompatibility

Required. xsd:string, This property indicates the overall playback error state for the content
binary. If the content cannot be played due to playback format or resource related issues, then
this field indicates the playback related error codes.

The following Playback error codes are defined:

“OK”

The rendering device expects to be able to render this content.

“DRM_ERROR”

The rendering device has detected a DRM related error condition that is likely to
prevent playback of this content-binary.

“OTHER_PLAYBACK_ERROR”

The rendering device has detected some other condition (not described by other
defined Playback error codes) that is likely to prevent playback of this content-binary.

“MEDIA_FORMAT_NOT_SUPPORTED”

The rendering device has determined that the media format for this content is not
supported by the rendering device.

“MEDIA_FORMAT_EXCEEDS_DEVICE_CAPABILITIES”

The rendering device indicates that the format for this content-binary is understood,
however, it is likely that this content-binary will not play successfully. Examples would
include a JPEG image that is too large to process, or an audio item that exceeds the
maximum bitrate the renderer can support.

“MULTI_STREAM_PLAYBACK_NOT_SUPPORTED”

The content binary has additional metadata indicating that it has one or more
secondary binaries associated with it, which shall be played together in a synchronized
way. The rendering device indicates that it is not capable of playing these content
binaries simultaneously.

videoStreamInfo

Allowed. <XML>, Provides detailed information about the rendering device presentation of the
video stream portion of the content-binary identified by the resIndex attribute of the
<resPlaybackInfo> parent element.

@outputResolution

Required. xsd:string, This element indicates the resolution of the output stream of the
renderer. The output resolution returned should reflect the effective resolution
presented to the end-user based on the renderer’s current configuration. The format
of this field shall be as follows:

 video-width 'x' video-height ('i' | 'p') [['/'] video-frame-rate] [',' vendor-specific]

 For example:

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 35

1920x1080i
1280x720p60
720x576p/25
640x480i60,param1=10,param2=30

audioStreamInfo

Allowed. <XML>, Provides detailed information about the rendering device presentation of the
audio stream portion of the content-binary identified by the resIndex attribute of the
<resPlaybackInfo> parent element.

@outputChannels

Required. xsd:string, This element describes the number of separate channels the
renderer will provide to the end-user as currently configured. This includes channels
that the render creates locally by “expanding” the input audio stream. Conversely, it
also may indicate that the renderer is configured to (or capable of) providing fewer
channels than provided in the input stream. The field is encoded as a speaker channel
configuration, either “n.n” or “n”, where the 1st integer indicates the number of full-
range of channels and the 2nd integer indicates the number of low-frequence channels.

For example:

7.1
5.1
2

imageStreamInfo

Allowed. <XML>, The <imageStreamInfo> element provides detailed information about the
rendering device’s presentation of an image content-binary image (ex: JPEG, PNG) identified
by the resIndex attribute of the <resPlaybackInfo> parent element.

@outputResolution

Required. xsd:string, This element indicates the resolution of the image as presented
to the end-user using the renderer’s default settings. The field is encoded as a WxH
resolution (640x480).

transformInfo

Allowed. <XML>, Provides a list of content transforms that are within the rendering device’s
ability to be performed on the content-binary identified by the resIndex attribute of the
<resPlaybackInfo> parent element. The one and only child element of this XML element is
an AllowedTransformSettings XML Document, defined by the AllowedTransformSettings state
variable in the RenderingControl service specification [21]. The list of transforms for the
identified content-binary shall be the same as if it is returned on an invocation of the
RenderingControl::GetAllowedTransformSettings() action using an instanceID to which this
content-binary’s resource is bound.

 Eventing and Moderation
Table 9 — Event Moderation

Variable Name Evented Moderated
Event

Max Event
Rate a

(seconds)

Logical
Combination

Min Delta
per Event b

SourceProtocolInfo YES NO

SinkProtocolInfo YES NO

CurrentConnectionIDs YES NO

FeatureList NO NO

ClockUpdateID NO NO

DeviceClockInfoUpdates YES NO

Non-standard state variables
implemented by a UPnP vendor
go here

TBD TBD TBD TBD TBD

a Determined by N, where Rate = (Event)/(N secs).
b (N) * (allowedValueRange Step).

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 36

 Actions
 Action Overview

Immediately following this table is detailed information about these actions, including short
descriptions of the actions, the effects of the actions on state variables, and error codes defined
by the actions.

Table 10 — Actions

Name R/A a Control
Point
R/A b

GetProtocolInfo() R CR c

PrepareForConnection() A A d

ConnectionComplete() A A

GetCurrentConnectionIDs() R A

GetCurrentConnectionInfo() R A

GetRendererItemInfo() A A

GetFeatureList() R R

Non-standard actions implemented by a UPnP vendor go here X X

a For a device this column indicates whether the state variable shall be implemented or not, where R = required,
A = allowed, CR = conditionally required, CA = conditionally allowed, X = Non-standard, add -D when
deprecated (e.g., R-D, A-D).

b For a control point this column indicates whether a control point shall be capable of invoking this action, where
R = required, A = allowed, CR = conditionally required, CA = conditionally allowed, X = Non-standard, add -D
when deprecated (e.g., R-D, A-D).

c Only required for a MediaRenderer control point (which is part of a 3-box scenario).
d The control point is not required to call the PrepareForConnection() action when implemented in the device,

but when the control point does not use the PrepareForConnection() the interaction with the device will always
be with an instanceID value of 0 and therefore will use less functionality of the MediaRenderer device.

Note that non-standard actions shall be implemented in such a way that they do not interfere
with the basic operation of the ConnectionManager service; that is: these actions shall be
optional and do not need to be invoked for the ConnectionManager service to operate normally.

 GetProtocolInfo()
This required action returns the protocol-related info that this ConnectionManager supports in
its current state, as a Comma-Separated Value list of strings according to Table C.1. Protocol-
related information for ‘sourcing’ data is returned in the Source argument and protocol-related
information for ‘sinking’ data is returned in the Sink argument. When this ConnectionManager
resides in a device that only supports ‘sourcing’ of data, the Sink argument shall return the
empty string. Likewise, when this ConnectionManager resides in a device that only supports
‘sinking’ of data, the Source argument shall return the empty string.

5.4.2.1 Arguments
Table 11 — Arguments for GetProtocolInfo()

Argument Direction relatedStateVariable

Source OUT SourceProtocolInfo

Sink OUT SinkProtocolInfo

5.4.2.2 Dependency on State
None.

5.4.2.3 Effect on State
None.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 37

5.4.2.4 Errors
None

 PrepareForConnection()
This allowed action is used to allow the device to prepare itself to connect to the network for
the purposes of sending or receiving media content (for example, a video stream).
PrepareForConnection() also allows the device to indicate whether or not it can establish a
connection based on the current status of the device and/or the current conditions of the
network.

The RemoteProtocolInfo input argument identifies the protocol, network, and format that shall
be used to transfer the content.

• If PrepareForConnection() is invoked on a MediaServer device, the RemoteProtocolInfo
argument shall be set to one of the ProtocolInfo entries from the CSV list obtained from the
peer MediaRenderer device via the GetProtocolInfo() action (see Annex C.2 for details). If
the peer device does not implement GetProtocolInfo() (because it is not a MediaRenderer
or not even a UPnP device), then the RemoteProtocolInfo argument shall be set to one of
the ProtocolInfo entries returned by the GetProtocolInfo() action on the local MediaServer
device.

• If PrepareForConnection() is invoked on a MediaRenderer device, the RemoteProtocolInfo
argument shall be set to the value of the protocolInfo attribute of the content item (located
in the ContentDirectory on the peer MediaServer device) that is going to be played (see
Annex C.2 for details). If the peer device does not implement a ContentDirectory service
(because it is not a MediaServer or not even a UPnP device), then the RemoteProtocolInfo
argument shall be set to one of the ProtocolInfo entries returned by the GetProtocolInfo()
action on the local MediaRenderer device.

The ConnectionID out argument is used to identify the connection that was prepared by the
device in response to this invocation. The ConnectionID is a device-specific value and is not
unique throughout the network. Therefore, the ConnectionIDs returned by the two end-points
of the same connection will generally not be the same value. Refer to
GetCurrentConnectionIDs() and/or the UPnP AV Device Architecture document for additional
information. The AVTransportID and RcsID out arguments are used to identify the AVTransport
and RenderingControl services that are associated with the connection. The returned values
are the InstanceIDs that need to be used when invoking subsequent invocations of the
AVTransport and RenderingControl services. An InstanceID value of -1 indicates the device did
not associate an AVTransport and/or RenderingControl service with this connection. The
returned ConnectionID, AVTransportID, and RcsID become invalid when the device closes the
connection. This will occur when ConnectionComplete() is invoked or any other time the device
decides to close the connection (a.k.a auto-cleanup). Refer to ConnectionComplete() for
additional information.

This action is marked allowed which means that each device manufacturer decides whether or
not to implement it. Therefore, some devices will implement PrepareForConnection() while other
devices will not. Since PrepareForConnection() allows a device to prepare itself to connect to
the network, if a device has implemented that action, control points need to invoke
PrepareForConnection() before attempting to stream any content; that is: before invoking
AVTransport::SetAVTransportURI() (see Annex C.3). Otherwise, the device may not operate
correctly because it has not been properly configured. Additionally, control points need to
invoke PrepareForConnection(), if implemented, so that the device can inform the control point,
via an error code, that the device’s current operating environment is not able to accommodate
the requested stream.

Once a connection has been prepared, it can be used to transfer several pieces of the content
before calling ConnectionComplete() as long as each content item is compatible with the
RemoteProtocolInfo argument that was passed into PrepareForConnection(); that is: each
content item has the same media format as specified in RemoteprotocolInfo.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 38

If a device does not implement PrepareForConnection(), it shall only support a single
connection at any time. This connection is implicitly assumed to be always present and is
identified by ConnectionID = 0.

5.4.3.1 Arguments
Table 12 — Arguments for PrepareForConnection()

Argument Direction relatedStateVariable

RemoteProtocolInfo IN A_ARG_TYPE_ProtocolInfo

PeerConnectionManager IN A_ARG_TYPE_ConnectionManager

PeerConnectionID IN A_ARG_TYPE_ConnectionID

Direction IN A_ARG_TYPE_Direction

ConnectionID OUT A_ARG_TYPE_ConnectionID

AVTransportID OUT A_ARG_TYPE_AVTransportID

RcsID OUT A_ARG_TYPE_RcsID

5.4.3.2 Dependency on State
None.

5.4.3.3 Effect on State
This action prepares the device to stream content to or from the specified peer
ConnectionManager, according to the specified direction and protocol information. The
PeerConnectionManager input argument identifies the ConnectionManager service on the other
side of the connection. The PeerConnectionID input argument identifies the specific connection
on that ConnectionManager service. This information allows a control point to link a connection
on device A to the corresponding connection on device B, via action
GetCurrentConnectionInfo(). If the PeerConnectionID is not known by a control point (for
example, this is the first of the two PrepareForConnection() actions), or the peer device doesn’t
implement PrepareForConnection() then this value shall be set to reserved value -1.

This action returns a locally unique ID for the established Connection in the ConnectionID
argument, and adds that ConnectionID to state variable CurrentConnectionIDs. This
ConnectionID might be used by a control point to manually terminate the established
Connection through (allowed) action ConnectionComplete(). It can also be used to retrieve
information associated with the Connection via action GetCurrentConnectionInfo(). Value -1 is
reserved, and shall not be returned.

This action may return a virtual InstanceID of a local AVTransport service in the AVTransportID
argument. This AVTransportID shall be passed as an input argument to the local AVTransport
service action invocations. If the returned AVTransportID is -1 (reserved value), then there is
no AVTransport service on this device that can be used to control the established connection.
This is dependent on the ‘push’ or ‘pull’ nature of the streaming protocol.

This action may return a virtual InstanceID of a local RenderingControl service in the RcsID
argument. This RcsID shall be passed as an input argument to the local RenderingControl
service action invocations. If the returned RcsID is -1 (reserved value), then there is no
RenderingControl service on this device, for example, because the device is a source device
(MediaServer) rather than a sink device (MediaRenderer).

Due to local restrictions on the device running the ConnectionManager, state variables
SourceProtocolInfo and/or SinkProtocolInfo may change (for example, certain physical ports on
the device are not available anymore for new connections) as a result of this action.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 39

5.4.3.4 Errors
Table 13 — Error Codes for PrepareForConnection()

errorCode errorDescription Description

400-499 TBD See Control clause in [14].

500-5999 TBD See Control clause in [14].

600-699 TBD See Control clause in [14].

701 Incompatible protocol
info

The connection cannot be established because the protocol info
argument is incompatible.

702 Incompatible
directions

The connection cannot be established because the directions of
the involved ConnectionManagers (source/sink) are incompatible.

703 Insufficient network
resources

The connection cannot be established because there are
insufficient network resources (bandwidth, channels, etc.).

704 Local restrictions The connection cannot be established because of local restrictions
in the device. This might happen, for example, when physical
resources on the device are already in use by other connections.

705 Access denied The connection cannot be established because the client is not
permitted to access the specified ConnectionManager.

707 Not in network The connection cannot be established because the
ConnectionManagers are not part of the same physical network.

708 Connection Table
overflow

The connection cannot be established because the specified
ConnectionManager has instantiated the maximum number of
simultaneous connections it has room for in its internal data
structures. Closing one connection will resolve the issue.

709 Internal processing
resources exceeded

The connection cannot be established because the device does
not have sufficient internal processing resources to handle the
new connection. Closing one or more connections on this device
may resolve the issue.

710 Internal memory
resources exceeded

The connection cannot be established because the device does
not have sufficient internal memory resources to handle the new
connection. Closing one or more connections on this device may
resolve the issue.

711 Internal storage
system capabilities
exceeded

The connection cannot be established because the device does
not have sufficient internal storage system capabilities to handle
the new connection. Closing one or more connections on this
device may resolve the issue.

 ConnectionComplete()
This allowed action is used to inform the device that the specified connection, which was
previously allocated by PrepareForConnection(), is no longer needed. Any resources that were
allocated for that connection during PrepareForConnection() can be freed by the device at its
discretion.

In some situations, ConnectionComplete() may never be invoked; for example, the control point
spontaneously goes away. In order to prevent an unused connection from permanently
consuming resources, the device should automatically cleanup unused connections. The
process for determining when a connection should be automatically cleaned up is
implementation dependent. For example, a device may decide to close a connection after the
connection has been inactive for a certain period of time. Alternatively, a device may decide to
close a connection when it needs to free the resources that are associated with the connection.
See Annex C.5 for additional information.

5.4.4.1 Arguments
Table 14 — Arguments for ConnectionComplete()

Argument Direction relatedStateVariable

ConnectionID IN A_ARG_TYPE_ConnectionID

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 40

5.4.4.2 Dependency on State
None.

5.4.4.3 Effect on State
This action removes the connection referenced by argument ConnectionID by modifying state
variable CurrentConnectionIDs, and (if necessary) performs any protocol-specific cleanup
actions such as releasing network resources. See Annex A for more details.

Due to local restrictions on the device running the ConnectionManager, state variables
SourceProtocolInfo and/or SinkProtocolInfo may change (for example, certain physical ports on
the device are freed up for new connections).

5.4.4.4 Errors
Table 15 — Error Codes for ConnectionComplete()

errorCode errorDescription Description

400-499 TBD See Control clause in [14].

500-599 TBD See Control clause in [14].

600-699 TBD See Control clause in [14].

706 Invalid connection
reference

The connection reference argument does not refer to a valid
connection established by this service.

 GetCurrentConnectionIDs()
This required action returns a Comma-Separated Value list of ConnectionIDs of currently
ongoing Connections. A ConnectionID can be used to manually terminate a Connection via
action ConnectionComplete(), or to retrieve additional information about the ongoing
Connection via action GetCurrentConnectionInfo().

If a device does not implement PrepareForConnection(), this action shall return the single value
“0”.

5.4.5.1 Arguments
Table 16 — Arguments for GetCurrentConnectionIDs()

Argument Direction relatedStateVariable

ConnectionIDs OUT CurrentConnectionIDs

5.4.5.2 Dependency on State
None.

5.4.5.3 Effect on State
None.

5.4.5.4 Errors
Table 17 — Error Codes for GetCurrentConnectionIDs()

errorCode errorDescription Description

400-499 TBD See Control clause in [14].

500-599 TBD See Control clause in [14].

600-699 TBD See Control clause in [14].

 GetCurrentConnectionInfo()
This required action returns associated information of the connection referred to by the
ConnectionID input argument. The AVTransportID argument may be the reserved value -1 and

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 41

the PeerConnectionManager argument may be the empty string in cases where the connection
has been setup completely out of band, not involving a PrepareForConnection() action.

If the allowed action PrepareForConnection() is not implemented then (limited) connection
information can be retrieved for ConnectionID 0. The device shall return the following
information:

• RcsID shall be 0 (a single instance of the RenderingControl service is implemented) or -1
(RenderingControl service is not implemented)

• AVTransportID shall be 0 (a single instance of the AVTransport service is implemented) or
-1 (AVTransport service is not implemented)

• ProtocolInfo shall contain accurate information if it is known, otherwise it shall be the empty
string

• PeerConnectionManager shall be the empty string

• PeerConnectionID shall be -1

• Direction shall be “Input” or “Output”

• Status shall be “OK” or “Unknown”
5.4.6.1 Arguments

Table 18 — Arguments for GetCurrentConnectionInfo()

Argument Direction relatedStateVariable

ConnectionID IN A_ARG_TYPE_ConnectionID

RcsID OUT A_ARG_TYPE_RcsID

AVTransportID OUT A_ARG_TYPE_AVTransportID

ProtocolInfo OUT A_ARG_TYPE_ProtocolInfo

PeerConnectionManager OUT A_ARG_TYPE_ConnectionManager

PeerConnectionID OUT A_ARG_TYPE_ConnectionID

Direction OUT A_ARG_TYPE_Direction

Status OUT A_ARG_TYPE_ConnectionStatus

5.4.6.2 Dependency on State
None.

5.4.6.3 Effect on State
None.

5.4.6.4 Errors
Table 19 — Error Codes for GetCurrentConnectionInfo()

errorCode errorDescription Description

400-499 TBD See Control clause in [14].

500-599 TBD See Control clause in [14].

600-699 TBD See Control clause in [14].

706 Invalid connection
reference

The connection reference argument does not refer to a valid
connection established by this service.

 GetRendererItemInfo()
This allowed action allows the control point to request that the rendering device inspect item
metadata provided and determine if the rendering device expects to be able to successfully play
the item described. The MediaRenderer control point issuing this action submits one or more
items obtained from a MediaServer device using the ContentDirectory service’s Browse() or

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 42

Search() actions. Each item will normally contain one or more res properties that specify
“content-binaries” that the MediaRenderer device may play. The ItemRenderingInfoList output
argument is an XML document using the schema [23] that contains:

a) A root element: <rendererInfo>

b) Zero or more <itemInfo> child elements. Each <itemInfo> element corresponds to an item
that appears in the ItemMetadataList parameter.

c) Within each <itemInfo> element, a <resPlaybackInfo> child element is generated for each
item res property. The <resPlaybackInfo> element describes the overall capability of the
MediaRenderer to play this content-binary. In addition, the <resPlaybackInfo> element may
optionally contain DRM license information that the MediaRenderer device’s DRM agent
may provide.

The control point may use the ItemInfoFilter argument to control the amount of information
returned for the item submitted.

5.4.7.1 Arguments
The following list presents an overview of the GetRendererItemInfo() action arguments.

• ItemInfoFilter: See subclause 5.2.15.

• ItemMetadataList: A DIDL-Lite document containing the item metadata for the rendering
device to inspect. See subclause 5.2.16. When constructing an ItemMetadataList, it is
recommended that items submitted to the MediaRenderer device by this action include all
available item properties. This would be done by using a Filter argument of “*” on the
ContentDirectory service’s Browse() or Search() actions. Following this recommendation
ensures that the MediaRenderer device can examine any item metadata that it finds relevant.

• ItemRenderingInfoList: An XML document containing rendering information about the items
provided in the ItemMetadata document. See subclause 5.2.17.

Table 20 — Arguments for GetRendererItemInfo()

Argument Direction Related State Variable

ItemInfoFilter IN A_ARG_TYPE_ItemInfoFilter

ItemMetadataList IN A_ARG_TYPE_Result

ItemRenderingInfoList OUT A_ARG_TYPE_RenderingInfoList

5.4.7.2 Dependency on State
None.

5.4.7.3 Effect on State
None.

5.4.7.4 Errors
Table 21 — Error Codes for GetRendererItemInfo()

errorCode errorDescription Description

400-499 TBD See Control clause in [14].

500-599 TBD See Control clause in [14].

600-699 TBD See Control clause in [14].

 GetFeatureList()
This required action returns a Features XML Document describing which optional
ConnectionManager Features this device supports, if any.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 43

5.4.8.1 Arguments
Table 22 — Arguments for GetFeatureList()

Argument Direction Related State Variable

FeatureList OUT FeatureList

5.4.8.2 Dependency on State
None.

5.4.8.3 Effect on State
None.

5.4.8.4 Errors
Table 23 — Error Codes for GetFeatureList()

errorCode errorDescription Description

400-499 TBD See Control clause in [14].

500-599 TBD See Control clause in [14].

600-699 TBD See Control clause in [14].

 Common Error Codes
The following table lists error codes common to actions for this service type. If an action results
in multiple errors, the most specific error should be returned.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 44

Table 24 — Common Error Codes

errorCode errorDescription Description

400-499 TBD See Control clause in [14].

500-599 TBD See Control clause in [14].

600-699 TBD See Control clause in [14].

701 Incompatible protocol
info

The connection cannot be established because the protocol info
argument is incompatible.

702 Incompatible
directions

The connection cannot be established because the directions of
the involved ConnectionManagers (source/sink) are incompatible.

703 Insufficient network
resources

The connection cannot be established because there are
insufficient network resources (bandwidth, channels, etc.).

704 Local restrictions The connection cannot be established because of local restrictions
in the device. This might happen, for example, when physical
resources on the device are already in use by other connections.

705 Access denied The connection cannot be established because the client is not
permitted to access the specified ConnectionManager.

706 Invalid connection
reference

The connection reference argument does not refer to a valid
connection established by this service.

707 Not in network The connection cannot be established because the
ConnectionManagers are not part of the same physical network.

708 Connection Table
overflow

The connection cannot be established because the specified
ConnectionManager has instantiated the maximum number of
simultaneous connections it has room for in its internal data
structures. Closing one connection will resolve the issue.

709 Internal processing
resources exceeded

The connection cannot be established because the device does
not have sufficient internal processing resources to handle the
new connection. Closing one or more connections on this device
may resolve the issue.

710 Internal memory
resources exceeded

The connection cannot be established because the device does
not have sufficient internal memory resources to handle the new
connection. Closing one or more connections on this device may
resolve the issue.

711 Internal storage
system capabilities
exceeded

The connection cannot be established because the device does
not have sufficient internal storage system capabilities to handle
the new connection. Closing one or more connections on this
device may resolve the issue.

Note 1: The errorDescription field returned by an action does not necessarily contain human-
readable text (for example, as indicated in the second column of the Error Code tables.) It may
contain machine-readable information that provides more detailed information about the error.
It is therefore not advisable for a control point to blindly display the errorDescription field
contents to the user.

Note 2: 800-899 Error Codes are not permitted for standard actions. See Control clause in [14]
for more details.

6 XML Service Description

<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>GetProtocolInfo</name>
 <argumentList>
 <argument>
 <name>Source</name>

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 45

 <direction>out</direction>
 <relatedStateVariable>
 SourceProtocolInfo
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Sink</name>
 <direction>out</direction>
 <relatedStateVariable>
 SinkProtocolInfo
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>PrepareForConnection</name>
 <argumentList>
 <argument>
 <name>RemoteProtocolInfo</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ProtocolInfo
 </relatedStateVariable>
 </argument>
 <argument>
 <name>PeerConnectionManager</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionManager
 </relatedStateVariable>
 </argument>
 <argument>
 <name>PeerConnectionID</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Direction</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Direction
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ConnectionID</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>AVTransportID</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_AVTransportID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>RcsID</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_RcsID
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 46

 <action>
 <name>ConnectionComplete</name>
 <argumentList>
 <argument>
 <name>ConnectionID</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionID
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetCurrentConnectionIDs</name>
 <argumentList>
 <argument>
 <name>ConnectionIDs</name>
 <direction>out</direction>
 <relatedStateVariable>
 CurrentConnectionIDs
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetCurrentConnectionInfo</name>
 <argumentList>
 <argument>
 <name>ConnectionID</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>RcsID</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_RcsID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>AVTransportID</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_AVTransportID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ProtocolInfo</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ProtocolInfo
 </relatedStateVariable>
 </argument>
 <argument>
 <name>PeerConnectionManager</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionManager
 </relatedStateVariable>
 </argument>
 <argument>
 <name>PeerConnectionID</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionID
 </relatedStateVariable>

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 47

 </argument>
 <argument>
 <name>Direction</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Direction
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Status</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionStatus
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetRendererItemInfo</name>
 <argumentList>
 <argument>
 <name>ItemInfoFilter</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ItemInfoFilter
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ItemMetadataList</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Result
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ItemRenderingInfoList</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_RenderingInfoList
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetFeatureList</name>
 <argumentList>
 <argument>
 <name>FeatureList</name>
 <direction>out</direction>
 <relatedStateVariable>
 FeatureList
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="yes">
 <name>SourceProtocolInfo</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>SinkProtocolInfo</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>CurrentConnectionIDs</name>
 <dataType>string</dataType>

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 48

 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ConnectionStatus</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>OK</allowedValue>
 <allowedValue>ContentFormatMismatch</allowedValue>
 <allowedValue>InsufficientBandwidth</allowedValue>
 <allowedValue>UnreliableChannel</allowedValue>
 <allowedValue>Unknown</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ConnectionManager</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Direction</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Input</allowedValue>
 <allowedValue>Output</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ProtocolInfo</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ConnectionID</name>
 <dataType>i4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_AVTransportID</name>
 <dataType>i4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_RcsID</name>
 <dataType>i4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ItemInfoFilter</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Result</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_RenderingInfoList</name>
 <dataType>string</dataType>
 </stateVariable>

 <stateVariable sendEvents="no">
 <name>ClockUpdateID</name>
 <dataType>ui4</name>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>DeviceClockInfoUpdates</name>
 <dataType>string</dataType>
 </stateteVariable>
 </serviceStateTable>
</scpd>

7 Test

No semantics tests have been defined for this service.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 49

Annex A
(normative)

Protocol Specifics

A.1 Application to HTTP Streaming

A.1.1 ProtocolInfo Definition
Streaming data via the HTTP GET method is defined by the Internet standard Request For
Comment document entitled HyperText Transport Protocol – HTTP/1.1 [38]. While it is certainly
possible to use other HTTP methods such as PUT or POST, this document focuses on the HTTP
GET method. The <protocol> part of ProtocolInfo shall be “http-get”. The <network> part of
ProtocolInfo is not used for the HTTP case since all devices belong to the same network. An
asterisk (“*”) is used instead. The <contentFormat> part for HTTP GET is described by a MIME
type [39].

An example of protocol information for HTTP GET, in this case referring to an audio file, is:

 http-get:*:audio/mpeg:*

A.1.2 Implementation of PrepareForConnection()
In addition to any non-protocol related preparation tasks such as the one described in Annex
C.5, a device’s PrepareForConnection() implementation may also perform some preparation
tasks that are related to the protocol that is about to be used to transfer the content. However,
since the HTTP GET connection is initiated and maintained by the sink device, the source
device typically does not need to perform any protocol-related preparation tasks because HTTP
GET requests are handled by the device’s underlying http-server. Therefore, if a MediaServer
does not need to perform any non-protocol-related preparation tasks, it will (in most cases) not
need to implement PrepareForConnection(). Although not required, the MediaRenderer device
(the receiving end of the HTTP stream), may choose to pre-allocate a TCP/IP socket in order
to ensure that this resource is available when the content transfer is initiated; that is: when
AVTransport::SetAVTransportURI() is invoked.

A.1.3 Implementation of ConnectionComplete()
In addition to the non-protocol related cleanup tasks such as those described in Annex C.5, a
device’s ConnectionComplete() implementation may also perform some cleanup tasks that are
related to the protocol that was used to transfer the content. The cleanup tasks that a device
performs depend directly on the implementation of PrepareForConnection(). In general, when
using the HTTP GET protocol, a MediaServer does not have any protocol-related cleanup tasks
to perform because the MediaServer’s PrepareForConnection() typically does not perform any
protocol-related preparation. On a MediaRenderer device, ConnectionComplete() shall release
any protocol-related resources that were allocated during PrepareForConnection(). For
example, if a MediaRenderer chooses to pre-allocate a TCP/IP socket during
PrepareForConnection(), the device’s ConnectionComplete() action shall release the socket
associated with that connection.

A.1.4 Automatic Connection Cleanup
Since control points may establish connections, and then leave the UPnP network forever,
protocols supported by the ConnectionManager need to have a built-in automatic mechanism
to cleanup stale connections. For HTTP connections, automatic cleanup should be performed
by the AVTransport instance.

On the UPnP level, this will appear as an (evented) change in state variable
CurrentConnectionIDs.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 50

A.2 Application to RTSP/RTP/UDP Streaming

A.2.1 ProtocolInfo Definition
Streaming data via RTSP is defined by the Internet standard Request For Comment document
entitled Real Time Streaming Protocol. (http://www.ietf.org/rfc/rfc2326.txt). The actual
Audio/Video data packets are sent out-of-band with respect to RTSP. RTSP does not need a
particular protocol for this. Since usually RTP (http://www.ietf.org/rfc/rfc1889.txt) over UDP is
used, the protocol for RTSP-based streams is defined as RTSP/RTP/UDP. This ensures that
two ConnectionManagers that can send and receive RTSP also send and receive using the
same Audio/Video data Connection protocol. The <protocol> part of ProtocolInfo shall be
“rtsp-rtp-udp”. The <network> part of ProtocolInfo is not used for the RTSP/RTP/UDP case
since all devices belong to the same network. An asterisk (“*”) is used instead. RTP packets
contain a standardized 7-bit payload type identifier, see http://www.iana.org/assignments/rtp-
parameters or http://www.ietf.org/rfc/rfc1890.txt. Each payload type has a unique encoding
name. This payload type name is used as the <contentFormat> part of the ProtocolInfo string.

An example of protocol information for RTSP/RTP/UDP with MPEG video payload is:

 rtsp-rtp-udp:*:MPV:*

A.2.2 Implementation of PrepareForConnection()
In addition to the non-protocol related preparation task such as those described in Annex C.5,
a device’s PrepareForConnection() implementation may also perform some preparation tasks
that are related to the protocol that is about to be used to transfer the content. However, since
RTSP/RTP/UDP sessions are initiated and maintained by the sink device, the source device
typically does not need to perform any protocol-related preparation tasks. Therefore, if a
MediaServer does not need to perform any non-protocol-related preparation tasks, it will (in
most cases) not need to implement PrepareForConnection(). Although not required, the
MediaRenderer device (the receiving end of the RTP/RTP/UDP stream) may choose to pre-
allocate an RTSP/RTP/UDP connection in order to ensure that this resource is available when
the content transfer is initiated; that is: when AVTransport::SetAVTransportURI() is invoked.

A.2.3 Implementation of ConnectionComplete()
In addition to the non-protocol related cleanup tasks such as those described in Annex C.5, a
device’s ConnectionComplete() implementation may also perform some cleanup tasks that are
related to the protocol that was used to transfer the content. The cleanup tasks that a device
performs depend directly on the implementation of PrepareForConnection(). In general, when
using the RTSP/RTP/UDP protocol, a MediaServer does not have any protocol-related cleanup
tasks to perform because the MediaServer’s PrepareForConnection() typically does not perform
any protocol-related preparation. On a MediaRenderer device, ConnectionComplete() shall
release any protocol-related resources that were allocated during PrepareForConnection(). For
example, if a MediaRenderer chooses to pre-allocate a RTSP/RTP/UDP connection during
PrepareForConnection(), the device’s ConnectionComplete() shall release that connection.

A.2.4 Automatic Connection Cleanup
Since control points may establish connections, and then leave the UPnP network forever,
protocols supported by the ConnectionManager need to have a built-in automatic mechanism
to cleanup stale connections. For RTSP connections, automatic cleanup should be performed
by the AVTransport instance.

On the UPnP level, this will appear as an (evented) change in state variable
CurrentConnectionIDs.

A.3 Application to Device-Internal Streaming

For the purpose of this service definition an INTERNAL protocol is defined for use over internal
connections. An internal connection is defined as a connection within a single device. An
example of such a connection is between a Tuner subsystem and a Display subsystem in a
conventional TV. Since this connection is internal to the device, no streaming data will flow on

© 2014, UPnP Forum. All rights Reserved.

http://www.ietf.org/rfc/rfc2326.txt
http://www.ietf.org/rfc/rfc1889.txt
http://www.iana.org/assignments/rtp-parameters
http://www.iana.org/assignments/rtp-parameters
http://www.ietf.org/rfc/rfc1890.txt

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 51

the UPnP network, and the actual content-format used inside the device can be proprietary.
The resulting ProtocolInfo and content-URI that need to be defined for these types of
connections can therefore be very simple.

An internal connection shall use the INTERNAL protocol. For this protocol, the <protocol> part
of ProtocolInfo shall be “internal”. Within this protocol scope the <network> part of ProtocolInfo
is defined as the device’s IP-address, as a string, in the well-known dotted decimal notation.
The <contentFormat> part of ProtocolInfo is proprietary.

An example of protocol information for INTERNAL is:

 internal:161.88.59.212:mpeg2:to-local-display

The implementation of the PrepareForConnection() and ConnectionComplete() actions for this
protocol type is proprietary (vendor specific).

A.4 Application to IEC61883 Streaming

A.4.1 ProtocolInfo Definition
The basis for real time data transmission on the IEEE1394 bus using the IEC61883 protocol is
the Common Isochronous Packet (CIP) which consists of a CIP header and data blocks
embedded in an IEEE1394 compliant isochronous packet. The <protocol> part of ProtocolInfo
shall be “iec61883”.

The <network> part of ProtocolInfo for the IEC61883 protocol uniquely identifies the set of
connected IEEE1394 devices on a specific bus segment. It is defined as a bin.hex encoding of
the GUID (Globally Unique ID) of the 1394 Isochronous Resource Manager node. This
identification is not persistent, and will, in general, change when 1394 devices are added to or
removed from the 1394 network. These changes will lead to changes in the SourceProtocolInfo
and SinkProtocolInfo state variables, and, through eventing, interested control points will be
notified of the new streaming possibilities of the new 1394 network segmentation.

The stream types include all content formats supported by the family of IEC61883 Standards.
These formats are uniquely identified by the FMT and FDF values in the CIP header, The
following table lists the formats supported by the IEC61883-2 to 5 International Standards and
by IEC61883-6 PAS (Publicly Available Specification; that is: not yet fulfilling all requirements
for a standard).

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 52

Table A.1 — <contentFormat> for Protocol IEC61883

<contentFormat> for Protocol IEC61883 IEC Version Description

“UNKNOWN_STREAM”

“DVCR_STD_DEF_525_60” IEC61883-2 525-60 system: the 525-line system with
a frame frequency of 29.97 Hz

“DVCR_STD_DEF_625_50” IEC61883-2 625-50 system: the 625-line system with
a frame frequency of 25.00 Hz

“DVCR_STD_DEF_HI_COMPRESS_525_60” IEC61883-5 SDL525-60 system: The standard
definition for high compression mode
525-line system with a frame frequency of
29.97 Hz.

“DVCR_STD_DEF_HI_COMPRESS_625_50” IEC61883-5 SDL625-50 system: The standard
definition for high compression mode
625-line system with a frame frequency of
25.00 Hz.

“DVCR_HI_DEF_1125_60” IEC61883-3 1125-60 system: the 1125-line system
with a frame frequency of 30.00 Hz

“DVCR_HI_DEF_1250_50” IEC61883-3 1250-50 system: the 1250-line system
with a frame frequency of 25.00 Hz

“SMPTE_D7_525_60” IEC61883-2 SMPTE-D7 525-60 system

“SMPTE_D7_625_50” IEC61883-2 SMPTE-D7 625-50 system

“MPEG2_TS” IEC61883-4 MPEG2-TS

“AUDIO_MUSIC_8_24_IEC_60958” IEC61883-6 IEC 60958 conformant

“AUDIO_MUSIC_8_24_RAW_AUDIO” IEC61883-6 Raw audio

“AUDIO_MUSIC_8_24_MIDI” IEC61883-6 MIDI conformant

IEC61883 connections are set up between iPCRs (input Plug Control Registers) and oPCRs
(output Plug Control Registers). A content item is connected through an oPCR to one or more
iPCRs on a different device. An IEC61883 device can have zero or more iPCRs and oPCRs.

The <additionalInfo> field identifies the PCR in the IEC61883 network, and is defined as follows:

 <GUID>;<PCR-index>

where

• <GUID> = bin.hex encoding of the device’s node_vendor_id and chip_id (2 quadlets,
together also referred to as GUID)

• <PCR-index> = zero-based integer index identifying the plug within the device
An example of protocol information for IEC61883 is:

 iec61883:0000f00200001114:MPEG2_TS:00ba0091c9231222;0

A.4.2 Implementation of PrepareForConnection()
In addition to the non-protocol related preparation task such as those described in Annex C.5,
a device’s PrepareForConnection() implementation may also perform some preparation tasks
that are related to the protocol that is about to be used to transfer the content Although
IEEE1394/IEC61883 is an allocation-based protocol, the source device is not required to
perform any protocol related preparation. It is the sink device that is responsible for allocating
the underlying IEEE1394/IEC61883 connection.

In order to manage isochronous data transmissions, IEC61883 defines the concept of plug and
specialized registers called MPR (Master Plug Register) and PCR (Plug Control Register).
These registers are used to initiate and stop transmissions. The set of procedures to control
the real time data flow by manipulating the PCRs is called CMP (Connection Management
Procedures). Data transmission between devices is possible when an output plug on the source

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 53

device is connected to an input plug on the sink device via an isochronous channel. The data
flow from a source device is controlled by the oMPR (output Master Plug Register) of the device
and one oPCR (output PCR). Similarly, the data flow to a sink device is controlled by the iMPR
(input MPR) and one iPCR (input PCR). The address map for these registers is well defined in
conformance with ISO/IEC13213 (ANSI/IEEE1212). Devices can modify PCR values of remote
nodes using asynchronous transactions.

Using the information in the PrepareForConnection() input arguments, the sink device locates
the IEEE1394 address of the source device (its GUID is part of the <additionalInfo> field of the
ProtocolInfo string), and program the appropriate oPCR register to initiate the streaming. The
sink device is free to choose any of its own iPCRs. The sink device shall follow the exact
procedure defined by IEC61883, which includes the allocation of IEEE1394 bandwidth and an
IEEE1394 channel. Upon subsequent IEEE1394 bus resets, the sink device (the device that
established the connection) shall try to restore any existing connections that it has established.

If the ProtocolInfo references an oPCR that is already in use, two situations occur:

• The same content-format is already being streamed via the oPCR. In this case, the sink
device performs an IEC61883 overlay connection.

• A different content-format is already being streamed via the oPCR. In this case, the sink
device will return an error.

IEC61883 broadcast-in and broadcast-out connections are not supported by the
ConnectionManager.

A.4.3 Implementation of ConnectionComplete()
In addition to the non-protocol related cleanup tasks such as those described in Annex C.5, a
device’s ConnectionComplete() implementation may also perform some cleanup tasks that are
related to the protocol that was used to transfer the content. The cleanup tasks that a device
performs depend directly on the implementation of PrepareForConnection(). In general, when
using the IEEE1394/IEC61883 protocol, the source device does not have any protocol-related
cleanup tasks to perform because the device’s PrepareForConnection() typically does not
perform any protocol-related preparation. On a sink device, ConnectionComplete() shall release
the IEEE1394/IEC61883 connection that was allocated during PrepareForConnection(). The
sink device shall follow the IEC61883 procedure for releasing the channel which includes:

• Modifying the corresponding fields of the source oPCR and sink iPCR according to CMP
procedures.

• Deallocate the IEEE1394 resources. If the oPCR becomes unconnected (that is: this is the
last IEC61883 connection on that IEEE1394 channel), the IEEE1394 bandwidth and channel
shall also be released.

Note: IEC61883 broadcast-in and broadcast-out connections are not supported by the
ConnectionManager.

A.4.4 Automatic Connection Cleanup
Since control points may establish connections, and then leave the UPnP network forever,
protocols supported by the ConnectionManager need to have a built-in automatic mechanism
to cleanup stale connections. For the IEC61883 protocol, an established connection will
continue forever, until there is a so-called bus reset. A bus reset will occur when there is a
change in the physical network topology, for example, the network is split, joined with another
network, or a device goes offline. After a bus reset, all IEEE1394 resources are released, and
all devices that established IEC61883 connections have 1 second to re-establish them. Hence,
the ConnectionManager on the sink device needs to check after a bus reset whether the source
device is still on the network, and if not, cleanup any internal state referring to this connection.
On the UPnP level, this will appear as an (evented) change in state variable
CurrentConnectionIDs.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 54

A.5 Application to Vendor-specific Streaming

To allow vendors to use their vendor-specific streaming protocols in a UPnP network in a
controlled way, the ConnectionManager defines the generic protocol VENDOR for such
protocols. The idea is to make the <protocol> part of ProtocolInfo unique, by requiring the use
of the vendor’s registered ICANN (Internet) domain name (similar to its use in vendor-specific
UPnP service- and device-types). The remaining fields of the ProtocolInfo string (<network>,
<contentFormat> and <additionalInfo>) are all vendor-specific, and may be wildcards (“*”).

An example of a VENDOR protocol information is:

 company.com:*:company-format-A:optional-setup-info

The implementation of the PrepareForConnection() and ConnectionComplete() actions for this
protocol type is proprietary (vendor-specific).

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 55

Annex B
(normative)

CM features

B.1 Introduction

Annex B defines a set of extended functionalities for the ConnectionManager service, called
CM features. These features have additional requirements beyond the general
ConnectionManager service mechanisms to ensure interoperability. The requirements are
defined on a per CM feature basis. When an implementation supports a specific CM feature, it
shall support that feature according to these requirements.

Each CM feature shall have an integer version number. Later versions – indicated by a larger
version number – shall support the full functionalitiy of all earlier, lower-numbered versions in
the same way as the earlier version (that is, shall be backward compatible).

The names and versions for each implementation-supported feature are returned by the
GetFeatureList() action. The format of the returned information is defined by [11].

The normative names for the CM features are listed in Table B.1. All CM features are allowed.
A vendor may use vendor defined feature names. In this case, the vendor-defined CM feature
name shall be prefixed with the vendor’s ICANN domain name followed by the underscore “_”
and any vendor defined value shall be prefixed with “X_”.

Example: company.com_MyFeature.

Table B.1 — CM features

Name Description

CLOCKSYNC Synchronized Playback Support. See Annex B.2.

Vendor-defined

B.2 Requirements for the CLOCKSYNC feature, Version 1

The CLOCKSYNC feature is defined by this specification for the purposes of describing devices
that enable synchronized playback.

The ConnectionManager service that supports the CLOCKSYNC feature provides clock
synchronization guide information. It shall satisfy the following requirements.

Support for the CLOCKSYNC feature shall be indicated by including the following Features XML
fragment in the Features XML Document value of the FeatureList state variable. The data is
encapsulated within zero or more <deviceClockInfo> elements.

The following example shows a “template” for the format of the CLOCKSYNC feature. Additional
elements and/or attributes may be added to future versions of this specification. Furthermore,
a 3rd-party vendor may add vendor-defined elements or attributes. Even if vendors define new
metadata, the values for <Feature> attributes shall match the values described in Table B.2.

In order to eliminate element or attribute naming conflicts, the name of any vendor-defined
element or attribute shall follow the rules set forth in subclause 4.4.3. All control points are
expected to gracefully ignore any element or attribute that it does not understand.

The following XML template includes the vendor character style which shows the fields that
need to be filled out by individual implementations.

<Feature name="CLOCKSYNC" version="1">
 <deviceClockInfo
 id="unique ID for this deviceClock instance"

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 56

 updateID="ClockUpdateID for this device">
 <syncProtocolID>Id of clock sync protocol used</syncProtocolID>
 <masterClockID>Id of the master clock</masterClockID>
 <accuracy>max deviation from master clock (nano-sec)</accuracy>
 <supportedTimestamps
 id="unique id of this instance"
 protocol="transfer protocol"
 format="MIME-type">
 Id of timestamp mechanism used with this protocol/format
 </supportedTimestamps>
 <!-- Other supportedTimestamps entries go here -->
 <!-- Other vendor-defined metadata goes here -->
 </deviceClockInfo>
</Feature>

The CLOCKSYNC feature <Feature> element has the following required characteristics:

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 57

Table B.2 — Required characteristics of the CLOCKSYNC feature element

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 58

Name R/A XML Form Type Description

version R Attribute of
<Feature>

xsd:unsigndInt Indicates the CLOCKSYNC feature version.
Shall be set to “1” for this version.

deviceClockI
nfo

CR a Child element
of <Feature>

xsd:string Indicates that the device has synchronized
its local time-of-day clock to some master
clock on the network. Includes information
about the synchronization protocol that was
used.
Contains exactly one instance of each of the
following elements except for the
<supportedTimestamps> element which
may occur zero or more times.
Vendor-defined attributes may be used with
the <deviceClockInfo> element. Vendor-
defined elements may appear as children of
the <deviceClockInfo> element.

id R Attribute of
<deviceCloc
kInfo>

xsd:string A unique ID for this instance of the
<deviceClockInfo> element. The specific
value is not important but it shall be unique
within the scope of the CLOCKSYNC feature.
Additionally, since the value is referenced by
other data structures (for example, the
upnp:resExt::clockSync property within the
ContentDirectory service), the value shall be
persisted across reboots.

updateID R Attribute of
<deviceCloc
kInfo>

xsd:unsignedInt Contains the value of the ClockUpdateID
state variable that resulted when the
<deviceClockInfo> element was added or
modified.

syncProtocol
ID

R Child element
of <
deviceClock
Info >

xsd:string Shall appear exactly once. Identifies the
clock synchronization protocol that was used
to synchronize the implementation’s local
time-of-day clock. Contains one of the
following values listed in Table B.3.
Vendor-defined attributes may be used with
the <syncProtocolID> element. Vendor-
defined elements are not allowed as children
of the <syncProtocolID> element.

masterClockl
ID

R Child element
of <
deviceClock
Info >

xsd:string Shall appear exactly once. Identifies the
master clock to which this implementation
has synchronized its local time-of-day clock.
Value shall conform to the format listed in
Table B.4 for the clock synchronization
protocol identified by the
<syncProtocolID> element.
Vendor-defined attributes may be used with
the <masterClockID> element. Vendor-
defined elements are not allowed as children
of the <masterClockID> element.

accuracy R Child element
of <
deviceClock
Info >

xsd:unsignedInt Shall appear exactly once. Indicates the
maximum number of nano-seconds that this
implementation’s local clock might deviate
from the Master Clock. For example, a value
of 1000 indicated that the implementation’s
local clock might deviate up to one micro-
second (1000 nano-seconds) from the Master
Clock. Typically, this is characteristic of the
synchronization protocol, network topology,
and the device itself.
Vendor-defined attributes may be used with
the <accuracy> element. Vendor-defined
elements are not allowed as children of the
<accuracy> element.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 59

Name R/A XML Form Type Description

supportedTim
estamps

A Child element
of <
deviceClock
Info >

xsd:string Shall appear zero or more times. Identifies
the timestamp mechanism supported by the
device when content is streamed to/from the
device using the transfer protocol and media
format indicated by the protocol and
format attributes (see below). The list of
allowed values is defined in Table B.5. It
contains the attributes and elements listed
after the table.
Vendor-defined attributes may be used with
the <supportedTimestamps> element.

id R Attribute of <
supportedTi
mestamps >

xsd:string Contains a unique ID for this instance of the
<supportedTimestamps> element. Format
and value are vendor-defined but the value
shall be unique within this instance of the
<deviceClockInfo> element. Additionally,
since this value is referenced by other data
structures (for example, the
upnp:resExt::clockSync property within the
ContentDirectory service), the value shall be
persisted across reboots.

protocol R Attribute of <
supportedTi
mestamps >

xsd:string Identifies the transfer protocol that is
associated with the timestamp mechanism
listed in this <supportedTimestamps>
element. The value of this attribute shall be
one of the values listed in the “protocol”
column of Table C.1 in Annex C.2.

format R Attribute of <
supportedTi
mestamps >

xsd:string Identifies the media format MIME-type
associated with the timestamp mechanism
listed in this <supportedTimestamps>
element. The value of this attribute shall
comply with the “content-format” column of
Table C.1 in Annex C.2. This includes a
value of “*” which means that the specified
timestamp mechanism
(<supportedTimestamps>) is supported
with any of the media formats that are
supported by the device when using the
indicated protocol attribute.

a conditionally required when describing the CLOCKSYNC feature and appears zero or more times.

Table B.3 — Allowed values for the <syncProtocolID> element

Clock Synchronization Protocol
ID

Description

802.1AS IEEE-802.1AS. See [40], [41] and [42] for details.

NTP NetworkTime Protocol time synchronization mechanism. See [43] for
details.

SNTP Simple NTP time synchronization. See [44] for details.

Vendor-defined A value defined by the vendor.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 60

Table B.4 — Allowed formats for the <masterClockID> element.

Clock Synchronization
Protocol ID

Format of the <masterClockID> value

802.1AS 8-byte binary sequence with the following format:
<High 24-bits MAC> 0xFF 0xFE <Low 24-bits MAC>
Where
<High 24-bits MAC> = The top 24 (most significant) bits of the device’s 48-bits
MAC address.
<Low 24-bits MAC> = The bottom 24 (least significant) bits of the device’s 48-
bit MAC address.
Note: The most significant byte of the MAC address is stored in the first (lowest
addressed) byte of the sequence.

NTP URL of the time server
Note: see www.ntp.org

SNTP URL of the time server
Note: see www.ntp.org

Vendor-defined A value defined by the vendor.

Table B.5 — Allowed values for the <supportedTimestamps> element.

Timestamp
Mechanism

Description

RTP+IEEE-1733 Packets are timestamped according to the IEEE-1733 specification. See [45] for
details.

Identity This is a pre-defined mapping that states that the frequencies of the Media Clock and
the Master Clock are identical. This is the default Time Stamp Mechanism and it can
be used with both HTTP and RTP. When Identity is used with RTP, “Media Clock”
refers to the RTP wallclock, as defined in [23], [24], and [46].

Vendor-defined A value defined by the vendor.

Example:

The following example shows that this implementation does the following:

• Advertised three clock synchronization mechanisms, one for each <deviceClockInfo>
element.

1) The first clock synchronization mechanism has synchronized its local clock using IEEE
802.1AS (<syncProtocolID>) protocol with a clock master whose ID is
123456FFFE789ABC (<masterClockID>). This device will remain within 10ns
(<accuracy>) of the master clock. This device is able to use this synchronization
mechanism with any content transported with RTP, whose content is timestamped
according to [45] (<supportedTimestamps>).

4) The second clock synchronization mechanism has synchronized its local clock using
IEEE 802.1AS (<syncProtocolID>) protocol with a clock master whose ID is
123456FFFE789ABC (<masterClockID>). This device will remain within 10ns
(<accuracy>) of the master clock. This device is able to use this synchronization
mechanism with any content transported with RTP or HTTP through the use of Identity
timestamp mechanism. Identity is a pre-defined mapping that states that the frequencies
of the Media Clock and the Master Clock are identical. This is the default Time Stamp
Mechanism and it can be used with both HTTP and RTP. When Identity is used with
RTP, “Media Clock” refers to the RTP wallclock according to [23], [24], and [46].

5) The third clock synchronization mechanism has synchronized its local clock using IEEE
802.1AS (<syncProtocolID>) protocol with a different clock master whose ID is
789ABCFFFE123686 (<masterClockID>). This device will remain within 100ns
(<accuracy>) of the master clock. This device is able to use this synchronization

© 2014, UPnP Forum. All rights Reserved.

http://www.ntp.org/
http://www.ntp.org/

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 61

mechanism with WMA or MP3 audio content transported with RTP, so long as the content
is timestamped according to [45].

<Features
 xmlns="urn:schemas-upnp-org:av:cm-featureList"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:cm-featureList
 http://www.upnp.org/schemas/av/cm-featureList.xsd">
 <Feature name="CLOCKSYNC" version="1">
 <!-- Clock info for a local device using RTP+IEEE-1733 mechanism -->
 <deviceClockInfo id="Clock#1" updateID="1">
 <syncProtocolID>802.1AS</syncProtocolID>
 <masterClockID>123456FFFE789ABC</masterClockID>
 <accuracy>10</accuracy>
 <!-- RTP+IEEE-1733 timestamps for RTP with all media formats -->
 <supportedTimestamps id="rtp_all" protocol="rtsp-rtp-udp" format="*">
 RTP+IEEE-1733
 </supportedTimestamps>
 </deviceClockInfo>
 <!-- Clock info for a local device using IDENTITY mechanism -->
 <deviceClockInfo id="Clock#2" updateID="1">
 <syncProtocolID>802.1AS</syncProtocolID>
 <masterClockID>123456FFFE789ABC</masterClockID>
 <accuracy>10</accuracy>
 <!-- IDENTITY timestamps for RTP/HTTP with all media formats -->
 <supportedTimestamps id="Timestamp-1" protocol="rtsp-rtp-udp" format="*">
 Identity
 </supportedTimestamps>
 <supportedTimestamps id="Timestamp-2" protocol="http-get" format="*">
 Identity
 </supportedTimestamps>
 </deviceClockInfo>
 <!-- Clock info for a different clock master using RTP+IEEE-1733 -->
 <deviceClockInfo id="Clock#3" updateID="3">
 <syncProtocolID>802.1AS</syncProtocolID>
 <masterClockID>789ABCFFFE123686</masterClockID>
 <accuracy>100</accuracy>
 <!-- RTP+IEEE-1733 timestamps for RTP but only with wma & mp3 -->
 <supportedTimestamps id="rtp_wma" protocol="rtsp-rtp-udp" format="audio/wma">
 RTP+IEEE-1733
 </supportedTimestamps>
 <supportedTimestamps id="rtp_mp3" protocol="rtsp-rtp-udp" format="audio/mp3">
 RTP+IEEE-1733
 </supportedTimestamps>
 </deviceClockInfo>
 </Feature>
</Features>

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 62

Annex C
(informative)

Theory of Operation

C.1 Purpose

The purpose of the ConnectionManager is to enable control points to:

a) perform capability matching between source/server devices and sink/renderer devices. This
involves both:
1) content-format matching (for example, mp3 – mp3)
2) transport (streaming) protocol matching (for example, http – http)

b) find information about currently ongoing streams in the network, for example:
1) find the source device sending content to a given renderer device
2) find the renderer devices served by a given source device or content resource
3) find all streams going on in the network

c) setup and teardown connections between devices (when required by the streaming protocol)

C.2 ProtocolInfo Concept

While the UPnP Architecture describes, and prescribes, many aspects of devices that are
required for a certain level of interoperability, it does not describe anything related to streaming
between devices. The purpose of the ConnectionManager service is to make these aspects of
devices explicit, so that control points are able to make intelligent choices, present intelligent
user interfaces, and initiate (and terminate) streams between controlled devices via UPnP
actions. UPnP-defined protocols are used to initiate (and terminate) the stream, even though
they are not used to stream the actual data packets.

The ConnectionManager service defines the notion of ProtocolInfo as information needed by a
control point in order to determine (a certain level of) compatibility between the streaming
mechanisms of two UPnP controlled devices. For example, it contains the transport protocols
supported by a device, for input or output, as well as other information such as the content
formats (encodings) that can be sent, or received, via the transport protocols. Note that, while
UPnP prescribes the use of HTTP for controlling devices via SOAP, it does not require HTTP
to be used for all kinds of (Audio and Video) streaming in a UPnP network.

In the context of this document, the term ProtocolInfo is used to describe a string formatted as:

<protocol>“:”<network>“:”<contentFormat>“:”<additionalInfo>
where each of the 4 elements may be a wildcard “*”. Control points can match ProtocolInfo by
(protocol-independent) string comparison operations on the <protocol>, <network> and
<contentFormat> elements, taking into account the “*” wildcard, which matches with anything.
It is recommended that control points perform string matching using case-insensitive
comparison. However, devices are required to provide the <protocol>, <network>, and
<contentFormat> strings exactly as prescribed by this and other specifications.

When performing protocol matching, control points have basically three different sources for
protocol information:

• The value of the res@protocolInfo property of the content item to be played, which is
exposed by the ContentDirectory service.

• The Comma Separated Value list maintained in the SinkProtocolInfo state variable of the
MediaRenderer device.

• The Comma Separated Value list maintained in the SourceProtocolInfo state variable of the
MediaServer device.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 63

Control points should match the content item’s res@protocolInfo property value to one of the
ProtocolInfo entries in the MediaRenderer’s SinkProtocolInfo CSV list. In addition, a control
point may want to check whether the content item’s res@protocolInfo property value matches
one of the entries in the MediaServer’s SourceProtocolInfo CSV list to ensure that the
MediaServer is currently capable of serving this content item.

The <additionalInfo> part does not need to match between source and sink. Its purpose is to
convey any additional information needed to set up the out of band stream (for example, 1394
addresses). The structure of this 4th field is described later in this

The following table summarizes how the protocol info strings are defined for the protocols
currently standardized by the ConnectionManager service, as well as for vendor-defined
protocols. Annex A provides a more detailed explanation per protocol.

Table C.1 — Defined Protocols and their associated ProtocolInfo Values

Protocol Name protocol network contentFormat additionalInfo Ref.

HTTP GET “http-get” “*” a MIME-type. Vendor-defined,
may be “*”.

A.1

RTSP/RTP/UDP “rtsp-rtp-udp” “*” b Name of RTP
payload type.

Vendor-defined,
may be “*”.

A.2

INTERNAL “internal” IP address of
the device
hosting the
Connection-
Manager.

Vendor-defined,
may be “*”.

Vendor-defined,
may be “*”.

A.3

IEC61883_EX1 “iec61883_ex1” GUID of the
1394 bus
Isochronous
Resource
Manager.

Name
standardized by
IEC61883.

upnp.org_GUID =
<GUID-value>;<PCR-
index>.
See definitions below.

A.4

IEC61883 “iec61883” GUID of the
1394 bus
Isochronous
Resource
Manager.

Name
standardized by
IEC61883.

GUID and PCR index of
the 1394 device. See
IEC61883 exception
below.

A.4

VENDOR Registered ICANN
domain name of
vendor

Vendor-defined,
may be “*”.

Vendor-defined,
may be “*”.

Vendor-defined,
may be “*”.

A.5

a Since all devices supporting HTTP GET belong to the same IP network, the network does not need to be
specified.

b Since all devices supporting RTSP/RTP/UDP belong to the same IP network, the network does not need
to be specified.

C.2.1 4th Field – <additionalInfo>
Except for the IEC61883 protocol, the 4th field of the ProtocolInfo string contains either an
asterisk character (“*”) or a list of name-value pairs. An asterisk indicates that the 4th field does
not contain any meaningful data and should be ignored. A list of name-value pairs indicates
that there is some additional information beyond the first three fields. In this case, the 4th field
shall contain one or more name-value pairs (separated by a semi-colon “;”) with each name-
value pair having the following format:

<org-name>_<token-name>=<value>

where

• <org-name> is the ICANN registered domain name of the organization that has defined the
semantic of the name-value pair. For example, the UPnP Forum would use an <org-name>
of “upnp.org”. Case-insensitive comparison is used.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 64

• <token-name> identifies the additional data that is being defined. It consists of one or more
alpha-numeric characters (i.e. ’a’-‘z’, ’A’-‘Z’, ’0’-‘9’, ‘_’) and shall be unique within the context
of the specified <org-name>. Case-insensitive comparison is used.

<value> is the value of the additional data. In addition to the escaping rule defined for attributes
in [36] and [37], the following rules also apply:

• All semi-colons (“;”) within <value> shall be escaped with a backslash (“\”). This is
necessary since a semi-colon is used to separate multiple name-value pair occurrences.
For example, in order to represent a value of “yours;mine;ours”, <value> shall be set to
“yours\;mine\;ours”.

• All original backslash (“\”) characters within <value> shall be escaped with a (second)
backslash (“\”). Obviously, backslash characters that have been added as an escape
character are themselves not double escaped. For example, in order to represent a value
of “yours\mine\ours”, <value> shall be set to “yours\\mine\\ours”.

Multiple name-value pairs are separated by a semi-colon (“;”) and have the layout below. When
multiple name-value pairs are specified, the order of occurrence of the name-value pair is not
relevant. Additionally, the same value of <org-name> may occur multiple times and the same
value of <token-name> may occur multiple times. However, each <org-name>_<token-name>
combination shall appear at most once within the list of name-value pairs contained by the 4th
field. The following example shows three name value pairs: two of which are defined by the
UPnP Forum and one of which is defined by a fictitious organization called “VendorA”:

upnp.org_resolution=1080i;VendorA.com_resolution=super_high_quality;upnp.org_sample
_rate=30FPS

As described before, the <additionalInfo> field may be used for any purpose and contains name-
value pairs which the control point may or may not understand. Since the semantics of the
unknown name-value pairs are unknown, it should ignore unknown name-value pairs and only
known name-value pairs may be used during comparison.

C.2.2 IEC61883 Exception
When the IEC61883 protocol was first introduced into the specification, the structure of the 4th
field was not yet defined. Therefore, the additional data that was needed for this protocol was
simply placed directly in the 4th field without any higher-level constructs. In order to maintain
compatibility with existing implementations of this specification, the definition of the 4th field for
the IEC61883 protocol can not be changed in order to comply with the 4th field layout defined
above. However, to eventually deprecate this non-conformant protocol designation, a new
protocol designation has been defined for IEC61883 which does conform to the above layout.
It has been named IEC61883_EX1 with the “_EX1” suffix indicating “Extension #1”. All future
implementations that support the IEC61883 protocol shall use the new designator
(IEC61883_EX1) as well as the original designator (IEC61883).

C.2.3 Formal EBNF for the 4th field
The formal EBNF for the 4th field is as follows:

4th-field ::= '*'|name-value-pair-list|IEC61883-exception
name-value-pair-list ::= name-value-pair (';' name-value-pair)*
name-value-pair ::= org-name '_' token-name '=' value
org-name ::= (* ICANN registered domain name including the top-level

domain suffix (e.g. ".com", ".org", ".netv, etc.) *)
token-name ::= ('a'-'z' | 'A'-'Z' | '0'-'9' | '_')+
value ::= (unicode-char-except-backslash-semicolon |

 escaped-backslash |
 escaped-semicolon
)*

unicode-char-except-backslash-semicolon ::= (* any Unicode-4 character except
a
 '\' or '; ' character *)

escaped-backslash ::= '\\'

escaped-semicolon ::= '\;'

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 65

IEC61883-exception ::= GUID-value ';' PCR-index

GUID-value ::= (* hex encoding of the device’s IEC61883 node_vendor_id

and chip_id (total of 64-bits) *)

PCR-index ::= (* zero-based integer index identifying the plug within

the device *)

C.2.4 ProtocolInfo Conventions for Protected Content
C.2.4.1 3rd Field - MIME Type Format
MIME types for protected content resources appear in the third field, <contentFormat>, of the
ProtocolInfo string. Since protected files may be described by both a content protection MIME
type as well as a MIME type associated with the underlying media, the following convention for
extended MIME types will be used for MIME types that describe protected resources:

<content_protection_MIME_type>;CONTENTFORMAT=<underlying_media_MIME_type>
Example 1. The following example describes a MPEG2-TS resource that is protected with
DTCP-IP when streaming. The extended MIME type is:

application/x-dtcp1;CONTENTFORMAT=video/MP2T
The full resulting ProtocolInfo string additionally indicates that the stream is http-get:

ProtocolInfo = “http-get:*:application/x-dtcp1;CONTENTFORMAT=video/MP2T:*”
Finally, the form of the <res> element content is (per DTCP Volume 1 Supplement E Revision
1.0):

<res protocolInfo="http-get:*:application/x-dtcp1;CONTENTFORMAT=video/MP2T:*"
 allowedUse="PLAY,5"
 validityStart="2004-05-30T14:30:00"
 validityEnd="2004-06-04T14:30:00">
 http://10.0.0.1:88/MyCollection/movie7829.mp2t?
 CONTENTPROTECTIONTYPE=DTCP1&DTCP1HOST=1.2.3.4&DTCP1PORT=97
</res>

Example 2. The following example extended MIME type describes a MPEG2-PS resource that
is delivered as an OMA DCF file:

“application/vnd.oma.drm.dcf;CONTENTFORMAT=video/MP2P”
The resulting ProtocolInfo string containing the extended MIME type additionally indicates that
the file is transferred with http-get:

 ProtocolInfo = “http-
get:*:application/vnd.oma.drm.dcf;CONTENTFORMAT=video/MP2P:*”

Finally, the form of the <res> element content is as follows:

<res protocolInfo=
 "http-get:*:application/vnd.oma.drm.dcf;CONTENTFORMAT=video/MP2P:*"
 allowedUse="PLAY,5"
 validityStart="2004-05-30T14:30:00"
 validityEnd="2004-06-04T14:30:00">
 http://10.0.0.1:88/MyCollection/movie8126.dcf
</res>

Example 3. The following example describes a MPEG2-PS resource that is delivered as an
OMA DCF file and can be exported to a DTCP content protection system:

The rights object of the content includes the permissions for enabling the translation into the
new DRM system and will be represented as two separate <res> elements representing the
same content:

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 66

<res protocolInfo=
 "http-get:*:application/vnd.oma.drm.dcf;CONTENTFORMAT=video/MP2P:*"
 allowedUse="PLAY,5"
 validityStart="2004-05-30T14:30:00"
 validityEnd="2004-06-04T14:30:00">
 http://10.0.0.1:88/MyCollection/movie8126.dcf
</res>

<res protocolInfo=
 "http-get:*:application/x-dtcp1;CONTENTFORMAT=video/MP2T:*"
 allowedUse="PLAY,5"
 validityStart="2004-05-30T14:30:00"
 validityEnd="2004-06-04T14:30:00">
 http://10.0.0.1:88/MyCollection/movie9736.mp2t?
 CONTENTPROTECTIONTYPE=DTCP1&DTCP1HOST=1.2.3.4&DTCP1PORT=97
</res>

C.2.4.2 4th Field - Convention for Protected Content
The UPnP AV WC additionally defines the following convention for placing information in the
fourth field of the ProtocolInfo string. The fourth field is used to convey additional information
in cases when MIME type is not sufficient for the purpose of capability matching. In these cases
the fourth field shall contain additional DRM information for the purpose of more precise
compatibility checking between the media sink and the content properties. Two cases are
possible. In the first case, it is only required to identify the vendor or the standards group that
defines the DRM scheme. In this case, the DRM organization or vendor is specified as the value
of a upnp-domain variable:

 upnp.org_DRMInfo=<ICANN-DRM-ORG-NAME>

In the second case, the DRM scheme also requires one or more parameters associated with
the DRM scheme to be enumerated. In this case, the following convention is used:

 upnp.org_DRMInfo=<ICANN-DRM-ORG-NAME>;
 <ICANN-DRM-ORG-NAME>_<parameter1>=<parameter1 value>;
 <ICANN-DRM-ORG-NAME>_<parameter2>=<parameter2 value>;
 …
 <ICANN-DRM-ORG-NAME>_<parameterN>=<parameterN value>

Example 4: A ProtocolInfo string utilizes the fourth field to indicate that the MPEG-4 content is
protected by a (fictitious) DRM scheme associated with ICANN name “XYZ.ORG”:

 ProtocolInfo = “http-get:*:video/mp4:upnp.org_DRMInfo=XYZ.ORG”

Example 5: A ProtocolInfo string for an OMA dcf file also indicates the OMA version in the
fourth field:

 ProtocolInfo = “http-get:*:application/vnd.oma.drm.dcf;
 CONTENTFORMAT=video/MP2P:upnp.org_DRMInfo=OMA.ORG;OMA.ORG_VERSION=2”

For maximal compatibility checking, both third and fourth fields (when present) of the
ProtocolInfo string should be matched. In general, older control points may not be capable of
checking the fourth field of the ProtocolInfo string. For that reason, it is recommended that
content listings in the CDS for DRM content should use the MIME conventions described above
as much as possible for inserting DRM information on the given content item into the third field
of the ProtocolInfo string.

C.3 Typical Control Point Operations

C.3.1 Introduction
Annex C.3 briefly outlines some typical control point operations on a ConnectionManager
service.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 67

C.3.2 Establishing a New Connection
The process for establishing a streaming connection involves:

a) Find ConnectionManager services via SSDP
b) Determine compatibility between the source (sending) and the sink (receiving) device (see

subclause 5.4.2).
c) Invoke PrepareForConnection() on the source and/or sink devices, if the action is

implemented by the device (see subclause 5.4.3).
d) Transfer content from source to sink device (see note below).
e) When the connection is no longer needed, invoke ConnectionComplete() on the source

and/or sink devices, if the action is implemented by the device (see subclause 5.4.4).
Refer to the UPnP AV Architecture document [47] for additional details.

Once a connection has been prepared, it can be used to transfer several pieces of content
before calling ConnectionComplete() as long as each content item is compatible with the
RemoteProtocolInfo argument that was passed into PrepareForConnection(); that is: each
content item has the same media format as specified in RemoteProtocolInfo.

C.3.3 Dealing with Ongoing Connections
A number of interesting scenarios require a control point to find information about all currently
ongoing connections in the network, including those that it did not establish itself. This is
supported by the ConnectionManager as follows. Each connection explicitly established by any
control point in the network is identified by a connection identifier on both the source (sending)
device and the sink (receiving) device. State variable CurrentConnectionIDs holds a Comma-
Separated Value list of these identifiers. Given an identifier, a control point can call
GetConnectionInfo() to obtain:

a) The ProtocolInfo of the connection. This includes the streaming protocol and the content
format.

b) The ‘other end’ of the connection, expressed as a UDN/serviceId pair. Using the UDN, a
control point can use SSDP to find the device description of the other UPnP device involved
in the connection. This way, a control point can find out, for example, that turning off a
particular source device is going to affect one or more sink devices.

c) The connection status.
d) The AVTransportID of the connection, which indicates the AVTransport service instance

controlling the playback and recording through the connection. This service can be used for
many purposes, for example to:
1) subscribe to events in order to monitor the transport state
6) actually change the transport state, for example, stopping or pausing an existing stream
7) obtain a URI reference to the content resource currently flowing through the connection
8) obtain any meta data embedded in the content resource flowing through the connection.
See the AVTransport service description [5] for more details.

e) The RcsID of the connection, which indicates the RenderingControl service instance
controlling the rendering properties of the content. This can be used, for example, to
implement a ‘mute all streams’ function in a control point.

C.4 Relation to Devices without ConnectionManagers

In some cases, it is desirable to establish a stream connection between devices where one
device implements a UPnP ConnectionManager service, and the other device doesn't
implement this service or isn't even a UPnP device. In such cases, a control point can only call
PrepareForConnection() and ConnectionComplete() actions on the first device. The
PeerConnectionManager input argument to PrepareForConnection() is defined as the UDN of
the connecting UPnP device followed by a slash ('/') and the serviceId of the connecting

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 68

device's ConnectionManager service. In case the connecting UPnP device has no
ConnectionManager service, the serviceId part of the argument is left blank. In case the
connecting device is not a UPnP device (for example, an Internet streaming server), the whole
PeerConnectionManager argument is left blank.

C.5 PrepareForConnection() and ConnectionComplete()

C.5.1 PrepareForConnection()
The purpose of PrepareForConnection() is to allow a device to perform a set of tasks prior to
transferring the content. The specific tasks performed by a device are implementation
dependent, but may include the following:

a) Determine whether or not the device is able to stream content using the current environment
(for example, device status, network conditions, etc.)

a) Allocating some resources that are needed to establish the out-of-band connection between
the source/sink devices for example, in an IEEE-1394/IEC-61883 environment, this may
include allocating an IEEE-1394 isochronous channel.

b) Allocating a unique ConnectionID that identifies those resources which were allocated for a
specific connection.

c) Allocating a new virtual instance of the AVTransport and/or RenderingControl service and
binding it to the connection so that the flow of the content and the rendering characteristics
of the content can be controlled.

If a control point wants to interoperate with all UPnP AV devices, prior to initiating the transfer
of content, for example, invoking AVTransport::SetAVTransportURI(), the control point needs
to invoke PrepareForConnection(), if the action is implemented by the device. Otherwise, the
device may not operate correctly because it is not yet properly configured. Additionally, the
control point will not know whether or not the current environment is able to support the
upcoming streaming request.

C.5.2 ConnectionComplete()
The purpose of ConnectionComplete() is to allow a device to terminate a specific connection
and/or to perform any cleanup tasks that are needed for the connection as a result of a previous
invocation of PrepareForConnection(). As with PrepareForConnection(), the set of tasks
performed by a device when ConnectionComplete() is invoked is implementation-dependent,
but may include the following:

a) Releasing the resources that were allocated to establish the out-of-band connection
between the source and sink devices (for example, in a IEEE-1394/IEC-61883 environment,
this may include releasing the IEC-61883 isochronous channel that was allocated when
PrepareForConnection() was invoked earlier on the same device).

b) Releasing the unique ConnectionID that identifies those resources that were allocated by a
previous invocation of PrepareForConnection().

c) Releasing the virtual instance of the AVTransport and/or RenderingControl service, if any,
that were allocated during a previous invocation of PrepareForConnection() in order to
control the content flowing over the associated connection.

Since control points may turn off after a connection is established, control points may not always
invoke the ConnectionComplete() action. Therefore, the device needs to automatically perform
any cleanup tasks for the connection so that those resources that were allocated during
PrepareForConnection() are not leaked.

C.5.3 General Usage Model
As mentioned earlier, each device performs an arbitrary set of implementation-dependent tasks
during PrepareForConnection() and ConnectionComplete(). Some of these tasks may be crucial
to the proper operation of the device while other tasks may be secondary to the device’s core
functionality. However, since each implementation of PrepareForConnection() and
ConnectionComplete() are specific to each device, it is very difficult (if not impossible) for a
control point to determine whether or not it is safe to by-pass

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 69

PrepareForConnection()/ConnectionComplete() for a given device. Therefore, the safest and
simplest way for a control point to interoperate with all UPnP AV devices is to always invoke
PrepareForConnection() and ConnectionComplete() if they are implemented by the device.
Otherwise, those devices may not function properly as described above.

C.5.4 Relationship to AVTransport and RenderingControl Services
As described in the “Theory of Operation” annexes of the AVTransport [5] and RenderingControl
[21] service specifications, some device are designed to support multiple virtual instances of
the AVTransport and/or RenderingControl service. With these types of devices, the allocation
and binding of these virtual instances occur during PrepareForConnection().

As described in the AVTransport specification, the responsibility for providing the AVTransport
service for a given connection varies between the source and sink devices depending on the
type of connection (that is: the type of transfer protocol that is being used). When a push
protocol is being used (for example, IEEE-1394), the source device is responsible for providing
the AVTransport service and when a pull protocol is being used (for example, HTTP GET), the
sink device is responsible for providing the AVTransport service. When a source device wants
to support multiple instances of a push protocol or a sink device wants to support multiple
instances of a pull protocol, the device’s PrepareForConnection() is responsible for allocating
a new virtual instance of the AVTransport service for each new instance of that connection-type.
Additionally, PrepareForConnection() shall perform the necessary binding operations that link
the allocated AVTransport instance with the connection.

For example, in a IEEE-1394/IEC-61883 (push) environment, if a source device wants to
support multiple 1394/61883 streams, then its PrepareForConnection() shall allocate a unique
virtual instance of the AVTransport service and bind it to the newly allocated IEEE-1394/IEC-
61883 connection. Similarly, in an HTTP GET pull environment, if a sink device wants to support
multiple simultaneous connections, its PrepareForConnection() implementation shall allocate a
new virtual instance of the AVTransport service and bind it to the newly allocated connection.

Note: This implies that the sink device’s PrepareForConnection() shall perform some type of
pre-allocation of the TCP/IP socket so that it can be distinguished from the other connections
of that type.

With regards to the RenderingControl service, the sink device is always responsible for
providing it regardless of the underlying protocol. If a sink device is designed to support multiple
simultaneous connections then its implementation of PrepareForConnection() shall be designed
to allocate a new virtual instance of the RenderingControl service for each connection that is
created. Additionally, it shall bind each instance to the newly created connection so that a
control point can control the rendering characteristics of the content that is being transferred
over that connection.

Note: This implies that the sink device’s PrepareForConnection() shall perform some type of
pre-allocation of the TCP/IP socket so that it can be distinguished from the other connections
of that type.

When a device’s PrepareForConnection() is designed to allocate and bind virtual instances of
the AVTransport and/or RenderingControl services, the device’s ConnectionComplete() shall
be designed to un-bind and release these virtual instances. For example, if a source device
allocates an AVTransport service and binds it to a IEEE-1394 channel, the device’s
ConnectionComplete() action shall undo the binding operation, as appropriate, and it shall
release the IEEE-1394 channel.

C.5.5 ConnectionIDs
A ConnectionID is a device-specific identifier that is used to uniquely identify a connection which
has been prepared on a device via PrepareForConnection(). When PrepareForConnection() is
invoked, a ConnectionID is allocated by the device and assigned to the newly configured
connection. Since ConnectionIDs are allocated by individual devices, a given ConnectionID is
valid only within the context of that device. Therefore, a ConnectionID assigned by one device
cannot be used when interacting with another device. When the two end-point devices of a

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 70

given connection are setup via PrepareForConnection(), the ConnectionIDs returned by the two
devices are completely independent from each other and are almost certainly going to have
different values even though they happen to refer to the same connection.

On a given device, the algorithm used to allocate ConnectionIDs is vendor-specific. Hence, the
numerical value of a ConnectionID is completely meaningless except to the device itself. Once
a ConnectionID has been allocated, it is generally valid until the associated connection is torn
down. Typically, this happens in response to an invocation of ConnectionComplete() or as a
result of the device’s allowed auto-cleanup mechanism.

Devices should not return the same ConnectionID value on subsequent invocations of
PrepareForConnection(). After a connection has been torn down, its associated ConnectionID,
which is no longer valid, can be reassigned by the device to another connection. However, in
order to minimize the potential of a stale ConnectionID being misinterpreted as a valid
ConnectionID, it is recommended that each device not reassign a ConnectionID value until all
other valid values have been used.

Once a ConnectionID has been allocated, any control point may use the ConnectionID to
uniquely identify the associated connection even when invoking ConnectionComplete().
However, in order to provide predictable device behavior, it is recommended that each control
point use only those connections that it has prepared. Notable exceptions to this
recommendation include those control points that are able to coordinate with one another, via
some non-UPnP mechanism, or those control points that are explicitly designed to perform
connection clean up tasks, for example, a network management tool.

C.5.6 AVTransportIDs and RcsIDs
When a connection is prepared via PrepareForConnection(), the device may choose to return
an AVTransportID and/or an RcsID. These IDs are used to identify the (unique and independent)
virtual instance of the AVTransport service and/or RenderingControl service that has been
associated with the newly prepared connection. As with the connection’s ConnectionID, the
value of the AVTransportID and/or RcsID have no meaning outside of the context of the
allocating device. Similarly, AVTransportIDs and RcsIDs are valid until their associated
connection is torn down, generally in response to an invocation of ConnectionComplete() or as
a result of the device’s allowed auto-cleanup mechanism.

Once allocated, AVTransportIDs and RcsIDs are used in conjunction with the AVTransport
service and RenderingControl service, respectively, to invoke various control actions on the
stream that is being carried over the associated connection. As with ConnectionIDs, control
points should use only the AVTransportIDs and RcsIDs that are associated with the connections
that the control point has prepared via PrepareForConnection(). The AVTransport and
RenderingControl services allow any control point to use any valid AVTransportIDs and/or
RcsIDs. However, when multiple control points use the same AVTransportID and/or RcsID,
these control points should coordinate their activities with one another. Otherwise, the devices
may behave unexpectedly thus causing a poor end-user experience.

C.6 Determining if ContentDirectory items are playable

The GetRendererItemInfo() action allows a control point to request the rendering device inspect
item metadata provided and determine if the rendering device expects to be able to successfully
play the item described. The MediaRenderer control point issuing this action submits one or
more items obtained from a MediaServer device using the ContentDirectory service’s Browse()
or Search() actions. Each item will normally contain one or more res properties that specify
“content-binaries” that the MediaRenderer device may play.

The control point may use the ItemInfoFilter argument to control the amount of information
returned for the item(s) submitted.

The following informative examples are provided:

Example 1: The GetRendererItemInfo() action is issued with an empty filter argument indicating
only basic information should be returned.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 71

Request:
GetRendererItemInfo("",
"<DIDL-Lite
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://www.upnp.org/schemas/av/didl-lite.xsd
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://www.upnp.org/schemas/av/upnp.xsd">
 <item id="18" parentID="13" restricted="0">
 <dc:title>Try a little tenderness</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <upnp:longDescription>
 This song is considered to be the finest R&B tune ever
 </upnp:longDescription>
 <dc:creator>Otis Redding</dc:creator>
 <res protocolInfo="http-get:*:audio/L16;rate=44100;channels=2:*"
 bitrate="6553"
 nrAudioChannels="2"
 duration="03:12"
 size="1258291">
 http://10.0.0.1/audio/O-l16-211.pcm
 </res>
 <res protocolInfo="http-get:*:audio/mpeg:*"
 bitrate="6553"
 nrAudioChannels="2"
 duration="03:12"
 size="8291">
 http://10.0.0.1/audio/O-MP3-211.mp3
 </res>
 <res protocolInfo="http-get:*:audio/wma:*"
 bitrate="6553"
 nrAudioChannels="2"
 duration="03:12"
 size="58291">
 http://10.0.0.1/audio/O-WMA-211.wma
 </res>
 </item>
</DIDL-Lite>")

The ConnectionManager service responds with a RendererInfo XML document that indicates
the rendering device capability to play each DIDL-Lite item described ItemMetadataList
argument:

Response:
GetRendererItemInfo("
<?xml version="1.0" encoding="UTF-8"?>
<rendererInfo xmlns="urn:schemas-upnp-org:av:rii"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:rii
 http://www.upnp.org/schemas/av/rii.xsd">
 <itemInfo itemID="18">
 <resPlaybackInfo resIndex="0" canPlay="1" />
 <resPlaybackInfo resIndex="1" canPlay="1" />
 <resPlaybackInfo resIndex="2" canPlay="0" />
 </itemInfo>
 </rendererInfo>");

Example 2: The GetRendererItemInfo() action is issued with a filter indicating that DRM related
information should be returned:

Request:
GetRendererItemInfo(

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 72

"itemInfo::resPlaybackInfo::drmInfo#",
"<DIDL-Lite
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://www.upnp.org/schemas/av/didl-lite.xsd
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://www.upnp.org/schemas/av/upnp.xsd">
 <item id="18" parentID="13" restricted="0">
 <dc:title>Try a little tenderness</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <upnp:longDescription>
 This song is considered to be the finest R&B tune ever
 </upnp:longDescription>
 <dc:creator>Otis Redding</dc:creator>
 <res protocolInfo="http-get:*:audio/L16;rate=44100;channels=2:*"
 bitrate="6553"
 nrAudioChannels="2"
 duration="03:12"
 size="1258291">
 http://10.0.0.1/audio/O-l16-211.pcm
 </res>
 </item>
 <item id="19" parentID="13" restricted="0">
 <dc:title>Try a little tenderness</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <upnp:longDescription>
 This song is considered to be the finest R&B tune ever
 </upnp:longDescription>
 <dc:creator>Otis Redding</dc:creator>
 <res protocolInfo="http-get:*:audio/wav:*"
 bitrate="6553"
 nrAudioChannels="2"
 duration="03:12"
 size="1258291">
 http://10.0.0.1/audio/O-l16-212.wav
 </res>
 </item>
 <item id="20" parentID="13" restricted="0">
 <dc:title>Try a little tenderness</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <upnp:longDescription>
 This song is considered to be the finest R&B tune ever
 </upnp:longDescription>
 <dc:creator>Otis Redding</dc:creator>
 <res protocolInfo="http-get:*:audio/l16;rate=44100;channels=2:*"
 bitrate="6553"
 nrAudioChannels="2"
 duration="03:12"
 size="1258291">
 http://10.0.0.1/audio/O-l16-213.pcm
 </res>
 </item>
</DIDL-Lite>")

Response:

GetRendererItemInfo("
<?xml version="1.0" encoding="UTF-8"?>
<rendererInfo xmlns="urn:schemas-upnp-org:av:rii"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:rii
 http://www.upnp.org/schemas/av/rii.xsd">
 <itemInfo itemID="18">

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 73

 <resPlaybackInfo resIndex="0" canPlay="1">
 <drmInfo drmProtected="1" drmStatus="OK">
 <drmSystem>
 <friendlyName>Not So Free Music</friendlyName>
 <ICANNName>OpenMobileAlliance.ORG</ICANNName>
 <systemName>DRM_REL_DD</systemName>
 <systemVersion>2.1</systemVersion>
 </drmSystem>
 <licenseIdentifier>
 uuid:550e8400-e29b-41d4-a716-446655440000
 </licenseIdentifier>
 <licenseRights type="play">
 <licenseUsageTimeRemaining>
 P5D20:00:00
</licenseUsageTimeRemaining>
 <licenseSubscriptionTimeRemaining>
 P1D20:00:00
 </licenseSubscriptionTimeRemaining>
 <licenseUsageCountRemaining>4</licenseUsageCountRemaining>
 </licenseRights>
 </drmInfo>
 </resPlaybackInfo>
</itemInfo>
 <itemInfo itemID="19">
 <resPlaybackInfo resIndex="0" canPlay="0">
 <drmInfo drmProtected="1" drmStatus="LICENSE_EXPIRED">
 <drmSystem>
 <friendlyName>Not So Free Music</friendlyName>
 <ICANNName>OpenMobileAlliance.ORG</ICANNName>
 <systemName>DRM_REL_DD</systemName>
 <systemVersion>2.1</systemVersion>
 </drmSystem>
</drmInfo>
 </resPlaybackInfo>
 </itemInfo>
 <itemInfo itemID="20">
 <resPlaybackInfo resIndex="0" canPlay="0" >
 <drmInfo drmProtected="1" drmStatus="LICENSE_DENIED">
 <drmSystem>
 <friendlyName>Not So Free Music</friendlyName>
 <ICANNName>OpenMobileAlliance.ORG</ICANNName>
 <systemName>DRM_REL_DD</systemName>
 <systemVersion>2.1</systemVersion>
 </drmSystem>
</drmInfo>
 </resPlaybackInfo>
 </itemInfo>
</rendererInfo>")

Example 3: The GetRendererItemInfo() action is issued with a filter indicating that only
playback related information should be returned:

Request:
GetRendererItemInfo(
"itemInfo::resPlaybackInfo::playbackInfo#",
"<DIDL-Lite
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://www.upnp.org/schemas/av/didl-lite.xsd
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://www.upnp.org/schemas/av/upnp.xsd">
 <item id="18" parentID="13" restricted="0">
 <dc:title>Try a little tenderness</dc:title>
 <upnp:class>object.item.videoItem</upnp:class>

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 74

 <res protocolInfo="http-get:*:video/mpeg:*">
 http://10.0.0.1/video/test_video.mpg
 </res>
 </item>
 <item id="18" parentID="13" restricted="0">
 <dc:title>Try a little tenderness</dc:title>
 <upnp:class>object.item.imageItem</upnp:class>
 <res protocolInfo="http-get:*:image/jpeg:*">
 http://10.0.0.1/image/test_image.jpg
 </res>
 </item>
 </DIDL-Lite>")

Response:
GetRendererItemInfo("
<?xml version="1.0" encoding="UTF-8"?>
<rendererInfo xmlns="urn:schemas-upnp-org:av:rii"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:rii
 http://www.upnp.org/schemas/av/rii.xsd">
 <itemInfo itemID="18">
 <resPlaybackInfo resIndex="0" canPlay="1">
 <playbackInfo playbackCompatibility="OK">
 <videoStreamInfo outputResolution="480i" />
 <audioStreamInfo outputChannels="7.1" />
 </playbackInfo>
 </resPlaybackInfo>
 </itemInfo>
 <itemInfo itemID="19">
 <resPlaybackInfo resIndex="0" canPlay="1">
 <playbackInfo playbackCompatibility="OK">
 <imageStreamInfo outputResolution="640x480p" />
 </playbackInfo>
 </resPlaybackInfo>
 </itemInfo>
</rendererInfo>")

Example 4: The GetRendererItemInfo() action is issued on an item with a resource containing
multiple components with a filter indicating that only transform related information will be
returned:

Request:
GetRendererItemInfo(
"itemInfo::resPlaybackInfo::transformInfo#",
"<DIDL-Lite
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://www.upnp.org/schemas/av/didl-lite.xsd
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://www.upnp.org/schemas/av/upnp.xsd">
 <item id="100" parentID="200" restricted="0">
 <dc:title>KBS News</dc:title>
 <upnp:class>object.item.videoItem</upnp:class>
 <res id="100-res-1" protocolInfo="http-get:*:video/mpeg:*"
resolution="1920x1080">
 http://10.0.0.1/content/content?id=100-res
 </res>
 <upnp:resExt id="100-res-1">
 <upnp:isSyncAnchor>1</upnp:isSyncAnchor>
 <upnp:componentInfo>
 <upnp:componentGroup groupID="0">
 <upnp:component componentID="comp_0">
 <upnp:componentClass>Video</upnp:componentClass>

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 75

 <upnp:purpose>Default</upnp:purpose>
 <upnp:contentType MIMEType=”video/MPV” extendedType=”*”/>
 </upnp:component>
 </upnp:componentGroup>
 <upnp:componentGroup groupID="1"
 <upnp:component componentID="comp_1">
 <upnp:componentClass>Audio</upnp:componentClass>
 <upnp:purpose>Default</upnp:purpose>
 <upnp:language>en-US</upnp:language>
 <upnp:contentType MIMEType=”audio/ac3” extendedType=”*”/>
 </upnp:component>
 <upnp:component componentID="comp_2">
 <upnp:componentClass>Audio</upnp:componentClass>
 <upnp:purpose>Alternative</upnp:purpose>
 <upnp:language>fr</upnp:language>
 <upnp:contentType MIMEType=”audio/MPA” extendedType=”*”/>
 </upnp:component>
 </upnp:componentGroup>
 <upnp:componentgroup groupID="2">
 <upnp:component componentID="comp_5">
 <upnp:componentClass>Caption</upnp:componentClass>
 <upnp:purpose>Alternative</upnp:purpose>
 <upnp:language>nl</upnp:language>
 <upnp:contentType MIMEType=”text/srt” extendedType=”*”/>
 </upnp:component>
 <upnp:component componentID="comp_6">
 <upnp:componentClass>Caption</upnp:componentClass>
 <upnp:purpose>Alternative</upnp:purpose>
 <upnp:language>de</upnp:language>
 <upnp:contentType MIMEType=”text/sub” extendedType=”*”/>
 </upnp:component>
 </upnp:componentGroup>
 </upnp:componentInfo>
 </upnp:resExt>
</item>
</DIDL-Lite>")

Response:
GetRendererItemInfo("
<?xml version="1.0" encoding="UTF-8"?>
<rendererInfo xmlns=" urn:schemas-upnp-org:av:rii"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:rii
 http://www.upnp.org/schemas/av/rii.xsd">
 <itemInfo itemID="100">
 <resPlaybackInfo resIndex="0" canPlay="1">
 <transformInfo>
 <TransformList
 xmlns="urn:schemas-upnp-org:av:AllowedTransformSettings"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation=
 "urn:schemas-upnp-org:av:AllowedTransformSettings
 http://www.upnp.org/schemas/av/avs.xsd">
 <transform name="AudioTrackSelection">
 <allowedValueList>
 <value>en-US</value>
 <value>fr</value> </allowedValueList>
 </transform>
 </TransformList>
 </transformInfo>
 </resPlaybackInfo>
</itemInfo>
</rendererInfo>")

From the response, it can be concluded that the MediaRenderer is able to play back this item,
and it is capable of change the audio track language dynamically. However, it is not capable of
changing the language for the closed captioning.

© 2014, UPnP Forum. All rights Reserved.

http://www.w3.org/2001/XMLSchema-instance

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 76

C.7 CLOCKSYNC feature

A control point invokes GetFeatureList() action (on a MediaRenderer’s or MediaServer’s
ConnectionManager service) to determine the synchronized playback mechanisms supported
by the device. All of the CLOCKSYNC feature information is encapsulated within a <Feature>
element, which further contains <deviceClockInfo> elements. Each <deviceClockInfo>
element describes a clock synchronization mechanism that is available on the device. For a
MediaRenderer, the presence of a <deviceClockInfo> element indicates the
MediaRenderer’s ability to play content using that synchronization mechanism. For a
MediaServer, the presence of a <deviceClockInfo> element indicates the MediaServer’s
ability to provide content using that synchronization mechanism.

Even if a control point is able to match the same <deviceClockInfo> data from the
ConnectionManager services of a MediaRenderer and a MediaServer, synchronized playback
is not guaranteed for all of the content advertised by the MediaServer’s ContentDirectory
service. Matching <deviceClockInfo> data acquired from the ConnectionManager service
on each endpoint only indicates that synchronized playback might be possible.

Synchronized playback becomes possible when the control point is able to match a variety of
things. Specifically, a proper match exists only when these conditions are met:

a) The MediaRenderer’s <deviceClockInfo> data matches against a MediaServer’s
<deviceClockInfo> data. Specifically, the values of <syncProtocolID>,
<masterClockID>, and <supportedTimestamps> need to match between the devices.
The supportedTimestamps@protocol and supportedTimestamps@format on both
endpoints must also match using comparison conventions established for the first and third
fields of protocolInfo values.

b) Given a matched <deviceClockInfo> from both MediaRenderer and MediaServer, the
MediaRenderer’s supportedTimestamps@protocol and
supportedTimestamps@format (from the matched <deviceClockInfo>) must also
match the first and third fields of the content’s res@protocol, respectively.

c) Lastly, the content’s <upnp:clockSync> information (acquired from a MediaServer’s
ContentDirectory service) must reference the same MediaServer’s <deviceClockInfo>
data. Specifically the upnp:clockSync@deviceClockInfoID must also match against
the deviceClockInfo@id and upnp:clockSync@supportedTimestampsID must
also match against the supportedTimestamps@id. See Annex D.21 in ContentDirectory
service [7] for more information about comparing <deviceClockInfo> against
<upnp:clockSync>.

Within the <deviceClockInfo> element, the <syncProtocolID> element indicates a clock
synchronization protocol that is available for synchronizing the device’s local time-of-day clock.
The possible clock synchronization protocols include 802.1AS, NTP (Network Timing Protocol)
and SNTP (Simple Network Timing Protocol) protocols. The 802.1AS clock synchronization
protocol enables precision synchronization (accuracy better than 1 micro-second), thus
enabling usages such as synchronized audio & video playback. For other usages such as party
music being piped to multiple rooms, NTP and SNTP protocols most likely can provide sufficient
clock synchronization accuracy.

Similarly, the <masterClockID> element (also within the <deviceClockInfo> element) of
the CLOCKSYNC feature identifies the master clock to which this implementation has
synchronized its local time-of-day clock. Depending on the clock synchronization protocol, the
<masterClockID> element specifies either the 8-byte binary sequence (<High 24-bits MAC>
0xFF 0xFE <Low 24-bits MAC>) in case of 802.1AS, or the URL of the time server in case of
NTP or SNTP.

C.7.1 Examples of CLOCKSYNC feature
The FeatureList state variable is obtained via the GetFeatureList() action, and the examples
below describe responses from two different devices.

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 77

Request to Device0:
GetFeatureList()

Response from Device0:
GetFeatureList("
<Features
 xmlns="urn:schemas-upnp-org:av:cm-featureList"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:cm-featureList
 http://www.upnp.org/schemas/av/cm-featureList.xsd">
 <!-- No clock devices defined for this device -->
</Features>"
)

Request to Device1:
GetFeatureList()

Response from Device1:
GetFeatureList("
<Features
 xmlns="urn:schemas-upnp-org:av:cm-featureList"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:cm-featureList
 http://www.upnp.org/schemas/av/cm-featureList.xsd">
 <Feature name="CLOCKSYNC" version="1">
 <!-- Clock info for the local device -->
 <deviceClockInfo id="Unique ID for Device1" updateID=”1”>
 <syncProtocolID>802.1AS</syncProtocolID>
 <masterClockID>123456FFFE789ABC</masterClockID>
 <accuracy>100</accuracy>
 <!Timestamps supported for RTP with all media formats -->
 <supportedTimestamps
 id="123" protocol="rtsp-rtp-udp" format="*">
 RTP+IEEE-1733
 </supportedTimestamps>
 </deviceClockInfo>
 </Feature>
</Features>"
)

In the above example, Device0 does not support any clock synchronization feature, and hence
this device is not capable of being synchronized in time with other devices on the network. This
generalized example can apply when Device0 is a MediaServer and Device1 is a
MediaRenderer, or vice versa.

The Features state variable for Device1 indicates that Device1 supports the IEEE-802.1AS
(802.1AS) clock synchronization protocol and is synchronized to the clock master whose ID is
123456FFFE789ABC. Device1 guarantees to remain within 100 nanoseconds of the clock
master. Additionally, if Device1 is a MediaRenderer, then it is able to support synchronized
playback of rtsp-rtp-udp content stream of any format via the IEEE-1733 (RTP) timestamping
mechanism. If Device1 is a MediaServer, then it might be able to support synchronized playback
of some of its rtsp-rtp-udp content streams via the IEEE-1733 (RTP) timestamping mechanism.

The ConnectionManager service’s <Features> element should not list both the Identity and
RTP+IEEE-1733 Time Stamp Mechanisms using the same <deviceClockInfo> element.
This avoids the possibility of different MediaRenderers attempting synchronized playback using
incompatible Time Stamp Mechanisms.

The next example shows a <Features> element of a device that supports both the RTP+IEEE-
1733 and Identity Time Stamp mechanisms:

Request:
GetFeatureList()

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 78

Response (with RTP+IEEE-1733 and Identity):
GetFeatureList("
<Features
 xmlns="urn:schemas-upnp-org:av:cm-featureList"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:cm-featureList
 http://www.upnp.org/schemas/av/cm-featureList.xsd">
 <Feature name="CLOCKSYNC" version="1">
 <deviceClockInfo id="ClockInfo-1" updateID=”1”>
 <syncProtocolID>802.1AS</syncProtocolID>
 <masterClockID>123456FFFE789ABC</masterClockID>
 <accuracy>1</accuracy>
 <supportedTimestamps
 id="Timestamp-1" protocol="rtsp-rtp-udp" format=”*">
 RTP+IEEE-1733
 </supportedTimestamps>
 </deviceClockInfo>
 <deviceClockInfo id="ClockInfo-2" updateID=”1”>
 <syncProtocolID>802.1AS</syncProtocolID>
 <masterClockID>123456FFFE789ABC</masterClockID>
 <accuracy>1</accuracy>
 <supportedTimestamps
 id="Timestamp-1" protocol="rtsp-rtp-udp" format=”*">
 Identity
 </supportedTimestamps>
 <supportedTimestamps
 id="Timestamp-2" protocol="http-get" format="*">
 Identity
 </supportedTimestamps>
 </deviceClockInfo>
 </Feature>
</Features>"
)

© 2014, UPnP Forum. All rights Reserved.

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 79

Annex D
(informative)

Bibliography

The following documents, in whole or in part, may be useful for understanding this document
but they are not essential for its application. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.

[48] – XML Schema for UPnP AV Datastructure Template, UPnP Forum, September 30, 2008.
Available at: http://www.upnp.org/schemas/av/avdt-v1-20080930.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avdt.xsd.

[49] – ISO/IEC CD 21000-2:2001, Information Technology - Multimedia Framework - Part 2:
Digital Item Declaration, July 2001.

[50] – DeviceProtection:1, UPnP Forum, February 24, 2011.
Available at: http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service-
20110224.pdf.
Latest version available at: http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-
Service.pdf.

[51] – Data elements and interchange formats – Information interchange -- Representation of
dates and times, International Standards Organization, December 21, 2000.
Available at: ISO 8601:2000.

[52] – MediaRenderer:3, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaRenderer-v3-Device-
20130331.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v3-
Device.pdf.

[53] – MediaServer:4, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaServer-v4-Device-20130331.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaServer-v4-
Device.pdf.

[54] – IETF RFC 1321, The MD5 Message-Digest Algorithm, R. Rivest, April 1992.
Available at: http://tools.ietf.org/html/rfc1321.

[55] – IETF RFC 1738, Uniform Resource Locators (URL), Tim Berners-Lee, et. Al., December
1994.
Available at: http://www.ietf.org/rfc/rfc1738.txt.

[56] – IETF RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part 1:Format of
Internet Message Bodies, N. Freed, N. Borenstein, November 1996.
Available at: http://www.ietf.org/rfc/rfc2045.txt.

[57] – IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, S.
Bradner, 1997.
Available at: http://www.faqs.org/rfcs/rfc2119.html.

[58] – IETF RFC 3986, Uniform Resource Identifiers (URI): Generic Syntax, January 2005.
Available at: http://www.ietf.org/rfc/rfc3986.txt.

[59] – IETF RFC 3174, US Secure Hash Algorithm 1 (SHA1), D. Eastlake et al, September
2001.
Available at: http://tools.ietf.org/html/rfc3174.

© 2014, UPnP Forum. All rights Reserved.

http://www.upnp.org/schemas/av/avdt-v1-20071231.xsd
http://www.upnp.org/schemas/av/avdt.xsd
http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service-20110224.pdf
http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service-20110224.pdf
http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf
http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26780&ICS1=1&ICS2=140&ICS3=30
http://www.upnp.org/specs/av/UPnP-av-MediaRenderer-v3-Device-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-MediaRenderer-v3-Device-20101231.pdf
http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v3-Device.pdf
http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v3-Device.pdf
http://www.upnp.org/specs/av/UPnP-av-MediaServer-v4-Device-20101231.pdf
http://www.upnp.org/specs/av/UPnP-AV-MediaServer-v4-Device.pdf
http://www.upnp.org/specs/av/UPnP-AV-MediaServer-v4-Device.pdf
http://tools.ietf.org/html/rfc1321
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.faqs.org/rfcs/rfc2119.html
http://www.ietf.org/rfc/rfc3986.txt
http://tools.ietf.org/html/rfc3174

ConnectionManager:3 — Standardized DCP (SDCP) – March 31, 80

[60] – IETF RFC 3339, Date and Time on the Internet: Timestamps, G. Klyne, Clearswift
Corporation, C. Newman, Sun Microsystems, July 2002.
Available at: http://www.ietf.org/rfc/rfc3339.txt.

[61] – IETF RFC 4078, The TV-Anytime Content Reference Identifier (CRID), N. Earnshaw et
al, May 2005.
Available at: http://www.ietf.org/rfc/rfc4078.txt.

[62] – IETF RFC 2326, Real Time Streaming Protocol (RTSP), H. Schulzrinne, A. Rao, R.
Lanphier, April 1998.
Available at: http://www.ietf.org/rfc/rfc2326.txt.

[63] – Unicode Standard Annex #15, Unicode Normalization Forms, version 4.1.0, revision 25,
M. Davis, M. Dürst, March 25, 2005.
Available at: http://www.unicode.org/reports/tr15/tr15-25.html.

[64] – Unicode Technical Standard #10, Unicode Collation Algorithm version 4.1.0, M. Davis,
K. Whistler, May 5, 2005.
Available at: http://www.unicode.org/reports/tr10/tr10-14.html.

[65] – Unicode Technical Standard #10, Unicode Collation Algorithm, version 4.1.0, revision
14, M. Davis, K. Whistler, May 5, 2005.
Available at: http://www.unicode.org/reports/tr10/tr10-14.html.

[66] – Unicode Technical Standard #35, Locale Data Markup Language, version 1.3R1,
revision 5,.M. Davis, June 2, 2005.
Available at: http://www.unicode.org/reports/tr35/tr35-5.html.

[67] – XML Path Language (XPath) 2.0. Anders Berglund, Scott Boag, Don Chamberlin, Mary
F. Fernandez, Michael Kay, Jonathan Robie, Jerome Simeon. W3C Recommendation, 21
November 2006.
Available at: http://www.w3.org/TR/xpath20.

[68] – XQuery 1.0 An XML Query Language. W3C Recommendation, 23 January 2007.
Available at: http://www.w3.org/TR/2007/REC-xquery-20070123.

© 2014, UPnP Forum. All rights Reserved.

http://www.ietf.org/rfc/rfc3339.txt
http://www.ietf.org/rfc/rfc4078.txt
http://www.ietf.org/rfc/rfc2326.txt
http://www.unicode.org/reports/tr15/tr15-25.html
http://www.unicode.org/reports/tr10/tr10-14,html
http://www.unicode.org/reports/tr10/tr10-14.html
http://www.unicode.org/reports/tr35/tr35-5.html
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/2007/REC-xquery-20070123

	1 Scope
	2 Normative references
	3 Terms, definitions, symbols and abbreviations
	3.1 Provisioning terms
	3.2 Symbols

	4 Notations and Conventions
	4.1 Notation
	4.1.1 Data Types
	4.1.2 Strings Embedded in Other Strings
	4.1.3 Extended Backus-Naur Form
	4.1.3.1 Typographic conventions for EBNF

	4.2 Derived Data Types
	4.2.1 Summary
	4.2.2 CSV Lists

	4.3 Management of XML Namespaces in Standardized DCPs
	4.3.1 Namespace Prefix Requirements
	4.3.2 Namespace Names, Namespace Versioning and Schema Versioning
	4.3.3 Namespace Usage Examples

	4.4 Vendor-defined Extensions
	4.4.1 Vendor-defined Action Names
	4.4.2 Vendor-defined State Variable Names
	4.4.3 Vendor-defined XML Elements and attributes
	4.4.4 Vendor-defined Property Names

	5 Service Modeling Definitions
	5.1 ServiceType
	5.2 State Variables
	5.2.1 State Variable Overview
	5.2.2 SourceProtocolInfo
	5.2.3 SinkProtocolInfo
	5.2.4 CurrentConnectionIDs
	5.2.5 FeatureList
	5.2.6 ClockUpdateID
	5.2.7 DeviceClockInfoUpdates
	5.2.8 A_ARG_TYPE_ConnectionStatus
	5.2.9 A_ARG_TYPE_ConnectionManager
	5.2.10 A_ARG_TYPE_Direction
	5.2.11 A_ARG_TYPE_ProtocolInfo
	5.2.12 A_ARG_TYPE_ConnectionID
	5.2.13 A_ARG_TYPE_AVTransportID
	5.2.14 A_ARG_TYPE_RcsID
	5.2.15 A_ARG_TYPE_ItemInfoFilter
	5.2.16 A_ARG_TYPE_Result
	5.2.17 A_ARG_TYPE_RenderingInfoList

	5.3 Eventing and Moderation
	5.4 Actions
	5.4.1 Action Overview
	5.4.2 GetProtocolInfo()
	5.4.2.1 Arguments
	5.4.2.2 Dependency on State
	5.4.2.3 Effect on State
	5.4.2.4 Errors

	5.4.3 PrepareForConnection()
	5.4.3.1 Arguments
	5.4.3.2 Dependency on State
	5.4.3.3 Effect on State
	5.4.3.4 Errors

	5.4.4 ConnectionComplete()
	5.4.4.1 Arguments
	5.4.4.2 Dependency on State
	5.4.4.3 Effect on State
	5.4.4.4 Errors

	5.4.5 GetCurrentConnectionIDs()
	5.4.5.1 Arguments
	5.4.5.2 Dependency on State
	5.4.5.3 Effect on State
	5.4.5.4 Errors

	5.4.6 GetCurrentConnectionInfo()
	5.4.6.1 Arguments
	5.4.6.2 Dependency on State
	5.4.6.3 Effect on State
	5.4.6.4 Errors

	5.4.7 GetRendererItemInfo()
	5.4.7.1 Arguments
	5.4.7.2 Dependency on State
	5.4.7.3 Effect on State
	5.4.7.4 Errors

	5.4.8 GetFeatureList()
	5.4.8.1 Arguments
	5.4.8.2 Dependency on State
	5.4.8.3 Effect on State
	5.4.8.4 Errors

	5.4.9 Common Error Codes

	6 XML Service Description
	7 Test
	Annex A (normative) Protocol Specifics
	A.1 Application to HTTP Streaming
	A.1.1 ProtocolInfo Definition
	A.1.2 Implementation of PrepareForConnection()
	A.1.3 Implementation of ConnectionComplete()
	A.1.4 Automatic Connection Cleanup

	A.2 Application to RTSP/RTP/UDP Streaming
	A.2.1 ProtocolInfo Definition
	A.2.2 Implementation of PrepareForConnection()
	A.2.3 Implementation of ConnectionComplete()
	A.2.4 Automatic Connection Cleanup

	A.3 Application to Device-Internal Streaming
	A.4 Application to IEC61883 Streaming
	A.4.1 ProtocolInfo Definition
	A.4.2 Implementation of PrepareForConnection()
	A.4.3 Implementation of ConnectionComplete()
	A.4.4 Automatic Connection Cleanup

	A.5 Application to Vendor-specific Streaming

	Annex B (normative) CM features
	B.1 Introduction
	B.2 Requirements for the CLOCKSYNC feature, Version 1

	Annex C (informative) Theory of Operation
	C.1 Purpose
	C.2 ProtocolInfo Concept
	C.2.1 4th Field – <additionalInfo>
	C.2.2 IEC61883 Exception
	C.2.3 Formal EBNF for the 4th field
	C.2.4 ProtocolInfo Conventions for Protected Content
	C.2.4.1 3rd Field - MIME Type Format
	C.2.4.2 4th Field - Convention for Protected Content

	C.3 Typical Control Point Operations
	C.3.1 Introduction
	C.3.2 Establishing a New Connection
	C.3.3 Dealing with Ongoing Connections

	C.4 Relation to Devices without ConnectionManagers
	C.5 PrepareForConnection() and ConnectionComplete()
	C.5.1 PrepareForConnection()
	C.5.2 ConnectionComplete()
	C.5.3 General Usage Model
	C.5.4 Relationship to AVTransport and RenderingControl Services
	C.5.5 ConnectionIDs
	C.5.6 AVTransportIDs and RcsIDs

	C.6 Determining if ContentDirectory items are playable
	C.7 CLOCKSYNC feature
	C.7.1 Examples of CLOCKSYNC feature

	Annex D (informative) Bibliography

