
MediaServer:2 Device Template Version 1.01
For UPnPTM Version 1.0
Status: Approved Standard
Date: May 31, 2006
Document Version: 1.00

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee of the UPnP
Forum, pursuant to Section 2.1(c)(ii) of the UPnP Membership Agreement. UPnP Forum Members have
rights and licenses defined by Section 3 of the UPnP Membership Agreement to use and reproduce the
Standardized DCP in UPnP Compliant Devices. All such use is subject to all of the provisions of the UPnP
Membership Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL PROPERTY
RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS ARE PROVIDED
"AS IS" AND "WITH ALL FAULTS". THE UPNP FORUM MAKES NO WARRANTIES, EXPRESS,
IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE STANDARDIZED DCPS,
INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, OF REASONABLE CARE
OR WORKMANLIKE EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE.

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Authors Company

Alan Presser Allegrosoft

Gary Langille Echostar

Gerrie Shults HP

John Ritchie (Co-Chair) Intel

Mark Walker Intel

Changhyun Kim LG Electronics

Sungjoon Ahn LG Electronics

Masatomo Hori Matsushita Electric (Panasonic)

Matthew Ma Matsushita Electric (Panasonic)

Jack Unverferth Microsoft

Wim Bronnenberg Philips

Geert Knapen (Co-Chair) Philips

Russell Berkoff Pioneer

Irene Shen Pioneer

Norifumi Kikkawa Sony

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 2

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Authors Company

Jonathan Tourzan Sony

Yasuhiro Morioka Toshiba

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 3

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Contents
1 Overview and Scope ...6

1.1 Introduction...6
1.2 Notation...7

1.2.1 Data Types ...7
1.2.2 Strings Embedded in Other Strings..8
1.2.3 Extended Backus-Naur Form...8

1.3 Derived Data Types...9
1.3.1 Comma Separated Value (CSV) Lists..9

1.4 Management of XML Namespaces in Standardized DCPs...10
1.4.1 Namespace Prefix Requirements ...12
1.4.2 Namespace Names, Namespace Versioning and Schema Versioning13
1.4.3 Namespace Usage Examples..14

1.5 Vendor-defined Extensions ...15
1.6 References...15

2 Device Definitions...19
2.1 Device Type ..19
2.2 Device Model ..19

2.2.1 Description of Device Requirements ...19
2.2.2 Relationships between Services ...20

2.3 Theory of Operation..20
2.3.1 Device Discovery...20
2.3.2 Locating Desired Content ..21
2.3.3 Preparing to Transfer the Content ..21
2.3.4 Controlling the Transfer of the Content ...21
2.3.5 Recording Content ...21

3 XML Device Description..22
4 Test ..24

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 4

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

List of Tables
Table 1-1: EBNF Operators ...8
Table 1-2: CSV Examples..9
Table 1-3: Namespace Definitions ...11
Table 1-4: Schema-related Information..12
Table 1-5: Default Namespaces for the AV Specifications..13
Table 2-6: Device Requirements ..19

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 5

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

List of Figures
Figure 1: MediaServer Functional Diagram..6

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 6

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

1 Overview and Scope

1.1 Introduction
This device specification is compliant with the UPnPTM Device Architecture version 1.0. It defines a device
type referred to herein as MediaServer.

The MediaServer specification defines a general-purpose device that can be used to instantiate any
Consumer Electronics (CE) device that provides AV content (for example, media) to other UPnP devices
on the home network. It is based on the UPnP AV Architecture Framework (described in another
document). It exposes its content via the ContentDirectory service (refer to the ContentDirectory service
specification for details). The MediaServer MAY also provide functionality to record content using the
ScheduledRecording service (refer to the ScheduledRecording service specification). As such, the
MediaServer can handle any specific type of media, any data format, and transfer protocol.

Example instances of a MediaServer include traditional devices such as VCRs, CD Players, DVD Players,
audio-tape players, still-image cameras, camcorders, radios, TV Tuners, and set-top boxes. Additional
examples of a MediaServer also include new digital devices such as MP3 servers, PVRs, and Home
MediaServers such as the PC. Although these devices contain diverse (AV) content in one form or another,
the MediaServer (via the ContentDirectory service) is able to expose this content to the home network in a
uniform and consistent manner. This ability allows the MediaServer to instantiate traditional single-
function devices as well as more recent multi-function devices such as VCR-DVD players and the general
purpose Home MediaServer, which contains a wide variety of content such as MPEG2 video, CD audio,
MP3 and/or WMA audio, JPEG images, etc.

The MediaServer specification is very lightweight and can easily be implemented on low-resource devices
such as still-image cameras or MP3 players that want to expose their local content to the home network.
The MediaServer can also be used for high-end Home MediaServers that contain dozens of Gigabytes of
heterogeneous content. Refer to the Theory Of Operation section for some specific examples of the
MediaServer.

A full-featured MediaServer device provides clients with the following capabilities:

• Enumerate and query any of the content that the MediaServer can provide to the home network.
• Negotiate a common transfer protocol and data format between the MediaServer and target device.
• Control the flow of the content (for example, FF, REW, etc).
• Copy (import) content to the MediaServer from another device.
• Record content using the ScheduledRecording service.

This device specification does not provide:

• The ability to render AV content.

Figure 1: MediaServer Functional Diagram

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 7

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

The un-shaded blocks represent the UPnP services that are contained by a MediaServer device. The shaded
blocks represent various device-specific modules that the UPnP services might interact with. However, the
internal architecture of a MediaServer device is vendor specific.

1.2 Notation
• In this document, features are described as Required, Recommended, or Optional as follows:

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this
specification are to be interpreted as described in [RFC 2119].

In addition, the following keywords are used in this specification:

PROHIBITED – The definition or behavior is an absolute prohibition of this specification.
Opposite of REQUIRED.

CONDITIONALLY REQUIRED – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is REQUIRED, otherwise it is
PROHIBITED.

CONDITIONALLY OPTIONAL – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is OPTIONAL, otherwise it is
PROHIBITED.

These keywords are thus capitalized when used to unambiguously specify requirements over
protocol and application features and behavior that affect the interoperability and security of
implementations. When these words are not capitalized, they are meant in their natural-language
sense.

• Strings that are to be taken literally are enclosed in “double quotes”.

• Words that are emphasized are printed in italic.

• Keywords that are defined by the UPnP AV Working Committee are printed using the forum
character style.

• Keywords that are defined by the UPnP Device Architecture are printed using the arch character
style.

• A double colon delimiter, “::”, signifies a hierarchical parent-child (parent::child) relationship
between the two objects separated by the double colon. This delimiter is used in multiple contexts,
for example: Service::Action(), Action()::Argument, parentProperty::childProperty.

1.2.1 Data Types
This specification uses data type definitions from two different sources. The UPnP Device Architecture
defined data types are used to define state variable and action argument data types [DEVICE]. The XML
Schema namespace is used to define property data types [XML SCHEMA-2].

For UPnP Device Architecture defined Boolean data types, it is strongly RECOMMENDED to use the
value “0” for false, and the value “1” for true. However, when used as input arguments, the values “false”,
“no”, “true”, “yes” may also be encountered and MUST be accepted. Nevertheless, it is strongly
RECOMMENDED that all state variables and output arguments be represented as “0” and “1”.

For XML Schema defined Boolean data types, it is strongly RECOMMENDED to use the value “0” for
false, and the value “1” for true. However, when used as input properties, the values “false”, “true” may
also be encountered and MUST be accepted. Nevertheless, it is strongly RECOMMENDED that all
properties be represented as “0” and “1”.

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 8

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

1.2.2 Strings Embedded in Other Strings
Some string variables and arguments described in this document contain substrings that MUST be
independently identifiable and extractable for other processing. This requires the definition of appropriate
substring delimiters and an escaping mechanism so that these delimiters can also appear as ordinary
characters in the string and/or its independent substrings. This document uses embedded strings in two
contexts – Comma Separated Value (CSV) lists (see Section 1.3.1, “Comma Separated Value (CSV) Lists”)
and property values in search criteria strings. Escaping conventions use the backslash character, “\”
(character code U+005C), as follows:

a. Backslash (“\”) is represented as “\\” in both contexts.
b. Comma (“,”) is

1. represented as “\,” in individual substring entries in CSV lists
2. not escaped in search strings

c. Double quote (“””) is
1. not escaped in CSV lists
2. not escaped in search strings when it appears as the start or end delimiter of a property value
3. represented as “\”” in search strings when it appears as a character that is part of the property

value

1.2.3 Extended Backus-Naur Form
Extended Backus-Naur Form is used in this document for a formal syntax description of certain constructs.
The usage here is according to the reference [EBNF].

1.2.3.1 Typographic conventions for EBNF
Non-terminal symbols are unquoted sequences of characters from the set of English upper and lower
case letters, the digits “0” through “9”, and the hyphen (“-”). Character sequences between 'single
quotes' are terminal strings and MUST appear literally in valid strings. Character sequences between
(*comment delimiters*) are English language definitions or supplementary explanations of their
associated symbols. White space in the EBNF is used to separate elements of the EBNF, not to represent
white space in valid strings. White space usage in valid strings is described explicitly in the EBNF. Finally,
the EBNF uses the following operators:

Table 1-1: EBNF Operators

Operator Semantics
::= definition – the non-terminal symbol on the left is defined by one or more alternative

sequences of terminals and/or non-terminals to its right.

| alternative separator – separates sequences on the right that are independently allowed
definitions for the non-terminal on the left.

* null repetition – means the expression to its left MAY occur zero or more times.

+ non-null repetition – means the expression to its left MUST occur at least once and
MAY occur more times.

[] optional – the expression between the brackets is optional.

() grouping – groups the expressions between the parentheses.

- character range – represents all characters between the left and right character operands
inclusively.

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 9

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

1.3 Derived Data Types
This section defines a derived data type that is represented as a string data type with special syntax. This
specification uses string data type definitions that originate from two different sources. The UPnP Device
Architecture defined string data type is used to define state variable and action argument string data types.
The XML Schema namespace is used to define property xsd:string data types. The following definition
applies to both string data types.

1.3.1 Comma Separated Value (CSV) Lists
The UPnP AV services use state variables, action arguments and properties that represent lists – or one-
dimensional arrays – of values. The UPnP Device Architecture, Version 1.0 [DEVICE], does not provide
for either an array type or a list type, so a list type is defined here. Lists MAY either be homogeneous (all
values are the same type) or heterogeneous (values of different types are allowed). Lists MAY also consist
of repeated occurrences of homogeneous or heterogeneous subsequences, all of which have the same
syntax and semantics (same number of values, same value types and in the same order). The data type of a
homogeneous list is string or xsd:string and denoted by CSV (x), where x is the type of the individual
values. The data type of a heterogeneous list is also string or xsd:string and denoted by CSV (x, y, z),
where x, y and z are the types of the individual values. If the number of values in the heterogeneous list is
too large to show each type individually, that variable type is represented as CSV (heterogeneous), and the
variable description includes additional information as to the expected sequence of values appearing in the
list and their corresponding types. The data type of a repeated subsequence list is string or xsd:string and
denoted by CSV ({x, y, z}), where x, y and z are the types of the individual values in the subsequence and
the subsequence MAY be repeated zero or more times.

• A list is represented as a string type (for state variables and action arguments) or xsd:string type
(for properties).

• Commas separate values within a list.
• Integer values are represented in CSVs with the same syntax as the integer data type specified in

[DEVICE] (that is: optional leading sign, optional leading zeroes, numeric ASCII)
• Boolean values are represented in state variable and action argument CSVs as either “0” for false

or “1” for true. These values are a subset of the defined Boolean data type values specified in
[DEVICE]: 0, false, no, 1, true, yes.

• Boolean values are represented in property CSVs as either “0” for false or “1” for true. These
values are a subset of the defined Boolean data type values specified in [XML SCHEMA-2]: 0,
false, 1, true.

• Escaping conventions for the comma and backslash characters are defined in Section 1.2.2,
“Strings Embedded in Other Strings”.

• White space before, after, or interior to any numeric data type is not allowed.
• White space before, after, or interior to any other data type is part of the value.

Table 1-2: CSV Examples

Type refinement
of string

Value Comments

CSV (string) or
CSV (xsd:string)

“+artist,-date” List of 2 property sort
criteria.

CSV (int) or
CSV (xsd:integer)

“1,-5,006,0,+7” List of 5 integers.

CSV (boolean) or
CSV (xsd:Boolean)

“0,1,1,0” List of 4 booleans

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 10

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Type refinement
of string

Value Comments

CSV (string) or
CSV (xsd:string)

“Smith\, Fred,Jones\, Davey” List of 2 names,
“Smith, Fred” and
“Jones, Davey”

CSV (i4,string,ui2)
or CSV (xsd:int,
xsd:string,
xsd:unsignedShort)

“-29837, string with leading blanks,0” Note that the second value
is “ string with leading
blanks”

CSV (i4) or
CSV (xsd:int)

“3, 4” Illegal CSV. White space
is not allowed as part of
an integer value.

CSV (string) or
CSV (xsd:string)

“,,” List of 3 empty string
values

CSV (heterogeneous) “Alice,Marketing,5,Sue,R&D,21,Dave,Finance,7” List of unspecified
number of people and
associated attributes. Each
person is described by 3
elements: a name string,
a department string and
years-of-service ui2 or a
name xsd:string, a
department xsd:string and
years-of-service
xsd:unsignedShort.

1.4 Management of XML Namespaces in Standardized DCPs
UPnP specifications make extensive use of XML namespaces. This allows separate DCPs, and even
separate components of an individual DCP, to be designed independently and still avoid name collisions
when they share XML documents. Every name in an XML document belongs to exactly one namespace. In
documents, XML names appear in one of two forms: qualified or unqualified. An unqualified name (or no-
colon-name) contains no colon (“:”) characters. An unqualified name belongs to the document’s default
namespace. A qualified name is two no-colon-names separated by one colon character. The no-colon-name
before the colon is the qualified name’s namespace prefix, the no-colon-name after the colon is the
qualified name’s “local” name (meaning local to the namespace identified by the namespace prefix).
Similarly, the unqualified name is a local name in the default namespace.

The formal name of a namespace is a URI. The namespace prefix used in an XML document is not the
name of the namespace. The namespace name is, or should be, globally unique. It has a single definition
that is accessible to anyone who uses the namespace. It has the same meaning anywhere that it is used, both
inside and outside XML documents. The namespace prefix, however, in formal XML usage, is defined only
in an XML document. It must be locally unique to the document. Any valid XML no-colon-name may be
used. And, in formal XML usage, no two XML documents are ever required to use the same namespace
prefix to refer to the same namespace. The creation and use of the namespace prefix was standardized by
the W3C XML Committee in [XML-NMSP] strictly as a convenient local shorthand replacement for the
full URI name of a namespace in individual documents.

All AV object properties are represented in XML by element and attribute names, therefore, all property
names belong to an XML namespace.

For the same reason that namespace prefixes are convenient in XML documents, it is convenient in
specification text to refer to namespaces using a namespace prefix. Therefore, this specification declares a
“standard” prefix for all XML namespaces used herein. In addition, this specification expands the scope

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 11

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

where these prefixes have meaning, beyond a single XML document, to all of its text, XML examples, and
certain string-valued properties. This expansion of scope does not supercede XML rules for usage in
documents, it only augments and complements them in important contexts that are out-of-scope for the
XML specifications.

All of the namespaces used in this specification are listed in the Tables “Namespace Definitions” and
“Schema-related Information”. For each such namespace, Table 1-3, “Namespace Definitions” gives a brief
description of it, its name (a URI) and its defined “standard” prefix name. Some namespaces included in
these tables are not directly used or referenced in this document. They are included for completeness to
accommodate those situations where this specification is used in conjunction with other UPnP
specifications to construct a complete system of devices and services. The individual specifications in such
collections all use the same standard prefix. The standard prefixes are also used in Table 1-4, “Schema-
related Information”, to cross-reference additional namespace information. This second table includes each
namespace’s valid XML document root elements (if any), its schema file name, versioning information (to
be discussed in more detail below), and links to the entries in the Reference section for its associated
schema.

The normative definitions for these namespaces are the documents referenced in Table 1-3. The schemas
are designed to support these definitions for both human understanding and as test tools. However,
limitations of the XML Schema language itself make it difficult for the UPnP-defined schemas to
accurately represent all details of the namespace definitions. As a result, the schemas will validate many
XML documents that are not valid according to the specifications.

The Working Committee expects to continue refining these schemas after specification release to reduce
the number of documents that are validated by the schemas while violating the specifications, but the
schemas will still be informative, supporting documents. Some schemas might become normative in future
versions of the specifications.

Table 1-3: Namespace Definitions

Standard
Name-
space
Prefix Namespace Name Namespace Description

Normative Definition
Document
Reference

AV Working Committee defined namespaces

av: urn:schemas-upnp-org:av:av Common data types for use in AV
schemas

[AV-XSD]

avs: urn:schemas-upnp-org:av:avs Common structures for use in AV schemas [AVS-XSD]

avdt: urn:schemas-upnp-org:av:avdt Datastructure Template [AVDT]

avt-event: urn:schemas-upnp-org:metadata-1-0/AVT/ Evented LastChange state variable for
AVTransport

[AVT]

didl-lite: urn:schemas-upnp-org:metadata-1-0/DIDL-
Lite/

Structure and metadata for
ContentDirectory

[CDS]

rcs-event: urn:schemas-upnp-org:metadata-1-0/RCS/ Evented LastChange state variable for
RenderingControl

[RCS]

srs: urn:schemas-upnp-org:av:srs Metadata and structure for
ScheduledRecording

[SRS]

srs-event: urn:schemas-upnp-org:av:srs-event Evented LastChange state variable for
ScheduledRecording

[SRS]

upnp: urn:schemas-upnp-org:metadata-1-0/upnp/ Metadata for ContentDirectory [CDS]

Externally defined namespaces

dc: http://purl.org/dc/elements/1.1/ Dublin Core [DC-TERMS]

xsd: http://www.w3.org/2001/XMLSchema XML Schema Language 1.0 [XML SCHEMA-1]
[XML SCHEMA-2]

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 12

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Standard
Name-
space
Prefix Namespace Name Namespace Description

Normative Definition
Document
Reference

xsi: http://www.w3.org/2001/XMLSchema-
instance

XML Schema Instance Document schema Sections 2.6 & 3.2.7 of
[XML SCHEMA-1]

xml: http://www.w3.org/XML/1998/namespace The “xml:” Namespace [XML-NS]

Table 1-4: Schema-related Information

Standard
Name-
space
Prefix

Relative URI and File
Name
● Form 1
● Form 2 Valid Root Element(s) Schema Reference

AV Working Committee Defined Namespaces

av: • av-vn-yyyymmdd.xsd
• av-vn.xsd

n/a [AV-XSD]

avs: • avs-vn-yyyymmdd.xsd
• avs-vn.xsd

<Features>

<stateVariableValuePairs>

[AVS-XSD]

avdt: • avdt-vn-yyyymmdd.xsd
• avdt-vn.xsd

<AVDT> [AVDT]

avt-event: • avt-event-vn-yyyymmdd.xsd
• avt-event-vn.xsd

<Event> [AVT-EVENT-XSD]

didl-lite: • didl-lite-vn-yyyymmdd.xsd
• didl-lite-vn.xsd

<DIDL-Lite> [DIDL-LITE-XSD]

rcs-event: • rcs-event-vn-yyyymmdd.xsd
• rcs-event-vn.xsd

<Event> [RCS-EVENT-XSD]

srs: • srs-vn-yyyymmdd.xsd
• srs-vn.xsd

<srs> [SRS-XSD]

srs-event: • srs-event-vn-yyyymmdd.xsd
• srs-event-vn.xsd

<StateEvent> [SRS-EVENT-XSD]

upnp: • upnp-vn-yyyymmdd.xsd
• upnp-vn.xsd

n/a [UPNP-XSD]

Externally Defined Namespaces

dc: Absolute URL: http://dublincore.org/schemas/xmls/simpledc20021212.xsd [DC-XSD]

xsd: n/a <schema> [XMLSCHEMA-XSD]

xsi: n/a n/a

xml: n/a [XML-XSD]

1.4.1 Namespace Prefix Requirements
There are many occurrences in this specification of string data types that contain XML names (property
names). These XML names in strings will not be processed under namespace-aware conditions. Therefore,
all occurrences in instance documents of XML names in strings MUST use the standard namespace
prefixes as declared in Table 1-3. In order to properly process the XML documents described herein,
control points and devices MUST use namespace-aware XML processors [XML-NMSP] for both reading
and writing. As allowed by [XML-NMSP], the namespace prefixes used in an instance document are at the
sole discretion of the document creator. Therefore, the declared prefix for a namespace in a document
MAY be different from the standard prefix. All devices MUST be able to correctly process any valid XML
instance document, even when it uses a non-standard prefix for ordinary XML names. It is strongly

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 13

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

RECOMMENDED that all devices use these standard prefixes for all instance documents to avoid
confusion on the part of both human and machine readers. These standard prefixes are used in all
descriptive text and all XML examples in this and related UPnP specifications. Also, each individual
specification may assume a default namespace for its descriptive text. In that case, names from that
namespace may appear with no prefix.

The assumed default namespace, if any, for each UPnP AV specification is given in Table 1-5, “Default
Namespaces for the AV Specifications”.

Note: all UPnP AV schemas declare attributes to be “unqualified”, so namespace prefixes are never used
with AV Working Committee defined attribute names.

Table 1-5: Default Namespaces for the AV Specifications

AV Specification Name Default Namespace Prefix

AVTransport:2 avt-event:

ConnectionManager:2 n/a

ContentDirectory:2 didl-lite:

MediaRenderer:2 n/a

MediaServer:2 n/a

RenderingControl:2 rcs-event:

ScheduledRecording:1 srs:

1.4.2 Namespace Names, Namespace Versioning and Schema Versioning
Each namespace that is defined by the AV Working Committee is named by a URN.

In order to enable both forward and backward compatibility, the UPnP TC has established the general
policy that namespace names will not change with new versions of specifications, even when the
specification changes the definition of a namespace. But, namespaces still have version numbers that reflect
definitional changes. Each time the definition of a namespace is changed, the namespace’s version number
is incremented by one. Therefore, namespace version information must be provided with each XML
instance document so that the document’s receiver can properly understand its meaning. This is achieved
by the following rules:

• Every release of a schema is identified by a version number and date of the form “n-yyyymmdd”,
where n corresponds to the namespace definition version number and yyyymmdd is the year,
month and day in the Gregorian calendar that the schema is released.

For example, the new version numbers of the pre-existing “DIDL-Lite” and “upnp” schemas are
“2”. Versions for new schemas, such as “srs” are “1”.

For each schema, the version-date will appear in two places:

1. In the schema file name, according to the naming structure shown in Table 1-4, “Schema-
related Information”.

2. As the value of the version attribute of each schema’s schema root element.

Namespaces are referenced in both schema and XML instance documents by namespace name. The
namespace name appears as the value of an xmlns attribute. The xmlns attribute also declares a
namespace prefix that will be used to qualify names from each namespace. Schemas are referenced in both
schema and XML instance documents by URI in the schemaLocation attribute. See section 1.4.3,
“Namespace Usage Examples” . Two different forms of URI are available, each with a different meaning.
All UPnP AV-defined schema URIs share a common base path of “http://www.upnp.org/schemas/av/”.
Each schema URI has two unique relative forms (see Table 1-4, “Schema-related Information”), according

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 14

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

to which version of a namespace and its representative schema is of interest. The allowed relative URI
forms are:

1. schema-root-name “-v” version-date
where version-date is a full version-date of the form n-yyyymmdd. This form references the
schema whose “root” name (typically the standardized prefix name used for the namespace that
the schema represents) and version-date match schema-root-name and version-date, respectively.

2. schema-root-name “-v” version
where version is an integer representing the namespace’s version number. This form references the
most recent version of the schema whose root name and namespace version number match
schema-root-name and the version, respectively.

Usage rules for schema location URIs are as follows:

• All instance documents, whether generated by a service or a control point, MUST use Form 1.

• All UPnP AV published schemas that reference other UPnP AV schemas will also use Form 1.

• Validation of XML instance documents in UPnP AV systems potentially serves two purposes. The
first is based on standard XML and XML Schema semantics: the document’s creator asserts that
the document is syntactically correct with respect to the referenced schema. The receiving
processor can confirm this with a validating parser that uses the referenced schema(s). The second
is based on UPnP AV namespace semantics. The receiving processor knows that the XML
instance document is supposed to conform to one or more specific UPnP AV specifications. Since
the second context is actually the more important context for instance document processing, the
receiving processor MAY validate the instance document against any version of a schema that
satisfies its needs in assessing the acceptability of the received instance document.

1.4.3 Namespace Usage Examples
The schemaLocation attribute for XML instance documents comes from the XML Schema instance
namespace “http:://www.w3.org/2002/XMLSchema-instance”. A single occurrence of the attribute can
declare the location of one or more schemas. The schemaLocation attribute value consists of a
whitespace separated list of values: namespace name followed by its schema location URL. This pair-
sequence is repeated as necessary for the schemas that need to be located for this instance document.

Example 1:

Sample DIDL-Lite XML Document. This document assumes version-date 2-20060531 of the “didl-lite:”
namespace/schema combination and (a possible later) version 2-20061231 of “upnp:”. The lines with the
gray background show how to express this versioning information in the instance document.

<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://www.upnp.org/schemas/av/didl-lite-v2-20060531.xsd
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://www.upnp.org/schemas/av/upnp-v2-20061231.xsd">
 <item id="18" parentID="13" restricted="0">
 ...
 </item>
</DIDL-Lite>

Example 2:

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 15

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Sample srs XML Document. This document assumes version 1-20060531 of the “srs:” namespace/schema
combination. Again, the lines with the gray background show how to express this versioning information in
the instance document.

<?xml version="1.0" encoding="UTF-8"?>
<srs
 xmlns="urn:schemas-upnp-org:av:srs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:srs
 http://www.upnp.org/schemas/av/srs-v1-20060531.xsd">
 ...
</srs>

1.5 Vendor-defined Extensions
Whenever vendors create additional vendor-defined state variables, actions or properties, their assigned
names and XML representation MUST follow the naming conventions and XML rules as specified in
[DEVICE], Section 2.5, “Description: Non-standard vendor extensions”.

1.6 References
This section lists the normative references used in the UPnP AV specifications and includes the tag inside
square brackets that is used for each such reference:

[AVARCH] – AVArchitecture:1, UPnP Forum, June 25, 2002.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1-20020625.pdf.

[AVDT] – AV DataStructure Template:1, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1.pdf.

[AVDT-XSD] – XML Schema for UPnP AV Datastructure Template:1, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/avdt-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avdt-v1.xsd.

[AV-XSD] – XML Schema for UPnP AV Common XML Data Types, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/av-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/av-v1.xsd.

[AVS-XSD] – XML Schema for UPnP AV Common XML Structures, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/avs-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avs-v1.xsd.

[AVT] – AVTransport:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service.pdf.

[AVT-EVENT-XSD] – XML Schema for AVTransport:2 LastChange Eventing, UPnP Forum, May 31,
2006.
Available at: http://www.upnp.org/schemas/av/avt-event-v2-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avt-event-v2.xsd.

[CDS] – ContentDirectory:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service.pdf.

[CM] – ConnectionManager:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service.pdf.

[DC-XSD] – XML Schema for UPnP AV Dublin Core.

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 16

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Available at: http://www.dublincore.org/schemas/xmls/simpledc20020312.xsd.

[DC-TERMS] – DCMI term declarations represented in XML schema language.
Available at: http://www.dublincore.org/schemas/xmls.

[DEVICE] – UPnP Device Architecture, version 1.0, UPnP Forum, June 13, 2000.
Available at: http://www.upnp.org/specs/architecture/UPnP-DeviceArchitecture-v1.0-20000613.htm.
Latest version available at: http://www.upnp.org/specs/architecture/UPnP-DeviceArchitecture-v1.0.htm.

[DIDL] – ISO/IEC CD 21000-2:2001, Information Technology - Multimedia Framework - Part 2: Digital
Item Declaration, July 2001.

[DIDL-LITE-XSD] – XML Schema for ContentDirectory:2 Structure and Metadata (DIDL-Lite), UPnP
Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/didl-lite-v2-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/didl-lite-v2.xsd.

[EBNF] – ISO/IEC 14977, Information technology - Syntactic metalanguage - Extended BNF, December
1996.

[HTTP/1.1] – HyperText Transport Protocol – HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee, June 1999.
Available at: http://www.ietf.org/rfc/rfc2616.txt.

IEC 61883] – IEC 61883 Consumer Audio/Video Equipment – Digital Interface - Part 1 to 5.
Available at: http://www.iec.ch.

[IEC-PAS 61883] – IEC-PAS 61883 Consumer Audio/Video Equipment – Digital Interface - Part 6.
Available at: http://www.iec.ch.

[ISO 8601] – Data elements and interchange formats – Information interchange -- Representation of dates
and times, International Standards Organization, December 21, 2000.
Available at: ISO 8601:2000.

[MIME] – IETF RFC 1341, MIME (Multipurpose Internet Mail Extensions), N. Borenstein, N. Freed, June
1992.
Available at: http://www.ietf.org/rfc/rfc1341.txt.

[MR] – MediaRenderer:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaRenderer-v2-Device-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v2-Device.pdf.

[MS] – MediaServer:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaServer-v2-Device-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaServer-v2-Device.pdf.

[RCS] – RenderingControl:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service.pdf.

[RCS-EVENT-XSD] –XML Schema for RenderingControl:2 LastChange Eventing, UPnP Forum, May 31,
2006.
Available at: http://www.upnp.org/schemas/av/rcs-event-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/rcs-event-v1.xsd.

[RFC 1738] – IETF RFC 1738, Uniform Resource Locators (URL), Tim Berners-Lee, et. Al., December
1994.
Available at: http://www.ietf.org/rfc/rfc1738.txt.

[RFC 2119] – IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, S. Bradner,
1997.
Available at: http://www.faqs.org/rfcs/rfc2119.html.

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 17

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

[RFC 2396] – IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, Tim Berners-Lee, et
al, 1998.
Available at: http://www.ietf.org/rfc/rfc2396.txt.

[RFC 3339] – IETF RFC 3339, Date and Time on the Internet: Timestamps, G. Klyne, Clearswift
Corporation, C. Newman, Sun Microsystems, July 2002.
Available at: http://www.ietf.org/rfc/rfc3339.txt.

[RTP] – IETF RFC 1889, Realtime Transport Protocol (RTP), H. Schulzrinne, S. Casner, R. Frederick, V.
Jacobson, January 1996.
Available at: http://www.ietf.org/rfc/rfc1889.txt.

[RTSP] – IETF RFC 2326, Real Time Streaming Protocol (RTSP), H. Schulzrinne, A. Rao, R. Lanphier,
April 1998.
Available at: http://www.ietf.org/rfc/rfc2326.txt.

[SRS] – ScheduledRecording:1, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v1-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v1-Service-
20060531.pdf.

[SRS-XSD] – XML Schema for ScheduledRecording:1 Metadata and Structure, UPnP Forum, May 31,
2006.
Available at: http://www.upnp.org/schemas/av/srs-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/srs-v1.xsd.

[SRS-EVENT-XSD] – XML Schema for ScheduledRecording:1 LastChange Eventing, UPnP Forum, May
31, 2006.
Available at: http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/srs-event-v1.xsd.

[UAX 15] – Unicode Standard Annex #15, Unicode Normalization Forms, version 4.1.0, revision 25, M.
Davis, M. Dürst, March 25, 2005.
Available at: http://www.unicode.org/reports/tr15/tr15-25.html.

[UNICODE COLLATION] – Unicode Technical Standard #10, Unicode Collation Algorithm version
4.1.0, M. Davis, K. Whistler, May 5, 2005.
Available at: http://www.unicode.org/reports/tr10/tr10-14.html.

[UPNP-XSD] – XML Schema for ContentDirectory:2 Metadata, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/upnp-v2-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/upnp-v2.xsd.

[UTS 10] – Unicode Technical Standard #10, Unicode Collation Algorithm, version 4.1.0, revision 14, M.
Davis, K. Whistler, May 5, 2005.
Available at: http://www.unicode.org/reports/tr10/tr10-14.html.

[UTS 35] – Unicode Technical Standard #35, Locale Data Markup Language, version 1.3R1, revision
5,.M. Davis, June 2, 2005.
Available at: http://www.unicode.org/reports/tr35/tr35-5.html.

[XML] – Extensible Markup Language (XML) 1.0 (Third Edition), François Yergeau, Tim Bray, Jean
Paoli, C. M. Sperberg-McQueen, Eve Maler, eds., W3C Recommendation, February 4, 2004.
Available at: http://www.w3.org/TR/2004/REC-xml-20040204.

[XML-NS] – The “xml:” Namespace, November 3, 2004.
Available at: http://www.w3.org/XML/1998/namespace.

[XML-XSD] – XML Schema for the “xml:” Namespace.
Available at: http://www.w3.org/2001/xml.xsd.

[XML-NMSP] – Namespaces in XML, Tim Bray, Dave Hollander, Andrew Layman, eds., W3C
Recommendation, January 14, 1999.

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 18

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Available at: http://www.w3.org/TR/1999/REC-xml-names-19990114.

[XML SCHEMA-1] – XML Schema Part 1: Structures, Second Edition, Henry S. Thompson, David Beech,
Murray Maloney, Noah Mendelsohn, W3C Recommendation, 28 October 2004.
Available at: http://www.w3.org/TR/2004/REC-xmlschema-1-20041028.

[XML SCHEMA-2] – XML Schema Part 2: Data Types, Second Edition, Paul V. Biron, Ashok Malhotra,
W3C Recommendation, 28 October 2004.
Available at: http://www.w3.org/TR/2004/REC-xmlschema-2-20041028.

[XMLSCHEMA-XSD] – XML Schema for XML Schema.
Available at: http://www.w3.org/2001/XMLSchema.xsd.

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 19

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

2 Device Definitions

2.1 Device Type
The following device type identifies a device that is compliant with this specification:

urn:schemas-upnp-org:device:MediaServer:2

The shorthand MediaServer is used herein to refer to this device type.

2.2 Device Model
MediaServer products MUST implement minimum version numbers of all REQUIRED embedded devices
and services specified in the table below. A MediaServer device can be either a Root device or can be
Embedded in another UPnP device (MediaServer or other). A MediaServer device (Root or Embedded) can
in turn contain other standard or non-standard Embedded UPnP devices.

Table 2-6: Device Requirements

DeviceType Root R/O1 ServiceType R/O Service ID2

MediaServer:2 Root
or
Embedded

R ContentDirectory:2 R ContentDirectory

 ConnectionManager:2 R ConnectionManager

 AVTransport:2 O AVTransport

 ScheduledRecording:1 O ScheduledRecording

 Standard non-AV services
defined by UPnP (QoS,
Security, etc.) go here.

X TBD

 Non-standard services
embedded by a UPnP
vendor go here.

X TBD

Standard devices
embedded by a UPnP
vendor go here.

Embedded O Services as defined by the
corresponding standard
UPnP Device Definition go
here.

Non-standard devices
embedded by a UPnP
vendor go here.

Embedded X TBD TBD TBD

1 R = REQUIRED, O = OPTIONAL, X = Non-standard.
2 Prefixed by urn:upnp-org:serviceId:

2.2.1 Description of Device Requirements
Any instance of a MediaServer MUST have a ContentDirectory service and a ConnectionManager service.
For a given instance (MediaServer), there MUST only be one instance of these services. There MAY be
one instance of a AVTransport service. There MAY also be one instance of a ScheduledRecording service.
The semantics of additional standard AV services are not defined. Other standard services, such as UPnP
QoS, MAY be added with semantics defined by the relevant specifications.

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 20

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

It should be noted that a MediaServer:2 implementation MUST respond to all SSDP queries that specify
MediaServer:1 and MUST respond to all actions defined by the MediaServer:1

The ContentDirectory service allows control points to discover information about the AV content that is
available from the device. The ConnectionManager is used to enumerate and select a particular transfer
protocol and data format to be used for transferring the content. Additionally, the ConnectionManager also
allows control points, such as a home network management application, to discover useful information
about the content transfers that the device is actively participating in. Such information could be useful to a
Quality of Service capability, which may be defined in the future.

The existence of the AVTransport service depends on the transfer protocols that are supported by the
device. The ConnectionManager specification includes a table that identifies which transfer protocols
REQUIRE an AVTransport service to be implemented on the MediaServer. If an implementation of the
MediaServer supports any of these transfer protocols, then it MUST implement the AVTransport service.

2.2.2 Relationships between Services
The ConnectionManager::PrepareForConnection() action provides the trigger point for creating a new
virtual instance of the AVTransport service (refer to the AVTransport service specification for a description
of virtual instances of the AVTransport service). When a new connection is established (one that
REQUIRES an AVTransport service on the MediaServer, which is determined by the selected transfer
protocol), the ConnectionManager::PrepareForConnection() action returns the InstanceID of the virtual
instance of the AVTransport service that is bound to that connection. This virtual instance is used by the
control point to control the flow (for example, AVTransport::Play(), AVTransport::Seek(), etc.) of the
content to the network. As described in the AVTransport service specification, each virtual instance of the
AVTransport service operates independently.

The ScheduledRecording::CreateRecordSchedule() action may use objects (such as a User Channel item or
an EPG item) exposed by the ContentDirectory service to specify what broadcast content will be recorded.
The recorded content may then be exposed by the associated ContentDirectory service.

2.3 Theory of Operation
MediaServer devices are used in conjunction with one or more MediaRenderer devices to allow a control
point to discover entertainment (AV) content (for example, video, music, images, etc) on the MediaServer
and to render that content on any appropriate MediaRenderer within the home network. In general terms,
the process begins with the control points discovering MediaServer and MediaRenderer devices within the
home network. The control point interacts with a MediaServer(s) to locate a desired piece of content (for
example, a movie, a song, a playlist, a photo album, etc). After the content has been identified, the control
point needs to identify a common transfer protocol and data format that can be used to transfer the content
from the MediaServer to the desired MediaRenderer. After these transfer parameters have been established,
the control point controls the flow of the content (for example, AVTransport::Play(),
AVTransport::Pause(), AVTransport::Stop(), AVTransport::Seek(), etc.) . (Depending on the selected
transfer protocol, these flow control operations are sent either to the MediaServer or MediaRenderer, but
not both). The actual transfer of the content is performed directly by the MediaServer and MediaRenderer.
The content transfer happens independently from the control point and does not involve UPnP itself at all.
The control point uses UPnP to setup the transfer of the content, but the transfer is performed using a
transfer protocol other than UPnP. MediaServer devices also allow a control point to create a set of
selection criteria to record content via the ScheduledRecording service. A control point can also discover
recorded content on the MediaServer that was created by such a set of selection criteria.

2.3.1 Device Discovery
Control points can discover MediaServer devices using the standard UPnP SSDP-based device discovery
mechanism to search for any device that is a member of the MediaServer device class including Root
devices and/or Embedded devices.

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 21

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

2.3.2 Locating Desired Content
Control points use the MediaServer’s ContentDirectory service to locate desired content. The
ContentDirectory service exposes both a search capability and a browse capability. Searching is useful
when the control point (via the end-user) knows something about the content it wants to find (for example,
its name, artist, type, date created, etc). Browsing is useful for blindly discovering what content the device
has to offer. Each content item that is referenced by the ContentDirectory service includes various
information about that content including the transfer protocol(s) and file format(s) that the MediaServer can
use to transfer the content to the MediaRenderer.

2.3.3 Preparing to Transfer the Content
After the desired content has been identified, the control point needs to determine which transfer protocol
and data format should be used to transfer the content from the MediaServer to the MediaRenderer.
(Transfer protocol examples include IEEE-1394, HTTP GET, RTSP/RTP, etc., and data format examples
include MPEG2, MPEG4, MP3, WMA, JPEG, etc.) The control point makes this determination by
comparing the content’s protocol/format information (obtained via the MediaServer’s ContentDirectory
service) with the protocol/format information obtained via the MediaRenderer’s
ConnectionManager::GetProtocolInfo() action.

After the transfer protocol and data format have been identified, the control point uses the
ConnectionManager::PrepareForConnection() action on each device to inform the device that the
specified protocol/format are about to be used. Depending on which transfer protocol was selected, the
ConnectionManager::PrepareForConnection() action on either the MediaServer or MediaRenderer will
return an AVTransport InstanceID to the control point. This AVTransport InstanceID is used by the control
point to control the transfer of the content (for example, AVTransport::Play(), AVTransport::Pause(),
AVTransport::Stop(), AVTransport::Seek(), etc). Refer to the subsection below for more details.

Depending on which transfer protocols are supported by the device (for example, devices that only support
HTTP GET), a MediaServer and/or MediaRenderer MAY choose to NOT implement the
ConnectionManager::PrepareForConnection() action. In this case, the control point may not have been
able to obtain an AVTransport InstanceID from either device. When this happens, the control point should
use an AVTransport InstanceID of 0 (zero). If the MediaRenderer has implemented the AVTransport
service, the control point should use it for all AVTransport actions. Otherwise, AVTransport actions should
be sent to the MediaServer device. Refer to the ConnectionManager service for more information.

2.3.4 Controlling the Transfer of the Content
In all cases, the control point uses the InstanceID, obtained as described above, to control the flow of the
content. For example, to begin transferring the content, the control point invokes the AVTransport::Play()
action. To skip to a specific location within the content, the control point invokes the AVTransport::Seek()
action. In most cases, the choice of AVTransport actions that are actually invoked will likely be directed by
the end-user while interacting with the control point’s UI. Refer to the AVTransport service specification
for additional details of these and other AVTransport actions.

2.3.5 Recording Content
A control point invokes the ScheduledRecording::CreateRecordSchedule() action on a MediaServer device
with a set of selection criteria (called a recordSchedule) that the device will use to identify the content to
record. These criteria are then used to create individual objects (called recordTask objects), each containing
the information necessary to create a single recording. For example, a recordSchedule might hold criteria
that select every occurrence of a broadcast series for recording. The ScheduledRecording service then
creates a recordTask instance for every episode in the series.

After creating one or more recordSchedule instances, the control point can browse the list of
recordSchedule instances and their associated recordTask instances using the
ScheduledRecording::BrowseRecordSchedules() action.

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 22

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

3 XML Device Description
<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <URLBase>base URL for all relative URLs</URLBase>
 <device>
 <deviceType>
 urn:schemas-upnp-org:device:MediaServer:2
 </deviceType>
 <friendlyName>short user-friendly title</friendlyName>
 <manufacturer>manufacturer name</manufacturer>
 <manufacturerURL>URL to manufacturer site</manufacturerURL>
 <modelDescription>long user-friendly title</modelDescription>
 <modelName>model name</modelName>
 <modelNumber>model number</modelNumber>
 <modelURL>URL to model site</modelURL>
 <serialNumber>manufacturer's serial number</serialNumber>
 <UDN>uuid:UUID</UDN>
 <UPC>Universal Product Code</UPC>
 <iconList>
 <icon>
 <mimetype>image/format</mimetype>
 <width>horizontal pixels</width>
 <height>vertical pixels</height>
 <depth>color depth</depth>
 <url>URL to icon</url>
 </icon>
 XML to declare other icons, if any, go here
 </iconList>
 <serviceList>
 <service>
 <serviceType>
 urn:schemas-upnp-org:service:ContentDirectory:2
 </serviceType>
 <serviceId>
 urn:upnp-org:serviceId:ContentDirectory
 </serviceId>
 <SCPDURL>URL to service description</SCPDURL>
 <controlURL>URL for control</controlURL>
 <eventSubURL>URL for eventing</eventSubURL>
 </service>
 <service>
 <serviceType>
 urn:schemas-upnp-org:service:ConnectionManager:2
 </serviceType>
 <serviceId>
 urn:upnp-org:serviceId:ConnectionManager
 </serviceId>
 <SCPDURL>URL to service description</SCPDURL>
 <controlURL>URL for control</controlURL>
 <eventSubURL>URL for eventing</eventSubURL>
 </service>

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 23

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

 <service>
 <serviceType>
 urn:schemas-upnp-org:service:AVTransport:2
 </serviceType>
 <serviceId>urn:upnp-org:serviceId:AVTransport</serviceId>
 <SCPDURL>URL to service description</SCPDURL>
 <controlURL>URL for control</controlURL>
 <eventSubURL>URL for eventing</eventSubURL>
 </service>
 <service>
 <serviceType>
 urn:schemas-upnp-org:service:ScheduledRecording:1
 </serviceType>
 <serviceId>
 urn:upnp-org:serviceId:ScheduledRecording
 </serviceId>
 <SCPDURL>URL to service description</SCPDURL>
 <controlURL>URL for control</controlURL>
 <eventSubURL>URL for eventing</eventSubURL>
 </service>
 Declarations for standard non-AV services defined by UPnP
 (if any) go here
 Declarations for other services added by UPnP vendor
 (if any) go here
 </serviceList>
 <deviceList>
 Description of embedded devices added by UPnP vendor
 (if any) go here
 </deviceList>
 <presentationURL>URL for presentation</presentationURL>
 </device>
</root>

MediaServer:2 Device Template Version 1.01 – Document Version 1.00 24

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

4 Test
There are no semantic tests defined for this device.

