ScheduledRecording:2 Service

For UPnP Version 1.0

Status: Standardized DCP (SDCP)
Date: December 31, 2010

Service Template Version 1.01

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee of the UPnP
Forum, pursuant to Section 2.1(c)(ii) of the UPnP Forum Membership Agreement. UPnP Forum Members
have rights and licenses defined by Section 3 of the UPnP Forum Membership Agreement to use and
reproduce the Standardized DCP in UPnP Compliant Devices. All such use is subject to all of the
provisions of the UPnP Forum Membership Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL PROPERTY
RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS ARE PROVIDED
"AS IS" AND "WITH ALL FAULTS". THE UPNP FORUM MAKES NO WARRANTIES, EXPRESS,
IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE STANDARDIZED DCPS,
INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, OF REASONABLE CARE
OR WORKMANLIKE EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE.

© 2011, UPnP Forum. All rights Reserved.

Authors ‘ Company

Gary Langille Echostar

John Ritchie Intel

Keith Miller (Chair) Nokia

Vlad Stirbu Nokia

Julius Szakolczay Panasonic

Wouter van der Beek Philips

Jeffrey Kang Philips

Geert Knapen Philips

Russell Berkoff Pioneer

Russell Berkoff (Vice-Chair) Samsung Electronics
Wonseok Kwon Samsung Electronics
SJae Oh Samsung Electronics
Mahfuzur Raman Samsung Electronics

ScheduledRecording:2

Authors Company

Richard Bardini Sony

*Note: The UPnP Forum in no way guarantees the accuracy or completeness of this author list and
in no way implies any rights for or support from those members listed. This list is not the

specifications’ contributor list that is kept on the UPnP Forum’s website.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 3

Contents
1 OVEFVIEW @NGA SCOPE ..ceeiettie ittt ettt e bttt sbe e e ea e e sab et e sbb e e sbb e e sabe e sabe e anbe e e be e e asbeeenbeeanbeeeees 13
ISR [o oo [0 £ o] PP 13
O (o - LA T EO O SRR 14
N R B L L= B Y oL OO TP PP UUP PRI 14
1.2.2 Strings Embedded in Other SIrNGS.......coiuiiiiieiiee e 14
1.2.3 Extended BackuS-NaUF FOMMottt 15
1.3 DErIVEA DALA TYPES -..eeeueeeiuiieiitee et ettt ettt ettt et e e be e e ke e e sbe e e e abe e ambe e s be e e abe e e sbe e e ebbeeabbeeanbeeenbeeenees 16
1.3.1 Comma Separated Value (CSV) LSSc.ooiuieiiiiiiieiiee it 16
1.4 Management of XML Namespaces in Standardized DCPSccccviiiiiiiniiiniiie e 17
1.4.1 Namespace PrefiX REQUIFEMENTSociiiiiieiii ettt 21
1.4.2 Namespace Names, Namespace Versioning and Schema Versioning...........cccceveeevveenneenne 22
1.4.3 Namespace Usage EXAMPIEScocuiiiiiiiiiiii ettt 24
1.5 Vendor-defined EXIENSIONScoiiiiiiiii ittt 24
1.51 Vendor-defined ACHION NAMEScoiiiiiiiiiiii ettt 24
1.5.2 Vendor-defined State Variable NAmMES..........ccoo i 25
1.5.3 Vendor-defined XML Elements and attributesocoeoiiriiiiiiiie e 25
1.5.4 Vendor-defined Property NAMESccuiiiiiiiiieiiee ettt et saee s 25
T S 1T =] =TT 25
2 Service Modeling DefiNitioNs...........ooieiiiiiiii et eee 31
N - Y o=l I o T PR UPPURRUPRP 31
2.2 Terms and ADBIEVIATIONSoi ittt ettt ettt et e st e sbe e e sbe e e sbeeeabeaan 31
N R\ o o =Y - Ui o o O TR OURP PR 31
A A - 01 1 T T TP PP PR PPPTO 31
2.3 ScheduledRecording Service ArChiteCIUIE.........coouiiiiii e 37
2.3.1 rECOIASCREAUIEttt et sba e sare e sane s 37
2.3.2 TBCOTATASK. ..ttt sttt ettt bt b et ehb e nh e et e e nb e e e nae e naae s 39
2.4 SEALE ValTADIES. ... ittt 40
2.4.1 State Variable OVEIVIEWoociiiiiiie ittt sttt b e sae e e 40
2.4.2 SOICAPADIIITIESeeeieiie ettt e saee e naae s 41
2.4.3 SOILEVEICAPADTIITY ... eeeieeeiiee ettt ettt b e sabe e sane s 41
244 SEALEUPAALEID ...ttt ettt b eh e sa e e e nb it e nan e nane s 42
P I I 1 (O] 1T 110 TR OURPTOTPR 42
246 A ARG TYPE PrOPEeItYLISt ...cceiieeisiiitesiieiiite sttt sttt sttt sbe b 45
247 A ARG TYPE DataTVYPEID....cceiieiiriiriesiieieitesieeie sttt sieeieesbe st sbessessbeste e esbesnesbesseesnesnens 45
248 A ARG TYPE ODJECID ...uviiuiitiiieeiesiistesteeie sttt ettt sttt st ettt st snesbesne e b nne s 46
249 A ARG TYPE ODJECHIDLISE. ...ueiueeeistertesiieiesiestieie sttt st e et st sbe et sbe s sbe e sbesieesne e 46
2.410 A ARG TYPE PropertylInfO.....cccccoiiiiiiiieii ittt sttt sttt 46
2.4.11 A ARG TYPE INUEX .tiitieueiitiitesiieie st st ste st sbe ettt sbe et sbeabeebesbesbesbeenbesbesbesaeasbeneens 46
2.4.12 A ARG TYPE COUNL t.ttitiiuiiitiitentieie sttt sttt sttt b sbe e bt beebe st sbe b ebesbesbesbeesbeneeas 46
2.4.13 A ARG TYPE SOFCIITEIIA . c.ververueeeestistestietesiesitetestesiesiesieesbesbesbessessbesbesseesbesreseesseesnesnens 46
2.4.14 A ARG _TYPE ReCOrdSCREAUIE.ciiiiieiiii ittt 46

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 4

2.4.15 A ARG TYPE RECOIMATASK ..verveiueeiestisiesiieiestesteesieste st stesiee st st sbe s sresbe s e sbesbesbesneesnennen 47
2.4.16 A_ARG_TYPE RecOrdSChedUIEPANTSc.cciieiiiiieiiiie ettt 47
2.5 Eventing and MOUEIALIONccuieiiiiiiie ittt e sae e sbee e abee e 48
L R o { 0] LS PRSPPI 48
2.6.1 GetSOrtCAPADIIITIES() .. ee ureerureerrreeeiteee it e et e et e e st e e et e st e st e e sibe e e sbe e e sabe e sabe e sabe e ebeeenbeeesnneas 49
A € | o (0] 1<) A 1 (TP OURPTOUPR 50
2.6.3 GELAHOWEAVAIUES() .. eveeureeiuteeatee ettt ettt ettt sab e sab e e sbe e sbe e e sabe e sabe e sabe e e nbe e s sebeasnne s 51
2.6.4 GetStateUPdAtEID() ... veeiuveeireeeteee ettt et e ettt ettt sabe e st e st sb e e sab e be e sare e sane s 53
2.6.5 BrowseReCOrdSCNEAUIES() ... veiirteeetiieitiie ittt ettt sae e san s 54
2.6.6 BrOWSERECOIATASKS(). . eeiureeiureeetieaitite ittt et e ettt et ettt st e e sbb e e sabe e sabe e sabe e e be e e nbeeesane s 58
2.6.7 CreateReCOrASCREAUIE() . uiiveiiiee ettt b e sae e naee s 60
2.6.8 DeleteReCOrdSCREAUIB(). .. ciiteeitei ettt ettt sae e 63
2.6.9 GetRECOIASCNEAUI() .vieurieiteietie ettt ettt ettt b e b s 64
2.6.10 EnableReCOrdSCREAUIE(). . i teeitiieitiie ittt sttt b e sae e e saee s 65
2.6.11 DisableReCOrdSCREAUIE()......ueiiieieitiie ittt 66
2.6.12 DeleteRECOIATASK() «..vveerureerureraieteitet ettt e ettt ettt ettt sab e st e e sbe e sb e e sabe e sabe e sabe e eabe e s seneesaneas 67
2.6.13 GERECOIATASK() . vveevreerureertei ettt ettt ettt ettt sb et e b e sb e e sab e e sab e e sabe e s sbbeesbneesane s 68
2.6.14 ENabIERECOIATASK() - vveerureeiieiaieeiitie ettt ettt ettt ettt sab e sabe et e e be e e ane e snne s 69
2.6.15 DiSabIERECOIATASK() .veerureerurerrteiaiteie ittt e it ettt ettt e sttt st et e sabe e sabe e sabe e s be e e ebaeesnne s 70
2.6.16 RESEIRECOIATASK() -vruvveerureerureritetaitie ettt et e ettt et e ettt sab et st et e sbe e e sabe e sabe e sabe e sabe e e seneesaneas 72
2.6.17 GetRecordScheduleCONTIICIS() ... uu ieeerureeiiee ittt ettt 73
2.6.18 GetReCOrdTasKCONTIICTS() . .. veeerrererteeeitieeriiee it ettt ettt ettt e s be e b e e sae e e e s 74
2.6.19 COMMON EITOr COUBSuviiiiteiitiee ettt ettt ettt ettt ettt e e sbbe e sab e e e e s be e e be e e sneeas 75
2.7 State Diagram Of FECOIATASK ...ciuuieiuieiiie ittt sb et e sae e e snae e sebe e 77
2.7.1 A Full-Featured State DIAQIaMc.coiuiiiiie ittt see e naa s 77
2.7.2 A Minimal-Implementation State DIagramcccoouieiieriieiiiee e 82
2.7.3 recordTask State EXAMPIEcooeiiiiii s 85
2.8 ScheduledRecording Service Priority MOlcouiiiiiiiiiii e 86
2.8.1 Introduction of the ScheduledRecording Service Priority Model............ccocoeviiniiiinennn. 86
2.8.2 Ordered Priority within Each Priority LeVElcoooiiiiiiiiiee e 87
2.8.3 Setting the Initial Priority Level of @ recordSChedulecccooveiiiiiiiiieiiiceeec e 88
2.8.4 Sorting recordSchedule Instances Based on their Current Priority Settingsc.ccccceeveee. 90
N B 1 T-To Vo) @ o =T = [TP RPRUPRUPRTIN 91
PN N R) oo [N s [o] IR OURPTRRN 91
2.9.2 Checking the Capabilities of a ScheduledRecording Service...........ccccoueeviiiniiniiiicneennes, 91
2.9.3 Adding a Scheduled Recording Entry t0 the LiSt..........cccceiiiiiiiiiiiie e 102
2.9.4 Deleting @ reCOrdSCNEAUIEcoiuuiiiiie et 119
2.9.5 Browsing recordSchedule and recordTask INSTANCEScovueerieerieeriie e 119
2.9.6 RALING SYSTBIM ...ttt ettt ettt et e e s b e e b e e e s be e e be e e beeenees 125
2.9.7 Conflict Detection and ReSOIULIONcoiiiiiiiiiiii e 126

3 XML SErVICE DESCIIPLIONciiiiiiitiie ittt ettt ettt ettt st be e s sbe e s mbe e s be e e sbe e e snbeaanbeean 127
| SO O UU PP T OUPPUROPPPRN 138

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 5

Appendix A. srs XML Document (NOFMATIVE)ocueiiiiiiiiieiiee et 139
A1l A ARG TYPE RecordSchedule AVDT XML DOCUMENL.........ccoviiviieiiiiieeiiieieeciiee e sivee e 139
A.2 A ARG TYPE RecordTask AVDT XML DOCUMENLcccivieiiiiiiieiiiiee et e e evee e 140
A.3 A ARG TYPE RecordScheduleParts AVDT XML DOCUMENLcccoviviieiiiiiieeiiiie e, 140

Appendix B. AV Working Committee Extended Properties (Normative)c.ccccoceeveennennn 142
R =T T o o] 1= 1= U UOU PP VPRI 142

300 1 R (01 [ISP PR OPRR ST 142
300 2 {1 [T PP P R OP PRSPPI 142
BL1.3 LSS ittt e e e e te e e ehbe e e be e e beeabe e e ataeearaeas 143
B.1.4 additionalStatUSINTO.......c.uuieiiiiie e 143
O T o0] (=1 (] (=11 = SRS 144
A o A1) g1 YA o o] oL =T OO PP URRURRPI 145
300 R o o] | TP UPRPTRN 145
A o (11 (=T | 0] 1 T PP OURPOTRR 146
R o (1] | =Yoo 10 142 N o= SRR 148
B.3 OULPUL CONIOI PrOPEITIESeiitiieitiee ittt ettt ettt et e et e et e e nane e abeean 148
T T A =Yoo o | 1= g F= o) SRS 148
B.3.2 desiredReCOrdQUANITYueviiiiieee ittt e e s rbe e e s b e e e sanrne e s 150
B.4 Content Identification Related Properties...........ccuuoiuieiiiiiiiiiiie et 153
7 0 Yol g (=T (V] =T (@ 5@ o [=Yod f 5 S 153
B.4.2 sCheduledChannellD..........ccociiiieiiiee et see et e e st te e s sta e e e s bbe e e s sabee e e s anraeeas 154
B.4.3 SCheduledStartDateTIMEccueeeicieee e it e e et tte e e et e e e sbre e e st e e e s sab e e e s srae e e snbe e e s snraeeesnnreeeas 156
S Tod g (=T (V] [T I LU L[] o SRS 156
B.4.5 sCheduledProgramCOUE........ccueieiiieee ittt e s cite e e et e e e stre e e s tte e e st be e e s eatae e e s nte e e s sataeeesnnreeeas 157
B.5 Matching Content Criteria PrOPEITIEScoiiiiiiiiiiiieiie ettt 157
B.5.1 MAICHINGNAME ... eeiiieie ittt b e bttt et e e be e sb e e e sab e e sabe e e sbe e e sbneesabeas 158
B.5.2 MAICHINGID ... eiiiiitiitie ettt ettt b e eb e bt e et et e e nan e naae s 159
B.6 Matching Qualifying Criteria PrOPEertiEsSccoiuiiiiieiiie ettt 160
B.6.1 matchingChannellD..........ccciiiiiiiiiiie et e e s trr e e stae e e s bbe e e s sabe e e e s anraeeas 160
B.6.2 matchingStartDate TIMERANGE ..vecicvveeeeiiieeeiciiie e ctree e e ste e e st e e et re e s stre e e e s etre e e e sntre e e annreeeas 161
B.6.3 MatChingDUIatiONRANGEcccvveeeiciieeeeitie e e sttt e e e stte e e e stre e e st be e e s st e e e e s sarae e e stbeeessnbaeeesnnaeeeas 162
B.6.4 matchingRAtINGLIMITcociiiiiiei e e et e e s rre e e st re e e s sab e e e e s enraeeas 162
B.6.5 MatChiNgEPISOUETYPE ... vveieiitiee e ittt e ettt e e e s tte e e st e e e st e e e st be e e s s tb e e e s satae e e sbbeeessnbeeeesnnreneas 165
B.7 Content CoNtrol PrOPEITIESooiueieiiie ettt ettt ettt et e saee e snbeean 165
B.7.1 t0talDeSiredRECOMATASKS .. iiiiiirie it e e sttt ettt e e et e e s e e s erre e e s rtte e e s sare e e e snreee s 165
B.7.2 scheduledStartDate TIMEAGJUSEuvveeiciiee ettt s e e e rre e e e st e e s st re e e s nree e 166
B.7.3 SCheduledDUratioNAGJUSE.........ueie ettt et e e e re e e s s rae e e s tre e e s saree e e snreeeas 166
S o) V=) =) 010 PR ER 167
o (0] 7= L o] 0 SRS 167
B.7.6 ChanNeIMIQrationcccueieiiiiee et s ettt e st e e e e s tee e e s sate e e e st b e e e s sabeeeesanraeeas 168
O A {11 T=) Y Lo = L o PRSP OU PRSP 169
B.7.8 QllOWDUPIICALES ... ceiteieieiee ettt ettt rb et b et sbe e sab e e sabe e sbn e e sane e sabe s 169

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 6

B.8 Storage Related PrOPEITIESc.eiiiiieiiie ettt ettt san e e e e 169
B.8.1 PErSIStEARECOITINGS. .. veiuveieriruririeirireriee sttt sttt st e e ss e bbb e esnees e nre e 169
B.9 SChedule State PrOPertiES.ccii ittt st sae e e abe e 171
B.9.1 SCREAUIBSTALE .. ceeeieiieeeiee ettt b et 171
B.9.2 bNOIMAITASKSEXIST. ... ccuviiueiruririiisiie sttt s nre e 172
B.10 StatiStICS PrOPEITIES.o iuiiiiiiiiitie ettt ettt sttt e s e et e e e b e e sbbe e snbeesnbeaans 173
B.10.1 currentReCOrdTASKCOUNEviviieririeiriie sttt 173
B.10.2 t0talCreatedRECOIMITASKS. ... civiieirieirie sttt 173
B.10.3 t0talComPIetedRECOIATASKS. ... eiuvirvriruririririre sttt bbb e 173
B.11 Task GeNeral PrOPEITIES.coiieiiitiieitiie ettt ettt ettt ettt sbe et e e be et e e snbeeabeeens 174
B.11.1 recOordSChEAUIEIDociiiiiiiisie e 174
B.11.2 recordedCDSODIECLID......cutieirieiriririee st sttt b et enre e 174
B.12 Task Content Identification PrOPertiescuviiiiiiiiiiiie e 175
B.12.1 taSKCDSODJECLIDviiviiiietiitestisiieie ettt sttt sb et sb e bt e bt e b e sbe b s be e b e sbesbeeneenaenne s 175
B.12.2 taSKCRANNEIIDc.eiitiitiiieete ettt bbb b e bbb bbb st e bt e e nbe b 176
B.12.3 taSKSTAMTDAETIME ...eiuveieeiieeeriresiee sttt ettt ettt b e 177
B.12.4 1ASKDUIALION ... eiuviiteiiteiitee ittt ettt b e b b ne e 177
B.12.5 taSKPrOGIramMCOUE .. .cuuiiueiieeiiieesiee sttt ettt e b e 177
B.12.6 1ECOMAQUAITTY ..evveveitiiieeiitee sttt ettt e be e ne e 178
B.13 Task Matched Content Criteria PrOPEITIESccueiiueeiiiiiiie ittt 180
B.13.1 MALCNEANGIMIEvieeiiieiite ettt ettt b et b e ne e 180
B.13.2 MALCNEAID ...c.ueiiieiiteiieeeite ettt ettt et b e 181
B.14 Task Matched Qualifying Criteria PrOPErtiescooieiuiiiiiiiiie et 181
B.14.1 MALCNEOREBIING .. veiteiiveerieiseeesite sttt et be e re e 181
B.14.2 mMatChedRAtING@IYIDEviieeiueirieesieerie ettt 182
B.14.3 MAatChEdEDISOUETYPE . eeiueiiieiiueirieesite sttt sttt ettt et b bbb nre e 182
B.15 Task Matched Content Control PrOPerties.cuiiiiieiiiiiiie ittt 182
B.15.1 taskStartDate TIMEATJUSEcveieirririririee sttt 182
B.15.2 taSKDUIAtIONAGJUSEeiueiieeiriririeesiie sttt re e re e 183
B.15.3 taSKDUIAtIONLIMIT.......eeieiieiiiieisiie sttt re e e 183
B.15.4 taskDurationLimit@EFECT........ccvirririirii s 183
B.15.5 taskChannelMigrationccereeriiriirie sttt e 183
B.15.6 taSKTIMEMIGIALION. . .cuviiutiieieiiresiie sttt et be e 184
B.16 TaSK State PrOPEITIESceiieiiiiiiitiie ittt ettt ettt st sttt st et e e e be e e sbe e e snbeeanbeeans 184
BLL6. 1 ASKSTALE ...eviteitieteste sttt ettt sttt bbbt b bbb bbbt b bt bbb e naenne s 185
B.17 ContentDirectory Service IMported Propertiesccoouiiiieiiieiiiiie e 194
Appendix C. AV Working Committee Class Definitions (Normative)..........cccccoveeiicieeinneen 198
C.1 Class HIBIArCRY ...ttt bbbt e et sbee e e s 198
C.1.1 Relationships between Classes and Propertiescccoveeeieieiiee e 199
C.1.2 recordScheduleParts PrOPEITIEScoceiiieiiiiie ettt 200
C.1.3 recordSChedule PrOPEITIESccuic ittt ettt 204
C.1.4 1eCOrdTask PrOPEITIESc.ce ieie ittt ettt ettt ettt sbe e sebe e sabe e enb e e e e 208

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 7

(O O F- TS B)] V1 o] USSR 212
(O B o o [=To =t N O] P L TP PR OURTRT 213
C.3.1 0bject.recOrdSCNEAUIE CIASSuieiiieiieieiee ettt 214
(ORI o o] [T o Y g=Tole) o =) O I T SRSV 224
Appendix D. EBNF Syntax Definitions (NOFMALIVE)c.ccooeiiiiiiiiiiiie e 226
(D 20) 4T 41T} 11 O O PP U SR UPRURRTPI 226
D.2 DAtB&EIME SYNTAXvviiiuiiiiiiiiitie ettt ettt sttt st et e ettt eesbe e e sbe e e sabeesabeesnbeeanbeeessbeesnbeesnbeeans 226
D.3 ClaSS NAME SYNTAXcciutiiitiiiititaitie et ettt ste et e seb e et e e e abe e e steeesabeesabeesnbeeanbeessbbeesnbeasnbeeans 227

Appendix E. ScheduledRecording Service Relationship to ContentDirectory Service
(Informative) 228

Appendix F. ScheduledRecording Service Relationship to EPG (Informative)ccccoceeeee. 229
Appendix G. AVDT Examples (INFOrmative)..........ccooouiiiiiiiiiiiiie e 230
G.1 A ARG TYPE RecordSchedule AVDT EXaMPIEc.cooiiiiiiiiiiiiiiie e 230
G.2 A ARG TYPE RecordTask AVDT EXaMPIE.......ccoiiiiiiiiiiieiiee e 248
G.3 A ARG _TYPE RecordScheduleParts AVDT EXamMPIe.......ccccoooiiiiiiiiiiniie e 268

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 8

List of Tables

Table 1-1:
Table 1-2:
Table 1-3:
Table 1-4:
Table 1-5:
Table 2-1:
Table 2-1:
Table 2-2:
Table 2-3:
Table 2-4:
Table 2-5:
Table 2-6:
Table 2-7:
Table 2-8:
Table 2-9:

Table 2-10:
Table 2-11:
Table 2-12:
Table 2-13:
Table 2-14:
Table 2-15:
Table 2-16:
Table 2-17:
Table 2-18:
Table 2-19:
Table 2-20:
Table 2-21:
Table 2-22:
Table 2-23:
Table 2-24:
Table 2-25:
Table 2-26:
Table 2-27:
Table 2-28:
Table 2-29:

EBNF OPEIALOISeeieiiieiie ittt ettt bttt et s ettt e et e e e s bt e e e sabbe e e s nnbreeeaaes 15
CSV EXAMPIES.....oeiieete ettt bttt st b e e e srae e saee s 16
Namespace DEfiNITIONS.ccouiiiiiiiiie et 18
Schema-related INFOrMatioNc.oiviiiiiiiii e 19
Default Namespaces for the AV SpecifiCations...........cccoveiriiieiiiciiic e 22
ADDIEVIALIONS. ... 31
PrOPErties IN XIMILco.ueiiiii ettt sttt et saee e et e 33
SEAE VAITADIES ... e 40
allowedValueList for the DataTypelD arguUmentccccoveeeiieeiieeiiieeniiee e 41
Allowed Elements in <StateEvent> Element...........cccooiiiiiiiiiiiciciciecie 43
Eventing and MOGEIatiONcoiuiiiiiiiie ittt 48
AACTIONS ..ttt b bbb b r et enr e nreenree 48
Arguments for GetSortCapabilitieS().......cioveeiruerriiieiiie e 50
Error Codes for GetSortCapabilitieS()uuuverrerrrrierierie st 50
Arguments for GetPropertYLISt()......ueiueeiuieiieeeiiie ettt 51
Error Codes for GetPropertyLiSt().......overuereereereerieeniiesiesii et 51
Arguments for GetAIIOWEAVAIUES()cuveeireeiieeiiie ettt 52
Error Codes for GEtAHOWEAVAIUES()vvivverirerieiriiesiee sttt 53
Arguments for GetStateUpdateID()......ueeiveriieeiieie et 53
Error Codes for GetStateUpdatelD()ecvvereerirerieeriienieenieeeiesiiesee e 54
Arguments for BrowseRecordSChedUIES().....cccuurrivrrriiiieriiie e 54
Error Codes for BrowseRecordSChedules()cvuuverrireiriiiiinieiiiese e 58
Arguments for BrowSERECOIATASKS() «...vverurrrruereireeeitiieriieeesieee e e steeesieeesireesibee e senee e 58
Error Codes for BrowseReCOrdTasKS()uerurerrerireriiriieniie ittt 60
Arguments for CreateRecordSChedule()uuierrieiiiiie et 61
Error Codes for CreateRecordSChEdUIE()vvrrerrereeriieriie et 62
Arguments for DeleteRecordSChedule() ... vevieririiiiieeiiie e 63
Error Codes for DeleteRecordSChedUIE()......vvuverrerririeriieriie et 63
Arguments for GetRecordSChEdUIE()......uciveriueeiiieie it 64
Error Codes for GetRecordSChedule() ... vvivirririerieiie e 65
Arguments for EnableRecordSChedule() ... oo veeeeiriieeiiee et 65
Error Codes for EnableRecordSchedule().......oovvrvireiiiiniiiieiiecec e 66
Arguments for DisableRecordSchedule()cooeviieiriiieiiee e 67
Error Codes for DisableRecordSChedUIE() verrerrireerieeriie it 67
Arguments for DeleteReCOrATASK() . .ue uveerreriieeiiteee ittt 68

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 9

Table 2-30:
Table 2-31:
Table 2-32:
Table 2-33:
Table 2-34:
Table 2-35:
Table 2-36:
Table 2-37:
Table 2-38:
Table 2-39:
Table 2-40:
Table 2-41:
Table 2-42:
Table 2-43:
Table 2-44:
Table 2-45:

Table 2-46:

Table 2-47:
Table 2-48:
Table 2-49:
Table 2-50:
Table 2-51:

Table B-1:
Table B-2:
Table B-3:
Table B-4:
Table B-5:
Table B-6:
Table B-7:
Table B-8:
Table B-9:

Table B-10:
Table B-11:
Table B-12:
Table B-13:

Error Codes for DeleteRECOIATASK() +vvvvrvrervririrerireriieniee sttt 68
Arguments for GEtRECOIATASK()...ueivveeiueeeiieeriee ettt 68
Error Codes for GetRECOIATASK() .. vvervverrreriririeerieeniiesiiesie sttt 69
Arguments for ENableReCOrdTaSK() ... uveeiverrieeiieeeitie ettt 70
Error Codes for EnableRecordTask().......oueuverrerrereiiiiniiiiiesiesesee s 70
Arguments for DisableRECOIATASK() . .uvveivrrrieeiiieeeiiie ettt 71
Error Codes for DisableReCOIATASK()....v vvervrerrreriririierieesieeeire sttt 71
Arguments for ReSEtRECOITATASK() ... vueiuveerririiieeitie ettt 72
Error Codes for ResetRECOMATASK() ..vvrvvervrervreriririieriiesiie sttt 72
Arguments for GetRecordScheduleConflCtS() veeireerueerieeiiee e 73
Error Codes for GetRecordScheduleConflictS()euvvrverrereiriinieniiceiesee e 74
Arguments for GetRecordTaskCoNTIICES().....cuaveerrvrreiieeiiie e 74
Error Codes for GetRecordTaskCoNTliCS() vvrverrereereeriieniieeiesre e 75
COMMON EITOF COUESeviiiiieiiiiie sttt 75
recordTask State TIMElINecoviiiiiii s 86
Example 1: Fewer recordSchedule instances than the Number of Supported Priority

LBV RIS, ettt nre e 87
Example 2: More recordSchedule instances than the Number of Supported Priority

LBV RIS, ettt nre e 88
Existing recordSchedule PrioritieS.........ccovuieiiieiieeiieie et 89
desiredPriority Property Set t0 “RS-C.......ciiiiiiiiiee et 89
desiredPriority Property Set to “HIGHEST”, “L1 HI”, or “RS-A” ...cooviiiiiiiieeiieeeenn 89
desiredPriority Property Set to “LOWEST”, “L3 LOW”, or “RS-B”......cccccvierrireannnnn. 90
desiredPriority Property Set t0 “RS-C.......ciiiiiiiiiie ittt 90
Base PropertieS OVEIVIBW.coiuuieiiiieiiieeeiie ettt siae et ste e saae e snbeesnbeeans 142
allowedValueList for the Class Property.........cccceiiiiiiiie i 143
PrIOFITY PrOPEITIES ...ttt ettt b snbee e 145
allowedValueList for the priority PrOPertYocccoveeiiieiiee e 145
Primary allowedValueList for the desiredPriority Propertycccoceeveeiecieeinenns 146
Additional allowedValueList for the desiredPriority Propertyccccceeeveeieenieens 147
allowedValueList for the desiredPriority@type Property........ccccoveeiieeiieciienanneenen 148
Output CONTFOl PrOPEITIESccvvieiiiieiiee ettt 148
desiredRecordQuality EXamPpPle........ocoiiiiiiiiiiie e 151
allowedValueList for the desiredRecordQuality Propertycccccvevieeiiecienenneenen 152
allowedValueList for the desiredRecordQuality@type Propertyc.cccceceeveciiieennne 152
Content Identification Related Propertiesccccoceeviiiiii e 153
allowedValueList for the scheduledChannellD@type Property.........ccccccveeerceriineennn 155

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 10

Table B-14:
Table B-15:
Table B-16:
Table B-17:
Table B-18:

Table B-19:

Table B-20:

Table B-21:

Table B-22:
Table B-23:
Table B-24:
Table B-25:
Table B-26:
Table B-27:
Table B-28:
Table B-29:
Table B-30:
Table B-31:
Table B-32:
Table B-33:
Table B-34:
Table B-35:
Table B-36:
Table B-37:
Table B-38:
Table B-39:
Table B-40:
Table B-41:
Table B-42:

Table C-1:
Table C-2:
Table C-3:
Table C-4:

Matching Content Criteria PrOPEItieS.........cooiuiriiiiiiiiiiiiie st 157
allowedValueList for the matchingName@type Property.......cccccoveeevieeiieciiieenneenen 158
allowedValueList for the matchingID@type Property.......cccocoeeeeneeeiieeiiieiieeeseee e 159
Matching Qualifying Criteria PrOperties..........cccouueeiieiiieiiiiie et 160
allowedValueList for the matchingRatingLimit Property Using the MPAA Rating
System (matchingRatingLimit@type = “MPAA.ORG”) ..covuiiiiieiiieiiee e 163
allowedValueList for the matchingRatingLimit Property Using the RIAA Rating System
(matchingRatingLimit@type = “RIAA.ORG”) ..ciiiiiiiiiieiiiee ettt 163
allowedValueList for the matchingRatingLimit Property Using the ESRB Rating System
(matchingRatingLimit@type = “ESRB.ORG™)....cccuiiiiieiiieiiee et 163
allowedValueList for the matchingRatingLimit Property Using the TVGUIDELINES
Rating System (matchingRatingLimit@type = “TVGUIDELINES.ORG”)......ccccevvueene 163
allowedValueList for the matchingRatingLimit@type Property.........cccccocveeveeiinennne 164
allowedValueList for the matchingEpisodeType Property.........cccooceeveeieciecenneenen 165
Content CONIOl PrOPEITIESii ettt 165
allowedValueList for the durationLimit@effect Property.......cccccoveiiiieieciiicinieeen 168
Storage Related PrOPErtiES.ii i iii ittt 169
Schedule State PrOPeItiESii ittt 171
allowedValueList for the scheduleState Property........ccoceeieeiiiiiieiiiie e 171
allowedValueList for the scheduleState@currentErrors Property.......ccccoceeevceerieeene 172
SEALISTICS PrOPEITIES ...citeieitee ettt ettt e be e sbe e e eneeas 173
Task General PrOPEITIEScoiuiiiiiie ittt 174
Task Content Identification Propertiescocoeiiiiiiiiie i 175
recordQuality EXAMPIE.......ooouiiiiiee et 179
allowedValueList for the recordQuality PrOPertycocccoooeerieiniiinniiie e 179
Task Matched Content Criteria PrOPerties.cocuiiieeeiiieiiee e 180
Task Matched Qualifying Criteria Properti€s.........cooouveiueeiieeiieinsiie e 181
Task Matched Content Control Properties.........ocuueiueeiiieiieeiiiiesie e 182
State Related ProPerti€s........coiuii ittt 184
allowedValueList for the taskState PrOPertycccoueeiiieieeiiee e 185
allowedValueList for the taskState PrOPertycccoouveiiieieeiiie e 186
allowedValueList for the taskState@phase Property........ccococeveeeieeniieeiiiee e 188
allowedValueList for the taskState @XXX Properties..........cocoevieerieeniiee e 191
Class Properties Overview for recordScheduleParts USAgecceevveerieenieenniieennns. 201
Class Properties Overview for recordSchedule usage...........coooeevieeiieiiiiiiniee e 205
Class Properties Overview for recordTask USAQEceeeveerreeeiieeiieeinieeasieeesiieeseeens 209
0Dject Base Class PrOPEITIES.cciuiiiiiiiiieeitie e etie sttt sttt 213

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 11

Table C-5:
Table C-6:
Table C-7:
Table C-8:
Table C-9:

Table C-10:
Table C-11:
Table C-12:
Table C-13:
Table C-14:

object.recordSchedule Base Class Properties..........cocueeiiiiieieniiieiee e 214
object.recordSchedule.direct Class Properties.........cccooeeieeiieeeiie e 215
object.recordSchedule.direct.manual Class Propertiescocoevveereeiieeniieenieenennn 216
object.recordSchedule.direct.cdSEPG Class PrOpertiescoccevveereeieeniiieesiee e 217
object.recordSchedule.direct.cdsSNONEPG Class Properties..........cccocoveveeiieeniieeennnnn. 219
object.recordSchedule.direct.programCode Class Properties.........ccocoveveeeiieeniieenenns. 220
object.recordSchedule.query Class Propertiesccoceeeeiinieeiieeiiee e 221
object.recordSchedule.query.contentName Class Properties..........ccocoevveeiieenieeennnns. 222
object.recordSchedule.query.contentID Class Properties..........ccoceeveeevieenieeeninenenns. 223
object.recordTask Base Class Propertiescocuevueiieeiiieiiiiie e 225

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 12

List of Figures

Figure 1: Creating @ NeW reCOrdSCNEAUIEcouuii i 38
Figure 2: Capability ChECK. ..o et 39
Figure 3: Browse reCOrdSCREAUIE.ouiiiiiie ettt sb e sbee e e e 39
Figure 4: Delete @ reCOrdSChEAUIE........ovei i 39
Figure 5: A Full-Featured State DIAgIamc.co ittt ettt 78
Figure 6: A Minimal-Implementation State DIagram...........ocoeiuiriiiiien e 83
Figure 7: Class hierarchy for the ScheduledRecording SErViCe.coceeveiiiiiiiiii e 198

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 13

1 Overview and Scope

This service definition is compliant with the UPnP Device Architecture version 1.0. It defines a service
type referred to herein as ScheduledRecording service.

1.1 Introduction

The ScheduledRecording service is a UPnP service that allows control points to schedule the recording of
content. Generally, this content is broadcast content, but this specification does not limit itself to broadcast
content. This service type enables the following functions:

e Create a recordSchedule so that it is added to the list of recordSchedule instances. Each
recordSchedule describes user-level recording instructions for the ScheduledRecording service.

e Browse a list of recordSchedule instances stored by the ScheduledRecording service.
o Delete a recordSchedule so that it is removed from the list of recordSchedule instances.

e Browse a list of recordTask instances, stored by the ScheduledRecording service. The
ScheduledRecording service may create zero or more recordTask instances for each
recordSchedule. A recordTask represents a discrete recording operation of a recordSchedule.

e Enable or disable individual recordTask instances.
e Enable or disable a recordSchedule.

e Receive notifications indicating change of recordSchedule or recordTask list.

The ScheduledRecording service does not require a dependency on any UPnP services other than a co-
located ContentDirectory service, which provides the following functions:

e A ContentDirectory service provides channel line-up to allow users to find recordable channels.
A control point may use this metadata when creating a recordSchedule on a ScheduledRecording
service.

e A ContentDirectory service may provide Electronic Program Guide (EPG) features to allow users
to find recordable content. A control point may use this metadata when creating a
recordSchedule on a ScheduledRecording service.

e Contents recorded by the ScheduledRecording service may be exposed by a ContentDirectory
service.

The architectural relationship among the different concepts, defined by the ScheduledRecording service
can be summarized as follows: A ScheduledRecording service owns a flat (that is: non-nested) list of
recordSchedule instances, meaning that the ScheduledRecording service may create, destroy, or change
recordSchedule instances. A recordSchedule represents user-level instructions to perform recording
operations. Generally, a user constructs his instructions to a ScheduledRecording service via a control
point that invokes UPnP actions that affect the list of recordSchedule instances. In all cases, the
ScheduledRecording service MUST be able to describe discrete recording operations for a recordSchedule
through a list of associated recordTask instances. A recordTask can only exist with a recordSchedule (that
is: never orphaned). Thus when a recordTask is created by the ScheduledRecording service, its lifetime
depends on its parent recordSchedule. An individual recordTask can be selectively enabled or disabled.

This service template does not address:

o Implementations where the ScheduledRecording service and its associated ContentDirectory
service are not co-located in the same device.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 14

1.2 Notation
e In this document, features are described as Required, Recommended, or Optional as follows:

The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this
specification are to be interpreted as described in [RFC 2119].

In addition, the following keywords are used in this specification:

PROHIBITED - The definition or behavior is prohibited by this specification. Opposite of
REQUIRED.

CONDITIONALLY REQUIRED - The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is REQUIRED, otherwise it is
PROHIBITED.

CONDITIONALLY OPTIONAL — The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is OPTIONAL, otherwise it is
PROHIBITED.

These keywords are thus capitalized when used to unambiguously specify requirements over
protocol and application features and behavior that affect the interoperability and security of
implementations. When these words are not capitalized, they are meant in their natural-language
sense.

e Strings that are to be taken literally are enclosed in “double quotes”.
e Words that are emphasized are printed in italic.

o Keywords that are defined by the UPnP AV Working Committee are printed using the forum
character style.

o Keywords that are defined by the UPnP Device Architecture specification are printed using the
arch character style [DEVICE].

e A double colon delimiter, “::”, signifies a hierarchical parent-child (parent::child) relationship
between the two objects separated by the double colon. This delimiter is used in multiple
contexts, for example: Service::Action(), Action()::Argument, parentProperty::childProperty.

1.2.1 Data Types

This specification uses data type definitions from two different sources. The UPnP Device Architecture
defined data types are used to define state variable and action argument data types [DEVICE]. The XML
Schema namespace is used to define property data types [XML SCHEMA-2].

For UPnP Device Architecture defined boolean data types, it is strongly RECOMMENDED to use the
value “0” for false, and the value “1” for true. However, when used as input arguments, the values “false”,
“no”, “true”, “yes” may also be encountered and MUST be accepted. Nevertheless, it is strongly
RECOMMENDED that all boolean state variables and output arguments be represented as “0” and “1”.

For XML Schema defined Boolean data types, it is strongly RECOMMENDED to use the value “0” for
false, and the value “1” for true. However, when used as input properties, the values “false”, “true” may
also be encountered and MUST be accepted. Nevertheless, it is strongly RECOMMENDED that all
Boolean properties be represented as “0” and “1”.

1.2.2 Strings Embedded in Other Strings

Some string variables and arguments described in this document contain substrings that MUST be
independently identifiable and extractable for other processing. This requires the definition of appropriate

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 15

substring delimiters and an escaping mechanism so that these delimiters can also appear as ordinary
characters in the string and/or its independent substrings. This document uses embedded strings in two
contexts — Comma Separated Value (CSV) lists (see Section 1.3.1, “Comma Separated Value (CSV)
Lists) and property values in search criteria strings. Escaping conventions use the backslash character,
“\” (character code U+005C), as follows:
a. Backslash (*\”) is represented as “\\” in both contexts.
b. Comma (“)”) is
1. represented as “\,” in individual substring entries in CSV lists
2. not escaped in search strings
c. Double quote (“”) is
1. notescaped in CSV lists
2. not escaped in search strings when it appears as the start or end delimiter of a property value

3. represented as “\”” in search strings when it appears as a character that is part of the
property value

1.2.3 Extended Backus-Naur Form

Extended Backus-Naur Form is used in this document for a formal syntax description of certain
constructs. The usage here is according to the reference [EBNF].

1.2.3.1 Typographic conventions for EBNF

Non-terminal symbols are unquoted sequences of characters from the set of English upper and lower
case letters, the digits “0” through *“9”, and the hyphen (“-"). Character sequences between "single
quotes* are terminal strings and MUST appear literally in valid strings. Character sequences between
(*comment delimiters¥™) are English language definitions or supplementary explanations of their
associated symbols. White space in the EBNF is used to separate elements of the EBNF, not to represent
white space in valid strings. White space usage in valid strings is described explicitly in the EBNF.
Finally, the EBNF uses the following operators:

Table 1-1: EBNF Operators

Operator Semantics

definition — the non-terminal symbol on the left is defined by one or more alternative
sequences of terminals and/or non-terminals to its right.

| alternative separator — separates sequences on the right that are independently allowed
definitions for the non-terminal on the left.

* null repetition — means the expression to its left MAY occur zero or more times.

+ non-null repetition — means the expression to its left MUST occur at least once and
MAY occur more times.

L1 optional — the expression between the brackets is optional.

) grouping — groups the expressions between the parentheses.

- character range — represents all characters between the left and right character
operands inclusively.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 16

1.3 Derived Data Types

This section defines a derived data type that is represented as a string data type with special syntax. This
specification uses string data type definitions that originate from two different sources. The UPnP Device
Architecture defined string data type is used to define state variable and action argument string data
types. The XML Schema namespace is used to define property xsd:string data types. The following
definition applies to both string data types.

1.3.1 Comma Separated Value (CSV) Lists

The UPnP AV services use state variables, action arguments and properties that represent lists — or one-
dimensional arrays — of values. The UPnP Device Architecture, Version 1.0 [DEVICE], does not provide
for either an array type or a list type, so a list type is defined here. Lists MAY either be homogeneous (all
values are the same type) or heterogeneous (values of different types are allowed). Lists MAY also consist
of repeated occurrences of homogeneous or heterogeneous subsequences, all of which have the same
syntax and semantics (same number of values, same value types and in the same order). The data type of a
homogeneous list is string or xsd:string and denoted by CSV (x), where x is the type of the individual
values. The data type of a heterogeneous list is also string or xsd:string and denoted by CSV (x, v, 2),
where X, y and z are the types of the individual values. If the number of values in the heterogeneous list is
too large to show each type individually, that variable type is represented as CSV (heterogeneous), and the
variable description includes additional information as to the expected sequence of values appearing in the
list and their corresponding types. The data type of a repeated subsequence list is string or xsd:string and
denoted by CSV ({a,b,c}, {x, v, z}), where a, b, c, X, y and z are the types of the individual values in the
subsequence and the subsequences MAY be repeated zero or more times.

o Alistis represented as a string type (for state variables and action arguments) or xsd:string type
(for properties).
e Commas separate values within a list.

o Integer values are represented in CSVs with the same syntax as the integer data type specified in
[DEVICE] (that is: optional leading sign, optional leading zeroes, numeric US-ASCII)

e Boolean values are represented in state variable and action argument CSVs as either “0” for false
or “1” for true. These values are a subset of the defined boolean data type values specified in

o Boolean values are represented in property CSVs as either “0” for false or “1” for true. These
values are a subset of the defined Boolean data type values specified in [XML SCHEMA-2]: 0,
false, 1, true.

e Escaping conventions for the comma and backslash characters are defined in Section 1.2.2,
“Strings Embedded in Other Strings”.

o White space before, after, or interior to any numeric data type is not allowed.
e White space before, after, or interior to any other data type is part of the value.

Table 1-2: CSV Examples

Type refinement Value Comments

of string

CSV (string) or “+artist,-date” List of 2 property sort
CSV (xsd:string) criteria.

CSV (int) or “1,-5,006,0,+7” List of 5 integers.
CSV (xsd:integer)

CSV (boolean) or “0,1,1,0” List of 4 booleans
CSV (xsd:Boolean)

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 17

Type refinement Value Comments

of string

CSV (string) or “Smith\, Fred,Jones\, Davey” List of 2 names,

CSV (xsd:string) “Smith, Fred” and
“Jones, Davey”

CSV (i4,string,ui?) #-29837, string with leading blanks,0” Note that the second

or CSV (xsd:int, value is “ string with

xsd:string, leading blanks”

xsd:unsignedShort)

CSV (i4) or “3, 47 Illegal CSV. White space

CSV (xsd:int) is not allowed as part of
an integer value.

CSV (string) or List of 3 empty string

CSV (xsd:string) values

CSV (heterogeneous) | “Alice,Marketing,5,Sue,R&D,21,Dave,Finance,7” | List of unspecified
number of people and
associated attributes.
Each person is described
by 3 elements: a name
string, a department
string and years-of-
service ui2 or a name
xsd:string, a department
xsd:string and years-of-
service
xsd:unsignedShort.

1.4 Management of XML Namespaces in Standardized DCPs

UPNP specifications make extensive use of XML namespaces. This allows separate DCPs, and even
separate components of an individual DCP, to be designed independently and still avoid name collisions
when they share XML documents. Every name in an XML document belongs to exactly one namespace.
In documents, XML names appear in one of two forms: qualified or unqualified. An unqualified name (or
no-colon-name) contains no colon (*:”) characters. An unqualified name belongs to the document’s
default namespace. A qualified name is two no-colon-names separated by one colon character. The no-
colon-name before the colon is the qualified name’s namespace prefix, the no-colon-name after the colon
is the qualified name’s “local” name (meaning local to the namespace identified by the namespace prefix).
Similarly, the unqualified name is a local name in the default namespace.

The formal name of a namespace is a URI. The namespace prefix used in an XML document is not the
name of the namespace. The namespace name is, or should be, globally unique. It has a single definition
that is accessible to anyone who uses the namespace. It has the same meaning anywhere that it is used,
both inside and outside XML documents. The namespace prefix, however, in formal XML usage, is
defined only in an XML document. It must be locally unique to the document. Any valid XML no-colon-
name may be used. And, in formal XML usage, no two XML documents are ever required to use the same
namespace prefix to refer to the same namespace. The creation and use of the namespace prefix was
standardized by the W3C XML Committee in [XML-NMSP] strictly as a convenient local shorthand
replacement for the full URI name of a namespace in individual documents.

All AV object properties are represented in XML by element and attribute names, therefore, all property
names belong to an XML namespace.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 18

For the same reason that namespace prefixes are convenient in XML documents, it is convenient in
specification text to refer to namespaces using a namespace prefix. Therefore, this specification declares a
“standard” prefix for all XML namespaces used herein. In addition, this specification expands the scope
where these prefixes have meaning, beyond a single XML document, to all of its text, XML examples, and
certain string-valued properties. This expansion of scope does not supersede XML rules for usage in
documents, it only augments and complements them in important contexts that are out-of-scope for the
XML specifications. For example, action arguments which refer to CDS properties, such as the
SearchCriteria argument of the Search() action or the Filter argument of the Browse() action, MUST use
the predefined namespace prefixes when referring to CDS properties (“upnp:”, “dc:”, etc).

All of the namespaces used in this specification are listed in the Tables “Namespace Definitions” and
“Schema-related Information”. For each such namespace, Table 1-3, “Namespace Definitions” gives a
brief description of it, its name (a URI) and its defined “standard” prefix name. Some namespaces
included in these tables are not directly used or referenced in this document. They are included for
completeness to accommodate those situations where this specification is used in conjunction with other
UPNP specifications to construct a complete system of devices and services. For example, since the
Scheduled Recording Service depends on and refers to the Content Directory Service, the predefined
“srs:” namespace prefix is included. The individual specifications in such collections all use the same
standard prefix. The standard prefixes are also used in Table 1-4, “Schema-related Information”, to cross-
reference additional namespace information. This second table includes each namespace’s valid XML
document root element(s) (if any), its schema file name, versioning information (to be discussed in more
detail below), and a link to the entry in Section 1.6, “References” for its associated schema.

The normative definitions for these namespaces are the documents referenced in Table 1-3. The schemas
are designed to support these definitions for both human understanding and as test tools. However,
limitations of the XML Schema language itself make it difficult for the UPnP-defined schemas to
accurately represent all details of the namespace definitions. As a result, the schemas will validate many
XML documents that are not valid according to the specifications.

The Working Committee expects to continue refining these schemas after specification release to reduce
the number of documents that are validated by the schemas while violating the specifications, but the
schemas will still be informative, supporting documents. Some schemas might become normative in future
versions of the specifications.

Table 1-3: Namespace Definitions

Standard
Name-

space
Prefix

Normative Definition

Namespace Name Document Reference

Namespace Description

AV Working Committee defined namespaces
atrs urn:schemas-upnp- AllowedTransformSettings and [RCS]
org:av:AllowedTransformSettings AllowedDefaultTransformSettings state
variables for RenderingControl
av urn:schemas-upnp-org:av:av Common data types for use in AV schemas | [AV-XSD]
avdt urn:schemas-upnp-org:av:avdt Datastructure Template [AVDT]
avs urn:schemas-upnp-org:av:avs Common structures for use in AV schemas | [AVS-XSD]
avt-event urn:schemas-upnp-org:metadata-1-0/AVT/ Evented LastChange state variable for [AVT]
AVTransport
cds-event | urn:schemas-upnp-org:av:cds-event Evented LastChange state variable for [CDS]
ContentDirectory
cm-dciu urn:schemas-upnp-org:av:cm- Evented DeviceClockInfoUpdates state [CM]
deviceClockInfoUpdates variable for ConnectionManager

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

19

Standard
Name-
space Normative Definition
Prefix Namespace Name Namespace Description Document Reference
cm-ftrlst urn:schemas-upnp-org:av:cm-featureL ist FeatureList state variable for [CM]
ConnectionManager
didl-lite urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/ | Structure and metadata for [CDS]
ContentDirectory
dmo urn:schemas-upnp.org:av:dmo Evented DeviceMode state variable for [CDS]
ContentDirectory
dmor urn:schemas-upnp.org:av:dmor A ARG TYPE DeviceModeRequest state | [CDS]
variable for ContentDirectory
dmos urn:schemas-upnp.org:av:dmos DeviceModeStatus state variable for [CDS]
ContentDirectory
pi urn:schemas-upnp.org:av:pi Permissionsinfo state variable for [CDS]
ContentDirectory
rcs-event urn:schemas-upnp-org:metadata-1-0/RCS/ Evented LastChange state variable for [RCS]
RenderingControl
rii urn:schemas-upnp-org:av:rii A ARG TYPE RenderinglInfoList state [CM]
variable for ConnectionManager
rpl urn:schemas-upnp-org:av:rpl A ARG TYPE Playlistinfo state variable | [AVT]
for AVTransport
srs urn:schemas-upnp-org:av:srs Metadata and structure for [SRS]
ScheduledRecording
srs-event urn:schemas-upnp-org:av:srs-event Evented LastChange state variable for [SRS]
ScheduledRecording
trs urn:schemas-upnp-org:av: TransformSettings TransformSettings and [RCS]
DefaultTransformSettings state variables
for RenderingControl
upnp urn:schemas-upnp-org:metadata-1-0/upnp/ Metadata for ContentDirectory [CDS]
Externally defined namespaces
dc http://purl.org/dc/elements/1.1/ Dublin Core [DC-TERMS]
xsd http://mww.w3.0rg/2001/ XML Schema XML Schema Language 1.0 [XML SCHEMA-1]
[XML SCHEMA-2]
Xsi http://mww.w3.0rg/2001/XMLSchema-instance | XML Schema Instance Document schema | Sections 2.6 & 3.2.7 of
[XML SCHEMA-1]
xml http://mww.w3.0rg/ XML/1998/namespace The “xml:” Namespace [XML-NS]
Table 1-4: Schema-related Information

Standard
Name-
space
Prefix

Relative URI and

File Namel
e Form 1, Form 2, Form3

Valid Root Element(s)

AV Working Committee Defined Namespaces

Schema Reference

atrs

o AllowedTransformSettings-
vn-yyyymmdd.xsd

o AllowedTransformSettings-
vn.xsd

o AllowedTransformSettings.x
sd

<TransformList>

[ATRS-XSD]

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

Standard
Name-
space
Prefix

av

Relative URI and

File Namel
e Form 1, Form 2, Form3

e av-vn-yyyymmdd.xsd
e av-vn.xsd

e av.xsd

Valid Root Element(s)

n/a

Schema Reference

[AV-XSD]

20

avdt

e avdt-vn-yyyymmdd.xsd
e avdt-vn.xsd
e avdt.xsd

<AVDT>

[AVDT]

avs

e avs-vn-yyyymmdd.xsd
e avs-vn.xsd

e avs.xsd

<Capabilities>
<Features>

<stateVariableValuePairs>

[AVS-XSD]

avt-event

e avt-event-vn-yyyymmdd.xsd
e avt-event-vn.xsd
e avt-event.xsd

<Event>

[AVT-EVENT-XSD]

cds-event

e cds-event-vn-yyyymmdd.xsd
e cds-event-vn.xsd
e cds-event.xsd

<StateEvent>

[CDS-EVENT-XSD]

cm-dciu

o cm-deviceClockInfoUpdates-

vn-yyyymmdd.xsd

o cm-deviceClockInfoUpdates
-vn.xsd

e Ccm-
deviceClockInfoUpdates.xsd

<DeviceClocklInfoUpdates>

[CM-DCIU-XSD]

cm-ftrist

o cm-featureList-vn-
yyyymmdd.xsd

o cm-featureL.ist-vn.xsd

o cm-featureList.xsd

<Features>

[CM-FTRLST-XSD]

didl-lite

o didl-lite-vn-yyyymmdd.xsd
o didl-lite-vn.xsd
o didl-lite.xsd

<DIDL-Lite>

[DIDL-LITE-XSD]

dmo

o dmo-vn-yyyymmdd.xsd
e dmo-vn.xsd

e dmo.xsd

<DeviceMode>

[DMO-XSD]

dmor

e dmor-vn-yyyymmdd.xsd
e dmor-vn.xsd

e dmor.xsd

<DeviceModeRequest>

[DMOR-XSD]

dmos

e dmos-vn-yyyymmdd.xsd
e dmos-vn.xsd

e dmos.xsd

<DeviceModeStatus>

[DMOS-XSD]

pi

e pi-vn-yyyymmdd.xsd
e pi-vn.xsd

e pi.xsd

<Permissionsinfo>

[PI-XSD]

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 21

Standard

Name- Relative URI and

space File Name”
Prefix e Form 1, Form 2, Form3 Valid Root Element(s) Schema Reference

rcs-event |e rcs-event-vnyyyymmdd.xsd | <Event> [RCS-EVENT-XSD]
e rcs-event-vn.xsd

e rcs-event.xsd

rii e rii-vn-yyyymmdd.xsd <rendererInfo> [RI1-XSD]
e rii-vn.xsd

e rii.xsd

rpl e rpl-vn-yyyymmdd.xsd <Playlistinfo> [RPL-XSD]
e rpl-vn.xsd

e rplxsd

srs e srs-vn-yyyymmdd.xsd <srs> [SRS-XSD]
e srs-vn.xsd

e srs.xsd

srs-event | e srs-event-vn-yyyymmdd.xsd | <StateEvent> [SRS-EVENT-XSD]
e srs-event-vn.xsd

e srs-event.xsd

trs e TransformSettings-vn- <TransformSettings> [TRS-XSD]
yyyymmdd.xsd

e TransformSettings-vn.xsd

e TransformSettings.xsd

upnp e upnp-vn-yyyymmdd.xsd n/a [UPNP-XSD]

e upnp-vn.xsd

e upnp.xsd

Externally Defined Namespaces

dc Absolute URL: http://dublincore.org/schemas/xmls/simpledc20021212.xsd [DC-XSD]
xsd n/a <schema> [XMLSCHEMA-XSD]
xsi n/a n/a
xml n/a [XML-XSD]

Absolute URIs are generated by prefixing the relative URIs with “http://www.upnp.org/schemas/av/".

1.4.1 Namespace Prefix Requirements

There are many occurrences in this specification of string data types that contain XML names (property
names). These XML names in strings will not be processed under namespace-aware conditions.
Therefore, all occurrences in instance documents of XML names in strings MUST use the standard
namespace prefixes as declared in Table 1-3. In order to properly process the XML documents described
herein, control points and devices MUST use namespace-aware XML processors [XML-NMSP] for both
reading and writing. As allowed by [XML-NMSP], the namespace prefixes used in an instance document
are at the sole discretion of the document creator. Therefore, the declared prefix for a namespace in a
document MAY be different from the standard prefix. All devices MUST be able to correctly process any
valid XML instance document, even when it uses a non-standard prefix for ordinary XML names.
However, it is strongly RECOMMENDED that all devices use these standard prefixes for all instance

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 22

documents to avoid confusion on the part of both human and machine readers. These standard prefixes are
used in all descriptive text and all XML examples in this and related UPnP specifications. Also, each
individual specification may assume a default namespace for its descriptive text. In that case, names from
that namespace may appear with no prefix.

The assumed default namespace, if any, for each UPnP AV specification is given in Table 1-5, “Default
Namespaces for the AV Specifications”.

Note: all UPnP AV schemas declare attributes to be “unqualified”, so namespace prefixes are never used
with AV Working Committee defined attribute names.

Table 1-5: Default Namespaces for the AV Specifications

AV Specification Name ‘ Default Namespace Prefix

AVTransport avt-event
ConnectionManager n/a
ContentDirectory didl-lite
MediaRenderer n/a
MediaServer n/a
RenderingControl rcs-event
ScheduledRecording Srs

1.4.2 Namespace Names, Namespace Versioning and Schema Versioning

The UPnP AV service specifications define several data structures (such as state variables and action
arguments) whose format is an XML instance document that must comply with one or more specific XML
namespaces. Each namespace is uniquely identified by an assigned namespace name. The namespaces
that are defined by the AV Working Committee MUST be named by a URN. See Table 1-3, “Namespace
Definitions” for a current list of namespace names. Additionally, each namespace corresponds to an XML
schema document that provides a machine-readable representation of the associated namespace to enable
automated validation of the XML (state variable or action parameter) instance documents.

Within an XML schema and XML instance document, the name of each corresponding namespace
appears as the value of an xmIns attribute within the root element. Each xmIns attribute also includes a
namespace prefix that is associated with that namespace in order to disambiguate (a.k.a. qualify) element
and attribute names that are defined within different namespaces. The schemas that correspond to the
listed namespaces are identified by URI values that are listed in the schemalLocation attribute also
within the root element. (See Section 1.4.3, “Namespace Usage Examples™)

In order to enable both forward and backward compatibility, namespace names are permanently assigned
and MUST NOT change even when a new version of a specification changes the definition of a
namespace. However, all changes to a namespace definition MUST be backward-compatible. In other
words, the updated definition of a namespace MUST NOT invalidate any XML documents that comply
with an earlier definition of that same namespace. This means, for example, that a namespace MUST
NOT be changed so that a new element or attribute is required. Although namespace names MUST NOT
change, namespaces still have version numbers that reflect a specific set of definitional changes. Each
time the definition of a namespace is changed, the namespace’s version number is incremented by one.

Whenever a new namespace version is created, a new XML schema document (.xsd) is created and
published so that the new namespace definition is represented in a machine-readable form. Since a XML
schema document is just a representation of a namespace definition, translation errors can occur.
Therefore, it is sometime necessary to re-release a published schema in order to correct typos or other

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 23

namespace representation errors. In order to easily identify the potential multiplicity of schema releases
for the same namespace, the URI of each released schema MUST conform to the following format (called
Form 1):

Form 1: "http://www.upnp.org/schemas/av/" schema-root-name "-v" ver

yyyymmdd

where
e schema-root-name is the name of the root element of the namespace that this schema represents.
e ver corresponds to the version number of the namespace that is represented by the schema.
e yyyymmdd is the year, month and day (in the Gregorian calendar) that this schema was released.

Table 1-4, “Schema-related Information” identifies the URI formats for each of the namespaces that are
currently defined by the UPnP AV Working Committee.

As an example, the original schema URI for the “rcs-event” namespace (that was released with the
original publication of the UPnP AV service specifications in the year 2002) was
“http://www.upnp.org/schemas/av/rcs-event-v1-20020625.xsd”. When the UPnP AV service specifications
were subsequently updated in the year 2006, the URI for the updated version of the “rcs-event” namespace
was “http://www.upnp.org/schemas/av/rcs-event-v2-20060531.xsd”. However, in 2006, the schema URI
for the newly created “srs-event” namespace was “http://www.upnp.org/schemas/av/srs-event-v1-
20060531.xsd”. Note the version field for the “srs-event” schema is “v1” since it was first version of that
namespace whereas the version field for the “rcs-event” schema is “v2” since it was the second version of
that namespace.

In addition to the dated schema URIs that are associated with each namespace, each namepace also has a
set of undated schema URIs. These undated schema URIs have two distinct formats with slightly different
meanings:

Form 2: “http://mmww.upnp.org/schemas/av/” schema-root-name “-v” ver
where ver is described above.
Form 3: “http://www.upnp.org/schemas/av/” schema-root-name

Form 2 of the undated schema URI is always linked to the most recent release of the schema that
represents the version of the namespace indicated by ver. For example, the undated URI “.../av/rcs-event-
v2.xsd” is linked to the most recent schema release of version 2 of the “rcs-event” namespace. Therefore,
on May 31, 2006 (20060531), the undated schema URI was linked to the schema that is otherwise known
as “.../av/rcs-event-v2-20060531.xsd”. Furthermore, if the schema for version 2 of the “rcs-event”
namespace was ever re-released, for example to fix a typo in the 20060531 schema, then the same undated
schema URI (“.../av/rcs-event-v2.xsd”) would automatically be updated to link to the updated version 2
schema for the “rcs-event” namespace.

Form 3 of the undated schema URI is always linked to the most recent release of the schema that
represents the highest version of the namespace that has been published. For example, on June 25, 2002
(20020625), the undated schema URI *.../av/rcs-event.xsd” was linked to the schema that is otherwise
known as “.../av/rcs-event-v1-20020625.xsd”. However, on May 31, 2006 (20060531), that same undated
schema URI was linked to the schema that is otherwise known as *.../av/rcs-event-v2-20060531.xsd”.

When referencing a schema URI within an XML instance document or a referencing XML schema
document, the following usage rules apply:

o All instance documents, whether generated by a service or a control point, MUST use Form 3.
e All UPnP AV published schemas that reference other UPnP AV schemas MUST also use Form 3.

Within an XML instance document, the definition for the schemalocation attribute comes from the
XML Schema namespace “http://mmw.w3.0rg/2002/XMLSchema-instance”. A single occurrence of the
attribute can declare the location of one or more schemas. The schemalLocation attribute value

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 24

consists of a whitespace separated list of values that is interpreted as a namespace name followed by its
schema location URL. This pair-sequence is repeated as necessary for the schemas that need to be located
for this instance document.

In addition to the schema URI naming and usage rules described above, each released schema MUST
contain a version attribute in the <schema> root element. Its value MUST correspond to the format:

ver “-” yyyymmdd where ver and yyyymmdd are described above.

The version attribute provides self-identification of the namespace version and release date of the
schema itself. For example, within the original schema released for the “rcs-event” namespace (.../rcs-
event-v2-20020625.xsd), the <schema> root element contains the following attribute: version="2-
20020625".

1.4.3 Namespace Usage Examples

The schemalLocation attribute for XML instance documents comes from the XML Schema instance
namespace “http:://www.w3.0rg/2002/XMLSchema-instance”. A single occurrence of the attribute can
declare the location of one or more schemas. The schemalLocation attribute value consists of a
whitespace separated list of values: namespace name followed by its schema location URL. This pair-
sequence is repeated as necessary for the schemas that need to be located for this instance document.

Example 1:

Sample DIDL-Lite XML Instance Document. Note that the references to the UPnP AV schemas do not
contain any version or release date information. In other words, the references follow Form 3 from above.
Consequently, this example is valid for all releases of the UPnP AV service specifications.

<?xml version="1.0" encoding=""UTF-8"7>
<DIDL-Lite
xmlns:dc=""http://purl._org/dc/elements/1.1/"
xmlns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/""
xmlns:upnp=""urn:schemas-upnp-org:metadata-1-0/upnp/**
xmIns:xsi="http://www_w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
http://www.upnp.org/schemas/av/didl-lite_xsd
urn:schemas-upnp-org:metadata-1-0/upnp/
http://www.upnp.org/schemas/av/upnp.xsd">
<item 1d="18" parentlD="13" restricted="0"">
</item>
</DIDL-Lite>

1.5 Vendor-defined Extensions

Whenever vendors create additional vendor-defined state variables, actions or properties, their assigned
names and XML representation MUST follow the naming conventions and XML rules as specified below.

1.5.1 Vendor-defined Action Names

Vendor-defined action names MUST begin with “X_”. Additionally, it SHOULD be followed by an
ICANN assigned domain name owned by the vendor followed by the underscore character (*_”). It MUST
then be followed by the vendor-assigned action name. The vendor-assigned action name MUST NOT
contain a hyphen character (“-”, 2D Hex in UTF-8) nor a hash character (“#”, 23 Hex in UTF-8). Vendor-
assigned action names are case sensitive. The first character of the name MUST be a US-ASCII letter
(“A”-*Z”, “a”-*2”), US-ASCII digit (“0”-**9”), an underscore (“_"), or a non-experimental Unicode letter
or digit greater than U+007F. Succeeding characters MUST be a US-ASCII letter (“A”-*Z”, “a”-“z”), US-

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 25

ASCII digit (“07-9”), an underscore (“_"), a period (“.””), a Unicode combiningchar, an extender, or a
non-experimental Unicode letter or digit greater than U+007F. The first three letters MUST NOT be
“XML” in any combination of case.

1.5.2 Vendor-defined State Variable Names

Vendor-defined state variable names MUST begin with “X_”. Additionally, it SHOULD be followed by an
ICANN assigned domain name owned by the vendor, followed by the underscore character (“_"). It
MUST then be followed by the vendor-assigned state variable name. The vendor-assigned state variable
name MUST NOT contain a hyphen character (“-”, 2D Hex in UTF-8). Vendor-assigned action names are
case sensitive. The first character of the name MUST be a US-ASCII letter (“A”-*Z”, “a”-*z”), US-ASCII
digit (“0”-“9”), an underscore (“_"), or a non-experimental Unicode letter or digit greater than U+007F.
Succeeding characters MUST be a US-ASCII letter (“A”-“Z”, “a”-*z”), US-ASCII digit (“0”-“9”), an
underscore (“_"), a period (“.””), a Unicode combiningchar, an extender, or a non-experimental Unicode
letter or digit greater than U+007F. The first three letters MUST NOT be “XML” in any combination of
case.

1.5.3 Vendor-defined XML Elements and attributes

UPnP vendors MAY add non-standard elements and attributes to a UPnP standard XML document, such
as a device or service description. Each addition MUST be scoped by a vendor-owned XML namespace.
Arbitrary XML MUST be enclosed in an element that begins with “X _,” and this element MUST be a sub
element of a standard complex type. Non-standard attributes MAY be added to standard elements
provided these attributes are scoped by a vendor-owned XML namespace and begin with “X_".

1.5.4 Vendor-defined Property Names

UPnP vendors MAY add non-standard properties to the ContentDirectory service. Each property addition
MUST be scoped by a vendor-owned namespace. The vendor-assigned property name MUST NOT
contain a hyphen character (“-”, 2D Hex in UTF-8). Vendor-assigned property names are case sensitive.
The first character of the name MUST be a US-ASCII letter (“A”-“Z”, “a”-“z"), US-ASCII digit (“0”-
“9”), an underscore (“_"), or a non-experimental Unicode letter or digit greater than U+007F. Succeeding
characters MUST be a US-ASCII letter (“*A”-“Z”, “a”-*z”), US-ASCII digit (“0”-*“9”), an underscore
(*_™), a period (“.”), a Unicode combiningchar, an extender, or a non-experimental Unicode letter or digit
greater than U+007F. The first three letters MUST NOT be “XML” in any combination of case.

1.6 References

This section lists the normative references used in the UPnP AV specifications and includes the tag inside
square brackets that is used for each such reference:

[ATRS-XSD] — XML Schema for RenderingControl AllowedTransformSettings, UPnP Forum, December
31, 2010.

Available at: http://www.upnp.org/schemas/av/AllowedTransformSettings-v1-20101231.xsd.

Latest version available at: http://www.upnp.org/schemas/av/AllowedTransformSettings.xsd.

[AVARCH] - AVArchitecture:2, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v2-20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v2.pdf.

[AVDT] - AV Datastructure Template:1, UPnP Forum, September 30, 2008.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVDataStructure Template-v1-20080930.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVDataStructure Template-v1.pdf.

[AVDT-XSD] — XML Schema for UPnP AV Datastructure Template, UPnP Forum, September 30, 2008.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 26

Available at: http://www.upnp.org/schemas/av/avdt-v1-20080930.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avdt.xsd.

[AV-XSD] — XML Schema for UPnP AV Common XML Data Types, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/av-v2-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/av.xsd.

[AVS-XSD] — XML Schema for UPnP AV Common XML Structures, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/avs-v3-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avs.xsd.

[AVT] - AVTransport:3, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service-20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service.pdf.

[AVT-EVENT-XSD] — XML Schema for AVTransport LastChange Eventing, UPnP Forum, September
30, 2008.

Available at: http://www.upnp.org/schemas/av/avt-event-v2-20080930.xsd.

Latest version available at: http://www.upnp.org/schemas/av/avt-event.xsd.

[CDS] - ContentDirectory:4, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service-20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service.pdf.

[CDS-EVENT-XSD] — XML Schema for ContentDirectory LastChange Eventing, UPnP Forum,
September 30, 2008.

Auvailable at: http://www.upnp.org/schemas/av/cds-event-v1-20080930.xsd.

Latest version available at: http://www.upnp.org/schemas/av/cds-event.xsd.

[CM] - ConnectionManager:3, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service-20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service.pdf.

[CM-DCIU-XSD] — XML Schema for ConnectionManager DeviceClockInfoUpdates, UPnP Forum,
December 31, 2010.

Available at: http://www.upnp.org/schemas/av/cm-deviceClockinfoUpdates-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/cm-deviceClockInfoUpdates.xsd.

[CM-FTRLST-XSD] — XML Schema for ConnectionManager Features, UPnP Forum, December 31,
2010.

Available at: http://www.upnp.org/schemas/av/cm-featureList-v1-20101231.xsd.

Latest version available at: http://www.upnp.org/schemas/av/cm-featureList.xsd.

[DC-XSD] — XML Schema for UPnP AV Dublin Core.
Available at: http://www.dublincore.org/schemas/xmls/simpledc20020312.xsd.

[DC-TERMS] — DCMI term declarations represented in XML schema language.
Available at: http://www.dublincore.org/schemas/xmls.

[DEVICE] - UPnP Device Architecture, version 1.0, UPnP Forum, October 15, 2008.
Available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20081015.pdf.
Latest version available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf.

[DIDL] - ISO/IEC CD 21000-2:2001, Information Technology - Multimedia Framework - Part 2: Digital
Item Declaration, July 2001.

[DIDL-LITE-XSD] — XML Schema for ContentDirectory Structure and Metadata (DIDL-Lite), UPnP
Forum, December 31, 2007.

Available at: http://www.upnp.org/schemas/av/didl-lite-v3-20101231.xsd.

Latest version available at: http://www.upnp.org/schemas/av/didl-lite.xsd.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 27

[DMO-XSD] — XML Schema for ContentDirectory DeviceMode, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/dmo-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/dmo.xsd.

[DMOR-XSD] — XML Schema for ContentDirectory DeviceModeRequest, UPnP Forum, December 31,
2010.

Available at: http://www.upnp.org/schemas/av/dmor-v1-20101231.xsd.

Latest version available at: http://www.upnp.org/schemas/av/dmor.xsd.

[DMOS-XSD] — XML Schema for ContentDirectory DeviceModeStatus, UPnP Forum, December 31,
2010.

Available at: http://www.upnp.org/schemas/av/dmos-v1-20101231.xsd.

Latest version available at: http://www.upnp.org/schemas/av/dmos.xsd.

[DP] — DeviceProtection:1, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service-20101231.pdf.
Latest version available at: http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf.

[EBNF] - ISO/IEC 14977, Information technology - Syntactic metalanguage - Extended BNF, December
1996.

[HTTP/1.1] — HyperText Transport Protocol — HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee, June 1999.
Available at: http://www.ietf.org/rfc/rfc2616.txt.

[IEC 61883] — IEC 61883 Consumer Audio/Video Equipment — Digital Interface - Part 1 to 5.
Available at: http://www.iec.ch.

[IEC-PAS 61883] — IEC-PAS 61883 Consumer Audio/Video Equipment — Digital Interface - Part 6.
Available at: http://www.iec.ch.

[IEEE-802.1AS] — IEEE P802.1AS™ (Draft 7.0) - Timing and Synchronization for Time-Sensitive
Applications in Bridged Local Area Networks, Institute of Electrical and Electronics Engineers, March
23, 2010.

Available at: http://www.ieee802.0rg/1/pages/802.1as.html.

[IEEE-1733] — IEEE-P1733™ (Draft 2.2) — Audio Video Bridge Layer 3 Transport Protocol,
International Institute of Electrical and Electronics Engineers, April 20, 2009.

Available at: http://grouper.ieee.org/groups/1733.[ISO 8601] — Data elements and interchange formats —
Information interchange -- Representation of dates and times, International Standards Organization,
December 21, 2000.

Auvailable at: 1ISO 8601:2000.

[MIME] - IETF RFC 1341, MIME (Multipurpose Internet Mail Extensions), N. Borenstein, N. Freed,
June 1992,
Available at: http://www.ietf.org/rfc/rfc1341.txt.

[MR] — MediaRenderer:3, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaRenderer-v3-Device-20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v3-Device.pdf.

[MS] — MediaServer:4, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaServer-v4-Device-20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaServer-v4-Device.pdf.

[PI-XSD] — XML Schema for ContentDirectory Permissionsinfo, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/pi-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/pi.xsd.

[RCS] - RenderingControl:3, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service-20101231.pdf.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 28

Latest version available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service.pdf.

[RCS-EVENT-XSD] —XML Schema for RenderingControl LastChange Eventing, UPnP Forum,
December 31, 2010.

Auvailable at: http://www.upnp.org/schemas/av/rcs-event-v3-20101231.xsd.

Latest version available at: http://www.upnp.org/schemas/av/rcs-event.xsd.

[RFC 1305] — IETF RFC 1305, Network Time Protocol (Version 3) Specification, Implementation and
Analysis, David L. Mills, March 1992.
Available at: http://www.ietf.org/rfc/rfc1305.txt.

[RFC 1738] — IETF RFC 1738, Uniform Resource Locators (URL), Tim Berners-Lee, et. Al., December
1994.
Available at: http://www.ietf.org/rfc/rfc1738.txt.

[RFC 2030] — IETF RFC 2030, Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OS,
D Mills, October 1996.
Available at: http://www.ietf.org/rfc/rfc2030.txt.

[RFC 2045] — IETF RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part 1:Format of Internet
Message Bodies, N. Freed, N. Borenstein, November 1996.
Available at: http://www.ietf.org/rfc/rfc2045.txt.

[RFC 2119] - IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, S. Bradner,
1997.
Available at: http://www.fags.org/rfcs/rfc2119.html.

[RFC 2396] — IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, Tim Berners-Lee, et
al, 1998.
Available at: http://www.ietf.org/rfc/rfc2396.txt.

[RFC 3339] — IETF RFC 3339, Date and Time on the Internet: Timestamps, G. Klyne, Clearswift
Corporation, C. Newman, Sun Microsystems, July 2002.
Available at: http://www.ietf.org/rfc/rfc3339.txt.

[RI1-XSD] — XML Schema for ConnectionManager Rendererinfo, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/rii-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/rii.xsd.

[RPL-XSD] — XML Schema for AVTransport Playlistinfo, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/rpl-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/rpl.xsd.

[RTP] - IETF RFC 3550, RTP: A Transport Protocol for Real-Time Applications, H. Schulzrinne, S.
Casner, R. Frederick, V. Jacobson, July 2003..
Available at: http://www.ietf.org/rfc/rfc3550.txt.

[RTSP] - IETF RFC 2326, Real Time Streaming Protocol (RTSP), H. Schulzrinne, A. Rao, R. Lanphier,
April 1998.
Available at: http://www.ietf.org/rfc/rfc2326.txt.

[SRS] - ScheduledRecording:2, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service-20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service.pdf.

[SRS-XSD] — XML Schema for ScheduledRecording Metadata and Structure, UPnP Forum, September
30, 2008.

Available at: http://www.upnp.org/schemas/av/srs-v2-20080930.xsd.

Latest version available at: http://www.upnp.org/schemas/av/srs.xsd.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 29

[SRS-EVENT-XSD] — XML Schema for ScheduledRecording LastChange Eventing, UPnP Forum,
September 30, 2008.

Available at: http://www.upnp.org/schemas/av/srs-event-v1-20080930.xsd.

Latest version available at: http://www.upnp.org/schemas/av/srs-event.xsd.

[TRS-XSD] — XML Schema for RenderingControl TransformSettings, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/TransformSettings-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/TransformSettings.xsd.

[UAX 15] — Unicode Standard Annex #15, Unicode Normalization Forms, version 4.1.0, revision 25, M.
Davis, M. Diirst, March 25, 2005.
Available at: http://www.unicode.org/reports/tr15/tr15-25.html.

[UNICODE COLLATION] - Unicode Technical Standard #10, Unicode Collation Algorithm version
4.1.0, M. Davis, K. Whistler, May 5, 2005.
Available at: http://www.unicode.org/reports/tr10/tr10-14.html.

[UPNP-XSD] — XML Schema for ContentDirectory Metadata, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/upnp-v4-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/upnp.xsd.

[UTS 10] — Unicode Technical Standard #10, Unicode Collation Algorithm, version 4.1.0, revision 14,
M. Davis, K. Whistler, May 5, 2005.
Available at: http://www.unicode.org/reports/tr10/tr10-14.html.

[UTS 35] — Unicode Technical Standard #35, Locale Data Markup Language, version 1.3R1, revision
5,.M. Davis, June 2, 2005.
Available at: http://www.unicode.org/reports/tr35/tr35-5.html.

[UUID] - IETF RFC 4122, A Universally Unique Identifier (UUID) URN Namespace, P. Leach,
Microsoft, M. Mealling, Refactored Networks LLC, R. Salz, DataPower Technology, Inc., July 2005.
Available at: http://www.ietf.org/rfc/rfc4122.txt.

[XML] - Extensible Markup Language (XML) 1.0 (Third Edition), Francois Yergeau, Tim Bray, Jean
Paoli, C. M. Sperberg-McQueen, Eve Maler, eds., W3C Recommendation, February 4, 2004.
Available at: http://www.w3.0rg/TR/2004/REC-xm|-20040204.

[XML-NS] - The ““xml:”” Namespace, November 3, 2004.
Auvailable at: http://www.w3.0rg/XML/1998/namespace.

[XML-XSD] — XML Schema for the “xml:”” Namespace.
Available at: http://www.w3.0rg/2001/xml.xsd.

[XML-NMSP] — Namespaces in XML, Tim Bray, Dave Hollander, Andrew Layman, eds., W3C
Recommendation, January 14, 1999.
Available at: http://www.w3.0rg/TR/1999/REC-xml-names-19990114.

[XML SCHEMA-1] — XML Schema Part 1: Structures, Second Edition, Henry S. Thompson, David
Beech, Murray Maloney, Noah Mendelsohn, W3C Recommendation, 28 October 2004.
Available at: http://www.w3.0rg/TR/2004/REC-xmlschema-1-20041028.

[XML SCHEMA-2] — XML Schema Part 2: Data Types, Second Edition, Paul V. Biron, Ashok Malhotra,
W3C Recommendation, 28 October 2004.
Available at: http://www.w3.0rg/TR/2004/REC-xmlschema-2-20041028.

[XMLSCHEMA-XSD] — XML Schema for XML Schema.
Available at: http://www.w3.0rg/2001/XMLSchema.xsd.

[XPATH20] — XML Path Language (XPath) 2.0. Anders Berglund, Scott Boag, Don Chamberlin, Mary F.
Fernandez, Michael Kay, Jonathan Robie, Jerome Simeon. W3C Recommendation, 21 November 2006.
Available at: http://www.w3.org/TR/xpath20.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

[XQUERY10] — XQuery 1.0 An XML Query Language. W3C Recommendation, 23 January 2007.
Available at: http://www.w3.0rg/TR/2007/REC-xquery-20070123.

© 2011, UPnP Forum. All rights Reserved.

30

ScheduledRecording:2 31

2 Service Modeling Definitions

2.1 ServiceType

The following service type identifies a service that is compliant with this template:

urn:schemas-upnp-org:service:ScheduledRecording: 2

ScheduledRecording service is used herein to refer to this service type.

2.2 Terms and Abbreviations

2.2.1 Abbreviations

Table 2-1: Abbreviations

Definition ‘ Description

CDS ContentDirectory Service
EPG Electronic Program Guide
SRS ScheduledRecording Service
2.2.2 Terms

2.2.2.1 CDS object
An object in a ContentDirectory service metadata hierarchy; that is: item or container.

2.2.2.2 User Channel

A User Channel is a ContentDirectory service object that exposes the (continuous) content stream of a
particular broadcast channel. Usually, the actual channel that the User Channel exposes is determined by
the user through some device-specific interaction. Examples are: manual programming of a number of
channel presets; invoking of the auto-scan functionality of a device; predefined fixed channel assignments
by the device manufacturer.

2.2.2.3 Channel Group

A Channel Group is a ContentDirectory service container that holds a number of User Channel items.
Typically, a Channel Group contains User Channel items that are bound to a particular hardware resource.
Examples include: a single analog cable TV tuner, a HDTV digital tuner, an AM/FM radio tuner, etc.

2.2.2.4 Channel Line-up
A service provider-generated list of channels with their associated content provider.

2.2.2.5 object
A recordSchedule or a recordTask (see definition of recordSchedule and recordTask below).

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 32

2.2.2.6 class

As defined in the ContentDirectory service specification, a class is used to assign a type to an object. It
also identifies the minimum REQUIRED set of properties that MUST be present on that object and the
OPTIONAL properties that MAY be present. Classes are organized in a hierarchy with certain classes
being derived from others as in a typical object-oriented system. This specification defines two base
classes (recordSchedule and recordTask) from which all other classes are derived.

2.2.2.7 object Modification

An object is considered modified when one of its properties (or its list of properties) is modified; that is:
added, removed or changed in value (see definition of property below).

2.2.2.8 recordSchedule

A ScheduledRecording service construct that represents a complete set of recording instructions to the
service, which allows the service to generate recordTask objects as necessary to record the desired content.
The creator of the recordSchedule object assigns it a specific class, based on the type and complexity of
the instructions, used to identify the content.

A recordSchedule is represented in XML as an <item>..</item> element.

2.2.2.9 Conflicting_recordSchedule

A conflicting recordSchedule exists when one or more of its associated recordTask instances is in conflict
with another recordTask instance.

2.2.2.10 recordTask

A ScheduledRecording service construct that represents a discrete recording operation of the underlying
recording system. A recordTask is created by its parent recordSchedule and can not be directly created by
the user. The parent-child relationship of recordSchedule and recordTask can be 1-to-zero or more.

A recordTask is represented in XML as an <item>..</item> element.

2.2.2.11 Conflicting_recordTask

A conflicting recordTask exists when it overlaps in time with one or more other recordTask instances and
the ScheduledRecording service has insufficient resources to record all of them. Existing pre-roll and
post-roll adjustments (as defined by the scheduledStartDateTimeAdjust and scheduledDurationAdjust
properties) MUST be taken into account when determining conflicts.

2.2.2.12 recordScheduleParts

A ScheduledRecording service construct that represents user-level recording instructions to the service,
which provide a template to generate complete recordSchedule objects. The creator of the
recordScheduleParts object assigns it a specific class, based on the type and complexity of the
instructions, used to identify the content.

A recordScheduleParts is represented in XML as an <item>..</i1tem> element.

2.2.2.13 Property-set Data Types

Certain ScheduledRecording service actions use property-set arguments that contain information about a
set of properties, typically expressed in the form of an srs XML Document (for example, the Elements
argument of the CreateRecordSchedule() action). The set of properties that can exist in a property-set

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 33

argument is implementation dependent. Indeed, the set of optional properties that a particular
ScheduledRecording service chooses to implement is vendor dependent.

This specification currently defines three different property-set data types:
e A ARG TYPE_ RecordSchedule
e A ARG TYPE RecordTask
e A ARG _TYPE_ RecordScheduleParts

Although these three types are different, they are very similar in nature and are defined using the same
SRS schema [SRS-XSD], which defines all the properties that can ever occur in any of the three property-
set data types. They differ only in the set of properties that can appear in them and in the values that are
allowed for these properties.

2.2.2.14 Property

A property in the ScheduledRecording service represents a characteristic of an object. Properties are
distinguished by their names. The ScheduledRecording service defines two kinds of properties —
independent and dependent. Each independent property has zero or more dependent properties associated
with it. Independent property names contain no “@” symbol; they may contain an XML namespace prefix
(see below for an explanation of the relationship between properties and XML). Each dependent property
is associated either with exactly one independent property or directly with a ScheduledRecording service
class. The name of a dependent property that is associated with an independent property is the
concatenation of three parts: its associated independent property name, the “@” symbol, and a name for
the relationship between the two properties’ values. The name of a dependent property that is associated
directly with a class is just the “@” symbol followed by the relationship name. Their data types and
meanings are defined in Appendix B, “AV Working Committee Extended Properties”.

Even though ScheduledRecording service properties are not XML objects, XML is used to express them in
all exchanges between a control point and a ScheduledRecording service implementation. This creates an
unavoidable relationship between XML syntax and property names and values. In XML, an independent
property is represented as an element. The property name is used as the element name. The property value
is the element content. A dependent property is represented as an attribute in XML. The dependent
property’s relationship name is used as the attribute name. The dependent property’s value is the attribute
value. For dependent properties that are associated with an independent property, the attribute appears in
the start tag of the element that represents its associated independent property. For dependent properties
that are associated directly with a class, the attribute appears in the top-level start tag for each object of
that class.

Examples:

Table 2-1: Properties in XML

title <title>.</title>

taskProgramCode <taskProgramCode>..</taskProgramCode>
taskProgramCode @type <taskProgramCode type=".'">.</taskProgramCode>
@id <item id=".">.</i1tem>

2.2.2.15 Member Property

A property is a member of a particular class when the property is declared to be either REQUIRED or
OPTIONAL for that class.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 34

2.2.2.16 Supported Member Property

A supported member property is a member property that is supported by a particular ScheduledRecording
service implementation, according to the information returned by the GetPropertyList() action.

2.2.2.17 Multi-valued property

Some independent properties are multi-valued. This means that the property MAY occur more than once
in an object.

2.2.2.18 Single-valued property

Most independent properties are single-valued. This means thatthe property MUST occur at most once in
an object. Some single-valued properties can contain a CSV list of values. A dependent property is always
considered single-valued, because it can occur at most once with each occurrence of its associated
independent property, even though the independent property may be multi-valued.

2.2.2.19 XML Document

A string that represents a valid XML 1.0 document according to a specific schema. Every occurrence of
the phrase “XML Document” is preceded by the appropriate root element name, italicized, as listed in
column 3, “Valid Root Element(s)” of Table 1-4, “Schema-related Information”.

For example, the phrase “srs XML Document” refers to an XML document based on the SRS Schema as
defined in [SRS-XSD]. Such a document comprises a single <srs ..> root element, optionally preceded
by the XML declaration: <?xml version="1.0" ..?>.

Therefore, the string containing the srs XML Document will have one of the following two forms:
“<srs .>.</srs>”
or

“<?xml .?>
<srs ..>..</srs>"

2.2.2.20 XML Fragment

An XML Fragment is a sequence of XML elements that are valid direct or indirect child elements of the
root element according to a specific schema. Every occurrence of the phrase “XML Fragment” is preceded
by the appropriate root element name, italicized, as listed in column 3, “Valid Root Element(s)” of Table
1-4, “Schema-related Information”.

For example, the phrase “srs XML Fragment” refers to a sequence of XML elements that are defined in
the SRS Schema as defined in [SRS-XSD]:

“<item 1d=""."" .>.</item>"
or

“<recordDestination mediaType="."" preference=".">

</recordDestination>"
or

“<title>.</title>
<class>. </class>
<.>.</.>

<.>.</.>"

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 35

2.2.2.21 actualScheduledStartDateTime
The actual scheduled start date&time of a program item is defined as:

actualScheduledStartDateTime = scheduledStartDateTime + scheduledStartDateTimeAdjust

where scheduledStartDateTime is the scheduled broadcast start date&time of the program item and
scheduledStartDateTimeAdjust is a user-supplied adjustment to that date&time, for example for pre-roll
purposes.

2.2.2.22 actualStartDateTime
The actual start date&time of a program item is defined as:

actualStartDateTime = actualScheduledStartDateTime + any device-specific record startup latency.

2.2.2.23 actualScheduledEndDateTime
The actual scheduled end time of a program item is defined as:

actualScheduledEndDateTime = scheduledStartDateTime + scheduledDuration +
scheduledDurationAdjust

where scheduledStartDateTime is the scheduled broadcast start date&time of the program item,
scheduledDuration is the scheduled broadcast duration of the program item and scheduledDurationAdjust
is a user-supplied adjustment to that duration, for example to select just a part of the program for
recording.

2.2.2.24 actualEndDateTime
The actual end date&time of a program item is defined as:

actualEndDateTime = actualScheduledEndDateTime + any device-specific record teardown latency.

2.2.2.25 actualScheduledDuration
The actual scheduled duration of a program item is defined as:

actualScheduledDuration = actualScheduledEndDateTime — actualScheduledStartDateTime

= scheduledDuration + scheduledDurationAdjust —
scheduledStartDateTimeAdjust

where scheduledDuration is the scheduled broadcast duration of the program item,
scheduledDurationAdjust is a user-supplied adjustment to that duration, and
scheduledStartDateTimeAdjust is a user-supplied adjustment to the scheduled start date&time.

2.2.2.26 Lexical Sort Order

Lexical sort order refers to string sorting — also called collation — based on language and regional
conventions. It is not based on the binary codes of the characters in strings. Furthermore, lexical sorting is
not based on character sets; a single character set may have multiple sort orders, again according to
language and regional conventions. It is also possible to have lexical sorts that are further refined
according to user preference. For a complete discussion of this topic see [UTS 10], and the related
standards [UAX 15] and [UTS 35]. [UTS 10] defines the lexical sort algorithms. It uses a secondary
algorithm defined in [UAX 15] and supporting data tables defined in [UTS 35]. These three references
together — [UAX 15], [UTS 10] and [UTS 35] - should be sufficient to implement a robust lexical sort.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 36

Simple example: one of the most familiar examples is case-insensitive sorting on the ASCII subset of
Unicode. In a binary ASCII sort, all lower case letters sort after the upper case “Z” because “Z” has a
character code of Ox5A, and all lower case character codes are greater than or equal to Ox61.

More complex example: the “6” character in German sorts between “n” and “p” characters whereas in
Swedish, it sorts after “z”.

2.2.2.27 Lexical Matching

Lexical matching compares two (sub)strings for equality under certain lexical sorting conditions. It is
important to note that equality in lexical matching is often less restrictive than equality in lexical sorting.
In other words, two strings that are equal under a lexical sort will always be a lexical match. However,
two strings that are a lexical match might not be equal under a lexical sort for the same language and
region. In some cases, an implementation’s lexical sort might consider all alphabetic characters with
diacritical marks (accents, umlauts, circumflexes, etc.) to be distinct, yet the same implementation might
ignore diacritical marks in lexical matching. For example, the strings “resumé”, “resume” and “résumé”
might sort as “resume” < “resumé” < “résumé”, but when a lexical match using the string “resume”,
might find all three strings “resumé”, “resume” and “résumé”. For implementation techniques, see [UTS
10] Section 8, “Searching and Matching”.

2.2.2.28 Simple Non-case-sensitive Sort Order

A simple non-case-sensitive sort order applies only to Roman alphabetic characters. All lower case ASCII
alphabetic characters MUST sort the same as their uppercase equivalent, except when compared directly
with their upper case equivalent, in which case the upper case character SHOULD sort before its lower
case equivalent. This means that of the following three ordering relations, #1 MUST be true, at least one
of #2 and #3 MUST be true, and #2 SHOULD be true.

“A" S 64a7’ < 64B7’ S 64b7’ < . < 64Y?’ S 64}ﬁ’ < 6GZ” S “Z”

“AH < “aﬂ < “BH < “b" < . < “YH < “y” < “ZH < “ZH

“AH = “aﬂ < “BH = “b" < . < “YH = “y” < “ZH = “ZH

Additionally, the same upper and lower case relationships SHOULD hold for non-ASCII Roman
alphabetic characters. That is, lower case alphabetic characters with diacritical marks SHOULD sort as
their upper case equivalent, except when compared directly with their upper case equivalent, in which
case the upper case character should sort before its lower case equivalent. The ordering relation between
ASCII and non-ASCII alphabetic characters is left unspecified. Also, the ordering relation between non-
ASCII alphabetic characters that are not upper or lower case equivalents of each other is left unspecified.
This may be summarized in the following relations. In each, the letter “c” represents any non-ASCII

Roman alphabetic character. #4 SHOULD be true for all “c”. #5 SHOULD be true for all “c”. If #5 is false
for any “c”, it should be false for all “c” and #6 SHOULD be true for all “c”.

upper(c) < lower(c)
upper(c) < lower(c)

upper(c) = lower(c)

2.2.2.29 Simple Non-case-sensitive Matching

In a simple non-case-sensitive match, relation #0 above MUST be true, and relation #0 above SHOULD
be true.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 37

2.2.2.30 Numeric Sort Order

A sort order in which values are compared numerically. If the type of an individual value is numeric, the
numeric value is used. If the type of an individual value is string, the string is converted to a number and
that numeric value is used.

2.2.2.31 Boolean Sort Order
Boolean values are sorted with “0” (false) being less than *“1” (true).

2.2.2.32 Sequenced Sort

A sequenced sort is a sort applied to a set of values, each of which is composed of a sequence of subvalues.
The sequence is often in a CSV list, but there are other kinds of sequences used for sorting in this
specification. The sequenced sort starts by sorting based on the first subvalue in the sequence. If all values
differ in the first subvalue, the sort is finished. Otherwise, each subset of equal subvalues is then sorted
based on the next subvalue in the sequence. This process repeats iteratively until there are no more subsets
of equal subvalues or the sequence is exhausted.

2.2.2.33 Sequenced Lexical Sort
A sequenced sort in which all subvalues are strings and the subvalues are compared lexically.

2.2.2.34 Sequenced Numeric Sort
A sequenced sort in which each subvalue is either a number or the number represented by a string.

2.2.2.35 Lexical Numeric Sort

A lexical numeric sort is one where one or more substrings are known to represent numbers. The strings
are then sorted using a sequenced sort, where the sequence is composed of the sequence of non-numeric
and numeric substrings from the larger string.

For example, assume a property has the form <letter>-<number>, where <number> ranges from 1 to 10.
In a straight ascending lexical sort, the values “A-10", “A-1", “A-2" would sort as: “A-1”, “A-10", “A-2".
“A-10" sorts before “A-2" because they are equal in the first two character positions, but in the third
position, “1” < “2”. However, in a lexical numeric sort, each string is considered to be a sequence of a
letter and number separated by a hyphen. These values then sort as “A-1", “A-2", “A-10" because all
three are equal in the first subvalue, “A”, but the second subvalue sorts as 1, 2, 10 in numeric order.

2.2.2.36 type Relationship Sort

This is a sort defined exclusively for independent properties that have a dependent property relationship
named “type”. These properties are sorted as a sequence of two subvalues: the first subvalue is the value of
the property’s xxx@type dependent property; the second subvalue is the value of the independent property
xxx itself. The xxx@type subvalues are sorted as specified for the dependent xxx@type property in its own
section. The independent property subvalues are sorted according to the order specified in its section.
Sorting of the independent property may vary with the value of the dependent property.

2.3 ScheduledRecording Service Architecture

2.3.1 recordSchedule

A ScheduledRecording service implementation has a single, flat list of recordSchedule instances. A
recordSchedule represents the user-level recording instructions to the ScheduledRecording service. These

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 38

user-level instructions have various levels of complexity. For example, a simple instruction may state:
“record channel 15 at 4PM on March 19, 2004,” while a more complex instruction may state: “record all
episodes of the DIY Home Improvement Show on any channel that has the show for the next month.” The
behavior of a recordSchedule is described by one or more properties, and these properties can be
manipulated through several actions.

As shown in Figure 1, when a control point requests a new scheduled recording to the
ScheduledRecording service via the CreateRecordSchedule() action, the control point sets a number of
properties and passes them to the ScheduledRecording service to express user-desired instructions to the
scheduled recording. Then, as a response to the CreateRecordSchedule() action, the ScheduledRecording
service creates a recordSchedule, assigns a unique ID to the recordSchedule and returns the
recordSchedule with the complete set of initial property settings. The ScheduledRecording service MUST
add OPTIONAL properties to the recordSchedule when a control point did not specify them. Additionally,
the ScheduledRecording service MAY add some informative properties.

If a control point specifies unsupported or unknown properties as input to the CreateRecordSchedule()
action, the ScheduledRecording service MUST gracefully ignore these. A control point can always parse
the generated recordSchedule returned in the Result argument of the CreateRecordSchedule action to
verify whether certain properties were rejected by the ScheduledRecording service. If unsupported values
are set for supported properties, the ScheduledRecording service MUST return an error and the
recordSchedule MUST NOT be created.

D O

CreateRecordSchedule(e) |
o Properties with desired
values
Scheduled
Control Recordin
Point € cing
Service
L e RecordSchedulelD
o Properties with initially
assigned values
A A

Figure 1: Creating a new recordSchedule

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 39

Some properties are defined as optional in the ScheduledRecording service. Therefore, a control point
needs to determine which properties a ScheduledRecording service implementation actually supports.
Since support levels and allowed values for properties can be different for recordScheduleParts,
recordSchedule or recordTask usage, a pair of actions (GetPropertyList() and GetAllowedValues())) are
provided to retrieve the relevant information. Figure 2 illustrates the concept.

) C)
GetPropertyList@® |

o Property-set Datatype

<2
L o List of property names
supported for the datatype
Control Scheduled
Point GetAllowedValues(e) Recording
Service
o List of property names
4 ,
L o Allowed values for the listed
properties
A A

Figure 2: Capability check.

Figure 3 illustrates how recordSchedule instances can be browsed by the control point after they have
been created, to retrieve the updated/current values of the properties.

D O

BrowseRecordSchedules() |
dl ,
Control L Schedu_led
Point . Current_ values of the Recor_dlng
properties of the returned Service
recordSchedules
A .

Figure 3: Browse recordSchedule.

Figure 4 illustrates how a control point can delete a recordSchedule from the ScheduledRecording service.

DeleteRecordSchedule(e) |

Scheduled
Recording
Service

Control e RecordSchedulelD
Point

Figure 4: Delete a recordSchedule

2.3.2 recordTask

A recordSchedule will generate one recordTask for each recording operation that matches the criteria of
the recordSchedule. A recordTask also has properties indicating its behavior. A recordTask is different
from a recordSchedule in that it always represents a single recording operation whereas a recordSchedule
may actually represent multiple recording operations. For example, a ScheduledRecording service that
interprets a recordSchedule to lead to three different recording operations could generate three different

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 40

recordTask instances over its lifetime. At a given time, a recordSchedule can have zero (no recording
operations currently scheduled) or more recordTask instances associated with it. A ScheduledRecording
service MUST report at least one recordTask when the underlying system is performing a recording
operation for some recordSchedule.

When a recordSchedule is created, the ScheduledRecording service generates necessary recordTask
instances associated with each scheduled recording occurrence. The ScheduledRecording service may also
later add a new recordTask whenever a new scheduled recording occurrence arrives. Similarly, a
ScheduledRecording service may delete recordTask instances when they are no longer needed. This MAY
happen in a device dependent manner. For example, some ScheduledRecording service implementations
delete a recordTask when the recording is finished while other ScheduledRecording service
implementations keep maintaining finished recordTask instances. A recordTask can only be created by
the ScheduledRecording service as a result of a trigger from a recordSchedule. A control point can never
create a recordTask directly. Both a recordTask and a recordSchedule MAY be deleted by the
ScheduledRecording service or a control point.

The lifetime of a recordTask is determined in a vendor dependent way. Some implementations maintain a
recordTask even after it finishes its recording while others may delete the recordTask once the recording
finishes. However, in any implementation, when a recordSchedule is deleted, the ScheduledRecording
service MUST delete all of its associated recordTask instances.

2.4 State Variables

Like the ContentDirectory service, the ScheduledRecording service is primarily action-based. The service
state variables exist primarily to support argument passing within service actions. Information is not
exposed directly through explicit state variables. Instead, a client retrieves ScheduledRecording service
information via the return arguments of the actions defined below. The majority of state variables defined
below exist simply to provide data type information for the arguments of the various actions of this
service.

Reader Note: For a first-time reader, it may be more helpful to read the action definitions before
reading the state variable definitions.

2.4.1 State Variable Overview

Table 2-2: State Variables

Variable Name Allowed Value Default Eng.
Value Units
SortCapabilities R string CSV (string)
See Section 2.4.2
SortLevelCapability R ui4 See Section 2.4.3
StateUpdatelD R ui4 See Section 2.4.4
LastChange R string See Section 2.4.5
A ARG TYPE PropertyList R string CSV (string)
See Section 2.4.6
A ARG TYPE DataTypelD R string See Table 2-3 and
Section 2.4.7
A ARG TYPE ObjectiD R string See Section 2.4.8

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 41

Variable Name Allowed Value Default Eng.
Value Units
A_ARG_TYPE_ObjectIDList CR? | string CSV (string)
See Section 2.4.9
A_ARG_TYPE_ Propertylnfo R string See Section 2.4.10
A ARG TYPE_Index R ui4 See Section 2.4.11
A ARG TYPE_Count R ui4 See Section 2.4.12
A ARG TYPE SortCriteria R string CSV (string)
See Section 2.4.13
A_ARG_TYPE RecordSchedule R string See Section 2.4.14
A ARG _TYPE_ RecordTask R string See Section 2.4.15
A_ARG_TYPE RecordScheduleParts R string See Section 2.4.16

! R = Required, O = Optional, CR = CONDITIONALLY REQUIRED, CO = CONDITIONALLY
OPTIONAL, X = Non-standard, add -D when deprecated (e.g., R-D, O-D).

2 See Section 2.4.9, “A_ARG_TYPE_ObjectIDList” for conditions under which implementation of this
state variable is REQUIRED.

Table 2-3: allowedValueList for the DataTypelD argument

Value R/IO*
“A_ ARG TYPE RecordSchedule” R
“A_ ARG TYPE RecordTask” R
“A_ARG TYPE RecordScheduleParts” R
Vendor-defined X

LR = REQUIRED, O = OPTIONAL, X = Non-standard.

2.4.2 SortCapabilities

This REQUIRED state variable contains a CSV list of property names that the ScheduledRecording
service can use to sort the information returned in the Result argument of various actions, such as
BrowseRecordSchedules() and BrowseRecordTasks(). An empty string indicates that the device does not
support any kind of sorting. A wildcard “srs:*” indicates that any supported property within the srs
namespace can be used for sorting.

2.4.3 SortLevelCapability

This REQUIRED state variable contains an integer that indicates the maximum number of property
names that can be specified in the SortCriteria argument at the same time.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 42

2.4.4 StateUpdatelD

This REQUIRED state variable is a ScheduledRecording service system-wide numeric value. Its initial
value is 0.

e StateUpdatelD MUST be incremented by 1 whenever any of the following occurs:

e A recordSchedule or recordTask is created or deleted.

e ArecordSchedule or recordTask is modified, which means that one or more properties are
added, deleted or had their value changed.

e Any other change to the state of the ScheduledRecording service that could be observed by a
control point. This includes any vendor- or other future-defined behavior.

e When the value of StateUpdatelD is equal to the ui4 maximum value of 4294967295 (2%%-1),
incrementing it causes it to roll over to the value 0.

e Theincrement and the operation that caused it must occur atomically relative to all information
visible to any control point — including both action out arguments and evented variable values.

For example, consider the case where a control point invokes CreateRecordSchedule() to create a
new recordSchedule that also immediately spawns exactly one recordTask. Assume that
StateUpdatelD is 10 when the control point invokes the action and that for a short time period
around this invocation, no other activity occurs that affects the value of StateUpdatelD. During
this time period, exactly one of the following MUST be true as seen by all external observations
(including the returned values from this CreateRecordSchedule() invocation):

e StateUpdatelD is 10; and the new recordSchedule has not been created; and the new
recordTask has not been created.

e StateUpdatelD is 11; and the recordSchedule has been created; and the new recordTask has
not been created; and the recordSchedule’s value of currentRecordTaskCount is 0,
indicating that no recordTask has been created.

e StateUpdatelD is 12; and the recordSchedule has been created; and the new recordTask has
been created; and the recordSchedule’s value of currentRecordTaskCount is 1, indicating
that the child recordTask has been created.

ScheduledRecording service implementations SHOULD maintain the same value for StateUpdatelD
through power cycles and any other disappearance/reappearance of the service on the network. Control
points can use a change in the value of this variable to determine if there has been a change in the
ScheduledRecording service.

The value of the StateUpdatelD state variable, returned within events and returned as an output argument
of certain actions should be monitored very closely by control points. Indeed, whenever an action returns
with a StateUpdatelD value in its UpdatelD argument that is less than the StateUpdatelD value received
in the updatelD attribute from the most recent LastChange event, the information returned by that action
is potentially stale. A control point may want to refresh that information for instance by invoking the
appropriate Browsexxx() or Getxxx() action. It is safe to use the information as long as the StateUpdatelD
value returned in the UpdatelD argument of the action is greater than or equal to the StateUpdatelD value
received in the updatelD attribute from the most recent LastChange event.

2.4.5 LastChange

Note: It is assumed that the default namespace for this sub-section (2.4.5, “LastChange”) of the
specification is srs-Ic.

This REQUIRED state variable is used for eventing purposes to allow clients to receive meaningful event
notifications whenever a recordSchedule or recordTask in the ScheduledRecording service changes.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 43

[SRS-EVENT-XSD] defines the schema for the StateEvent XML Document used in this state variable.
The optional XML header <?xml version="1.0" ?>is allowed. One root element,
<StateEvent> MAY have zero or more elements, each of which represent one update to a
recordSchedule or recordTask instance. Six types of update elements are defined as shown in Table 2-4,
“Allowed Elements in <StateEvent> Element”. Future ScheduledRecording service specifications
MAY add other types of update elements. A vendor MAY add vendor-defined elements. The
ScheduledRecording:1 service does not define the value for these elements. Vendor-defined element
names MUST follow the rules set forth in Section 1.5, “Vendor-defined Extensions”. Note that future
ScheduledRecording service specifications MAY define sub-elements for the elements. Also note that this
state variable MUST be properly escaped as defined in [XML].

Table 2-4: Allowed Elements in <StateEvent> Element

Element Name ‘ Description

RecordScheduleCreated A new recordSchedule is created.

RecordScheduleModified | One or more properties of a recordSchedule are
modified (added, deleted or values are changed).

RecordScheduleDeleted A recordSchedule is deleted.

RecordTaskCreated A new recordTask is created.

RecordTaskModified One or more properties of a recordTask are modified
(added, deleted or values are changed).

RecordTaskDeleted A recordTask is deleted.

Vendor-defined See Section 1.5, “Vendor-defined Extensions”.

Each element MUST have one updatelD attribute, which is set to the value of the StateUpdatelD state
variable at the time of the update and one objectID attribute, whose value is set to the value of the @id
property of the updated recordSchedule or recordTask instance. Future ScheduledRecording service
specifications MAY add other attributes to existing update elements. A vendor MAY add vendor-defined
attributes for existing update elements.

Example (before XML escaping)

<?xml version="1.0" encoding=""UTF-8"7>
<StateEvent
xmlns=""urn:schemas-upnp-org:av:srs-event"
xmlns:xsi="http://www_w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs-event
http://www._upnp.org/schemas/av/srs-event.xsd">
<RecordScheduleCreated updatelD="213" objectID="s001"/>
<RecordTaskCreated updatelD="214" objectlD=""s001-001"/>
<RecordTaskModified updatelD="215" objectlD="s001-001"/>
</StateEvent>

The LastChange state variable is evented and moderated. When multiple updates occurred within a
LastChange moderation period, the new LastChange state variable reports more than one update at the
same time. A series of updates and the resulting eventing activity are illustrated in their temporal order in
the following example.

Example

0: ScheduledRecording service activity = Power-on.

StateUpdatelD =0

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 44

LastChange (before XML escaping):

<?xml version="1.0" encoding="UTF-8"7>

<StateEvent

xmlns=""urn:schemas-upnp-org:av:srs-event"

xmlns:xsi="http://www_w3.0rg/2001/XMLSchema-instance"

Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs-event
http://www.upnp.org/schemas/av/srs-event.xsd">

</StateEvent>

GENA behavior: None

1: ScheduledRecording service activity = a recordSchedule with @id = “s001” is created.

StateUpdatelD =1
LastChange (before XML escaping):

<?xml version="1.0" encoding=""UTF-8"7>

<StateEvent

xmlns=""urn:schemas-upnp-org:av:srs-event"

xmlns:xsi="http://www_w3.0rg/2001/XMLSchema-instance"

Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs-event

http://www._upnp.org/schemas/av/srs-event.xsd">

<RecordScheduleCreated updatelD=""1" objectlID=""s001">
</RecordScheduleCreated>

</StateEvent>

GENA behavior: Nothing is evented since there are no current subscribers.

2: ScheduledRecording service activity = new control point signs up for events.

StateUpdatelD =1
LastChange (before XML escaping):

<?xml version="1.0" encoding=""UTF-8"7>

<StateEvent

xmlns=""urn:schemas-upnp-org:av:srs-event"

xmIns:xsi="http://www_w3.0rg/2001/XMLSchema-instance"

Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs-event

http://www._upnp.org/schemas/av/srs-event.xsd">

<RecordScheduleCreated updatelD=""1" objectID=""s001">
</RecordScheduleCreated>

</StateEvent>

GENA behavior: Send initial Notify with the LastChange value above.

3: ScheduledRecording service activity = a recordTask with @id = “t001-000” is created. Its
associated recordSchedule with @id = “s001” is modified by the ScheduledRecording service at the
same time because its currentReordTaskCount property is updated to reflect the existence of the new
recordTask.

StateUpdatelD =3
LastChange (before XML escaping):

<?xml version="1.0" encoding=""UTF-8"7>

<StateEvent

xmlns=""urn:schemas-upnp-org:av:srs-event"
xmlns:xsi="http://www_w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation="

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 45

urn:schemas-upnp-org:av:srs-event
http://www._upnp.org/schemas/av/srs-event.xsd">
<RecordTaskCreated updatelD="2" objectlD="t001-000"">
</RecordTaskCreated>
<RecordScheduleModified updatelD="3" objectlD="s001">
</RecordScheduleModified>
</StateEvent>

GENA behavior: Wait for the next moderation period to elapse and then send Notify with the
LastChange value above.

4: ScheduledRecording service activity = a recordTask with @id = “t001-001” is created. Its
associated recordSchedule with @id = “s001” is modified by the ScheduledRecording service at the
same time because its currentReordTaskCount property is updated to reflect the existence of the new
recordTask. Within the same moderation period, a recordTask with @id = “t001-002" is also created.
Its associated recordSchedule with @id = “s001” is modified by the ScheduledRecording service at
the same time because its currentReordTaskCount property is updated to reflect the existence of the
new recordTask.

StateUpdatelD =7
LastChange (before XML escaping):

<?xml version="1.0" encoding=""UTF-8"7>
<StateEvent
xmlns=""urn:schemas-upnp-org:av:srs-event"
xmlns:xsi="http://www_w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs-event
http://www._upnp.org/schemas/av/srs-event.xsd">
<RecordTaskCreated updatelD="4" objectlD="t001-001"">
</RecordTaskCreated>
<RecordScheduleModified updatelD=""5" objectlID="s001">
</RecordScheduleModified>
<RecordTaskCreated updatelD="6"" objectlD="t001-002"">
</RecordTaskCreated>
<RecordScheduleModified updatelD="7" objectlD="s001">
</RecordScheduleModified>
</StateEvent>

GENA behavior: Wait for the next moderation period to elapse and then send Notify with the
LastChange value above.

246 A ARG TYPE PropertylList

This REQUIRED state variable is introduced to provide type information for various action arguments
that contain a CSV list of property names. Namespace prefixes MUST be included with all property
names (see Section 1.4, “Management of XML Namespaces”). The exact semantics of these property
names depend on the associated action.

24.7 A ARG TYPE DataTypelD

This REQUIRED state variable is introduced to provide type information for various action arguments
that are used to identify a specific property-set data type (see Section 2.2.2.13, “Property-set Data Types”).
An argument of type A_ ARG _TYPE DataTypelD can have the values listed in Table 2-3,
“allowedValueList for the DataTypelD argument”.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 46

248 A ARG TYPE ObjectiD

This REQUIRED state variable is introduced to provide type information for various action arguments
that uniquely identify an individual recordSchedule or a recordTask by their object ID.

249 A ARG TYPE ObjectIDList

This CONDITIONALLY REQUIRED state variable MUST be supported if the
GetRecordScheduleConflicts() or GetRecordTaskConflicts() actions are implemented. The state variable is
introduced to provide type information for various action arguments that contain a CSV list of object 1Ds
(@id) used to identify a collection of either recordSchedule or recordTask instances (the list MUST be
homogeneous).

2.4.10A ARG TYPE Propertyinfo

This REQUIRED state variable is introduced to provide type information for various action arguments
that contain detailed XML-based information on supported properties and their interdependencies for a
particular ScheduledRecording service implementation. The format of these arguments is similar to the
XML Service Description (SCPD), but instead of describing state variables and actions, they describe
properties, their allowed values, and interdependencies.

Refer to [AVDT] for the definition of the AVDT Datastructure Template.

Note that since the format of these arguments is based on XML, it needs to be escaped (using the normal
XML rules: [XML] Section 2.4 Character Data and Markup) before embedding in a SOAP response
message.

2411 A ARG TYPE Index

This REQUIRED state variable is introduced to provide type information for various action arguments
that specify an offset into an arbitrary set of objects. A value of 0 represents the first object in the set.

24.12A ARG TYPE Count

This REQUIRED state variable is introduced to provide type information for various action arguments
that specify a number of arbitrary objects.

2413 A ARG TYPE SortCriteria

This REQUIRED state variable is introduced to provide type information for various action arguments
that contain a CSV list of property names prefixed by one or more sort modifiers. Namespace prefixes
MUST be included with all property names that do not belong to the srs namespace. Namespace prefixes
MAY be included with property names that belong to the srs namespace (see Section 1.4, “Management of
XML Namespaces”). The “+” and “-” sort modifier prefixes indicate that the sort is in ascending or
descending order, respectively, with regard to the value of the prefixed property name.

2414 A ARG TYPE RecordSchedule

This REQUIRED state variable is introduced to provide type information for various action arguments
that contain a list of zero or more recordSchedule objects. All instances of this data type MUST comply
with the SRS schema. See Appendix A, *“srs XML Document” for details.

The structure of an argument of data type A_ ARG_TYPE_ RecordSchedule is an srs XML Document:

e Optional XML declaration <?xml version="1.0" ?>

e <Srs> is the root element.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 47

e The <srs> element MUST have zero or more <item> elements, each representing a
recordSchedule object.

e Each <item> element has a set of property values describing the recordSchedule object. Each
property is expressed either as the content of an XML element or as the value of an XML
attribute.

e See [SRS-XSD] for more details on the structure. The ScheduledRecording service-defined
names for metadata are described in Appendix B, “AV Working Committee Extended
Properties.”

Note that since the SRS format of an argument of data type A_ ARG _TYPE RecordSchedule is XML, it
needs to be escaped (using the normal XML rules: [XML] Section 2.4 Character Data and Markup) before
embedding in a SOAP response message.

24.15A ARG TYPE RecordTask

This REQUIRED state variable is introduced to provide type information for various action arguments
that contain a list of zero or more recordTask objects. All instances of this data type MUST comply with
the SRS schema. See Appendix A, “srs XML Document” for details.

The structure of an argument of data type A_ ARG_TYPE RecordTask is an srs XML Document:

e Optional XML declaration <?xml version="1.0" ?>
e <srs> isthe root element.

o The <srs> element MUST have zero or more <item> elements, each representing a
recordTask object.

e Each <item> element has a set of property values describing the recordTask object. Each
property is expressed either as the content of an XML element or as the value of an XML
attribute.

e See [SRS-XSD] for more details on the structure. The ScheduledRecording service-defined
names for metadata are described in Appendix B, “AV Working Committee Extended
Properties.”

Note that since the SRS format of an argument of data type A_ ARG TYPE RecordTask is XML, it needs
to be escaped (using the normal XML rules: [XML] Section 2.4 Character Data and Markup) before
embedding in a SOAP response message.

2416 A ARG TYPE RecordScheduleParts

This REQUIRED state variable is introduced to provide type information for various action arguments
that contain a single recordScheduleParts object. A recordScheduleParts object indicates the desired
values for a subset of properties that provide a template for other recordSchedule objects. Typically, a
recordScheduleParts is used to create new recordSchedule objects. All instances of this data type MUST
comply with the SRS schema. See Appendix A, “srs XML Document” for details.

The structure of an argument of data type A_ ARG_TYPE_RecordScheduleParts is an srs XML Document:

e Optional XML declaration <?xml version="1.0" ?>
e <srs> isthe root element.

e The <srs> element MUST have a single <item> element, representing the
recordScheduleParts object.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 48

e The <item> element has a set of property values describing the recordScheduleParts object.
Each property is expressed either as the content of an XML element or as the value of an XML
attribute.

e See [SRS-XSD] for more details on the structure. The ScheduledRecording service-defined
names for metadata are described in Appendix B, “AV Working Committee Extended
Properties.”

Note that since the SRS format of an argument of data type A_ ARG TYPE RecordScheduleParts is XML,
it needs to be escaped (using the normal XML rules: [XML] Section 2.4 Character Data and Markup)
before embedding in a SOAP response message.

2.5 Eventing and Moderation

Table 2-5: Eventing and Moderation

Moderated Max Event Logical Min Delta
Variable Name Evented Event Rate! Combination | per Event?
SortCapabilities NO NO
SortLevelCapability NO NO
StateUpdatelD NO NO
LastChange YES YES 0.2 seconds
A ARG TYPE PropertyList NO NO
A_ARG TYPE_ DataTypelD NO NO
A_ARG TYPE_ObjectlD NO NO
A_ARG TYPE ObjectIDList NO NO
A ARG TYPE Propertylnfo NO NO
A_ARG_TYPE_Index NO NO
A_ARG TYPE_Count NO NO
A ARG TYPE SortCriteria NO NO
A ARG TYPE RecordSchedule NO NO
A ARG TYPE RecordTask NO NO
A ARG TYPE RecordScheduleParts NO NO

! Determined by N, where Rate = (Event)/(N secs).
2 (N) * (allowedValueRange Step).

2.6 Actions
Table 2-6: Actions

R/O* | Control

Point R/O?
R 0

GetSortCapabilities()

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

49

Control
Point R/O?
GetPropertyList() R (6]
GetAllowedValues() R R®
GetStateUpdatelD() R (6]
BrowseRecordSchedules() R R®
BrowseRecordTasks() R R®
CreateRecordSchedule() R R®
DeleteRecordSchedule() R (6]
GetRecordSchedule() R (6]
EnableRecordSchedule() CR* |O
DisableRecordSchedule() CR* |O
DeleteRecordTask() (6] (6]
GetRecordTask() R (6]
EnableRecordTask() CR* |O
DisableRecordTask() CR* |O
ResetRecordTask() CR* |O
GetRecordScheduleConflicts() CR* (6]
GetRecordTaskConflicts() CR* |O
Non-standard actions implemented by a UPnP vendor go here X X

! For a device this column indicates whether a control point MUST be capable of invoking this action,

where R = REQUIRED, O = OPTIONAL, CR = CONDITIONALLY REQUIRED, CO =

CONDITIONALLY OPTIONAL, X = Non-standard, add -D when deprecated (e.g., R-D, O-D).

2 For a control point this column indicates whether a control point MUST be capable of invoking this
action, where R = REQUIRED, O = OPTIONAL, CR = CONDITIONALLY REQUIRED, CO =
CONDITIONALLY OPTIONAL, X = Non-standard, add -D when deprecated (e.g., R-D, O-D).

® REQUIRED only if the control point implements interaction with the ScheduledRecording service.

* See action description for conditions under which implementation of this action is REQUIRED.

2.6.1 GetSortCapabilities()

This REQUIRED action returns a CSV list of property names that can be used in the SortCriteria

argument of various actions.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 50

2.6.1.1 Arguments

Table 2-7: Arguments for GetSortCapabilities()

Argument ‘ Direction relatedStateVariable
SortCaps ouT SortCapabilities
SortLevelCap ouT SortLevelCapability

2.6.1.1.1 SortCaps

This argument contains a CSV list of property names that the ScheduledRecording service can use to sort
the information returned in the Result argument of various actions, such as BrowseRecordSchedules() and
BrowseRecordTasks(). The appropriate namespace prefixes (either “srs:” or

“<vendor-defined namespace prefix>:") MUST be included with the returned property
names (see Section 1.4, “Management of XML Namespaces”). An empty string indicates that the device
does not support any kind of sorting. A wildcard “srs:*” indicates that any property within the srs
namespace can be used for sorting. See also Section 2.4.2, “SortCapabilities”

2.6.1.1.2 SortLevelCap

This argument contains an integer that indicates the maximum number of property names that can be
specified at the same time in the SortCriteria argument of various actions. See also Section 2.4.3,
“SortLevelCapability.”

2.6.1.2 Dependency on State
None.

2.6.1.3 Effect on State
None.

2.6.1.4 Errors

Table 2-8: Error Codes for GetSortCapabilities()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.

2.6.2 GetPropertyList()

The REQUIRED GetPropertyList() action provides a means to retrieve from a particular
ScheduledRecording service implementation which properties are actually supported for a specific
property-set data type. The GetPropertyList() action returns a CSV list of property names that may appear
in action arguments of the property-set data type, specified in the DataTypelD input argument. This CSV
list MUST include property names of imported properties from other namespaces as well as any vendor-
defined property names. For example, the ContentDirectory service imported properties (such as dc:title)
that are included as part of the value of the cdsReference property, MUST be returned.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 51

The appropriate namespace prefixes MUST be included with all property names (see Section 1.4,
“Management of XML Namespaces”).

The set of allowed values for srs properties and vendor-defined properties (when used for the specified
property-set data type) can be obtained via the GetAllowedValues() action. The set of allowed values for
imported properties cannot be retrieved by the GetAllowedValues() action.

2.6.2.1 Arguments

Table 2-9: Arguments for GetPropertyList()

Argument ‘ Direction relatedStateVariable
DataTypelD IN A ARG TYPE DataTypelD
PropertyList ouT A ARG TYPE_PropertyList

2.6.2.1.1 DataTypelD

The DataTypelD argument identifies the property-set data type for which the set of property names is to
be returned. See Section 2.4.7, “A_ARG_TYPE DataTypelD” for details regarding its format. The set of
allowed values is listed in Table 2-3, “allowedValueList for the DataTypelD argument”.

2.6.2.1.2 PropertyList

The PropertyList argument contains the set of property names (including their namespace prefixes) that
may appear in action arguments of the property-set data type, specified by the DataTypelD input
argument.

2.6.2.2 Dependency on State
None.

2.6.2.3 Effect on State
None.

2.6.2.4 Errors

Table 2-10: Error Codes for GetPropertyList()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

711 Invalid An invalid value has been specified in the DataTypelD input
DataTypelD argument.

2.6.3 GetAllowedValues()

This REQUIRED action is used to determine the allowed values and dependencies for srs properties that
can appear within action arguments of the specified property-set data type. The set of allowed values that
are returned is static and does not depend on the current state of the ScheduledRecording service. The

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 52

property information is returned in an AVDT XML Document as defined in [AVDT]. The set of properties
for which information is returned is determined by the intersection of the property names in the Filter
argument and the names of the properties supported by the implementation for the specified property-set
data type in the DataTypelD argument. All property names MUST belong either to the srs namespace or a
vendor-defined namespace.

The set of allowed values for imported properties cannot be retrieved by the GetAllowedValues() action.

2.6.3.1 Arguments

Table 2-11: Arguments for GetAllowedValues()

Argument ‘ Direction relatedStateVariable

DataTypelD IN A ARG TYPE DataTypelD
Filter IN A ARG TYPE PropertyList
Propertylnfo ouT A ARG _TYPE_Propertyinfo

2.6.3.1.1 DataTypelD
See Section 2.6.2.1.1, “DataTypelD”.

2.6.3.1.2 Filter

The Filter argument contains a CSV list of property names that indicates for which properties allowed
value information is to be returned in the AVDT XML Document, contained in the Propertylnfo output
argument. The Filter argument SHOULD only include property names that are returned in the
PropertyList argument of the GetPropertyList() action when specifying the same value in the DataTypelD
argument. ScheduledRecording service implementations MUST gracefully ignore other property names.
The “srs:” namespace prefix MUST be included with srs property names in the Filter argument.
Likewise, a namespace prefix MUST be included with all vendor-defined property names in the Filter
argument (see Section 1.4, “Management of XML Namespaces”).

If the Filter argument is set to “*:*”, then allowed values for all supported properties (including srs
properties and vendor-defined properties, but excluding imported properties) for the specified property-set
data type MUST be returned. If the Filter argument is set to “srs:*”, then allowed values for all
supported properties in the srs namespace MUST be returned. If the Filter argument is set to
“<vendor-defined namespace prefix>:*", then allowed values for all vendor-defined
properties in that namespace MUST be returned. If the Filter argument is set to the empty string, no
information is provided (an AVDT XML Document with an empty root element is returned).

Examples of valid Filter argument values include:

e “srs:@id,srs:priority@orderedvalue”
e “srs:title,srs:class”

° 13 - *

e “srs:I*”

2.6.3.1.3 Propertyinfo
The Propertylnfo argument MUST only include allowed value and dependency information on properties
that are specified in the Filter argument. The Propertylnfo argument MUST be properly escaped as

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 53

defined in [XML]. The particular AVDT XML Document that is returned in the Propertylnfo argument
depends on the property-set data type, specified in the DataTypelD input argument. See Appendix A, “srs
XML Document” for further details.

2.6.3.2 Dependency on State
None.

2.6.3.3 Effect on State
None.

2.6.3.4 Errors

Table 2-12: Error Codes for GetAllowedValues()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

711 Invalid An invalid value has been specified in the DataTypelD input
DataTypelD argument.

2.6.4 GetStateUpdatelD()

This REQUIRED action returns the current value of the StateUpdatelD state variable in the 1d output
argument. This action can be used to poll the ScheduledRecording service for any change in the service
that might have occurred since the last time this action was invoked. If the returned 1d value is different
from the value that was returned the last time this action was invoked, then there has been a change in
one or more recordSchedule or recordTask objects in the ScheduledRecording service. See Section 2.4.4,
“StateUpdatelD” for more information.

2.6.4.1 Arguments

Table 2-13: Arguments for GetStateUpdatelD()

Argument Direction Related State Variable
Id ouTt StateUpdatelD
26411 Id

The Id argument contains the current value of the StateUpdatelD state variable.

2.6.4.2 Dependency on State
None.

2.6.4.3 Effect on State
None.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 54

2.6.4.4 Errors

Table 2-14: Error Codes for GetStateUpdatelD()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.

2.6.5 BrowseRecordSchedules()

This REQUIRED action is used to browse the set of recordSchedule objects in the ScheduledRecording
service.

2.6.5.1 Arguments

Table 2-15: Arguments for BrowseRecordSchedules()

Argument ‘ Direction relatedStateVariable

Filter IN A ARG TYPE PropertyList
Startinglndex IN A ARG TYPE Index
RequestedCount IN A ARG TYPE Count
SortCriteria IN A ARG TYPE SortCriteria
Result ouT A ARG TYPE RecordSchedule
NumberReturned ouT A ARG TYPE Count
TotalMatches ouT A ARG TYPE Count
UpdatelD ouT StateUpdatelD

2.6.5.1.1 Filter

The Filter argument contains a CSV list of property names that indicates which properties are to be
returned in the srs XML Document, contained in the Result output argument. Namespace prefixes MUST
be included with all property names, specified in the Filter argument (see Section 1.4, “Management of
XML Namespaces”).

The Filter argument has no impact on the number of objects returned in the Result argument. Instead, the
Filter argument allows control points to control the complexity of the object metadata that is returned in
the srs XML Document for each object. It allows a control point to specify a subset of the supported
properties for inclusion in the srs XML Document. Properties that are REQUIRED by the SRS Schema
MUST always be returned. Compliant ScheduledRecording service implementations MUST NOT return
optional properties unless they are explicitly requested in the Filter input argument or are needed to create
a valid XML document. For example, specifying a dependent property in the Filter argument, such as
priority@orderedValue, will cause its associated independent property, priority, to be included in the srs
XML Document.

In all cases, a compliant ScheduledRecording service implementation MUST always respond to query
requests with the smallest, valid srs XML Document in the Result argument that satisfies the Filter input
argument. If the Filter argument is set to the empty string (*”’), then only the REQUIRED properties are
returned.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 55

If the Filter argument is equal to “*:*”, then all supported properties for all supported namespaces
MUST be returned. If the Filter argument is equal to “<namespace prefix>:*”, then all of the
REQUIRED srs properties and all of the supported properties within that single namespace MUST be
returned. For example, “srs:*” is equivalent to listing all srs namespace properties supported by the
device.

Properties defined in the ContentDirectory service MUST only be imported through the multi-valued
cdsReference property. Therefore, if the Filter argument contains property names from namespaces
defined in the ContentDirectory service specification, the appropriate cdsReference property values MUST
be included in the Result output argument and those values MUST be filtered, according to what is
specified in the Filter argument but also preserving the validity of the DIDL-Lite XML Document,
returned in the cdsReference property.

Examples of valid Filter argument values include:

e “srs:@id,srs:priority@orderedVvalue”

e “srs:title,dc:title”

° 13 - *7

o “upnp:*,dc:*,didl_lite:*”

A compliant ScheduledRecording service implementation MUST also ignore optional properties requested
in the Filter input argument which are not actually present in the matching objects. For example, a
BrowseRecordSchedules() Filter input argument of the form “srs:activePeriod” is successful and
returns a Result value that complies with the other BrowseRecordSchedules() input arguments, even in the
case where the objects represented in the Result argument do not have an activePeriod property defined.

2.6.5.1.2 Startinglndex and RequestedCount

This action returns a specified number of recordSchedule objects from the list as indicated by the
RequestedCount argument and starting from a specified index in the list, as indicated by the Startinglndex
argument. The first recordSchedule in the list MUST be indexed by an index value of 0. Specifying 0 in
the RequestedCount argument is PROHIBITED. If the range indicated by the Startingindex and
RequestedCount arguments reaches beyond the end of the list, then the ScheduledRecording service
MUST return all recordSchedule objects up to the end of the list and starting from the specified

Startinglndex.

2.6.5.1.3 SortCriteria

The order of the recordSchedule objects in the Result argument is determined by the SortCriteria
argument. When an empty string is specified in the SortCriteria argument, then the order is device
dependent. Additionally, this device dependent ordering MUST remain constant unless the UpdatelD
argument value has changed since the last BrowseRecordSchedules() action. In other words, any two
objects that appear in a Result argument MUST always appear in the same relative order as long as the
UpdatelD argument value (and therefore the StateUpdatelD state variable) did not change.

The SortCriteria argument contains a CSV list of property names (namespace prefixes MUST always be
included). Each property name MUST be prefixed by either a “+” or a “-” sort modifier. The “+” and “-”
modifiers indicate that the sort is in ascending or descending order, respectively, with regard to the value
of its associated property.

The ScheduledRecording service MUST NOT accept any property name in the SortCriteria argument that
is not included in the SortCapabilities state variable.

The objects are first sorted on the value of the first property in the SortCriteria argument. If all values
differ in the first property, the sort is finished. If any values of the first property are equal, each subset of

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 56

equal values is then sorted based on the next property in the SortCriteria argument. This process repeats
iteratively until there are no more subsets of equal values or the SortCriteria argument list is exhausted.

For example, a value for the SortCriteria argument of the BrowseRecordSchedules() action of:

“+srs:scheduledStartDateTime,-srs:scheduledChannel 1D, +srs:matchingName”

would sort the returned recordSchedule instances first by start date&time in ascending order, then for
each date&time, the instances would be sorted by descending channel ID and finally, for each channel 1D,
the instances would be sorted by ascending program name.

Sorting rules for each property depend on that property’s semantics. Sorts for individual properties can be
any of: numeric sort, lexical sort, lexical numeric sort, Boolean sort, sequenced sort, type relationship sort,
or property specific, according to an explicit ordering of values defined individually for that property. The
definition of each kind of sort may be found in Section 2.2.2.26, “Lexical Sort Order”. The specific sort
order rules that MUST be used for each property are given in Appendix B, “AV Working Committee
Extended Properties”.

When a SortCriteria argument contains property names of optional and/or multi-valued properties, the
following rules apply:

If the property is prefixed by “+” then:
e Objects that do not have a value for the property are returned first in their group.

e Objects that have at least one value for the property are returned next in their group. Objects that
have multiple values for the property (either multi-valued or CSV list) are sorted based on the
property value that would cause the object to appear earliest in the list.

If the property is prefixed by “-” then:

o Objects that have at least one value for the property are returned first in their group. Objects that
have multiple values (either multi-valued or CSV list) for the property are sorted based on the
property value that would cause the object to appear earliest in the list.

e Objects that do not have a value for the property are returned last in their group.
Example:

Assume a ScheduledRecording service contains the following items and the current date is Tuesday, June
21, 2005:

<item id="1">
éscheduIedStartDateTime>2006-02-07T15:30:00</ScheduIedStartDateTime>

</item>
<item id="2">

éscheduIedStartDateTime>MONT15:30:00</ScheduIedStartDateTime>
<scheduledStartDateTime>WEDT15:30:00</ScheduledStartDateTime>

</item>
<item 1d=""'3">

éscheduIedStartDateTime>MON-FRIT16:00:OO</ScheduIedStartDateTime>

</item>
<item i1d="4">

No <scheduledStartDateTime> property

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 57

</item>

A value for the SortCriteria argument of the BrowseRecordSchedules() action of:

“+srs:scheduledStartDateTime”

would sort the returned recordSchedule instances on Tuesday, June 21, 2005 as follows:

<item id="4"/>
<item id="2"/>
<item id="3"/>
<item id="1"/>

because:

e <item id="4"/> has no srs:scheduledStartDateTime property, it therefore appears first.

e <item id="2"/> srs:scheduledStartDateTime property resolves to
Wednesday, 2005-06-22T15:30:00 since this is the earliest date&time in the list. It therefore
appears second.

e <item id=""3"/> srs:scheduledStartDateTime property resolves to
Wednesday, 2005-06-22T16:00:00. It therefore appears third.

e <item id=""1"/> srs:scheduledStartDateTime property resolves to
Tuesday, 2006-02-07T15:30:00. It therefore appears last.

Sorting on ContentDirectory service imported properties is not supported.

2.6.5.1.4 Result

The Result output argument contains an XML escaped srs XML Document (see [SRS-XSD]). This
document contains a set of zero or more recordSchedule objects as described in Appendix A, “srs XML
Document”. Each of the returned recordSchedule objects MUST NOT have properties other than those
specified in the Filter argument unless they are needed to create a valid srs XML Document. The
ScheduledRecording service implementation MUST ignore unknown properties specified in the Filter
argument. If “*:*” is specified in the Filter argument, then all supported properties for which the
ScheduledRecording service has meaningful values MUST be returned. The REQUIRED properties (for
example, @id, title, class, ...) MUST always be included even if not specified in the Filter argument (the
srs XML Document MUST be valid). The ScheduledRecording service implementation MUST ensure that
the information returned in this argument is always consistent. In other words, if during the information
gathering process, certain updates occur, the ScheduledRecording service implementation MUST re-
examine the already gathered information to verify that this information is still accurate before returning
from the action invocation.

2.6.5.1.5 NumberReturned
The NumberReturned argument MUST indicate the actual number of returned objects.

2.6.5.1.6 TotalMatches

The TotalMatches argument MUST indicate the total number of recordSchedule objects that exist in the
ScheduledRecording service.

2.6.5.1.7 UpdatelD

The returned UpdatelD argument MUST be the value of the StateUpdatelD state variable at the time the
returned data has been completely and consistently collected. In other words, if during the information

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 58

gathering process, certain updates occur, the ScheduledRecording service implementation MUST re-
examine the already gathered information to verify that this information is still accurate before returning
from the action invocation. Refer to Section 2.4.4, “StateUpdatelD” for additional information.

The UpdatelD argument is used to verify whether the returned information in the Result argument has not
become stale. After the action completes, if the value of the StateUpdatelD state variable is different from
the value returned in the UpdatelD argument, then the information returned in the Result argument may
be stale. In this case, the control point should invoke the appropriate action to refresh its copy of the
desired information (for example, via the BrowseRecordSchedules() or GetRecordSchedule() action).

2.6.5.2 Dependency on State
None.

2.6.5.3 Effect on State
None.

2.6.5.4 Errors

Table 2-16: Error Codes for BrowseRecordSchedules()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

709 Unsupported or The sort criteria specified are not supported or are invalid.
invalid sort criteria

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.6 BrowseRecordTasks()

This REQUIRED action is used to browse the list of recordTask objects associated with a single
recordSchedule. In addition, it can be used to browse the entire list of all recordTask objects available in
the entire ScheduledRecording service, independent of their parent recordSchedule.

The Result argument contains an XML escaped srs XML Document that contains a set of recordTask
objects. When the RecordSchedulelD input argument contains the @id value of an existing
recordSchedule, then the Result argument returns an XML escaped srs XML Document that contains the
set of recordTask objects associated with that particular recordSchedule. When the RecordSchedulelD
input argument is set to the empty string (), then the Result argument returns an XML escaped srs XML
Document that contains a list of all available recordTask objects in the entire ScheduledRecording service.

2.6.6.1 Arguments

Table 2-17: Arguments for BrowseRecordTasks()

Argument Direction relatedStateVariable

RecordSchedulelD IN A ARG TYPE ObjectiD

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 59

Argument ‘ Direction relatedStateVariable
Filter IN A ARG TYPE PropertyList
Startinglndex IN A ARG TYPE Index
RequestedCount IN A ARG TYPE Count
SortCriteria IN A ARG TYPE SortCriteria
Result ouT A ARG TYPE RecordTask
NumberReturned ouT A ARG TYPE Count
TotalMatches ouT A ARG TYPE Count
UpdatelD ouT StateUpdatelD

The syntax and semantics of the arguments (the RecordSchedulelD argument not included) of the
BrowseRecordTasks() action are identical to those of the BrowseRecordSchedules() action, except that the
objects returned by this action are recordTask objects instead of recordSchedule objects.

2.6.6.1.1 RecordSchedulelD

The RecordSchedulelD input argument contains the object ID of the recordSchedule for which all
associated recordTask instances are returned in the Result argument. If the RecordSchedulelD input
argument contains the empty string (“”), then all available recordTask instances in the entire
ScheduledRecording service are returned.

2.6.6.1.2 Filter
See Section 2.6.5.1.1, “Filter”.

2.6.6.1.3 Startinglndex and RequestedCount
See Section 2.6.5.1.2, “Startinglndex and RequestedCount”.

2.6.6.1.4 SortCriteria
See Section 2.6.5.1.3, “SortCriteria”.

2.6.6.1.5 Result

See Section 2.6.5.1.4, “Result”. However, the returned objects are recordTask objects instead of
recordSchedule objects.

2.6.6.1.6 NumberReturned
See Section 2.6.5.1.5, “NumberReturned”.

2.6.6.1.7 TotalMatches

When the RecordSchedulelD input argument contains the @id value of an existing recordSchedule, then
the TotalMatches argument MUST indicate the total number of recordTask objects that exist in the
ScheduledRecording service for the indicated recordSchedule. When the RecordSchedulelD input
argument is set to the empty string (*”), then the TotalMatches argument MUST indicate the total number
of recordTask objects that exist in the entire ScheduledRecording service, independent of their parent
recordSchedule.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 60

2.6.6.1.8 UpdatelD
See Section 2.6.5.1.7, “UpdatelD”.

2.6.6.2 Dependency on State
None.

2.6.6.3 Effect on State
None.

2.6.6.4 Errors

Table 2-18: Error Codes for BrowseRecordTasks()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

709 Unsupported or The sort criteria specified is not supported or is invalid.
invalid sort criteria

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.7 CreateRecordSchedule()

This REQUIRED action creates a recordSchedule (that is: a scheduled recording list entry) for some
media content (for example, broadcast content, analog input content, etc). This action creates a new object
of a class, derived from the recordSchedule class. Control points that want to schedule a recording invoke
the CreateRecordSchedule() action.

If the CreateRecordSchedule() action returns successfully, then a new recordSchedule object is added to
the list of Record Schedules maintained by the ScheduledRecording service. This list can be consulted
through the BrowseRecordSchedules() action. The ScheduledRecording service MAY also instantiate one
or more recordTask objects to represent the discrete recording tasks that are associated with the high level
schedule, defined by the recordSchedule. The instantiation of recordTask objects may happen after the
CreateRecordSchedule() action returns successfully. However, if the created recordSchedule would lead to
the instantiation of one or more recordTask objects, these recordTask objects MUST be created by the
ScheduledRecording service as soon as possible and within a reasonable amount of time. If any of these
spawned recordTask objects end up in a state that indicates that these recordTask objects should already
be recording, then the ScheduledRecording service MUST ensure that these recordings start as soon as
possible and within a reasonable amount of time (this will most likely result in a partial recording). If a
ScheduledRecording service implementation can not ensure that these recordings start as soon as possible,
then the CreateRecordSchedule() action MUST return with error code 720 without any change.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 61

2.6.7.1 Arguments

Table 2-19: Arguments for CreateRecordSchedule()

Argument ‘ Direction relatedStateVariable

Elements IN A ARG TYPE RecordScheduleParts
RecordSchedulelD ouT A ARG TYPE ObjectiD

Result ouT A ARG TYPE RecordSchedule
UpdatelD ouT StateUpdatelD

2.6.7.1.1 Elements

The Elements input argument contains an XML escaped srs XML Document (see [SRS-XSD]). This
document contains a single recordScheduleParts. The recordScheduleParts object identifies the desired
property values for the recordSchedule object to be created. The new recordSchedule will be an instance
of a specific recordSchedule class. Each class defines its set of member properties, some of which are
REQUIRED, and some of which are OPTIONAL. See Appendix C, “AV Working Committee Class
Definitions” for details. All REQUIRED member properties MUST be specified. If a control point omits
supported OPTIONAL member properties from the Elements argument, then the ScheduledRecording
service MUST create the recordSchedule with the appropriate default value for those omitted member
properties. If unsupported properties or unknown properties are specified in the Elements argument, the
ScheduledRecording service MUST gracefully accept these. If an unsupported value is specified for a
supported member property, the ScheduledRecording service MUST detect this and return error code 703.

2.6.7.1.2 RecordSchedulelD

If the ScheduledRecording service accepts the recordSchedule in the Elements input argument, then the
ScheduledRecording service MUST provide a value in this output argument. The returned
RecordSchedulelD value MUST be a unique value within the ScheduledRecording service.
RecordSchedulelD values are assumed to be opaque values without special meaning. Although a
ScheduledRecording service may choose to use a RecordSchedulelD value that was previously assigned
(and later removed from the active list of recordSchedule instances), this specification recommends that
the RecordSchedulelD value be unique in time as well.

2.6.7.1.3 Result

The Result output argument contains an XML escaped srs XML Document (see [SRS-XSD]). This
document contains the newly created recordSchedule object as described in Appendix A, “srs XML
Document”. Any properties specified in the input Elements argument MUST have the same values in the
output recordSchedule. The ScheduledRecording service MUST return all supported member properties
for which it has meaningful values. This complete set allows a control point to see the default values of
those properties that it did not specify in the input Elements argument. Note that some properties such as
scheduleState are defined as REQUIRED for an output recordSchedule and MUST be included in the
returned document. Refer to Appendix C.1.1, “Relationships between Classes and Properties” for the
support level of each property.

The ScheduledRecording service implementation MUST ensure that the information returned in this
argument is always consistent. In other words, if during the information gathering process, certain
updates occur, the ScheduledRecording service implementation MUST re-examine the already gathered
information to verify that this information is still accurate before returning from the action invocation.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

26.7.1.4

UpdatelD
See Section 2.6.5.1.7, “UpdatelD”.

2.6.7.2 Dependency on State

None.

2.6.7.3 Effect on State
The value of the StateUpdatelD state variable is changed and the LastChange state variable is updated.

2.6.7.4 Errors

Table 2-20:

Error Codes for CreateRecordSchedule()

ErrorCode ‘errorDescription Description

62

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 Invalid Syntax The recordSchedule in the Elements argument has invalid syntax.
This includes malformed XML in the Elements input argument or
a general schema violation.

703 Invalid Value One or more properties in the input recordSchedule (in the
Elements argument) have an invalid value.

707 Read only Property | Specifying a read only property is not allowed.

708 Required Property | Omitting a REQUIRED property is not allowed

720 Cannot Process the | Cannot process the request in a reasonable amount of time.

Request

730 Conflict The specified recordSchedule is conflicting with one or more
existing recordSchedule objects.
The ScheduledRecording service MAY reject a conflicting
recordSchedule and return with this error code.

731 Protected Contents | The specified contents are copy protected.
The ScheduledRecording service MAY reject a recordSchedule
that specifies copy protected contents and return with this error
code.

732 No Media The specified removable media is not inserted.

733 Media Write The specified removable media is write-protected.

Protect

734 Media No Space The specified media does not have sufficient capacity.

735 Media Error Error related to the specified destination media.

736 Too Many The maximum number of recordSchedule objects is reached.

recordSchedules

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 63

ErrorCode | errorDescription Description

737 Resource Error Error related to an application resource.

2.6.8 DeleteRecordSchedule()

The REQUIRED DeleteRecordSchedule() action is used to delete a specific recordSchedule. When the
recordSchedule is deleted, all of the associated recordTask objects MUST also be deleted. The list of
Record Schedules and their associated recordSchedulelD currently maintained by the ScheduledRecording
service can be retrieved through the BrowseRecordSchedules() action.

A recordSchedule can only be deleted when all of its associated recordTask objects are in the “IDLE” or
the “DONE” phase. If any of the associated recordTask objects are in the “ACTIVE” phase, then the
ScheduledRecording service MUST return with error code 705 (active recordTask) without any change. A
control point that wants to recover from this error scenario can first delete the associated active
recordTask objects by invoking the DeleteRecordTask() action on these objects and then delete the
recordSchedule. The active recordTask objects can be retrieved by properly invoking the
BrowseRecordTasks() action.

It must be noted that a ScheduledRecording service can delete a recordSchedule without control point
intervention. For example, a non-recurring recordSchedule that has completed its last recordTask MAY
(OPTIONALLY) be automatically deleted along with its associated recordTask objects. However, it is
RECOMMENDED that a ScheduledRecording service implementation retains completed recordSchedule
instances and their associated recordTask instances for a reasonable amount of time so that the user can
examine potential error information after recording is completed.

2.6.8.1 Arguments

Table 2-21: Arguments for DeleteRecordSchedule()

Argument Direction relatedStateVariable
RecordSchedulelD IN A ARG TYPE ObjectiD

2.6.8.1.1 RecordSchedulelD
The RecordSchedulelD argument contains the object ID of the recordSchedule to be deleted.

2.6.8.2 Dependency on State
None.

2.6.8.3 Effect on State
The value of the StateUpdatelD state variable is changed and the LastChange state variable is updated.

2.6.8.4 Errors

Table 2-22: Error Codes for DeleteRecordSchedule()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 64

ErrorCode ‘errorDescription Description

704 No such The specified recordSchedule does not exist.
recordSchedule 1D

705 Active recordTask | One or more recordTask instances are actively recording.

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.9 GetRecordSchedule()
This REQUIRED action is used to retrieve a single recordSchedule from the ScheduledRecording service.

2.6.9.1 Arguments

Table 2-23: Arguments for GetRecordSchedule()

Argument ‘ Direction relatedStateVariable
RecordSchedulelD IN A ARG TYPE ObjectiD
Filter IN A ARG TYPE PropertyList
Result ouT A ARG TYPE RecordSchedule
UpdatelD ouT StateUpdatelD

2.6.9.1.1 RecordSchedulelD

The RecordSchedulelD contains the object ID of the recordSchedule for which information is to be
returned.

2.6.9.1.2 Filter
See Section 2.6.5.1.1, “Filter”.

2.6.9.1.3 Result

The Result output argument contains an XML escaped srs XML Document that contains a single
recordSchedule identified by the @id value specified in the RecordSchedulelD argument. For further
details, see Section 2.6.5.1.4, “Result”.

2.6.9.1.4 UpdatelD
See Section 2.6.5.1.7, “UpdatelD”.

2.6.9.2 Dependency on State
None.

2.6.9.3 Effect on State
None.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 65

2.6.9.4 Errors

Table 2-24: Error Codes for GetRecordSchedule()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.10 EnableRecordSchedule()

This CONDITIONALLY REQUIRED action MUST be implemented if the DisableRecordSchedule()
action is implemented, that is, these two actions MUST be implemented as a combination. The action is
used to enable a previously disabled recordSchedule. Enabling a recordSchedule is allowed in any state
except for the “COMPLETED?” state. In this case, the action MUST return with error code 740.

The invocation of the EnableRecordSchedule() action enables all the associated recordTask objects in the
“IDLE” or “ACTIVE” phase (See Section 2.6.14, “EnableRecordTask()”) except for those which were
disabled individually at the recordTask level via the DisableRecordTask() action. Disabling at the
recordTask level always takes precedence. If any of the associated recordTask objects end up in a state

that indicates that these recordTask objects should already be recording, then the ScheduledRecording
service MUST ensure that these recordings start as soon as possible and within a reasonable amount of
time (this will most likely result in a partial recording). If a ScheduledRecording service implementation
can not ensure that these recordings start as soon as possible, then the EnableRecordSchedule() action
MUST return with error code 720. If the ScheduledRecording service can not enable some of the
recordTask objects in the “IDLE” or “ACTIVE” phase, it MUST return error code 740 without any change.

Enabling a recordSchedule MUST NOT affect its recordTask objects in the “DONE” phase. These
recordTask objects MUST NOT cause error code 739 to be generated.

2.6.10.1 Arguments

Table 2-25: Arguments for EnableRecordSchedule()

Argument Direction relatedStateVariable
RecordSchedulelD IN A ARG TYPE ObjectiD

2.6.10.1.1 RecordSchedulelD
The RecordSchedulelD argument contains the object ID of the recordSchedule to be enabled.

2.6.10.2 Dependency on State
None.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 66

2.6.10.3 Effect on State

The value of the StateUpdatelD state variable is changed and the LastChange state variable is updated
(the scheduleState@currentErrors property and some taskState@xxx error properties might be updated).

2.6.10.4 Errors

Table 2-26: Error Codes for EnableRecordSchedule()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule 1D

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

739 Cannot One or more of the associated recordTask objects could not be
enable/disable enabled or disabled.

recordSchedule

740 recordSchedule The recordSchedule has already completed and cannot be enabled
“COMPLETED” or disabled.

2.6.11 DisableRecordSchedule()

This CONDITIONALLY REQUIRED action MUST be implemented if the EnableRecordSchedule()
action is implemented, that is, these two actions MUST be implemented as a combination. The action is
used to disable a recordSchedule. Disabling a recordSchedule is allowed in any state except for the
“COMPLETED? state. In this case, the action MUST return with error code 740.

The invocation of the DisableRecordSchedule() action disables all associated recordTask objects in the
“IDLE” phase (See Section 2.6.15, “DisableRecordTask()”) except for those which were enabled
individually at the recordTask level via the EnableRecordTask() action. Enabling at the recordTask level
always takes precedence. If the ScheduledRecording service can not disable some of the recordTask
objects in the “IDLE”phase, it MUST return error code 739 without any change.

The DisableRecordSchedule() action has no impact on recordTask objects already in the “ACTIVE”
phase. These recordTask objects complete as planned.

Also, disabling a recordSchedule MUST NOT affect its recordTask objects in the “DONE” phase. These
recordTask objects MUST NOT cause error code 739 to be generated. A disabled recordSchedule MUST
continue to generate new recordTask objects but they MUST all be disabled. This allows control points to
understand which recordTask objects will become active, once the RecordSchedule is re-enabled. This
also provides the means for a control point to enable individual recordTask objects, even when the
recordSchedule is disabled.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 67

2.6.11.1 Arguments

Table 2-27: Arguments for DisableRecordSchedule()

Argument Direction relatedStateVariable
RecordSchedulelD IN A ARG TYPE ObjectiD

2.6.11.1.1 RecordSchedulelD
The RecordSchedulelD argument contains the object ID of the recordSchedule to be disabled.

2.6.11.2 Dependency on State
None.

2.6.11.3 Effect on State

The value of the StateUpdatelD state variable is changed and the LastChange state variable is updated
(the scheduleState@currentErrors property and some taskState@xxx error properties might be updated).

2.6.11.4 Errors

Table 2-28: Error Codes for DisableRecordSchedule()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule 1D

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

739 Cannot One or more of the associated recordTask objects could not be
enable/disable enabled ordisabled.

recordSchedule

740 recordSchedule The recordSchedule has already completed and cannot be enabled
“COMPLETED” or disabled.

2.6.12 DeleteRecordTask()

This OPTIONAL action is used to delete a recordTask. For any existing recordTask, this action MUST
always succeed. The recordTask object is removed from the list of recordTask objects that is maintained
by the ScheduledRecording service for the (parent) recordSchedule and any ongoing recording for this
recordTask MUST stop immediately. The associated recorded content for that recordTask MUST NOT be
deleted as a result of this action.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 68

2.6.12.1 Arguments

Table 2-29: Arguments for DeleteRecordTask()

Argument Direction relatedStateVariable
RecordTasklD IN A ARG TYPE ObjectiD

2.6.12.1.1 RecordTaskID
The RecordTaskID argument contains the object ID of the recordTask to be deleted.

2.6.12.2 Dependency on State
None.

2.6.12.3 Effect on State
The value of the StateUpdatelD state variable is changed and the LastChange state variable is updated.

2.6.12.4 Errors

Table 2-30: Error Codes for DeleteRecordTask()

ErrorCode errorDescription Description ‘

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

713 No such The specified recordTask does not exist.
recordTask ID

2.6.13 GetRecordTask()
This REQUIRED action is used to retrieve a single recordTask from the ScheduledRecording service.

2.6.13.1 Arguments

Table 2-31: Arguments for GetRecordTask()

Argument ‘ Direction relatedStateVariable
RecordTasklD IN A ARG TYPE ObjectiD
Filter IN A ARG TYPE PropertyList
Result ouT A ARG TYPE RecordTask
UpdatelD ouT StateUpdatelD

2.6.13.1.1 RecordTaskID

The RecordTaskID argument contains the object ID of the recordTask for which information is to be
returned.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 69

2.6.13.1.2 Filter
See Section 2.6.5.1.1, “Filter”.

2.6.13.1.3 Result

The Result output argument contains an XML escaped srs XML Document that contains a single
recordTask instance, identified by the @id value specified in the RecordTaskID argument. The Result
argument is identical to the Result argument of the BrowseRecordTasks() action. See Section 2.6.6.1.5,
“Result” for further details.

2.6.13.1.4 _UpdatelD
See Section 2.6.5.1.7, “UpdatelD”.

2.6.13.2 Dependency on State
None.

2.6.13.3 Effect on State
None.

2.6.13.4 Errors

Table 2-32: Error Codes for GetRecordTask()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.
713 No such The specified recordTask does not exist.
recordTask ID
720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.14 EnableRecordTask()

This CONDITIONALLY REQUIRED action MUST be implemented if the DisableRecordTask() or the
ResetRecordTask() action are implemented, that is, these three actions MUST be implemented as a
combination. The action is used to first de-synchronize the recordTask enable/disable behavior from the
(parent) recordSchedule and then individually enable the recordTask, if not already enabled.

e ArecordTask that is enabled in the “IDLE” phase will record content in the future unless the
occurrence of an error prevents that.

e ArecordTask that is enabled in the “ACTIVE” phase MUST start recording content as soon as
possible and within a reasonable amount of time unless the occurrence of an error prevents that.
In that case, it MUST return error code 720 without any change.

Invoking EnableRecordTask() on a recordTask in the “DONE” phase MUST NOT affect the state of the
recordTask and MUST fail with error code 741.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 70

Enabling a recordTask always takes persistent precedence over enabling/disabling activities performed at
the (parent) recordSchedule level. A recordTask that is enabled by invoking EnableRecordTask() remains
enabled until explicitly disabled by invoking DisableRecordTask() on that recordTask. Invoking
EnableRecordSchedule() or DisableRecordSchedule() on the (parent) recordSchedule does not affect the
recordTask anymore. A recordTask enable/disable behavior can be re-synchronised to the (parent)
recordSchedule by invoking the ResetRecordTask() action. From that point onwards, a recordTask will
follow any enabling/disabling activities performed at the (parent) recordSchedule level again.

2.6.14.1 Arguments

Table 2-33: Arguments for EnableRecordTask()

Argument Direction relatedStateVariable

RecordTasklD IN A ARG TYPE ObjectlD

2.6.14.1.1 RecordTaskID
The RecordTaskID argument contains the object ID of the recordTask to be enabled.

2.6.14.2 Dependency on State
None.

2.6.14.3 Effect on State
The value of the StateUpdatelD state variable is changed and the LastChange state variable is updated.

2.6.14.4 Errors

Table 2-34: Error Codes for EnableRecordTask()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.
713 No such The specified recordTask does not exist.
recordTask ID
720 Cannot process the | Cannot process the request in a reasonable amount of time.
request
741 recordTask in A recordTask in the “DONE” phase cannot be enabled or

“DONE” phase disabled.

2.6.15 DisableRecordTask()

This CONDITIONALLY REQUIRED action MUST be implemented if the EnableRecordTask() or the
ResetRecordTask() action are implemented, that is, these three actions MUST be implemented as a
combination. The action is used to first de-synchronize the recordTask enable/disable behavior from the
(parent) recordSchedule and then individually disable the recordTask, if not already disabled. A disabled
recordTask MUST behave identical to an enabled recordTask, except for the following:

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 71

e Adisabled recordTask in the “IDLE” phase MUST report error code 101 (Disabled) in the
taskState@pendingErrors property.

e Adisabled recordTask in the “ACTIVE” phase MUST NOT record content and it MUST report
error code 101 (Disabled) in the taskState@currentErrors and taskState@errorHistory properties.

When a recordTask in the “ACTIVE” phase is disabled, it MUST stop recording immediately. If that is
not possible, it MUST return error code 720 without any change. Invoking DisableRecordTask() on a
recordTask in the “DONE” phase MUST NOT affect the state of the recordTask and MUST fail with
error code 741.

Disabling a recordTask always takes persistent precedence over enabling/disabling activities performed at
the (parent) recordSchedule level. A recordTask that is disabled by invoking DisableRecordTask()
remains disabled until explicitly re-enabled by invoking EnableRecordTask() on that recordTask.
Invoking EnableRecordSchedule() or DisableRecordSchedule() on the (parent) recordSchedule does not
affect the recordTask anymore. A recordTask enable/disable behavior can be re-synchronised to the
(parent) recordSchedule by invoking the ResetRecordTask() action. From that point onwards, a
recordTask will follow any enabling/disabling activities performed at the (parent) recordSchedule level
again.

2.6.15.1 Arguments

Table 2-35: Arguments for DisableRecordTask()

Argument Direction relatedStateVariable

RecordTasklD IN A ARG TYPE ObjectiD

2.6.15.1.1 RecordTaskID
The RecordTaskID argument contains the object ID of the recordTask to be disabled.

2.6.15.2 Dependency on State
None.

2.6.15.3 Effect on State
The value of the StateUpdatelD state variable is changed and the LastChange state variable is updated.

2.6.15.4 Errors

Table 2-36: Error Codes for DisableRecordTask()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.
713 No such The specified recordTask does not exist.
recordTask ID
720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 72

ErrorCode | errorDescription Description

741 recordTask in A recordTask in the “DONE” phase cannot be enabled or
“DONE” phase disabled.

2.6.16 ResetRecordTask()

This CONDITIONALLY REQUIRED action MUST be implemented if the EnableRecordTask() or the
DisableRecordTask() action are implemented, that is, these three actions MUST be implemented as a
combination.The action is used to force a previously enabled or disabled recordTask to follow any
enabling/disabling activities performed at the (parent) recordSchedule level again.

If the (parent) recordSchedule is in the “ENABLED?” state, then the effect of invoking the
ResetRecordTask() action on an associated recordTask is identical to invoking the EnableRecordTask()
action on that recordTask and from that point onwards, following any enabling/disabling activities
performed at the (parent) recordSchedule level again for that recordTask.

If the (parent) recordSchedule is in the “DISABLED?” state, then the effect of invoking the
ResetRecordTask() action on an associated recordTask is identical to invoking the DisableRecordTask()
action on that recordTask and from that point onwards, following any enabling/disabling activities
performed at the (parent) recordSchedule level again for that recordTask.

2.6.16.1 Arguments

Table 2-37: Arguments for ResetRecordTask()

Argument Direction relatedStateVariable

RecordTasklD IN A ARG TYPE ObjectiD

2.6.16.1.1 RecordTaskID
The RecordTaskID argument contains the object ID of the recordTask to be reset.

2.6.16.2 Dependency on State
None.

2.6.16.3 Effect on State
The value of the StateUpdatelD state variable is changed and the LastChange state variable is updated.

2.6.16.4 Errors

Table 2-38: Error Codes for ResetRecordTask()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

713 No such The specified recordTask does not exist.
recordTask 1D

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 73

ErrorCode | errorDescription Description

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.17 GetRecordScheduleConflicts()

This CONDITIONALLY REQUIRED action MUST be supported if the ScheduledRecording service
implementation allows conflicting recordSchedule instances to be created. The action returns a CSV list
of recordSchedule objects that conflict with the recordSchedule indicated by the RecordSchedulelD
argument.

2.6.17.1 Arguments

Table 2-39: Arguments for GetRecordScheduleConflicts()

Argument ‘ Direction relatedStateVariable
RecordSchedulelD IN A ARG TYPE ObjectiD
RecordScheduleConflictIDList ouT A ARG TYPE ObjectIDList
UpdatelD ouT StateUpdatelD

2.6.17.1.1 RecordSchedulelD

The RecordSchedulelD argument contains the object ID of the recordSchedule for which all conflicting
recordSchedule object ID values are to be returned in the RecordScheduleConflictIDList output argument.

2.6.17.1.2 RecordScheduleConflictIDList

This output argument contains the CSV list of recordSchedule object IDs that conflict with the
recordSchedule, indicated by the RecordSchedulelD argument.

2.6.17.1.3 UpdatelD

The returned UpdatelD argument MUST contain the most recent value of the StateUpdatelD state
variable before the action began collecting information to create the value returned in the
RecordScheduleConflictIDList argument. This ensures that any changes that occur during the gathering
of information can be detected by comparing the value of the UpdatelD argument to the updatelD
attribute value in the most recent LastChange event. Refer to Section 2.4.4, “StateUpdatelD” for more
detailed information on the use of this argument.

2.6.17.2 Dependency on State
None.

2.6.17.3 Effect on State
None.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 74

2.6.17.4 Errors

Table 2-40: Error Codes for GetRecordScheduleConflicts()

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.18 GetRecordTaskConflicts()

This CONDITIONALLY REQUIRED action MUST be supported if the ScheduledRecording service
implementation allows conflicting recordTask instances to be created. The action returns a CSV list of
@id values of all the recordTask instances that conflict with the recordTask indicated by the
RecordTaskID argument.

2.6.18.1 Arguments

Table 2-41: Arguments for GetRecordTaskConflicts()

Argument ‘ Direction relatedStateVariable
RecordTasklD IN A ARG TYPE ObjectiD
RecordTaskConflictIDList ouT A ARG TYPE ObjectIDList
UpdatelD ouT StateUpdatelD

2.6.18.1.1 RecordTaskID

The RecordTaskID argument contains the object ID of the recordTask for which all conflicting
recordTask object 1D values are to be returned in the RecordTaskConflictIDList output argument.

2.6.18.1.2 RecordTaskConflictIDList

This output argument contains the CSV list of recordTask object IDs that conflict with the recordTask,
indicated by the RecordTaskID argument.

2.6.18.1.3 UpdatelD

The returned UpdatelD argument MUST contain the most recent value of the StateUpdatelD state
variable before the action began collecting information to create the value returned in the
RecordTaskConflictIDList argument. This ensures that any changes that occur during the gathering of
information can be detected by comparing the value of the UpdatelD argument to the updatelD attribute
value in the most recent LastChange event. Refer to Section 2.4.4, “StateUpdatelD” for more detailed
information on the use of this argument.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

2.6.18.2 Dependency on State

None.

2.6.18.3 Effect on State

None.

2.6.18.4 Errors

Table 2-42: Error Codes for GetRecordTaskConflicts()
ErrorCode errorDescription Description
400-499 TBD See UPnP Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.
713 No such The specified recordTask does not exist.
recordTask 1D
720 Cannot process the | Cannot process the request in a reasonable amount of time.

request

2.6.19 Common Error Codes

The following table lists error codes common to actions for this service type. If an action results in
multiple errors, the most specific error should be returned.

Table 2-43:

Common Error Codes

ErrorCode ‘errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

700 Reserved for future extensions.

701 Invalid Syntax The recordSchedule in the Elements argument has invalid syntax.
This includes malformed XML in the Elements input argument or
a general schema violation.

702 Reserved for future extensions.

703 Invalid Value One or more properties in the input recordSchedule (in the
Elements argument) have an invalid value.

704 No such The specified recordSchedule does not exist.

recordSchedule 1D

705 Active recordTask | One or more recordTask instances are actively recording.

706 Reserved for future extensions.

707 Read-only property | Unable to specify read-only property.

708 Required property | Omitting a REQUIRED property is not allowed

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

ErrorCode ‘errorDescription Description

76

709 Unsupported or The sort criteria specified are not supported or are invalid.
invalid sort criteria
710 Reserved for future extensions.
711 Invalid An invalid value has been specified in the DataTypelD input
DataTypelD argument.
712 Reserved for future extensions.
713 No such The specified recordTask does not exist.
recordTask ID
714-719 Reserved for future extensions.
720 Cannot process the | Cannot process the request in a reasonable amount of time.
request
721-729 Reserved for future extensions.
730 Conflict The specified recordSchedule is conflicting with one or more
existing recordSchedule objects.
The ScheduledRecording service MAY reject a conflicting
recordSchedule and return with this error code.
731 Protected Contents | The specified contents are copy protected.
The ScheduledRecording service MAY reject a recordSchedule
that specifies copy protected contents and return with this error
code.
732 No Media The specified removable media is not inserted.
733 Media Write The specified removable media is write-protected.
Protect
734 Media No Space The specified media does not have sufficient capacity.
735 Media Error Error related to the specified destination media.
736 Too many record The maximum number of recordSchedule objects is reached.
schedules
737 Resource Error Error related to an application resource.
738 Reserved for future extensions.
739 Cannot One or more of the associated recordTask objects could not be
enable/disable enabled or disabled.
recordSchedule
740 recordSchedule The recordSchedule has already completed and cannot be enabled
“COMPLETED” or disabled.
741 recordTask in A recordTask in the “DONE” phase cannot be enabled or

“DONE” phase

disabled.

Note: 800-899 Error Codes are not permitted for standard actions. See UPnP Device Architecture section
on Control for more details.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 77

2.7 State Diagram of recordTask

In the ScheduledRecording service, the state of each recordTask is represented by its state properties (that
is: taskState and its associated properties taskState @xxx). The definitions are described in Appendix B.16,
“Task State Properties”. Additionally, the state behavior of a recordTask is illustrated by a state diagram
to give a visual description of each state and the state transitions. State diagrams are provided for
informational purposes. Whenever there is a discrepancy between the state diagram and the textual
description of state and state transition, the normative textual description takes precedence.

2.7.1 A Full-Featured State Diagram

As described above, the taskState property reflects the current state of the recordTask. Its value changes
over time as the recordTask progresses through its life-cycle. The following state transition diagram
shows the possible states and state transitions that a given recordTask may take throughout its life time. It
is assumed that all (REQUIRED and OPTIONAL) normative states and attributes of a recordTask are
supported by the device. Further, it is assumed that a device is able to resume recording in the middle of
the “ACTIVE” phase., The GetAllowedValues() action can be used to determine if a device supports all
states and attributes.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

FE> 1
EH->++
PH->DONE
SBM->1

FE>1
Rec>0
E'H%'++

PH=>DONE
SBM>1
SBR =2
0 1

78

recordTask PH = @phase property

STM = @startDateTimeMet property

Created ETM = @endDateTimeMet property

Rec = @recording property

SBR = @someBitsRecorded property
FBR = @firstBitsRecorded property
LBR = @IlastBitsRecorded property
SBM = @someBitsMissing property
CE = @currentErrors property

EH = @errorHistory property

FE = @fatalErrorFlag property

PE = @pendingErrors property

Info = @infoList property

> = Triggers a transition when set to new value

> = Transition causes a new value to be set

= Transition target determined by current value

STM-> 1
PH->ACTIVE

\ /

.OK

-

ACTIVE.
RECORDING.
FROMSTART

CE>++ \
EH>++

ACTIVE.
TRANSITION.
FROMSTART

ACTIVE.
TRANSITION.
RESTART

ACTIVE.
NOTRECOR
DING

ACTIVE.
RECORDING.
FROMSTART
ATRISK

ACTIVE.

RECORDING.
RESTART.

OK

ACTIVE.
RECORDING.
RESTART.
ATRISK

/

ETM->1 [} ETM->1 ETM->1
Rec>0 [] Rec>0 PH->DONE
PH->DONE, 0 PH->DONE,
LBR->1 (] LBR->1
DONE.
PARTIAL

recordTask Deleted

Figure 5: A Full-Featured State Diagram

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 79

2.7.1.1 "IDLE” Phase

The states in this phase indicate that the recordTask’s start time has not yet been reached and that the
target content is not yet available for recording. The recordTask will remain in the “IDLE” phase (that is:
in any of the IDLE states), until either the recordTask’s start time is reached or a fatal error is detected.
If/when the start time is reached, the recordTask will transition to one of the states in the “ACTIVE”
phase. If a fatal error is detected, the recordTask will transition directly to the “DONE.EMPTY” state
within the “DONE” phase.

2.7.1.1.1 *“|DLE.READY” State

This state indicates that the recordTask is waiting for the start time to be reached and that no error
conditions (either fatal or non-fatal) have been detected. If/when the start time is reached, the recordTask
will transition to one of the states in the “ACTIVE” phase. If, while waiting for the start time, a non-fatal
error is detected, the recordTask will transition to the “IDLE.ATRISK” state indicating that the
recordTask is at risk of not completing successfully due to some non-fatal error condition.

2.7.1.1.2 *“|DLE.ATRISK” State

This state indicates that the recordTask is waiting for the start time to be reached, but that at least one
non-fatal error condition has been detected. If/when the start time is reached, the recordTask will
transition to one of the states in the “ACTIVE” phase. If, while waiting for the start time, the non-fatal
error is resolved, the recordTask will transition back to the “IDLE.READY” state.

2.7.1.2 "ACTIVE” Phase

The states in this phase indicate that the recordTask’s start time has been reached and that the target
content is available for recording. While in this phase (that is: in one of these states), the device will
attempt to record the content. The recordTask will remain in this phase until either the recordTask’s end
time is reached (that is: the content is no longer available) or until a fatal error is detected. I1f/when the
end time is reached, the recordTask will transition to the appropriate “DONE” state based on how much
of the content was recorded (that is: all - “DONE.FULL”, part — “DONE.PARTIAL”, or none —
“DONE.EMPTY™). If a fatal error is detected, the recordTask will transition to either the
“DONE.PARTIAL” or the “DONE.EMPTY” state, depending on how much of the content was recorded
(that is: part or none).

2.7.1.2.1 “ACTIVE.TRANSITION.FROMSTART" State

This state indicates that the recordTask is attempting to begin recording the recordTask’s content from
the beginning of the designated start time. The recordTask remains in this state until either the device
actually begins recording data to the media or until a non-fatal or fatal error occurs. If the device actually
starts to record data to the media, the recordTask will transition to
“ACTIVE.RECORDING.FROMSTART” states where the content continues to be recorded. If the initial
recording attempt fails due to a non-fatal error, the recordTask transitions to the
“ACTIVE.NOTRECORDING” state where one or more attempts is made to resolve the problem and re-
start the recording. If a fatal error is detected, the recordTask will transition to either the
“DONE.PARTIAL” or the “DONE.EMPTY?” state, depending on how much of the content was actually
recorded (that is: part or none).

Although the recordTask remains in this state for a relatively short period of time, this state bridges an
inherent discontinuity between the “IDLE” states and the “ACTIVE” states. Specifically, at the instant
when the recordTask’s start time is reached, the recordTask (by definition) must transition out of the
“IDLE” phase and into the “ACTIVE” phase, However, since the device has not yet attempted to record
any content data on to the media, it is unknown which “ACTIVE” state the recordTask should transition
to. Firstly, it is not appropriate to transition to any of the “ACTIVE.RECORDING.xxx” states because the

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 80

device has not yet actually recorded any content data. Secondly, it is not appropriate to transition to the
“ACTIVE.NOTRECORDING” state because this state (by definition) means that a non-fatal error has
occurred resulting in the loss of content. Since no other “ACTIVE” states are appropriate at this instant in
time, the “ACTIVE.TRANSITION.xxx” states exist as a brief transition point while the true disposition of
the recordTask is determined.

2.7.1.2.2 “ACTIVE.TRANSITION.RESTART" State

This state indicates that the recordTask is attempting to re-start the recording of the recordTask’s content
some time after the beginning of the designated start time. This implies that either the initial recording
attempt failed or that the initial recording attempt succeeded, but was later disrupted due to a non-fatal
error. The recordTask remains in this state until either the device actually begins recording data to the
media or until a non-fatal or fatal error occurs. If the device actually starts to record data to the media, the
recordTask will transition to “ACTIVE.RECORDING.RESTART” states where the content continues to be
recorded. If the initial recording attempt fails due to a non-fatal error, the recordTask transitions to the
“ACTIVE.NOTRECORDING” state where one or more attempts is made to resolve the problem and re-
attempt to start the recording. If a fatal error is detected, the recordTask will transition to either the
“DONE.PARTIAL” or the “DONE.EMPTY” state, depending on how much of the content was recorded
(that is: part of none).

Although the recordTask remains in this state for a relatively short period of time, this state bridges an
inherent discontinuity between the “ACTIVE.NOTRECORDING” state and the
“ACTIVE.RECORDING.xxx™ states. Specifically, at the instant when a current non-fatal error has been
resolved, the recordTask (by definition) must transition out of the “ACTIVE.NOTRECORDING” state and
into one of the other “ACTIVE” states. However, since the device has not yet attempted to restart the
recording of content data on to the media, it is unknown which “ACTIVE” state the recordTask should
transition to. Firstly, it is not appropriate to transition to any of the “ACTIVE.RECORDING.xxx” states
because the device has not yet actually (re)started to record any content data. Secondly, it is not
appropriate to transition back to the “ACTIVE.NOTRECORDING” state because there are no unresolved
non-fatal errors. Since no other “ACTIVE” states are appropriate at this instant in time, the
“ACTIVE.TRANSITION.xxx” states exists as a brief transition point while the true disposition of the
recordTask is determined.

2.7.1.23 “ACTIVE.RECORDING.FROMSTART.OK" State

This state indicates that the recordTask has reached its start time and that all of the target content has
been recorded continuously from the beginning. Additionally, no non-fatal or fatal errors have occurred or
have been detected which would otherwise threaten the future continuity of the recording. The recordTask
remains in this state until either the recordTask’s end time is reached or until a non-fatal or fatal error
occurs or a pending non-fatal or fatal error is detected.

If the recordTask reaches its end time, the recordTask halts the recording and transitions to the
“DONE.FULL” state indicating that the entire target content was recorded uninterrupted. If a non-fatal
error actually occurs, the recording has already halted and the recordTask transitions to the “ACTIVE.
NOTRECORDING” state where one or more attempts are made to resolve the problem and restart the
recording. If a fatal error actually occurs, the recording has already halted and the recordTask transitions
directly to the “DONE.PARTIAL” state indicating that part of the target content was recorded. If a
pending non-fatal or fatal error is detected (but has not yet occurred), the recordTask transitions to the
“ACTIVE.RECORDING.FROMSTART.ATRISK” state indicating that the target content has been recorded
continuously from the beginning, but a pending error has been detected that threatens the remainder of the
recording.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 81

2.7.1.24 “ACTIVE.RECORDING.FROMSTART.ATRISK” State

This state indicates that the recordTask has reached its start time and that all of the target content has
been recorded continuously from the beginning. Although no non-fatal or fatal errors have occurred, one
or more pending non-fatal or fatal errors have been detected that threaten the future continuity of the
recording. The recordTask remains in this state until either the recordTask’s end time is reached or until
all of the pending non-fatal and fatal errors have been resolved or until a non-fatal or fatal error actually
occurs.

If the recordTask reaches its end time, the recordTask halts the recording and transitions to the
“DONE.FULL” state indicating that the entire target content was recorded uninterrupted. If all of the
pending errors have been resolved, the recordTask transitions to the
“ACTIVE.RECORDING.FROMSTART.OK? state indicating that the target content has been recorded
continuously from the beginning and that no pending non-fatal or fatal errors have been detected. If a
non-fatal error actually occurs, the recording has already halted and the recordTask transitions to the
“ACTIVE. NOTRECORDING?” state where one or more attempts are made to resolve the problem and
restart the recording. If a fatal error actually occurs, the recording has already halted and the recordTask
transitions directly to the “DONE.PARTIAL?” state indicating that part of the target content was recorded.

2.7.1.25 *“ACTIVE.RECORDING.RESTART.OK” State

This state indicates that the recordTask has reached its start time and that the target content data is being
recorded onto the media. However, at some point in the past, the recording was disrupted either at the
beginning or somewhere in the middle so that part of the content was not recorded. Fortunately, no
pending non-fatal or fatal errors have been detected which would otherwise threaten the future continuity
of the recording. The recordTask remains in this state until either the recordTask’s end time is reached or
until a non-fatal or fatal actually occurs or a pending non-fatal or fatal error is detected.

If the recordTask reaches its end time, the recordTask halts the recording and transitions to the
“DONE.PARTIAL?” state indicating that part, but not all, of the target content was recorded. If a non-fatal
error actually occurs, the recording has already halted and the recordTask transitions to the “ACTIVE.
NOTRECORDING” state where one or more attempts are made to resolve the problem and again restart
the recording. If a fatal error actually occurs, the recording has already halted and the recordTask
transitions directly to the “DONE.PARTIAL” state indicating that part of the target content was recorded.
If a pending non-fatal or fatal error is detected (but has not yet occurred), the recordTask transitions to the
“ACTIVE.RECORDING.RESTART.ATRISK?” state indicating that part of the target content has been
recorded and that additional non-fatal or fatal errors are pending which threaten the remainder of the
recording.

2.7.1.2.6 “ACTIVE.RECORDING.RESTART.ATRISK” State

This state indicates that the recordTask has reached its start time and that the target content data is being
recorded onto the media. However, at some point in the past, the recording was disrupted either at the
beginning or somewhere in the middle so that part of the content was not recorded. Additionally, one or
more pending non-fatal or fatal errors have been detected that threaten the future continuity of the
recording. The recordTask remains in this state until either the recordTask’s end time is reached or until
all of the pending non-fatal and fatal errors have been resolved or until a non-fatal or fatal actually occurs.

If the recordTask reaches its end time, the recordTask halts the recording and transitions to the
“DONE.PARTIAL?” state indicating that part, but not all, of the target content was recorded. If all of the
pending errors have been resolved, the recordTask transitions to the
“ACTIVE.RECORDING.RESTART.OK?” state indicating that the target content continues to be recorded,
but with some content missing, and that no pending non-fatal or fatal errors have been detected. If a non-
fatal error actually occurs, the recording has already halted and the recordTask transitions to the
“ACTIVE. NOTRECORDING?” state where one or more attempts are made to resolve the problem and
again restart the recording. If a fatal error actually occurs, the recording has already halted and the

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 82

recordTask transitions directly to the “DONE.PARTIAL” state indicating that part of the target content
was recorded.

2.7.1.27 “ACTIVE.NOTRECORDING” State

This state indicates that a non-fatal error has occurred while the device was recording the target content or
while the device was attempting to start recording the target content. The recordTask remains in this state
until either the recordTask’s end time is reached or until all of the current non-fatal errors are resolved, or
until a fatal error actually occurs.

If the recordTask reaches its end time, the recordTask transitions to either the “DONE.PARTIAL” or
“DONE.EMPTY” depending on how much of the content was actually recorded (that is: part or none). If
all of the current non-fatal errors have been resolved, the recordTask transitions to the
“ACTIVE.TRANSITION.RESTART” state where one or more attempts are made to restart the recording. If
a fatal error is detected, the recordTask transitions to either the “DONE.PARTIAL” or the
“DONE.EMPTY” state depending on how much of the content was actually recorded (that is: part or
none).

2.7.1.3 “DONE” Phase

The states in this phase indicate that the device is finished with this recordTask. Each “DONE” state
indicates the success or failure of the recordTask based on how much of the target content was actually
recorded. Once the recordTask reaches one of the “DONE” states, it remains in that state until the
recordTask is deleted and none of the recordTask’s property values change.

2.7.1.3.1 “DONE.FULL" State

This state indicates that all of the recordTask’s target content was recorded in its entirety without any
interruptions. No error occurred while recording the target content. The recordTask remains in this state
until the recordTask is deleted.

2.7.1.3.2 “DONE.PARTIAL" State

This state indicates that part of the recordTask’s target content was recorded, but not all of it. One or
more errors occurred while recording the target content that prevented part of that content from being
recorded. The recordTask remains in this state until the recordTask is deleted.

2.7.1.3.3 “DONE.EMPTY”" State

This state indicates that none of the recordTask’s target content was recorded. One or more errors
occurred that prevented the recording from even getting started. The recordTask remains in this state until
the recordTask is deleted.

2.7.2 A Minimal-Implementation State Diagram

The simplest state diagram based on the minimum required state related properties is illustrated below to
show the behavior of such a device and the progression of its state. The support level of these state related
properties is defined in Appendix C.3.2, “object.recordTask Class”. This example only uses the set of
REQUIRED allowed values for the taskState property. In the example below, it is assumed that the device
is UNABLE to resume recording once the “ACTIVE” phase is entered. By definition, any device MUST
support at least the following 5 illustrated states.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

PH
ST™M
ETM
Rec
SBR
FBR
LBR
SBM
GE:
EH
FE
PE
Info
9

9

=7

recordTask

Created

FE> 1
EH->++
PH->DONE
SBM->1

IDLE.
READY

STM>1
PH->ACTIVE -

83

= @phase property

= @startDateTimeMet property
= @endDateTimeMet property
= @recording property

= @someBitsRecorded property
= @firstBitsRecorded property
= @lastBitsRecorded property
= @someBitsMissing property

= @currentErrors property

= @errorHistory property

= @fatalErrorFlag property

= @pendingErrors property

= @infolList property

= Triggers a transition when set to new value

= Transition causes a new value to be set

= Transition target determined by current value

\

ACTIVE.
RECORDING.

FEXL FROMSTART
RECsal 0K
EH->++

PH=DONE
SBM>1

TR S W R

\ ETM>1
Rec>0
" PH>DONE
" LBR>1

DONE.
PARTIAL

recordTask Deleted

Figure 6: A Minimal-Implementation State Diagram

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 84

2.7.2.1 “IDLE” Phase

In this phase, the device is not able to detect pending errors (that is: taskState@pendingErrors MUST be
empty); therefore, once the start time is reached, the device will go to the
“ACTIVE.RECORDING.FROMSTART.OK? state and start recording. If the device can not start recording,
it is treated as a fatal error, and the recordTask will transition directly to the “DONE.EMPTY” state. Also,
anytime during the “IDLE” phase, a fatal error can occur, and the recordTask will transition directly to
the “DONE.EMPTY” state.

2.7.21.1 *“|DLE.READY” State

Because there is no error detecting mechanism (that is: taskState@pendingErrors) supported, this state
indicates that the recordTask is waiting for the start time to be reached and that no errors conditions
(either fatal or non-fatal) have been detected. If/when the start time is reached, the recordTask will
attempt to record immediately.

2.7.21.2 *“|DLE.ATRISK” State

Because there is no error detecting mechanism (that is: taskState @pendingErrors) supported, this state is
not supported.

2.7.2.2 "ACTIVE” Phase

Because there is no pending error (that is: taskState@pendingErrors) detection mechanism supported, nor
is an interrupted “ACTIVE” recording or late recording (that is: the start time is missed) able to resume
recording (due to device limitations), only one state MUST be supported in the “ACTIVE” phase, that is:
“ACTIVE.RECORDING FROMSTART.OK™. It indicates a perfect recording condition.

2.7.221 “ACTIVE.TRANSITION.FROMSTART" State
This state is not supported.

2.7.2.2.2 “ACTIVE.TRANSITION.RESTART” State
This state is not supported.

2.7.2.2.3 “ACTIVE.RECORDING.FROMSTART.OK" State

This is the only state that MUST be supported in the “ACTIVE” phase. It indicates the perfect recording
condition. The recordTask has reached its start time and all of the target content has been recorded
continuously from the beginning. The recordTask remains in this state until either the recordTask’s end
time is reached or until a fatal error is detected.

If the recordTask reaches its end time, the recordTask halts the recording and transitions to the
“DONE.FULL?” state indicating that the entire target content was recorded uninterrupted. If the recording
is interrupted for any reason, it is treated as a fatal error, and the recordTask immediately transitions to
either the “DONE.PARTIAL” or the “DONE.EMPTY” state.

2.7.2.24 “ACTIVE.RECORDING.FROMSTART.ATRISK" State
This state is not supported since the device does not support pending errors.

2.7.225 "“ACTIVE.RECORDING.RESTART.OK” State

This state is not supported since the device can not resume an interrupted recording or catch a late
recording that misses the beginning.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 85

2.7.22.6 “ACTIVE.RECORDING.RESTART.ATRISK” State
This state is not supported since the device does not support pending errors.

2.7.2.2.7 “ACTIVE.NOTRECORDING” State

This state is not supported since the device can not resume interrupted recording. Any interruptions
during the middle of recording will cause a transition to the “DONE” phase.

2.7.2.3 "DONE” Phase

The states in this phase indicate that the device is finished with this recordTask. Each “DONE” state
indicates the success or failure of the recordTask based on how much of the target content was actually
recorded.

2.7.23.1 “DONE.FULL" State

This state indicates a perfect recording. The recordTask’s target content was recorded in its entirety
without any interruptions.

2.7.2.3.2 “DONE.PARTIAL" State

This state indicates that part of the recordTask’s target content was recorded, but not all of it. This state is
reached from an “ACTIVE” recordTask due to a fatal error.

2.7.23.3 “DONE.EMPTY” State

This state indicates that none of the recordTask’s target content was recorded. It is a result of a recording
that has never been started due to a fatal error.

2.7.3 recordTask State Example

The following example illustrates the use of state attributes. In this example, it is assumed that a device is
able to resume a recording after it is interrupted.

The events occurs at:
e TO: Sytem is idle.

e T1: Error 1 (for example, DRM protected is being broadcast) and Error 3 (for example,
conflicted-loser) are predicted.

e T2: The recordSchedule reaches the scheduled start time, but Error 1 prevents the recording
from starting.

e T3: Suddenly, a new Error 2 occurs (for example, disabled)

e T4: Error 1is fixed (for example, the protected part ends.), but Error 3 is still predicited.
e T5: Error 2 is fixed (for example, enabled by user), but Error 3 is still predicited.

e T6: Error 3 occurs (for example, other prioritized program starts)

e T7: Error 3 is fixed (for example, the prioritized program ends)

e T8: The recordSchedule reached the scheduled end time

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 86

Table 2-44: recordTask State Timeline

a|npayoss Buipioday

aulawll

TO “|DLE.READY” “IDLE” |0|0|0|0|0|0|0|0| || O
“IDLE.ATRISK” “IDLE” |0|0|0|0|0|0|0|0| @ |1,3] O
“ACTIVE.NOTRECORDING” “ACTIVE”|0|0|1(1(0|0|0f0O| 1| 3 1
“ACTIVE.NOTRECORDING” “ACTIVE”|0|0|1(1]0|0|0|0(1,2| 3| 1,2
“ACTIVE.NOTRECORDING” “ACTIVE”|O0|0|1(|1]0|0|0(0|2 |3 |12
“ACT.RECORDING.RESTART.ATRISK” [“ACTIVE”|1(1({1(1]|0|0|0|0|@| 3| 1.2

.l“ACTIVE.NOTRECORDING" “AcTIVE”|{0(1]1]1|0(0|0|0| 3 |d|123
“ACT.RECORDING.RESTART.OK” “ACTIVE”|1(1]1]/1|0(0|0|0|Qd | D |123
T8 “DONE.PARTIAL” “DONE” |0|1]|1|1|1|0|1|0|@|D|1,2,3

2.8 ScheduledRecording Service Priority Model

2.8.1 Introduction of the ScheduledRecording Service Priority Model

The ScheduledRecording service priority model allows control points to provide desired priority
information in order to help the ScheduledRecording service prioritize conflicting recordTask instances
that were generated by different recordSchedule instances. The ScheduledRecording service priority
model does not remove these conflicts from the system, but it does help the ScheduledRecording service
make scheduling decisions that more closely match the desires of the end-user.

The ScheduledRecording service priority model is based on a “priority level” system in which each
recordSchedule is assigned a specific priority level. The recordTask inherits the priority of its parent
recordSchedule. In other words, the recordTask instances generated by a recordSchedule of a higher
priority level are given higher priority than those recordTask instances generated by a recordSchedule of a
lower priority level. Except for those ScheduledRecording service implementations that support “ordered
priority” (described below), all of the recordTask instances generated by any of the recordSchedule
instances assigned to the same priority level will have the same priority. If conflicts arise between any of
these (same priority) recordTask instances, the ScheduledRecording service MAY give preference to any
of these recordTask instances in a device-dependant manner.

The number of distinct priority levels supported by a ScheduledRecording service is vendor-dependent.
Each priority level is identified by its name which MUST have the form “L<x>" where “L” is an
abbreviation for “Level” and <x> is a number ranging from 1 to some device-specific maximum value n
where n is the total number of distinct priority levels supported by the ScheduledRecording service.

For example, a ScheduledRecording service that supports 5 distinct priority levels will have the following
priority levels named as follows:

e “L1” (Highest priority level)

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 87

° “QH
° “QH
° “HH

e “L5” (Lowest priority level)

The list of priority levels supported by a ScheduledRecording service is obtainable via the
GetAllowedValues() action by examining the allowed value list of the priority property. Each existing
recordSchedule (on a given ScheduledRecording service) MUST be assigned one of these supported
priority levels. The priority property of each recordSchedule indicates the current priority level assigned
to that recordSchedule which can be retrieved via the BrowseRecordSchedules() action.

2.8.2 Ordered Priority within Each Priority Level

In addition to supporting one or more priority levels, some ScheduledRecording service implementations
are able to prioritize the recordSchedule instances within each priority level. When ordered priority is
supported, each recordSchedule (in addition to its assigned priority level) is also assigned a unique
“ordered priority slot” ranging from 1 to <n> where <n> is the total number of recordSchedule instances
within the ScheduledRecording service. A value of 1 represents the highest priority recordSchedule within
the ScheduledRecording service; that is: the highest priority recordSchedule within the highest priority
level “L1”. The value <n> represents the lowest priority recordSchedule within the ScheduledRecording
service; that is: the lowest recordSchedule within the lowest priority level. The ordered priority slot
assigned to each recordSchedule can be obtained via the recordSchedule’s priority@orderedValue
property. A ScheduledRecording service that support ordered priority MUST expose this property for each
of their recordSchedule instances. Conversely, a ScheduledRecording service that does not support this
capability MUST NOT expose the priority@orderedValue property. Within a given ScheduledRecording
service, each ordered priority slot is assigned to exactly one recordSchedule.

As a natural consequence, the recordSchedule instances assigned to a higher priority level will always
have a higher ordered priority than the recordSchedule instances assigned to a lower priority levels.

The following examples shows a ScheduledRecording service that supports ordered priority values within
each of its 5 priority levels. The first example shows a ScheduledRecording service with fewer
recordSchedule instances than the number of priority levels supported by that ScheduledRecording service.
The second example shows a ScheduledRecording service with more recordSchedule instances than the
number of priority levels supported by the ScheduledRecording service.

Of particular note, recordSchedule instances do not need to be evenly distributed between the different
priority levels. Ordered priority slots are contiguously assigned starting with the highest priority
recordSchedule down to the lowest priority recordSchedule.

Table 2-45: Example 1: Fewer recordSchedule instances than the Number of Supported
Priority Levels.

Priority Level ‘ Ordered Priority Slot
“L1” (highest priority level) RS-A 1
u om
“L3” RS-C 2
RS-B 3
u 47
“L5” (lowest priority level)

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 88

Table 2-46: Example 2: More recordSchedule instances than the Number of Supported
Priority Levels.

Priority Level ‘ Ordered Priority Slot
“L1” (highest priority level) RS-A 1
“QH RS_F 2
“QH RS_C 3
RS-B 4
“HH RS_E 5
“L5” (lowest priority level) RS-G 6
RS-D 7

2.8.3 Setting the Initial Priority Level of arecordSchedule

The initial priority level of a recordSchedule is determined by the ScheduledRecording service when the
recordSchedule is created. When determining the initial priority level, the ScheduledRecording service
MUST examine the recordSchedule’s incoming desiredPriority property, and if provided, set the
recordSchedule’s initial priority level as indicated. If the desiredPriority property is not set, then the
ScheduledRecording service MUST assign the recordSchedule to one of the supported priority levels
based on some device-dependent assignment algorithm. As described below, the desiredPriority property
can be set to one of many different values which allow control points to express the desired priority in a
number of different ways. The GetAllowedValues() action can be used to determine which values a
ScheduledRecording service allows for its desiredPriority property.

The desiredPriority property has an associated desiredPriority@type property that MUST be set to
“PREDEF” except when an object ID is specified in the desiredPriority property. In this case the
desiredPriority@type property MUST be set to “OBJECTID” (see below for details).

In the simplest case, the incoming desiredPriority property is set to the name of one of the supported
priority levels. This value indicates that the recordSchedule MUST be assigned to the specified priority
level. If the ScheduledRecording service is not able to complete the assignment, then it MUST fail the
creation request.

If a control point does not have a desired priority for a recordSchedule that it is about to create, the
control point may set the incoming desiredPriority property to the value “DEFAULT”. This value
indicates that the control point is willing to accept the ScheduledRecording service’s default priority level
assignment.

If the ScheduledRecording service supports ordered priority (that is: the ScheduledRecording service
supports the priority@orderedValue property), the ScheduledRecording service MUST also support some
additional values for its desiredPriority property. Firstly, the ScheduledRecording service MUST support
a value with the following format (without the double-quotes): “<@id>" where <@id> is the @id
property value of an already existing recordSchedule. (The associated desiredPriority@type property
MUST be set to “OBJECTID” in this case). This value indicates that the new recordSchedule MUST be
assigned to the same priority level as the existing recordSchedule identified by <@id>. Furthermore, the
new recordSchedule MUST be assigned the ordered priority slot of the existing recordSchedule with the
existing recordSchedule and all other lower priority recordSchedule instances shifted to the next lower
ordered priority slot. (See examples below.)

Additionally, when ordered priority is supported, the ScheduledRecording service MUST also support a
number of convenience values corresponding to the highest and lowest ordered priority slots within each
of its supported priority level. These convenience values MUST have the form “L<x> HI” or
“L<x>_LOW” where “L” is an abbreviation for “Level”, <x> is a number ranging from 1 to some device-
specific maximum value n where n is the total number of distinct priority levels supported by the

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 89

ScheduledRecording service. For example, a ScheduledRecording service that supports 5 priority levels
and also ordered priority MUST support the values “L1 HI”, “L1 LOW”, “L2 HI”, “L2 LOW”, “L3 HI”,
“L3 LOW”, “L4 HI”, “L4 LOW”, “L5_HI”, “L5_LOW?" for the desiredPriority property. Furthermore, the
ScheduledRecording service MUST also support two additional convenience values corresponding to the
highest and lowest priority within the ScheduledRecording service. These two additional convenience
values are “HIGHEST” (which is equivalent to the highest ordered priority slot in the highest priority
level “L1 HI), and “LOWEST” (which is equivalent to the lowest priority slot within the lowest priority
level “L<n> LOW?” when n is the total number of priority slots supported by the ScheduledRecording
service).

All of these additional convenience values behave just like a “<@id>* value. The primary benefit of the
convenience values is that they can be used to specify a specific ordered priority slot without having to
determine the @id of the existing recordSchedule currently assigned to that slot. Additionally, as with a
“<@id>" value, the existing recordSchedule already assigned to that desired ordered priority slot and
those recordSchedule instances assigned to lower priority slots, are shifted to the next lower slot. However,
all recordSchedule instances remain within their same priority level.

In the following examples, the ScheduledRecording service supports 3 priority levels and also supports
ordered priority. The examples begin with the following recordSchedule priorities already assigned.

Table 2-47: Existing recordSchedule Priorities

Priority Level ‘ Ordered Priority Value
“L1” (highest priority level) RS-A 1
“L2” RS-C 2
“L3” (lowest priority level) RS-B 3

Then the CreateRecordSchedule() action is invoked with the desiredPriority property set to “RS-C”.
After the action completes, a new recordSchedule is created with the @id property set to “RS-D”. The set
of recordSchedule instances is now prioritized as follows:

Table 2-48: desiredPriority Property Set to “RS-C”

Priority Level ‘ Ordered Priority Value
“L1” (highest priority level) RS-A 1
“L2” RS-D 2
RS-C 3
“L3” (lowest priority level) RS-B 4

Next the CreateRecordSchedule() action is invoked with the desiredPriority property set to “HIGHEST”,
“L1 HI”, or “RS-A” (all values have the same effect). After the action completes, a new recordSchedule is
created with the @id property set to “RS-E”. The set of recordSchedule instances is now prioritized as
follows:

Table 2-49: desiredPriority Property Set to “HIGHEST”, “L1 HI", or “RS-A”"

Priority Level ‘ Ordered Priority Value
“L1” (highest priority level) RS-E 1

RS-A 2
“QH RS_D 3

RS-C 4

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 90

Priority Level Ordered Priority Value

“L3” (lowest priority level) RS-B 5

Now the CreateRecordSchedule() action is invoked with the desiredPriority property set to “LOWEST”,
“L3 LOW?”, or “RS-B” (all values have the same effect). After the action completes, a new recordSchedule
is created with the @id property set to “RS-F”. The set of recordSchedule instances is now prioritized as
follows:

Table 2-50: desiredPriority Property Set to “LOWEST”, “L3 LOW”, or “RS-B”

Priority Level ‘ Ordered Priority Value
“L1” (highest priority level) RS-E 1
RS-A 2
“QH RS_D 3
RS-C 4
“L3” (lowest priority level) RS-B 5
RS-F 6

Finally, the CreateRecordSchedule() action is invoked with the desiredPriority property set to “RS-C”.
After the action completes, a new recordSchedule is created with the @id property set to “RS-G”. The set
of recordSchedule instances is now prioritized as follows:

Table 2-51: desiredPriority Property Set to “RS-C”

Priority Level ‘ RecordSchedulelD Ordered Priority Value
“L1” (highest priority level) RS-E 1
RS-A 2
“QH RS_D 3
RS-G 4
RS-C 5
“L3” (lowest priority level) RS-B 6
RS-F 7

2.8.4 Sorting recordSchedule Instances Based on their Current Priority
Settings

Control points can obtain the list of recordSchedule instances sorted either by their current priority level
or by their ordered priority slot. In order to sort the list of recordSchedule instances by their current
priority level (in descending order; that is: highest priority level recordSchedule instances listed first),
control points can invoke the BrowseRecordSchedules() action with the SortCriteria argument set to
“+srs:priority”. In order to sort the list of recordSchedule instances sorted by their current ordered
priority slot number (in descending order with the lowest ordered priority slot; that is: the highest slot
number listed first), the control point can invoke the BrowseRecordSchedules() action with the
SortCriteria argument set to “~srs:priority@0OrderedValue”.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 91

2.9 Theory of Operation

2.9.1 Introduction

The following sections walk through several scenarios to illustrate the various actions supported by the
ScheduledRecording service. It should be noted that these scenarios are for example purposes only and do
not have any normative value. VVendors may combine the described components in a variety of ways.

NOTE: For easy readability, The srs XML Documents of the examples presented below are shown before
XML-escaping to improve readability. However, they need to be escaped before embedding in a SOAP
message. Also, a shorthand notation method is used to describe the actions. The SOAP envelope is
omitted in the examples and replaced by a shorthand notation.

2.9.2 Checking the Capabilities of a ScheduledRecording Service

The following examples illustrate how to check the capabilities of the ScheduledRecording service by
using the GetSortCapabilities(), GetPropertyList(), and GetAllowedValues() actions.

2.9.2.1 Checking the Sort Capabilities

Assume that the ScheduledRecording service supports sorting on title, scheduledStartDateTime, and
priority only. Then the request:

Request:
GetSortCapabilities()

will result in the following response:

Response:
GetSortCapabilities('srs:title,srs:scheduledStartDateTime,srs:priority’)

2.9.2.2 Checking Supported Properties and their Allowed Values

A number of properties are OPTIONAL and therefore, vendors are free to decide whether or not to
support those properties for their particular ScheduledRecording implementations. The GetPropertyList()
and GetAllowedValues() actions provide the means for a control point to determine which properties a
particular ScheduledRecording service supports (GetPropertyList() action) and also what the allowed
values are for these properties (GetAllowedValues() action). Since the set of supported properties and their
allowed values may depend on the context within which these properties are used, the GetPropertyList()
and GetAllowedValues() actions allow the control point to specify the property-set data type for which the
control point wants to retrieve support level information.

2.9.2.2.1 Minimal Implementation Example

As a first example, assume that this particular ScheduledRecording service is a truly minimal
implementation (only the object.recordSchedule.direct.cdsNonEPG class is supported and only required
properties are supported).

Assume further that the control point wants to determine which properties it can specify in the Elements
input argument of the CreateRecordSchedule() action of this minimal ScheduledRecording
implementation. It first issues the following request (The Elements input argument of the
CreateRecordSchedule() action is of data type A_ARG_TYPE RecordScheduleParts):

Note: This A_ARG TYPE RecordScheduleParts example is marked by a white background for better
reader orientation.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 92

Request:
GetPropertyList("'A_ARG_TYPE_RecordScheduleParts™)

Then the following response will be generated:

Response:

GetPropertyList(

"srs:@id,srs:title,srs:class,srs:scheduledCDSObjectlID,
srs:scheduledStartDateTime,srs:scheduledDuration™)

If the control point then wants to investigate further what values it may use for those properties when
building a recordSchedule, it can retrieve that information using the following request:

Note: specifying “*:*” in the Filter argument is equivalent to specifying the complete list of property
names that was returned in the PropertyList argument of the GetPropertyList() action with the
DataTypelD argument set to “A_ARG_TYPE RecordScheduleParts”.

Request:
GetAllowedValues("'A_ARG_TYPE_RecordScheduleParts'™, "*:*™)

The following response will be generated:

Response:

GetAllowedvValues(

<?xml version="1.0" encoding="UTF-8"7>

<AVDT

xmlns:xsd="http://www._w3.0rg/2001/XMLSchema""

xmlns:srs=""urn:schemas-upnp-org:av:srs"

xmlns=""urn:schemas-upnp-org:av:avdt"

xmIns:xsi="http://www_w3.0rg/2001/XMLSchema-instance"

Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www._upnp.org/schemas/av/srs.xsd
urn:schemas-upnp-org:av:avdt
http://www.upnp.org/schemas/av/avdt.xsd">

<contextliD>
uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording:1
</contextlID>

<dataStructType>A ARG TYPE RecordScheduleParts</dataStructType>

<fieldTable>
<field>
<name>srs:@id</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:title</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 93

<field>
<name>srs:class</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowedValueList>
<allowedValue>
OBJECT .RECORDSCHEDULE .DIRECT . CDSNONEPG
</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledCDSObjectlID</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

<field>
<name>srs:scheduledStartDateTime</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>

<allowAny></allowAny>

</allowedValueDescriptor>

</field>

<field>
<name>srs:scheduledDuration</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

</fieldTable>
</AVDT>")

Assume further that the control point wants to determine which properties it can expect to get returned in
the Result output argument of the CreateRecordSchedule() action of that same minimal
ScheduledRecording implementation. It issues the following request (The Result argument of the
CreateRecordSchedule() action is of data type A ARG _TYPE RecordSchedule):

Note: This A_ ARG _TYPE RecordSchedule example is marked by a grey background for better reader
orientation.

Request:
GetPropertyList("'A_ARG_TYPE_RecordSchedule™)

The following response will be generated:

Response:
GetPropertyList(

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 94

"srs:@id,srs:title,srs:class,srs:priority,
srs:recordDestination,srs:recordDestination@mediaType,
srs:recordDestination@preference,
srs:scheduledCDSObjectlID,
srs:scheduledStartDateTime,srs:scheduledDuration
srs:scheduleState,srs:scheduleState@currentErrors,
srs:abnormal TasksExist,srs:currentRecordTaskCount')

If the control point then wants to investigate further what values it may expect for some of those properties
when browsing a recordSchedule, it can retrieve that information using the following request (the Filter
argument contains only a subset of the possible properties in this example):

Note: specifying “*:*” in the Filter argument is again equivalent to specifying the complete list of
properties returned in the PropertyList argument of the GetPropertyList() action with the DataTypelD
argument set to “A_ARG_TYPE_RecordSchedule”.

Request:

GetAl lowedValues("'A_ARG_TYPE_RecordSchedule',
"'srs:recordDestination,srs:recordDestination@mediaType,
srs:scheduleState, srs:scheduleState@currentErrors,
srs:abnormal TasksExist,srs:currentRecordTaskCount')

The following response will be generated:

Response:
GetAl lowedValues("
<?xml version="1.0" encoding="UTF-8"?>
<AVDT
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:srs="urn:schemas-upnp-org:av:srs"
xmlns=""urn:schemas-upnp-org:av:avdt"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd
urn:schemas-upnp-org:av:avdt
http://www.upnp.org/schemas/av/avdt.xsd">

<contextliD>
uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording: 1
</contextlD>

<dataStructType>A ARG TYPE RecordSchedule</dataStructType>

<fieldTable>
<field>
<name>srs:recordDestination</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedvalueDescriptor>
<allowedValuelList>
<allowedValue>Hard Disk</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@mediaType</name>
<dataType>xsd:string</dataType>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 96

</fieldTable>
</AVDT>")

Assume further that the control point wants to determine which properties it can expect to get returned in
the Result output argument of the GetRecordTask() action of that same minimal ScheduledRecording
implementation. It issues the following request (The Result argument of the GetRecordTask() action is of
data type A_ ARG_TYPE_RecordTask):

Note: This A_ ARG _TYPE RecordTask example is marked by a light turquoise background for better
reader orientation.

Request:
GetPropertyList(""A_ARG_TYPE_RecordTask')

The following response will be generated:

Response:

GetPropertyList(

"srs:@id,srs:title,srs:class,srs:priority,
srs:recordDestination,srs:recordDestination@mediaType,
srs:recordDestination@preference,
srs:recordSchedulelD,
srs:taskChannel 1D, srs:taskChannel 1D@type,srs:taskStartDateTime,
srs:taskDuration,srs:recordQuality,srs:recordQuality@type,
srs:taskState,srs:taskState@phase,
srs:taskState@recording, srs:taskState@someBitsRecorded,
srs:taskState@someBitsMissing,srs:taskState@fatalError,
srs:taskState@currentErrors,srs:taskState@errorHistory,
srs:taskState@pendingErrors,srs:taskState@infoList™)

If the control point then wants to investigate further what values it may expect for some of those properties
when browsing a recordTask, it can retrieve that information using the following request (the Filter
argument contains only a subset of the possible properties in this example):

Note: specifying “*:*” in the Filter argument is again equivalent to specifying the complete list of
properties returned in the PropertyList argument of the GetPropertyList() action with the DataTypelD
argument set to “A_ARG TYPE RecordTask”.

Request:

GetAllowedValues("'A_ARG_TYPE_RecordTask",

"srs:recordDestination,srs:recordDestination@mediaType,
srs:taskState,srs:taskState@currentErrors™)

The following response will be generated:

Response:

GetAllowedvValues("

<?xml version="1.0" encoding=""UTF-8"7>

<AVDT

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema""

xmlns:srs=""urn:schemas-upnp-org:av:srs"

xmIns=""urn:schemas-upnp-org:av:avdt"

xmlns:xsi="http://www._w3.0rg/2001/XMLSchema-instance"

Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd
urn:schemas-upnp-org:av:avdt
http://www.upnp.org/schemas/av/avdt.xsd">

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

<contextlD>

uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording:1

</contextlD>

<dataStructType>A ARG TYPE RecordTask</dataStructType>

<fieldTable>
<field>
<name>srs:recordDestination</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowedValueList>
<allowedValue>Hard Disk</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@mediaType</name>
<dataType>xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>HDD</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs: taskState</name>
<dataType maxSize=""64">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedvalueDescriptor>
<allowedValuelList>
<allowedValue>IDLE.READY</al lowedValue>
<allowedValue>
ACTIVE .RECORDING.FROMSTART . OK
</allowedValue>
<allowedValue>
ACTIVE .RECORDING.FROMSTART .ATRISK
</allowedValue>
<al lowedValue>DONE.FULL</al lowedValue>
<allowedValue>DONE.PARTIAL</al lowedValue>
<al lowedValue>DONE.EMPTY</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs: taskState@currentErrors</name>
<dataType>xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>

© 2011, UPnP Forum. All rights Reserved.

97

ScheduledRecording:2 98

<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue></al lowedValue>
<allowedValue>100</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

</fTieldTable>
</AVDT>"")

2.9.2.2.2 Full-fledged Implementation Example

In this example, it is assumed that this particular ScheduledRecording service supports all optional
functionality, offered by the ScheduledRecording service specification.

Assume that the control point wants to determine which properties it can specify in the Elements input
argument of the CreateRecordSchedule() action of this full-fledged ScheduledRecording implementation.
It issues the following request (The Elements input argument of the CreateRecordSchedule() action is of
data type A_ ARG_TYPE RecordScheduleParts):

Note: This A_ARG _TYPE RecordScheduleParts example is marked by a white background for better
reader orientation.

Request:
GetPropertyList("'A_ARG_TYPE_RecordScheduleParts™)

Then the following response will be generated:

Response:

GetPropertyList(

""srs:@id,

srs:title,

srs:class,

srs:desiredPriority,
srs:desiredPriority@type,
srs:recordDestination,
srs:recordDestination@mediaType,
srs:recordDestination@targetURL,
srs:recordDestination@preference,
srs:desiredRecordQuality,
srs:desiredRecordQuality@type,
srs:scheduledCDSObjectlID,
srs:scheduledChannel D,
srs:scheduledChannel 1D@type,
srs:scheduledStartDateTime,
srs:scheduledDuration,
srs:scheduledProgramCode,
srs:scheduledProgramCode@type,
srs:matchingName,
srs:matchingName@type,
srs:matchingName@subStringMatch,
srs:matchinglD,
srs:matchinglD@type,
srs:matchingChannel 1D,
srs:matchingChannel ID@type,

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 99

srs:matchingStartDateTimeRange,
srs:matchingDurationRange,
srs:matchingRatingLimit,
srs:matchingRatingLimit@type,
srs:matchingEpisodeType,
srs:totalDesiredRecordTasks,
srs:scheduledStartDateTimeAdjust,
srs:scheduledDurationAdjust,
srs:activePeriod,

srs:durationLimit,
srs:durationLimit@effect,
srs:channelMigration,
srs:timeMigration,
srs:allowDuplicates,
srs:persistedRecordings,
srs:persistedRecordings@latest,
srs:persistedRecordings@preAllocation,
srs:persistedRecordings@storedLifetime')

If the control point then wants to investigate further what values it may use when building a
recordSchedule, it can retrieve that information using the following request:

Request:
GetAllowedValues("'A_ARG_TYPE_RecordScheduleParts'™, "*:*™)
The following response will be generated:

Response:
See Appendix G.3, “A_ARG_TYPE RecordScheduleParts AVDT Example” for a complete response
message.

Assume further that the control point wants to determine which properties it can expect to get returned in
the Result output argument of the CreateRecordSchedule() action of that same full-fledged
ScheduledRecording implementation. It issues the following request (The Result output argument of the
CreateRecordSchedule() action is of data type A ARG_TYPE RecordSchedule):

Note: This A_ ARG _TYPE RecordSchedule example is marked by a grey background for better reader
orientation.

Request:
GetPropertyList("'A_ARG_TYPE_RecordSchedule™)

The following response will be generated:

Response:

GetPropertyList(

"'srs:@id,
srs:title,
srs:class,
srs:additionalStatusinfo,
srs:cdsReference,
srs:cdsReference@link,
srs:priority,
srs:priority@orderedValue,
srs:desiredPriority,
srs:desiredPriority@type,
srs:recordDestination,
srs:recordDestination@mediaType,
srs:recordDestination@targetURL,
srs:recordDestination@preference,

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 100

srs:desiredRecordQuality,
srs:desiredRecordQual ity@type,
srs:scheduledCDSObjectlID,
srs:scheduledCDSObjectID@link,
srs:scheduledChannel D,
srs:scheduledChannel 1D@type,
srs:scheduledStartDateTime,
srs:scheduledDuration,
srs:scheduledProgramCode,
srs:scheduledProgramCode@type,
srs:matchingName,
srs:matchingName@type,
srs:matchingName@subStringMatch,
srs:matchinglD,
srs:matchinglD@type,
srs:matchingChannel D,
srs:matchingChannel ID@type,
srs:matchingStartDateTimeRange,
srs:matchingDurationRange,
srs:matchingRatingLimit,
srs:matchingRatingLimit@type,
srs:matchingEpisodeType,
srs:totalDesiredRecordTasks,
srs:scheduledStartDateTimeAdjust,
srs:scheduledDurationAdjust,
srs:activePeriod,
srs:durationLimit,
srs:durationLimit@effect,
srs:channelMigration,
srs:timeMigration,
srs:allowDuplicates,
srs:persistedRecordings,
srs:persistedRecordings@latest,
srs:persistedRecordings@preAllocation,
srs:persistedRecordings@storedLifetime,
srs:scheduleState,
srs:scheduleState@currentErrors,
srs:abnormal TasksExist,
srs:currentRecordTaskCount,
srs:totalCreatedRecordTasks,
srs:totalCompletedRecordTasks'™)

If the control point then wants to investigate further what values it may expect for all of those properties
when browsing a recordSchedule, it can retrieve that information using the following (The Result output
argument of the CreateRecordSchedule() action is of data type A_ ARG _TYPE RecordSchedule):

Request:
GetAllowedValues("'A_ARG_TYPE_RecordSchedule', "*:*'")

The following response will be generated:

Response:
See Appendix G.1, “A_ARG TYPE RecordSchedule AVDT Example” for a complete response message.

Assume further that the control point wants to determine which properties it can expect to get returned in
the Result output argument of the BrowseRecordTasks() action of that same full-fledged
ScheduledRecording implementation. It issues the following request (The Result output argument of the
BrowseRecordTasks() action is of data type A_ARG_TYPE RecordTask):

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 101

Note: This A_ ARG _TYPE RecordTask example is marked by a light turquoise background for better
reader orientation.

Request:
GetPropertyList(""A_ARG_TYPE_RecordTask™)

The following response will be generated:

Response:
GetPropertyList(
""srs:@id,
srs:title,
srs:class,
srs:additionalStatusinfo,
srs:cdsReference,
srs:cdsReference@link,
srs:priority,
srs:priority@orderedVvalue,
srs:desiredPriority,
srs:desiredPriority@type,
srs:recordDestination,
srs:recordDestination@mediaType,
srs:recordDestination@targetURL,
srs:recordDestination@preference,
srs:desiredRecordQuality,
srs:desiredRecordQuality@type,
srs:recordSchedulelD,
srs:recordedCDSObjectlID,
srs:recordedCDSObjectID@l ink
srs:taskCDSObjectlD,
srs:taskCDSObjectID@link,
srs:taskChannellD,
srs:taskChannel 1D@type,
srs:taskStartDateTime,
srs:taskDuration,
srs:taskProgramCode,
srs:taskProgramCode@type,
srs:recordQuality,
srs:recordQuality@type,
srs:matchedName,
srs:matchedName@type,
srs:matchedlID,
srs:matchedID@type,
srs:matchedRating,
srs:matchedRating@type,
srs:matchedEpisodeType,
srs:taskStartDateTimeAdjust,
srs:taskDurationAdjust,
srs:taskDurationLimit,
srs:taskDurationLimit@effect,
srs:taskChannelMigration,
srs:taskTimeMigration,
srs:taskState,
srs:taskState@phase,
srs:taskState@startDateTimeMet,
srs:taskState@endDateTimeMet,
srs:taskState@recording,
srs:taskState@someBitsRecorded,
srs:taskState@someBitsMissing,
srs:taskState@firstBitsRecorded,

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 102

srs:taskState@lastBitsRecorded,
srs:taskState@fatalError,
srs:taskState@currentErrors,
srs:taskState@errorHistory,
srs:taskState@pendingErrors,
srs:taskState@infolList™)

If the control point then wants to investigate further what values it may expect for all of those properties
when browsing a recordTask, it can retrieve that information using the following (The Result output
argument of the BrowseRecordTasks() action is of data type A_ ARG _TYPE RecordTask):

Request:
GetAllowedValues("'A_ARG_TYPE_RecordTask™, "*:*')
The following response will be generated:

Response:
See Appendix G.2, “A_ARG_TYPE RecordTask AVDT Example” for a complete response message.

2.9.3 Adding a Scheduled Recording Entry to the List

The following examples illustrate how to create a recordSchedule entry in the list of recordSchedule
instances by invoking the CreateRecordSchedule() action, using the different available recordSchedule
classes. It is assumed that the implementation used in the examples that follow supports the allowed
values for the desiredRecordQuality and desiredRecordQuality@type properties as indicated in Table B-
9, “desiredRecordQuality Example” and for the recordQuality and recordQuality@type properties as
indicated in Table B-33, “recordQuality Example”.

2.9.3.1 object.recordSchedule.direct classes

The object.recordSchedule.direct classes are used when the control point has all the necessary
information available to uniquely identify the content to be recorded. The ScheduledRecording service
does not have to perform searches or matching to determine what content is eligible for recording. Note
that the control point might need to interact with external databases (like EPG information) to allow the
user to make a selection of the content that he wants to record. Once the content is selected however, all
information is available to set up the recordSchedule unambiguously.

2.9.3.1.1 Creating a object.recordSchedule.direct.manual Class recordSchedule

The object.recordSchedule.direct.manual class is used when the control point has access to the three basic
components of information that are needed to uniquely identify the content to record:

e The scheduled channel that is used for broadcast of the content (where)
e The scheduled start date and time of the recording (when)
e The scheduled duration of the recording (how long)

It is assumed that the control point has some out-of-band means to retrieve this information. It passes this
information into the recordSchedule using the REQUIRED properties scheduledChannellD and
scheduledChannelID@type, scheduledStartDateTime, and scheduledDuration.

The control point creates a properly escaped srs XML Document that MUST contain all the REQUIRED
properties necessary to create the object.recordSchedule.direct.manual class recordSchedule. The control
point can add any OPTIONAL property that is applicable to the object.recordSchedule.direct.manual
class.

As an example, the control point wants to create a recurring recordSchedule to record the BBC news that
is broadcast for one hour every evening at 7 pm on channel 47. Assume that the current date&time is

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 103

Tuesday, June 28, 2005, 9:15 pm. If possible, the control point would like this recording to be stored on
the internal hard disk, but if, for some reason, the hard disk is not available at the time of recording, the
DVD+R drive may also be used as a secondary destination. The control point further specifies that this
recording should be encoded using a low record quality setting of standard definition (“SD”). If that is not
possible, any other record quality may be used (“AUTO”). A pre-roll time of two and a half minutes and a
post-roll time of five minutes are also specified. The control point further instructs the
ScheduledRecording service to keep at least the latest three recordings around. Older recordings may be
discarded and no preallocation is desired.

To achieve the behavior specified above, the control point needs to provide the following srs XML
Document in the Elements input argument of the CreateRecordSchedule() action:

Request:
CreateRecordSchedule("
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www._.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""">

<desiredPriority type="PREDEF">L2</desiredPriority>

<recordDestination mediaType="HDD" preference="1">
Hard Disk

</recordDestination>

<recordDestination mediaType="DVD+R" preference="2">
DVD Recorder

</recordDestination>

<desiredRecordQuality type="DEFAULT">
SD,AUTO

</desiredRecordQual ity>

<totalDesiredRecordTasks>0</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
-P00:02:30
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:05:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="ANY"">
3
</persistedRecordings>
</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action returns the
following srs XML Document in the Result output argument. The ScheduledRecording service MUST add
unspecified supported OPTIONAL properties to convey default settings (Note that this srs XML Document
MUST be properly escaped). One or more recordTask instances may be created as a result of the
recordSchedule creation. In this example, it is assumed that 2 recordTask instances are spawned

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 104

immediately and it is also assumed that 2 new items are created in the associated ContentDirectory service
that will hold the recorded content once the recordings are made (object IDs “rec00001” and “rec00002”
are assigned).

Response:
CreateRecordSchedule(''s101","
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www._.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id="s101">

<desiredPriority type="PREDEF">L2</desiredPriority>

<desiredRecordQuality type="DEFAULT">
SD,AUTO
</desiredRecordQual ity>

<totalDesiredRecordTasks>0</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
-P00:02:30
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:05:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="ANY"">
3
</persistedRecordings>

<totalCreatedRecordTasks>2</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>
</srs>")

As another example, assume that the user is currently watching the news program on channel 47, which
started 10 minutes ago at 7:00 pm, and decides he/she wants to record this program from the beginning.
This use case is enabled by the fact that the device has a buffer onboard which allows transitory content to
be temporarily preserved for recording. The ContentDirectory service implementation on the device

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 105

indicates that the preservation of the content on channel 47 started at 6:45 pm (via the
upnp:preservedTimeRange@startTime property). For recording the entire program from the beginning,
the control point sets the scheduled start time to 7:00 pm and chooses a duration which likely includes the
end of the news program (for example 30 minutes, starting from 7:00 pm). No pre-roll and post-roll times
are specified. The desired destination is the internal hard disk. Any recording quality may be used. To
achieve this behavior, the control point needs to provide the following srs XML Document in the Elements
input argument of the CreateRecordSchedule() action:

Request:
CreateRecordSchedule("
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www._.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""">

<desiredPriority type="PREDEF">L2</desiredPriority>
<recordDestination mediaType="HDD" preference="1">
Hard Disk
</recordDestination>
<desiredRecordQuality type="DEFAULT">
AUTO
</desiredRecordQual ity>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<activePeriod>PAST/INFINITY</activePeriod>

</item>
</srs>")

Note that the value of the activePeriod property of “PAST/INFINITY” is used in this case, since the
actualScheduledStartDateTime of the scheduled recording is conceptually in the past. If the creation of
the recordSchedule is successful, the CreateRecordSchedule() action returns the following srs XML
Document in the Result output argument. One recordTask instance is spawned immediately.

Response:
CreateRecordSchedule(''s101","
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id="s101">

<desiredPriority type="PREDEF">L2</desiredPriority>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 106

<desiredRecordQuality type="DEFAULT">
SD,AUTO
</desiredRecordQual ity>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<activePeriod>PAST/INFINITY</activePeriod>

<totalCreatedRecordTasks>1</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>
</srs>")

If there is a gap in the channel’s preserved content in the specified recording time range, for instance
because the user tuned away to another channel for a while, then this can be detected by the control point
by the presence of the upnp:preservedTimeRange@endTime property. If the control point still decides to
create a recordSchedule with a recording time range that encompasses multiple disjoint preserved content
segments, then the recording behavior is vendor specified. Examples are: return an error, record the first
segment, record the last segment, or record all segments. The control point can examine the created
recordSchedule and recordTask(s) to determine how the device responded. Control points that want to
record all the preserved segments may also create a separate recordSchedule for each segment.

2.9.3.1.2 Creating a object.recordSchedule.direct.cdsEPG Class recordSchedule

The object.recordSchedule.direct.cdsEPG class is used when the control point has access to a local
ContentDirectory service EPG database. The content to be recorded is uniquely identified by an EPG item
in the associated ContentDirectory service. The association between a ContentDirectory service and a
ScheduledRecording service is established by having both services reside within the same UPnP
MediaServer device.

In this case, the basic component of information that is needed to uniquely identify the content to record is
the object ID of the EPG item (contains the where, when and how long information) that represents that
content. The control point passes this information into the recordSchedule using the REQUIRED
scheduledCDSObjectID property.

The control point creates a properly escaped srs XML Document that MUST contain all the REQUIRED
properties necessary to create the object.recordSchedule.direct.cdsEPG class recordSchedule. The control
point can add any OPTIONAL property that is applicable to the object.recordSchedule.direct.cdsEPG
class.

As an example, the control point wants to create a recordSchedule to record the “UPnP Awards
Ceremony” that is broadcast for a marathon fifteen hours on April 1%, at 9 am on channel 215. It finds
this program in the EPG database of the associated ContentDirectory service and retrieves the object 1D
(value of the didl-lite: @id property of the EPG item). Due to the length of the program, the recording
must be stored on the internal hard disk. If, for some reason, the hard disk is not available at the time of
recording, the recording must be canceled. Further, if the recording would last longer than the anticipated
15 hours, the recording must be limited to 15 hours and the first part of the program discarded. The
control point also specifies that this recording should be encoded using a low record quality setting of
“Q3”. If that is not possible, the recording will not be made. A pre-roll time of two minutes and a post-roll

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 107

time of 15 minutes are also specified. The control point further instruct the ScheduledRecording service to
keep track of this item in case the broadcaster decides to move it to a different channel and/or time.

To achieve the behavior specified above, the control point needs to provide the following srs XML
Document in the Elements input argument of the CreateRecordSchedule() action:

Request:
CreateRecordSchedule("
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""">

<desiredPriority type="PREDEF">L1</desiredPriority>
<recordDestination mediaType="HDD" preference="1">
Hard Disk
</recordDestination>
<desiredRecordQuality type="QLEVEL">
Q3
</desiredRecordQual ity>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
-P00:02:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:15:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<durationLimit effect="LAST">P15:00:00</durationLimit>
<channelMigration>1</channelMigration>
<timeMigration>1</timeMigration>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="ANY"">
1
</persistedRecordings>
</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action returns the
following srs XML Document in the Result output argument. The ScheduledRecording service MUST add
unspecified supported OPTIONAL properties to convey default settings (Note that this srs XML Document
MUST be properly escaped). One recordTask instance may be created as a result of the recordSchedule
creation. In this example, it is assumed that the recordTask instance is spawned immediately.

Response:

CreateRecordSchedule(''s102","

<?xml version="1.0" encoding="UTF-8"?>

<srs

xmIns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 108

Xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id="s102">

<desiredPriority type="PREDEF">L1</desiredPriority>

<desiredRecordQuality type="QLEVEL">
Q3
</desiredRecordQual i ty>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
-P00:02:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:15:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<durationLimit effect="LAST">P15:00:00</durationLimit>
<channelMigration>1</channelMigration>
<timeMigration>1</timeMigration>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="ANY"">
1
</persistedRecordings>

<totalCreatedRecordTasks>1</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>
</srs>")

As another example, the control point wants to record the program “The Best of UPnP”, which started in
the past at 8:30 am. The device is capable of temporarily preserving the program content and indicates
that this program has been preserved from the beginning (via the upnp:programPreserved property). The
control point then knows that it can expect the entire program to be recorded, even though the record
schedule is created past the program’s scheduled start time. To indicate that it wants to record the entire
program, the control point needs to provide the following srs XML Document in the Elements input
argument of the CreateRecordSchedule() action:

Request:

CreateRecordSchedule("

<?xml version="1.0" encoding="UTF-8"?>

<srs

xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 109

Xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id="">

<desiredPriority type="PREDEF">L1</desiredPriority>
<recordDestination mediaType="HDD" preference="1">
Hard Disk
</recordDestination>
<desiredRecordQuality type="QLEVEL">
Q3
</desiredRecordQual ity>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<activePeriod>PAST/INFINITY</activePeriod>
</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action returns the
following srs XML Document in the Result output argument. One recordTask instance may be created as a
result of the recordSchedule creation. In this example, it is assumed that the recordTask instance is
spawned immediately.

Response:
CreateRecordSchedule(''s103",""
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id="s103">

<desiredPriority type="PREDEF">L1</desiredPriority>

<desiredRecordQuality type="QLEVEL">
Q3
</desiredRecordQual ity>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<activePeriod>PAST/INFINITY</activePeriod>

<totalCreatedRecordTasks>1</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 110

</item>
</srs>")

2.9.3.1.3 Creating a object.recordSchedule.direct.cdsNonEPG Class recordSchedule

The object.recordSchedule.direct.cdsNonEPG class is used when the control point has access to a local
ContentDirectory service database that contains items that identify content that will be available for
recording at the time the recording is scheduled to start.

A typical example of this is TV tuner that is represented as a channelGroup container, containing items of
class object.item.videoltem.videoBroadcast, each representing a channel to which the tuner can be tuned
(User Channel). The association between a ContentDirectory service and a ScheduledRecording service is
established by having both services reside within the same UPnP MediaServer device.

In this case, the basic components of information that are needed to uniquely identify the content to record
are:

e The object ID of the ContentDirectory service item that represents the User Channel that is used
for broadcast of the content (where)

e The scheduled start date and time of the recording (when)
e The scheduled duration of the recording (how long)

It is assumed that the control point has some out-of-band means to retrieve this information. It passes this
information into the recordSchedule using the REQUIRED properties scheduledCDSObjectID,
scheduledStartDateTime, and scheduledDuration.

The control point creates a properly escaped srs XML Document that MUST contain all the REQUIRED
properties necessary to create the object.recordSchedule.direct.cdsNonEPG class recordSchedule. The
control point can add any OPTIONAL property that is applicable to the
object.recordSchedule.direct.cdsNonEPG class.

As an example, assume that today’s date is Tuesday, June 28, 2005 and the control point wants to create a
recordSchedule to record the show “Life of a Software Developer” that is broadcast on channel 5 every
Monday evening at 7 pm, starting on July 4™. The show lasts for an hour and runs for 13 episodes (until
the end of September). The first fifteen minutes of each show are dedicated to a reading of the “Most
Popular Software Code Quote of the Week”. The user found all this information in a printed TV Guide.
The ContentDirectory service has no EPG data.

The control point finds the User Channel that represents channel 5 in the associated ContentDirectory
service and retrieves its object ID (value of the didl-lite:@id property of the User Channel item). The
recording should be stored on the internal hard disk. If, for some reason, the hard disk is not available at
the time of recording, the recording might also be recorded on an external network storage device. All
episodes (13) of the show should be recorded. The control point also specifies that this recording should be
encoded using a high record quality setting of High Definition (“HD”). The “Most Popular Software Code
Quote of the Week” part of the show must be skipped but a pre-roll time of two minutes and a post-roll
time of three minutes are also specified. All episodes must be preserved until deleted by the user.

To achieve the behavior specified above, the control point needs to provide the following srs XML
Document in the Elements input argument of the CreateRecordSchedule() action:

Request:
CreateRecordSchedule(”
<?xml version="1.0" encoding="UTF-8"7>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"
xmlns:xsi="http://www_w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www._upnp.org/schemas/av/srs.xsd">

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 111

<item id=""">

<desiredPriority type="PREDEF">L1</desiredPriority>
<recordDestination mediaType="HDD" preference="1">
Hard Disk
</recordDestination>
<recordDestination mediaType="HDD" preference="2"
targetURL=""http://192.168.0.12/MyNAS/RecordedTV'">
Shared Content
</recordDestination>
<desiredRecordQuality type="DEFAULT">
HD
</desiredRecordQual ity>

<totalDesiredRecordTasks>13</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
+P00:13:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:03:00
</scheduledDurationAdjust>
<activePeriod>NOW/09-30T23:59:59</activePeriod>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="INFINITY"">
13
</persistedRecordings>
</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action returns the
following srs XML Document in the Result output argument. The ScheduledRecording service MUST add
unspecified supported OPTIONAL properties to convey default settings (Note that this srs XML Document
MUST be properly escaped). One or more recordTask instances may be created as a result of the
recordSchedule creation. In this example, it is assumed that 2 recordTask instances are spawned
immediately.

Response:
CreateRecordSchedule(''s103","
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id="s103">

<desiredPriority type="PREDEF">L1</desiredPriority>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 112

<desiredRecordQuality type="DEFAULT">
HD
</desiredRecordQual ity>

<totalDesiredRecordTasks>13</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
+P00:13:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:03:00
</scheduledDurationAdjust>
<activePeriod>NOW/09-30T23:59:59</activePeriod>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="INFINITY"">
13
</persistedRecordings>

<totalCreatedRecordTasks>2</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>
</srs>")

2.9.3.1.4 Creating a object.recordSchedule.direct.programCode Class recordSchedule

The object.recordSchedule.direct.programCode class is used when the control point has access (via the
user, most likely) to a program code. The content to be recorded is uniquely identified by this program
code in the sense that the program code contains in encoded form all necessary information for recording
the program item (where, when and how long). If the ScheduledRecording service supports a particular
program code type, that implies that the ScheduledRecording service must understand how to interpret
and decode the program code into its where, when and how long components.

In this case, the basic component of information that is needed to uniquely identify the content to record is
the program code of the program item that represents that content. The control point passes this
information into the recordSchedule using the REQUIRED properties scheduledProgramCode and
scheduledProgramCode @type.

The control point creates a properly escaped srs XML Document that MUST contain all the REQUIRED
properties necessary to create the object.recordSchedule.direct.programCode class recordSchedule. The

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 113

control point can add any OPTIONAL property that is applicable to the object.
recordSchedule.direct.programCode class.

As a hypothetical example, the control point wants to create a recordSchedule to record a program item,
identified by a program code of type “upnpexample.com_upnpProgramCode” time. The
upnpProgramCode type specifies the encoding to be simply:

program code = <channel number>_<StartDateTime>_<Duration>

The user retrieved the program code from some external source (a printed program guide) and the
advertised title of the program is “Everything you ever wanted to know about SRS”.

It is assumed that the ScheduledRecording service supports the “upnpexample.com_upnpProgramCode”
program code type and therefore knows how to decode the program code into its basic where, when and
how long components. The recording must be stored on the internal DVD+RW drive. If, for some reason,
the DVD+RW drive is not available at the time of recording, the recording must be stored on the internal
hard disk. The control point also specifies that this recording should be recorded using any available
record quality setting. No pre-roll or post-roll times are specified.

To achieve the behavior specified above, the control point needs to provide the following srs XML
Document in the Elements input argument of the CreateRecordSchedule() action:

Request:
CreateRecordSchedule("
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www._.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""'>

<desiredPriority type="PREDEF">L1</desiredPriority>

<recordDestination mediaType=""DVD+RW" preference="1">
DVD Drive

</recordDestination>

<recordDestination mediaType="HDD" preference="2">
Hard Disk

</recordDestination>

<desiredRecordQuality type="DEFAULT">
AUTO

</desiredRecordQual ity>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action returns the
following srs XML Document in the Result output argument. The ScheduledRecording service MUST add
unspecified supported OPTIONAL properties to convey default settings (Note that this srs XML Document
MUST be properly escaped). One recordTask instance may be created as a result of the recordSchedule
creation. In this example, it is assumed that the recordTask instance is spawned immediately.

Response:
CreateRecordSchedule(*'s104","
<?xml version="1.0" encoding="UTF-8"?>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 114

<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id="s104">

<desiredPriority type="PREDEF">L1</desiredPriority>

<desiredRecordQuality type="DEFAULT">
AUTO
</desiredRecordQual ity>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
+P00:00:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:00:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<durationLimit effect="LAST">INFINITY</durationLimit>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="ANY"">
0
</persistedRecordings>

<totalCreatedRecordTasks>1</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>
</srs>")

2.9.3.2 object.recordSchedule.query classes

The object.recordSchedule.query classes are used when the control point only has partial information to
identify possible candidates for recording. The ScheduledRecording service must perform further
(continuous) searching or matching to determine what content is eligible for recording. The
ScheduledRecording service must consult with external databases (like EPG information or over-the-wire
Service Information) to find content that matches all the criteria, specified in the recordSchedule. Every
time a match is found, a new recordTask is created.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 115

2.9.3.2.1 Creating a object.recordSchedule.query.contentName Class recordSchedule

The object.recordSchedule.query.contentName class is used when the control point has knowledge about
the (partial) name of the content to be recorded. This could either be a series name or a program name.
Other properties, specified in the recordSchedule are also used to further narrow down what will be
recorded (activePeriod, totalDesiredRecordTasks, etc.). It is the responsibility of the ScheduledRecording
service to continuously search available external databases (like EPG or Service Information) and create a
recordTask instance for every complete match (all specified matching criteria are satisfied) it finds within
those external databases.

In this case, the basic piece of information that is needed to identify the content to record is the (partial)
program or series name of the program item or series. The control point passes this information into the
recordSchedule using the REQUIRED properties matchingName and matchingName@type.

The control point creates a properly escaped srs XML Document that MUST contain all the REQUIRED
properties necessary to create the object.recordSchedule.query.contentName class recordSchedule. The
control point can add any OPTIONAL property that is applicable to the
object.recordSchedule.query.contentName class.

As an example, the control point wants to create a recordSchedule to record the series entitled “Meet the
UPNnP Guys” (exact title). The control point has no further information, except that the series is broadcast
during summer season and the series finale is planned somewhere during the month of September.

The recordings must be stored on the internal Hard Disk. If, for some reason, the Hard Disk is not
available at the time of recording, the recording must be canceled. The control point also specifies that
these recordings should be encoded using a low record quality (“SD”). If that is not possible, medium
record quality (“ED”) may also be used. If that is not possible, no recording will be made. No pre-roll or
post-roll times are specified. If the broadcaster decides to change broadcast channel or date&time, the
ScheduledRecording service is supposed to track.

To achieve the behavior specified above, the control point needs to provide the following srs XML
Document in the Elements input argument of the CreateRecordSchedule() action:

Request:
CreateRecordSchedule(”
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""">

<desiredPriority type="PREDEF">L1</desiredPriority>
<recordDestination mediaType="HDD" preference="1">
Hard Disk
</recordDestination>
<desiredRecordQuality type="DEFAULT">
SD,ED
</desiredRecordQual ity>

<matchingStartDateTimeRange>

NOW/09-30T23:59:59

</matchingStartDateTimeRange>
<totalDesiredRecordTasks>0</totalDesiredRecordTasks>
<channelMigration>1</channelMigration>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 116

<timeMigration>1</timeMigration>
</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action returns the
following srs XML Document in the Result output argument. The ScheduledRecording service MUST add
unspecified supported OPTIONAL properties to convey default settings (Note that this srs XML Document
MUST be properly escaped). One or more recordTask instances may be created as a result of the
recordSchedule creation. In this example, it is assumed that one recordTask instance is spawned
immediately (12 remaining matches need to be found in the future, when new EPG data is available, for
instance).

Response:
CreateRecordSchedule(''s201","
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id="s201">

<desiredPriority type="PREDEF">L1</desiredPriority>

<desiredRecordQuality type="DEFAULT">
SD,ED
</desiredRecordQual ity>

<matchingStartDateTimeRange>
NOW/09-30T23:59:59
</matchingStartDateTimeRange>
<totalDesiredRecordTasks>0</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
+P00:00:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:00:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<durationLimit effect="LAST">INFINITY</durationLimit>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="ANY"">
0
</persistedRecordings>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 117

<totalCreatedRecordTasks>1</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>
</srs>")

2.9.3.2.2 Creating a object.recordSchedule.query.contentID Class recordSchedule

The object.recordSchedule.query.contentID class is used when the control point has knowledge about the
ID of the content to be recorded. This could either be a series ID or a program ID. Other properties,
specified in the recordSchedule are also used to further narrow down what will be recorded (activePeriod,
totalDesiredRecordTasks, etc.). It is the responsibility of the ScheduledRecording service to continuously
search available external databases (like EPG or Service Information) and create a recordTask instance for
every complete match (all specified matching criteria are satisfied) it finds within those external
databases.

In this case, the basic piece of information that is needed to identify the content to record is the program
ID or series ID of the program item or series. The control point passes this information into the
recordSchedule using the REQUIRED properties matchinglD and matchingID@type.

The control point creates a properly escaped srs XML Document that MUST contain all the REQUIRED
properties necessary to create the object.recordSchedule.query.contentlD class recordSchedule. The
control point can add any OPTIONAL property that is applicable to the
object.recordSchedule.query.contentlD class.

As an example, the control point wants to create a recordSchedule to record the program with program 1D
123456 from service provider “MyLocalProvider.net”. It has obtained this ID through means outside the
scope of this specification. The control point has no further information.

The recordings must be stored on the internal Hard Disk. If, for some reason, the Hard Disk is not
available at the time of recording, the recording must be canceled. The control point also specifies that the
recording should be encoded using a high record quality setting of “720p60”. If that is not possible, no
recording will be made. No pre-roll or post-roll times are specified. If the broadcaster decides to change
broadcast channel or date&time, the ScheduledRecording service is supposed to track.

To achieve the behavior specified above, the control point needs to provide the following srs XML
Document in the Elements input argument of the CreateRecordSchedule() action:

Request:
CreateRecordSchedule("
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www._.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""">

<desiredPriority type="PREDEF">L1</desiredPriority>
<recordDestination mediaType="HDD" preference="1">
Hard Disk
</recordDestination>
<desiredRecordQuality type="ATSC'">
720p60
</desiredRecordQual ity>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 118

<channelMigration>1</channelMigration>
<timeMigration>1</timeMigration>
</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action returns the
following srs XML Document in the Result output argument. The ScheduledRecording service MUST add
unspecified supported OPTIONAL properties to convey default settings (Note that this srs XML Document
MUST be properly escaped). One recordTask instance may be created as a result of the recordSchedule
creation. In this example, it is assumed that the recordTask instance is spawned immediately.

Response:
CreateRecordSchedule(''s202","
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id="s202">

<desiredPriority type="PREDEF">L1</desiredPriority>

<desiredRecordQuality type="ATSC">
720p60
</desiredRecordQual ity>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
+P00:00:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:00:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<durationLimit effect="LAST">INFINITY</durationLimit>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="ANY">
0
</persistedRecordings>

<totalCreatedRecordTasks>1</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>
</srs>")

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 119

2.9.4 Deleting arecordSchedule

A control point can delete a particular recordSchedule by invoking the DeleteRecordSchedule() action
and specifying its object ID in the RecordSchedulelD argument.

Assume that the recordSchedule to be deleted has its @id property set to “s301” .
To delete this recordSchedule, the control point generates the following request:
Request:

DeleteRecordSchedule(*'s301™)

Response:

2.9.5 Browsing recordSchedule and recordTask instances

A control point can investigate which recordSchedule and/or recordTask instances are currently present
within a ScheduledRecording service implementation by invoking the BrowseRecordSchedules() and
BrowseRecordTasks() actions.

For example purposes, it is assumed that the control point has invoked the CreateRecordSchedule() action
once for each of the cases described in Sections 2.9.3.1.1 through 2.9.3.1.4 and Sections 2.9.3.2.1 and
2.9.3.2.2. As aresult, six recordSchedule instances as specified in the sections above have been created.
In addition, eight recordTask instances have been created so that the available recordSchedule and
recordTask instances in this particular ScheduledRecording service implementation are as follows:

recordSchedule (@id = “s101”, class = “OBJECT.RECORDSCHEDULE.DIRECT.MANUAL")

recordTask (@id = “t101-001", class = “OBJECT.RECORDTASK”)

recordTask (@id = “t101-002", class = “OBJECT.RECORDTASK”)

recordSchedule (@id = *“s102”, class = “OBJECT.RECORDSCHEDULE .DIRECT.CDSEPG”)

recordTask (@id = “t102-001", class = “OBJECT.RECORDTASK”)

recordSchedule (@id = *“s103”, class = “OBJECT.RECORDSCHEDULE.DIRECT.CDSNONEPG”)

recordTask (@id = “t103-001", class = “OBJECT.RECORDTASK”)

recordTask (@id = “t103-002", class = “OBJECT.RECORDTASK”)

recordSchedule (@id = “s104”, class = “OBJECT.RECORDSCHEDULE .DIRECT.PROGRAMCODE")

recordTask (@id = *“t104-001", class = “OBJECT.RECORDTASK”)

recordSchedule (@id = “s201”, class = “OBJECT.RECORDSCHEDULE.QUERY.CONTENTNAME")

recordTask (@id = “t201-001", class = “OBJECT.RECORDTASK”)

recordSchedule (@id = “s202”, class = “OBJECT.RECORDSCHEDULE.QUERY.CONTENTID”)

recordTask (@id = “t202-001", class = “OBJECT.RECORDTASK”)

2.9.5.1 Browsing recordSchedule instances

When a control point wants to gather detailed information on currently existing recordSchedule instances,
it can do this by invoking the BrowseRecordSchedules() action. The following request:

Request:
BrowseRecordSchedules(*"*, 0, 10, '+srs:title™)

returns the following response (the result only returns the REQUIRED properties (Filter argument is set
to “”) and is sorted according to the value of the title property):

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 120

Response:
BrowseRecordSchedules ("
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www._.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id="s104">

</i1tem>
<item i1d="s101">

</item>
<item i1d="s103">

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

</i1tem>
<item i1d="s201'">

</i1tem>
<item i1d="s202">

</i1tem>
<item i1d="s102">

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 122

</item>
</srs>",
6, 6, 123456)

2.9.5.2 Browsing recordTask instances associated with a single recordSchedule

When a control point wants to gather detailed information on currently existing recordTask instances that
are associated with a particular recordSchedule, it can do this by invoking the BrowseRecordTasks()
action.

As an example, assume that the control point wants to browse all recordTask instances, associated with
the recordSchedule with its @id property set to “s101”. It wants to retrieve all supported properties (Filter
argument set to “*:*”) and sorting is not important (SortCriteria argument set to “”).

The following request:

Request:
BrowseRecordTasks(''s101", "'*:*", 0, 10, ")

returns the following response:

Response:

BrowseRecordTasks ("

<?xml version="1.0" encoding="UTF-8"?>
<srs

xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""

urn:schemas-upnp-org:av:srs

http://www.upnp.org/schemas/av/srs.xsd">

<item id="t101-001">

<cdsReference 1ink="LINK1">

<I--
The following DIDL-Lite XML Document needs to be interpreted as a simple

string and therefore needs to be properly escaped
-——>

&It;?xml version="1.0" encoding="UTF-8"?>
&It;DIDL-Lite
xmIns:dc="http://purl.org/dc/elements/1.1/"
xmIns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/""
xmlIns:upnp=""urn:schemas-upnp-org:metadata-1-0/upnp/"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemalLocation=""
urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
http://www.upnp.org/schemas/av/didl-lite_xsd
urn:schemas-upnp-org:metadata-1-0/upnp/
http://www.upnp.org/schemas/av/upnp.xsd">

<item 1d="18" parentlD="13" restricted="0">
&It;dc:title>BBC News at 7pm</dc:title>
&It;upnp:classégt;

object.item.videol tem.videoBroadcast
&I1t;/upnp:classé>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 123

<l-—- End of DIDL-Lite XML Document -->

</cdsReference>

<desiredPriority type="PREDEF">L2</desiredPriority>

<desiredRecordQuality type="DEFAULT">
SD,AUTO
</desiredRecordQual ity>

<recordedCDSObjectID Bink="LINK1">
rec00001
</recordedCDSObjectl1D>

<taskStartDateTimeAdjust>
-P00:02:30
</taskStartDateTimeAdjust>
<taskDurationAdjust>
+P00:05:00
</taskDurationAdjust>

startDateTimeMet="0"
endDateTimeMet=""0"

firstBitsRecorded=
lastBitsRecorded=""0"

</i1tem>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 124

<item id="t101-002">

<cdsReference 1ink="LINK1">

<I--

The following DIDL-Lite XML Document needs to be interpreted as a simple
string and therefore needs to be properly escaped

<l-—- End of DIDL-Lite XML Document -->

</cdsReference>

<desiredPriority type="PREDEF">L2</desiredPriority>

<desiredRecordQuality type="LABEL">
SD,AUTO
</desiredRecordQual ity>

<recordedCDSObjectID Bink="LINK1">
rec00002
</recordedCDSObjectl1D>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 125

<taskStartDateTimeAdjust>
-P00:02:30
</taskStartDateTimeAdjust>
<taskDurationAdjust>
+P00:05:00
</taskDurationAdjust>

startDateTimeMet="0"
endDateTimeMet=""0"

firstBitsRecorded=""0"
lastBitsRecorded=""0"

</item>
</srs>",
2, 2, 123456)

2.9.6 Rating System

A ScheduledRecording service offers the OPTIONAL ability to impose rating limits on recordable
content.

A ScheduledRecording service implementation may provide a list of supported ratings. The supported
ratings can be retrieved by invoking the GetAllowedValues() action and specifying the
matchingRatingLimit property in the Filter argument.

In the United States, TV manufacturers are REQUIRED to provide built-in support for the TV Parental
Guidelines Monitoring Board rating system. (See http://www.tvguidelines.org.)

Motion picture content is rated on a voluntary basis by the Motion Picture Association of America. (See
http://www.mpaa.org.)

Since it is not a simple matter to determine the rating system applicable to recordable content, the control
point should provide values for all applicable rating systems when specifying a rating limit.

For example if the control point was configured to limit content for children, it may provide the following
rating limit properties.
<matchingRatingLimit type="TVGUIDELINES.ORG">
TV-G
</matchingRatingLimit>
<matchingRatingLimit type="MPAA_ORG">
G

</matchingRatingLimit>

Since the intent of the rating limit is a limiting value, the ScheduledRecording service MUST exclude
unrated content or content whose rating system does not match any of the rating types in the
matchingRatingLimit properties provided by the control point.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 126

Since rating limits are intended to preclude some (subset of) users from accessing content, it is up to the
control point to identify users and apply the appropriate rating profile to individual users.

2.9.7 Conflict Detection and Resolution

Conflicts between recordTask instances arise when the recording events, associated with those recordTask
instances, overlap in time and there are not enough resources available to record all of the requested
recording events.

Conflict detection always happens at the recordTask level. It is possible that, at recordSchedule creation
time, the ScheduledRecording service is not able to accurately indicate whether scheduling conflicts may
arise in the future. Indeed, a ScheduledRecording service is not required or even capable (for a query-type
recordSchedule) of generating all the recordTask instances that will ever be associated with the
recordSchedule. Furthermore, a ScheduledRecording service implementation is allowed to either reject
the creation of a recordSchedule that creates a scheduling conflict (the CreateRecordSchedule() action
returns with error code 730, “Conflict”) or accept such a recordSchedule. A control point can therefore
only rely on the occurrence of error code 401, “Conflicting Program Loser” or error code 402,
“Conflicting Program Winner” in the taskstate@currentErrors property of all the recordTask instances to
accurately determine whether scheduling conflicts exist. Note that the ScheduledRecording service always
picks a Conflicting Program Winner, based upon priority settings and/or other vendor-defined criteria.

At this time, conflict resolution is not adequately supported by this specification. When one or more
recordTask instances are conflicting, there is currently no straightforward way for a control point to
change the Conflicting Program Winner. Instead, a control point may disable specific recordTask
instances so that the intended recordTask becomes the Conflicting Program Winner. The drawback of this
approach is that if the newly appointed Conflicting Program Winner changes over time (due to channel-
or time migration, for instance), the disabled recordTask instances remain disabled and will not record,
even if that would have become possible.

Alternatively, a control point may use the DeleteRecordSchedule() and CreateRecordSchedule() actions to
reschedule the recordSchedule with a different priority level. The drawback of this approach is that all
recordTask instances associated with the deleted recordSchedule are also deleted and any customization
by the user that happened at the recordTask level will get lost as well.

A future version of this specification will address the conflict resolution issue in detail.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

3 XML Service Description

<?xml version="1.0">

<scpd xmlns="urn:schemas-upnp-org:service-1-0">

<specVersion>
<major>1</major>

<minor>0</minor>

</specVersion>

<actionList>

<action>
<name>GetSortCapabi lities</name>
<argumentList>
<argument>
<name>SortCaps</name>
<direction>out</direction>
<relatedStateVariable>
SortCapabilities

</relatedStateVariable>

</argument>

<argument>
<name>SortLevelCap</name>

<direction>out</direction>
<relatedStateVariable>
SortLevelCapability
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetPropertylList</name>
<argumentList>
<argument>
<name>DataType ID</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_DataTypelD
</relatedStateVariable>

</argument>

<argument>
<name>PropertylList</name>

<direction>out</direction>
<relatedStateVariable>
A ARG_TYPE_PropertylList
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetAl lowedValues</name>
<argumentList>

<argument>

© 2011, UPnP Forum. All rights Reserved.

127

ScheduledRecording:2

<name>DataType ID</name>
<direction>in</direction>
<relatedStateVariable>

A ARG _TYPE DataTypelD
</relatedStateVariable>

</argument>

<argument>
<name>Filter</name>

<direction>in</direction>
<relatedStateVariable>
A ARG_TYPE_PropertylList
</relatedStateVariable>
</argument>

<argument>
<name>PropertyInfo</name>

<direction>out</direction>
<relatedStateVariable>
A _ARG_TYPE_Propertylnfo
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetStateUpdatelD</name>
<argumentList>
<argument>
<name>ld</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>

<name>BrowseRecordSchedules</name>

<argumentList>

<argument>
<name>Fi lter</name>
<direction>in</direction>
<relatedStateVariable>

A ARG_TYPE_PropertylList

</relatedStateVariable>

</argument>

<argument>
<name>Startinglndex</name>

<direction>in</direction>
<relatedStateVariable>

A ARG _TYPE_ Index
</relatedStateVariable>

</argument>

<argument>
<name>RequestedCount</name>

© 2011, UPnP Forum. All rights Reserved.

128

ScheduledRecording:2

<direction>in</direction>
<relatedStateVariable>

A ARG _TYPE Count
</relatedStateVariable>

</argument>

<argument>
<name>SortCriteria</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE_ SortCriteria
</relatedStateVariable>

</argument>

<argument>
<name>Resul t</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE_ RecordSchedule

</relatedStateVariable>

</argument>

<argument>
<name>NumberReturned</name>

<direction>out</direction>
<relatedStateVariable>

A ARG _TYPE Count
</relatedStateVariable>

</argument>

<argument>
<name>TotalMatches</name>

<direction>out</direction>
<relatedStateVariable>

A ARG _TYPE Count
</relatedStateVariable>

</argument>

<argument>
<name>Update lD</name>

<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>BrowseRecordTasks</name>
<argumentList>

<argument>

<name>RecordSchedulelD</name>

<direction>in</direction>
<relatedStateVariable>

A ARG _TYPE ObjectlID
</relatedStateVariable>

</argument>

<argument>
<name>Filter</name>

© 2011, UPnP Forum. All rights Reserved.

129

ScheduledRecording:2

<direction>in</direction>
<relatedStateVariable>
A ARG_TYPE_PropertylList
</relatedStateVariable>
</argument>

<argument>
<name>Startinglndex</name>

<direction>in</direction>
<relatedStateVariable>

A ARG _TYPE_ Index
</relatedStateVariable>

</argument>

<argument>
<name>RequestedCount</name>

<direction>in</direction>
<relatedStateVariable>

A ARG _TYPE Count
</relatedStateVariable>

</argument>

<argument>
<name>SortCriteria</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE_ SortCriteria
</relatedStateVariable>

</argument>

<argument>
<name>Resul t</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE_ RecordTask
</relatedStateVariable>

</argument>

<argument>
<name>NumberReturned</name>

<direction>out</direction>
<relatedStateVariable>

A ARG _TYPE Count
</relatedStateVariable>

</argument>

<argument>
<name>TotalMatches</name>

<direction>out</direction>
<relatedStateVariable>

A ARG _TYPE Count
</relatedStateVariable>

</argument>

<argument>
<name>Update lD</name>

<direction>out</direction>

<relatedStateVariable>
StateUpdatelD

</relatedStateVariable>

</argument>
</argumentList>

© 2011, UPnP Forum. All rights Reserved.

130

ScheduledRecording:2 131

</action>

<action>
<name>CreateRecordSchedule</name>
<argumentList>
<argument>
<name>Elements</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE_RecordScheduleParts

</relatedStateVariable>

</argument>

<argument>
<name>RecordSchedulelD</name>

<direction>out</direction>
<relatedStateVariable>

A ARG _TYPE ObjectlID
</relatedStateVariable>

</argument>

<argument>
<name>Resul t</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE_ RecordSchedule
</relatedStateVariable>

</argument>

<argument>
<name>UpdatelD</name>

<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>DeleteRecordSchedule</name>
<argumentList>
<argument>
<name>RecordSchedulelD</name>
<direction>in</direction>
<relatedStateVariable>
A ARG _TYPE ObjectlID
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetRecordSchedule</name>
<argumentList>
<argument>
<name>RecordSchedulelD</name>
<direction>in</direction>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

<relatedStateVariable>
A ARG _TYPE ObjectlID
</relatedStateVariable>

</argument>

<argument>
<name>Filter</name>

<direction>in</direction>
<relatedStateVariable>
A ARG_TYPE_PropertylList
</relatedStateVariable>
</argument>

<argument>
<name>Resul t</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE_ RecordSchedule
</relatedStateVariable>

</argument>

<argument>
<name>Update lD</name>

<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>EnableRecordSchedule</name>
<argumentList>
<argument>
<name>RecordSchedulelD</name>
<direction>in</direction>
<relatedStateVariable>
A ARG _TYPE ObjectlID
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>DisableRecordSchedule</name>
<argumentList>
<argument>
<name>RecordSchedulelD</name>
<direction>in</direction>
<relatedStateVariable>
A ARG _TYPE ObjectlID
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>

© 2011, UPnP Forum. All rights Reserved.

132

ScheduledRecording:2

<name>De leteRecordTask</name>
<argumentList>
<argument>
<name>RecordTasklD</name>
<direction>in</direction>
<relatedStateVariable>
A ARG _TYPE ObjectlID
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetRecordTask</name>
<argumentList>
<argument>
<name>RecordTasklD</name>
<direction>in</direction>
<relatedStateVariable>
A ARG _TYPE ObjectlID
</relatedStateVariable>

</argument>

<argument>
<name>Filter</name>

<direction>in</direction>
<relatedStateVariable>
A ARG_TYPE_PropertylList
</relatedStateVariable>
</argument>

<argument>
<name>Resul t</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE_ RecordTask
</relatedStateVariable>

</argument>

<argument>
<name>Update lD</name>

<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>EnableRecordTask</name>
<argumentList>
<argument>
<name>RecordTasklD</name>
<direction>in</direction>
<relatedStateVariable>
A ARG _TYPE ObjectlID
</relatedStateVariable>

© 2011, UPnP Forum. All rights Reserved.

133

ScheduledRecording:2

</argument>
</argumentList>

</action>

<action>
<name>DisableRecordTask</name>
<argumentList>
<argument>
<name>RecordTasklD</name>
<direction>in</direction>
<relatedStateVariable>
A ARG _TYPE ObjectlID
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>ResetRecordTask</name>
<argumentList>
<argument>
<name>RecordTasklD</name>
<direction>in</direction>
<relatedStateVariable>
A ARG _TYPE ObjectlID
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetRecordScheduleConflicts</name>
<argumentList>
<argument>
<name>RecordSchedulelD</name>
<direction>in</direction>
<relatedStateVariable>
A ARG _TYPE ObjectlID
</relatedStateVariable>

</argument>

<argument>
<name>RecordScheduleConflictIDList</name>

<direction>out</direction>
<relatedStateVariable>

A ARG _TYPE ObjectlIDList
</relatedStateVariable>

</argument>

<argument>
<name>Update lD</name>

<direction>out</direction>

<relatedStateVariable>
StateUpdatelD

</relatedStateVariable>

</argument>
</argumentList>

© 2011, UPnP Forum. All rights Reserved.

134

ScheduledRecording:2

</action>

<action>
<name>GetRecordTaskConflicts</name>
<argumentList>
<argument>
<name>RecordTasklD</name>
<direction>in</direction>
<relatedStateVariable>
A ARG _TYPE ObjectlID
</relatedStateVariable>

</argument>

<argument>
<name>RecordTaskConflictIDList</name>

<direction>out</direction>
<relatedStateVariable>

A ARG _TYPE ObjectlDList
</relatedStateVariable>

</argument>

<argument>
<name>Update lD</name>

<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

</actionList>

<serviceStateTable>
<stateVariable sendEvents="no">
<name>SortCapabilities</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents="no">
<name>SortLevelCapabil i ty</name>
<dataType>uid</dataType>
</stateVariable>

<stateVariable sendEvents="no">
<name>StateUpdatelD</name>
<dataType>uid</dataType>

</stateVariable>

<stateVariable sendEvents="yes">
<name>LastChange</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG _TYPE PropertyList</name>
<dataType>string</dataType>

© 2011, UPnP Forum. All rights Reserved.

135

ScheduledRecording:2 136

</stateVariable>

<stateVariable sendEvents="no">
<name>A_ ARG _TYPE DataTypelD</name>
<dataType>string</dataType>
<allowedValuelList>
<allowedValue>A ARG _TYPE RecordSchedule</allowedValue>
<allowedValue>A ARG TYPE RecordTask</allowedValue>
<allowedValue>A ARG _TYPE RecordScheduleParts</allowedValue>
</allowedValueList>
</stateVariable>

<stateVariable sendEvents="no">
<name>A_ARG_TYPE ObjectlD</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG _TYPE ObjectlIDList</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents="no">
<name>A_ ARG_TYPE Propertylnfo</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE Index</name>
<dataType>uid</dataType>

</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE Count</name>
<dataType>uid</dataType>

</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE SortCriteria</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG _TYPE RecordSchedule</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE RecordTask</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE RecordScheduleParts</name>
<dataType>string</dataType>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 137

</stateVariable>

</serviceStateTable>
</scgd>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 138

4 Test

No semantic tests have been specified for this service.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 139

Appendix A. srs XML Document (Normative)

This section describes the srs XML Document that is used in action arguments of the property-set data
type. Any srs XML Document MUST conform to the SRS schema as defined in [SRS-XSD]. Each srs
XML Document contains one of the following data types: A_ ARG _TYPE RecordSchedule,

A ARG TYPE RecordTask or A_ARG_TYPE RecordScheduleParts. All property-set data types are based
on properties in the srs namespace and are therefore based on the SRS schema.

Due to limitations of the XML Schema syntax, the SRS schema in itself is often not adequate to accurately
describe the limitations and restrictions imposed by a particular ScheduledRecording service
implementation. For example, the set of supported properties and their allowed values may vary among
implementations.

To allow ScheduledRecording service implementations to indicate which properties and their allowed
values they support, the concept of the AV Datastructure Template (AVDT) is introduced. A
ScheduledRecording service implementation can provide very detailed information about supported
properties and their allowed values by means of an AVYDT XML Document. The AVDT XML Document
MUST conform to the AVDT schema as defined in [AVDT].

An AVDT XML Document can be retrieved by invoking the GetAllowedValues() action. The DataTypelD
input argument identifies the data structure to be described by the AVDT XML Document. Indeed,
depending on the particular ScheduledRecording service implementation, the set of supported properties
and their allowed values of a given property-set data type may vary. For example, the set of properties that
can be specified in the Elements input argument (of data type A_ARG_TYPE_ RecordScheduleParts) of the
CreateRecordSchedule() action may differ substantially between implementations. Additionally, the set of
properties supported by different data types will obviously vary as well.

At this time, this specification identifies three different AVDT XML Document manifestations, depending
on the data type of the objects described in the AVDT XML Document:

e The A ARG TYPE RecordSchedule AVDT XML Document
e The A ARG TYPE RecordTask AVDT XML Document
e The A ARG TYPE RecordScheduleParts AVDT XML Document

Al A ARG TYPE RecordSchedule AVDT XML Document

This type of AVDT XML Document is used to describe the data structure of a recordSchedule object for a
particular ScheduledRecording service implementation. Examples of action arguments that use this data
type include the Result output argument of the BrowseRecordSchedules() and GetRecordSchedule()
actions.

When using the AVDT XML Document in this context, the following rules apply:

e The <contextlID> field MUST be set to “uuid:device-UUID::urn:schemas-upnp-
org:service:ScheduledRecording:1”.

e The <dataStructType> field MUST be set to “A_ARG_TYPE RecordSchedule”.

e The <fFieldTable> field MUST contain field elements for all the REQUIRED properties of all
the object.recordSchedule.xxx classes supported by the service. Refer to Table C-2, “Class
Properties Overview for recordSchedule”, recordSchedule-related columns.

e The<FieldTable> field MUST also contain field elements for all the supported OPTIONAL
properties of all the object.recordSchedule.xxx classes implemented by the service. Refer to Table
C-2, “Class Properties Overview for recordSchedule”, recordSchedule-related columns.

Field specific rules:

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 140

e There must be one and only one field with the subelement <name> set to “class”

e The allowed values for this field MUST only be derived from the object.recordSchedule virtual
class.

e The <name> subelement of all <field> elements MUST only contain names of
recordSchedule properties.

For a full-fledged example of a A_ARG_TYPE RecordSchedule AVDT XML Document, see Appendix
G.1, “A_ARG_TYPE RecordSchedule AVDT Example

A.2 A ARG TYPE RecordTask AVDT XML Document

This type of AVDT XML Document is used to describe the data structure of a recordTask object for a
particular ScheduledRecording service implementation. Examples of action arguments that use this data
type include the Result output argument of the BrowseRecordTasks() and GetRecordTask() actions.

When using the AVDT XML Document in this context, the following rules apply:

e The <contextlID> field MUST be set to “uuid:device-UUID::urn:schemas-upnp-
org:service:ScheduledRecording:1”.

e The <dataStructType> field MUST be set to “A_ARG_TYPE_ RecordTask”.

e The<fieldTable> field MUST contain field elements for all the REQUIRED properties of
the object.recordTask class. Refer to Table C-2, “Class Properties Overview for recordSchedule”,
recordTask-related column.

e The <FieldTable> field MUST also contain field elements for all the supported OPTIONAL
properties of the object.recordTask class. Refer to Table C-2, “Class Properties Overview for
recordSchedule”, recordTask-related column.

Field specific rules:
e There must be one and only one field with the subelement <name> set to “class”

e The allowed values for this field MUST only be derived from the object.recordTask class.

e The <name> subelement of all <Field> elements MUST only contain names of recordTask
properties.

For a full-fledged example of a A_ARG_TYPE RecordTask AVDT XML Document, see Appendix G.2,
“A ARG _TYPE RecordTask AVDT Example”.

A.3 A ARG TYPE RecordScheduleParts AVDT XML Document

This This type of AVDT XML Document is used to describe the data structure of a recordScheduleParts
object for a particular ScheduledRecording service implementation. Examples of action arguments that
use this data type include the Elements input argument of the CreateRecordSchedule() action.

When using the AVDT XML Document in this context, the following rules apply:

e The <contextlID> field MUST be set to “uuid:device-UUID::urn:schemas-upnp-
org:service:ScheduledRecording:1”.

e The <dataStructType> field MUST be set to “A_ARG_TYPE_ RecordScheduleParts”.

e The <fFieldTable> field MUST contain field elements for all the REQUIRED properties of all
the object.recordSchedule.xxx classes supported by the service. Refer to Table C-1, “Class
Properties Overview ”, recordSchedule-related columns.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 141

e The<FieldTable> field MUST also contain field elements for all the supported OPTIONAL
properties of all the object.recordSchedule.xxx classes implemented by the service. Refer to Table
C-1, “Class Properties Overview ”, recordSchedule-related columns.

Field specific rules:
e There must be one and only one field with the subelement <name> set to “class”

e The allowed values for this field MUST only be derived from the object.recordSchedule virtual
class.

e The <name> subelement of all <field> elements MUST only contain names of
recordSchedule properties.

For a full-fledged example of a A_ARG_TYPE RecordScheduleParts AVDT XML Document, see
Appendix G.3, “A_ARG_TYPE_ RecordScheduleParts AVDT Example”.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 142

Appendix B. AV Working Committee Extended Properties
(Normative)

The tables and sections below list all properties defined by the AV Working Committee. A property is
expressed in XML as either an XML element or an XML attribute.

In the following sections, the definition of each property and its default value, if applicable, is described,
followed by the specifics pertaining to INPUT and OUTPUT usage for this property. The INPUT usage
indicates how the property is used in a recordScheduleParts object. The OUTPUT usage indicates how the
property is used in a recordSchedule and/or recordTask object.

Note: The NS column in the tables contains the namespace prefix of the namespace to which the property
name belongs. The M-Val column indicates whether the property is multi-valued (M-Val = YES) or
single-valued (M-Val = NO). See Section 2.2.2.17, “Multi-valued property” and Section 2.2.2.18, “Single-
valued property”.

B.1 Base Properties

Table B-1: Base Properties Overview

Property Name ‘ NS Data Type M-Val Reference

@id Srs xsd:string NO Appendix B.1.1
title Srs xsd:string NO Appendix B.1.2
class Srs xsd:string NO Appendix B.1.3
additionalStatusinfo Srs xsd:string NO Appendix B.1.4
cdsReference Srs xsd:string YES Appendix B.1.5
cdsReference@link Srs xsd:string NO Appendix B.1.5.1
B.1.1 @id

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The @id property identifies a recordSchedule or recordTask object. The value MUST be
unique in the ScheduledRecording service. The value MUST be set by the ScheduledRecording service.

Default Value: N/A — Required on input.
Sort Order: Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method maost appropriate for its method of generating @id
values. If @id values contain a numeric (sub)string that contains values that increment with each new
object creation, then use Lexical Numeric; otherwise, use Lexical.

Input: When creating a new recordSchedule object, the @id property MUST be specified to satisfy the
SRS XML Schema and MUST be set to the empty string.

Output: The unique object ID set by the ScheduledRecording service.

B.1.2 title

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 143

Description: Primary title of the object. The title property contains a friendly name to identify the object.
This property can be either user-supplied or derived from the content name the object represents. This
property is not to be confused with the matchingName or matchedName property. See also
http://dublincore.org/documents/dces.

Default Value: N/A — Required on input.
Sort Order: Lexical.

Input: The desired setting.

Output: The current setting.

B.1.3 class
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The class property identifies the class of the object. A ScheduledRecording service
implementation MUST list all classes it supports. If some (vendor-defined) classes are derived from other
classes, then both the derived classes and the parent classes MUST be listed. See Appendix C, “AV
Working Committee Class Definitions” for details.

Default Value: N/A — Required on input.

Sort Order: Sequenced Lexical. Sequence subvalues are substrings separated by periods.
Input: The desired setting.

Output: The current setting.

B.1.3.1 allowedValueList for the class Property

Table B-2: allowedValueList for the class Property

Value ‘ R/O Description

“OBJECT.RECORDSCHEDULE.DIRECT.MANUAL” o
“OBJECT.RECORDSCHEDULE.DIRECT.CDSEPG” o
“OBJECT.RECORDSCHEDULE.DIRECT.CDSNONEPG” R .

Control points should support
“OBJECT.RECORDSCHEDULE.DIRECT.PROGRAMCODE” | O all predefined values in these
“OBJECT.RECORDSCHEDULE.QUERY.CONTENTNAME” | O Fows.
“OBJECT.RECORDSCHEDULE.QUERY.CONTENTID” o
“OBJECT.RECORDTASK” o
vendor-defined. X See Appendix C.1, “Class
Vendor-defined class names MUST obey the rules set forth in Hierarchy _for rules on

. o " vendor-defined class

Appendix D.3, “Class Name Syntax”. .

extensions.
B.1.4 additionalStatusinfo
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The additionalStatusinfo property is a general-purpose property that can hold text-based
additional status information.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 144

Default Value: N/A — Output only.
Sort Order: Lexical.

Input: N/A.

Output: The current setting.

B.1.5 cdsReference
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The cdsReference property MUST only contain metadata of a ContentDirectory service
object that is referenced (directly or indirectly) by a recordSchedule or recordTask object.

Note that this is a multi-valued property so that metadata of multiple referenced ContentDirectory service
objects can be stored. A recordSchedule or recordTask object references ContentDirectory service objects
through properties, such as the scheduledCDSObjectID property, recordedCDSObjectID property, etc.
(collectively indicated by the notation: xxxCDSObjectID property). To indicate which cdsReference
property is associated with which xxxCDSObjectID property, both properties have a dependent property,
cdsReference@link and xxxCDSObjectID@link respectively, that MUST contain the same unique,
vendor-defined link identifier.

The cdsReference property MUST contain a valid and properly escaped DIDL-Lite XML Document. The

DIDL-Lite XML Document describes a device-dependent (sub)set of imported properties (metadata) of the
ContentDirectory service object that is referenced by the linked xxxCDSObjectID property. See Appendix
B.17, “ContentDirectory Service Imported Properties” for details.

Default VValue: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

B.1.5.1 cdsReference@link
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The cdsReference@link contains a unique, vendor-defined link identifier that
unambiguously links its cdsReference property to a particular xxxCDSObjectID property within the same
recordSchedule or recordTask object. See Appendix B.17, “ContentDirectory Service Imported
Properties” for details.

Default VValue: N/A — Output only.
Sort Order: Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of generating
cdsReference@link values. If cdsReference@link values contain a numeric (sub)string that contains
values that increment with each new object creation, then use Lexical Numeric; otherwise, use Lexical

Input: N/A.

Output: The current setting.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 145

B.2 Priority Properties

Table B-3: Priority Properties

Property Name NS Data Type M-Val Reference
priority srs | xsd:string NO Appendix B.2.1
priority@orderedValue srs | xsd:unsignedint | NO Appendix B.2.1.2
desiredPriority srs | xsd:string NO Appendix B.2.2

B.2.1 priority
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The priority property indicates the priority level of the associated object (a recordSchedule
or a recordTask). The priority-value format syntax of the priority property is described in
Appendix D, “EBNF Syntax Definitions”.

Example values for this property include: “L1”, “L2”, “L3”, ... where “L1” represents the highest priority
level with subsequent values representing progressively lower priority levels.

Note: Desired priority settings are specified via the desiredPriority property passed into the
CreateRecordSchedule() action. See Section 2.8, “ScheduledRecording Service Priority Model” for
details.

Default Value: N/A — Output only.

Sort Order: Property Specific, based on priority order. Ascending: lowest priority first.
Input: N/A.

Output: The current setting.

B.2.1.1 allowedValuelList for the priority Property

Table B-4: allowedValuelList for the priority Property

Value ‘ R/O Description

“L1” R The highest priority level supported by the
device.

L2” (6] The next progressively lower priority level

supported by the device.

e (6] Progressively lower priority level supported by
the device.

L<x>" 0 The lowest priority level supported by the device
where <x> is the total number of distinct priority
levels supported by the device.

Notes:

All devices MUST support 1 or more priority levels.

If “L<x>"is supported, then all values between “L1” and “L<x>" MUST be supported.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 146

B.2.1.2 priority@orderedValue
Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

Description: The priority@orderedValue property indicates the relative numerical priority value of the
associated object (a recordSchedule or a recordTask). A value of 1 indicates that this object is the highest
priority object of that object type (that is: of all recordSchedule instances or all recordTask instances).
Other ascending values indicate that the object has a progressively lower priority relative to the other
objects of that type. A value of N (where N is the total number of objects of that type) indicates that the
object is the lowest priority object of that type. No two objects of the same type will have the same value
for this property.

Note: This property is not evented when the priority of the object changes (for example due to the creation
of a new object with a higher priority).

Default VValue: N/A — Output only.
Sort Order: Numeric.

Input: N/A.

Output: The current setting.

B.2.2 desiredPriority
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The desiredPriority property specifies the desired priority level of the associated object (a
recordSchedule or a recordTask). The priority-value format syntax of the desiredPriority property
is defined in Appendix D, “EBNF Syntax Definitions”.

Except as noted below, the value for this property MUST match one of the allowed values returned by the
GetlnputPropertylnfo() action for this property. The allowed values MUST comply with the table in
Appendix B.2.2.1, “allowedValueLists for the desiredPriority Property” below. Additionally, if the
priority@orderedValue property is supported, the desiredPriority property can also be set to one of the
allowed values listed in Table B-6, “Additional allowedValueList for the desiredPriority Property”.

Default Value: “DEFAULT".

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.
Output: The current setting.

B.2.2.1 allowedValuelLists for the desiredPriority Property

Table B-5: Primary allowedValueList for the desiredPriority Property

Value ‘ R/O Description

“DEFAULT” R No priority preference. The device itself will
determine the object’s priority.

“L1” (6] The highest priority level supported by the device.

“L2” (6] The next to highest priority level supported by the
device.

e (6] Progressively lower priority levels between 1 and

<X>, “QH, “HH, etC.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 147

Description

“L<x>" (6] The lowest priority level supported by the device
where <x> is the total number of distinct priority
levels supported by the device.

Notes:
All devices MUST support 1 or more priority levels.

If “L<x>" is supported, then all values between “L1” and “L<x>" MUST be continuously supported; that
is: a device MUST not support only “L1”, “L3”, and “L5”.

Additionally, if the device supports the priority@orderedValue property, then the device MUST also
support the following allowed values. Conversely, if any of these allowed values are supported, then the
device MUST support the priority@orderedValue property. These allowed values provide a mechanism
for more precise prioritization control with those devices that support it.

Table B-6: Additional allowedValueList for the desiredPriority Property

Value ‘ R/O Description ‘

“HIGHEST” R The highest level possible. — Same as “L1 _HI”
defined below.

“LOWEST” R The lowest level possible. — Same as
“L<x>_LOW?” defined below.

“L1 HI” R The highest priority possible within the highest
priority level.

“L1 LOW” R The lowest priority possible within the highest
priority level.

“L2_HI” R The highest priority possible within the next to
highest priority level.

“L2 LOW” R The lowest priority possible within the next to
highest priority level.

e R Progressively lower priority levels.

“L<x> HI” R The highest priority possible within the lowest
priority level where <x> is the total number of
distinct priority levels supported by the device.

“L<x>_LOW” R The lowest priority possible, but within the lowest
priority level where <x> is the total number of
distinct priority levels supported by the device.

<@id> R The next highest priority “slot” immediately
higher than (but within the same priority level of)
the existing object whose @id is specified by
<@id>.

Notes:

1. Ifadevice supports the priority@orderedValue property, then the device MUST also support
these CONDITIONALLY REQUIRED allowed values. Conversely, if any of these allowed values
are supported, then the device MUST support the priority@orderedValue property.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 148

2. These allowed values provide a mechanism for more precise prioritization control with those
devices that support it. If “L<x>_LOW?” is supported, then all values between “L1 HI” and
“L<x>_LOW” MUST be continuously supported; that is: a device MUST not support only
“L1 HI”, “L1 LOW”, “L3 HI”, “L3 LOW”, “L5_HI” and “L5_LOW” or only “L1 HI”, “L2 HI”,
and “L3_HI”.

B.2.3 desiredPriority@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: When the desiredPriority@type property is set to “PREDEF”, it indicates that the
desiredPriority property contains one of the predefined priority labels (“L1”, “L2_LOW?”, etc.). When set
to “OBJECTID”, it indicates that the desiredPriority property contains an object ID (@id value).

Default Value: “PREDEF”.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.
Output: The current setting.

B.2.3.1 allowedValuelLists for the desiredPriority @type Property

Table B-7: allowedValueList for the desiredPriority@type Property

Value ‘ R/O Description ‘
“PREDEF” R
“OBJECTID” R

B.3 Output Control Properties

Table B-8: Output Control Properties

Property Name NS Data Type M-Val Reference
recordDestination srs | xsd:string YES Appendix B.3.1
recordDestination@mediaType srs | CSV (xsd:string) | NO Appendix B.3.1.1
recordDestination@targetURL srs | xsd:anyURI NO Appendix B.3.1.2
recordDestination@preference srs | xsd:unsignedint | NO Appendix B.3.1.3
desiredRecordQuality srs | xsd:string NO Appendix B.3.2
desiredrecordQuality@type srs | xsd:string NO Appendix B.3.2.2

B.3.1 recordDestination
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The recordDestination property identifies the storage unit to be used for the recording. This
identifier, which is to be generated by the ScheduledRecording service, SHOULD be a user-friendly name
for the storage unit so that its value is meaningful to a user when displayed.

This is a multi-valued property so that more than one record destination can be specified for a recording.
The recordDestination@preference property allows the order of preference among multiple record

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 149

destinations to be specified. If none of the specified record destinations is available at the time of
recording, then the recording MUST NOT take place.

Examples: “Hard Disk Drive”, “DVD-1", “LINE1”, “AUX-out” etc.
Default Value: Vendor-defined.

Sort Order: Lexical.

Input: The desired setting.

Output: The current setting.

B.3.1.1 recordDestination@mediaType
Namespace: srs Property Data Type: CSV (xsd:string) Multi-Valued: NO

Description: The recordDestionation@mediaType property indicates the type of media that is to be used
for the recording.

If the media type of the specified record destination is fixed (not removable), then the value of the
recordDestination@mediaType property MUST match the actual physical media type of the record
destination. This single value can be retrieved through the GetAllowedValues() action.

If the media of the specified record destination is manually removable (requires explicit user intervention)
then the currently inserted physical media MUST match one of the values in the
recordDestination@mediaType property. In other words, the specified list of media types indicates those
that are acceptable for the recording. If the current physical media does not match one of the acceptable
media types, then the recording MUST NOT take place on this record destination.

If the specified record destination supports automatic swapping of media, such as a jukebox recorder, then
the recordDestination@mediaType property indicates which media type(s) MUST be used for the
recording. Recording MUST occur on the available media type that appears earliest in the list. If none of
the specified media types is available for recording, then the recording MUST NOT take place on this
record destination.

If recording can not take place as described above, then lower preference record destinations MAY be
used (see Section B.3.1.3, “recordDestination@preference”). The set of allowed values for the
recordDestination@mediaType property can be retrieved through the GetAllowedValues() action.

Examples: “HDD”, “DVD-RW”
Default Value: Vendor-defined.

Sort Order: Sequenced Lexical.
Input: The desired setting.
Output: The current setting.

B.3.1.1.1 allowedValueList for the recordDestination@mediaType Property

One of the allowed values for the AVTransport::RecordStorageMedium state variable MUST be specified.
Please refer to the AVTransport service specification for the table of allowed values.

B.3.1.2 recordDestination@targetURL
Namespace: srs Property Data Type: xsd:anyURI Multi-Valued: NO

Description: The recordDestination@targetURL property MUST contain a URL that identifies the
location, such as the location of a directory, where the recorded content is to be stored.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 150

Examples:
“file:///D:/MyDocuments/MyVideos”
“http://10.0.0.1/MyDocuments/MyVideos”
Default Value: Vendor-defined.
Sort Order: Lexical.
Input: The desired setting.
Output: The current setting.

B.3.1.3 recordDestination@preference
Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

Description: The recordDestination@preference property is useful when multiple recordDestination
properties are specified within the same recordSchedule or recordTask object. In this case, the values
indicate the preference order of the multiple record destinations. Higher numbers indicate lower
preference. The values do not have to be contiguous.

If multiple recordDestination@preference properties have the same value, then the order of preference in
which their associated record destinations are chosen is device-dependent.

If the recordDestination@preference property is not supported by an implementation, then the order of
preference of all specified record destinations is device-dependent.

Default Value: Vendor-defined.
Sort Order: Numeric.

Input: The desired setting.
Output: The current setting.

B.3.2 desiredRecordQuality
Namespace: srs Property Data Type: CSV (xsd:string) Multi-Valued: NO

Description: The desiredRecordQuality property is used to express the desired or preferred recording
quality level(s) for a particular recordSchedule. Multiple recording quality levels can be specified in the
comma-separated value list of the desiredRecordQuality property. If there is more than one value
specified, then the values indicate the desired recording quality, in order of preference, highest preference
first. The value “AUTO” MUST be supported by all implementations. When “AUTO” is included in the
list, it MUST appear as the last value in the list and indicates that if none of the preceding values are
available, then the ScheduledRecording service is free to use any recording quality level to maximize the
probability that the recording actually takes place. When the “AUTQO” value is the only value in the list,
then the ScheduledRecording service is free to use any recording quality level.

There are many ways to express recording quality. Some implementations use bitrates, some use user-
friendly labels etc. Some implementations might even support multiple ways to express recording quality
simultaneously. The desiredRecordQuality property is used in conjunction with the
desiredRecordQuality@type to allow implementations to express these variations. However, since the
desiredRecordQuality property can appear only once, the acceptable recording quality levels for a
particular recordSchedule are restricted to a single type variation.

If an implementation is capable of encoding or transcoding, then it MAY do so in order to achieve the
desired recording quality.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 151

Example: Assume a (hypothetical) implementation that supports the type variations “DEFAULT”,
“ATSC” and “QLEVEL” for the desiredRecordQuality@type property. The following table expresses the
supported desiredRecordQuality property values for those variations and also indicates how the different
type variations interrelate for this particular implementation:

Table B-9: desiredRecordQuality Example

“1080p30”
“1080p24” “Q1”
#1080i60”
“720p60”
“720p30” “Q2”
“720p24”
“ED” “480p60”
“480p30”
“SD” “480p24”
*480i60”

“H Dn

“Q3”

e Specifying “HD,ED” in the desiredRecordQuality property and “DEFAULT” in the
desiredRecordQuality@type property will result in the following:

e If possible, the recording will be made using “HD” quality. In this case, it is up to the
implementation to determine exactly which recording quality level within the “HD” range
will be used for the recording.

e Ifrecording using “HD” quality is not possible, the recording will be made using “ED”
quality, if possible. Again, it is up to the implementation to determine exactly which
recording quality level within the “ED” range will be used for the recording.

e If the recording cannot be made in either “HD” or “ED” quality, then no recording will be
made.

e Specifying “ED,SD,AUTQ” in the desiredRecordQuality property and “DEFAULT” in the
desiredRecordQuality@type property will result in the following:

e If possible, the recording will be made using “ED” quality. It is up to the implementation to
determine exactly which recording quality level within the “ED” range will be used for the
recording.

e Ifthat is not possible, the recording will be made using “SD” quality, if possible. It is up to
the implementation to determine exactly which recording quality level within the “SD” range
will be used for the recording.

e If the recording cannot be made in either “ED” or “SD” quality, then the recording will be
made using any other available recording quality.

e Specifying “720p60” in the desiredRecordQuality property and “ATSC” in the
desiredRecordQuality@type property will result in the following:

e If possible, the recording will be made using “720p60 quality.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 152

e Ifthat is not possible, no recording will be made.

When the ScheduledRecording service responds to a GetAllowedValues() action with
desiredRecordQuality information, then the allowed values MUST be listed in order of quality from
highest quality to lowest. The value “AUTO” MUST always be present and appear as the last item in the
list.

Default Value: Vendor-defined.

Sort Order: Property Specific, based on the allowedValueList for the desiredRecordQuality property.
Ascending: lowest quality first.

Input: The desired setting.
Output: The current setting.

B.3.2.1 allowedValueList for the desiredRecordQuality Property

Table B-10: allowedValueList for the desiredRecordQuality Property

Value ‘ R/O Description

“AUTO” R If none of the quality levels preceding the
“AUTO” value are available, then any recording

quality level may be used. The “AUTO” value

MUST always appear last in the list when

present.
Vendor-defined X
B.3.2.2 desiredRecordQuality @type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: There are many ways to express recording quality. Some implementations use bitrates, some
use user-friendly labels etc. Some implementations might even support multiple ways to express recording
quality simultaneously. The desiredRecordQuality@type property is used to express which type variation
is used in its associated independent desiredRecordQuality property. The “DEFAULT” value MUST be
supported and indicates which of the supported type variations is preferred by the device when expressing
recording quality levels.

Default Value: Vendor-defined.
Sort Order: Lexical.

Input: The desired setting.
Output: The current setting.

B.3.2.2.1 allowedValueList for the desiredRecordQuality@type Property

Table B-11: allowedValueList for the desiredRecordQuality@type Property

Value R/O Description

“DEFAULT” R Indicates the type variation that is preferred by
the device when expressing recording quality
levels.

Vendor-defined

[><

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 153

B.4 Content Identification Related Properties

Table B-12: Content Identification Related Properties

Property Name NS Data M-Val Reference
Type

scheduledCDSObjectID srs | xsd:string NO Appendix B.4.1
scheduledCDSObjectID@Iink srs | xsd:string NO Appendix B.4.1.1
scheduledChannelID srs | xsd:string NO Appendix B.4.2
scheduledChannelID@type srs | xsd:string NO Appendix B.4.2.1
scheduledChannellD@distriNetworkName srs | xsd:string NO Appendix B.4.2.2
scheduledChannellD@distriNetworklD srs | xsd:string NO Appendix B.4.2.3
scheduledStartDateTime srs | xsd:string YES Appendix B.4.3
scheduledDuration srs | xsd:string NO Appendix B.4.4
scheduledProgramCode srs | xsd:string NO Appendix B.4.5
scheduledProgramCode@type srs | xsd:string NO Appendix B.4.5.1

B.4.1 scheduledCDSObjectID
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO
Description: The scheduledCDSObjectID property contains the didl-lite:@id property value of the

ContentDirectory service object from which relevant metadata information is extracted to create the
recordSchedule.

Default Value: N/A — Required on input.
Sort Order: Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of generating
didl-lite:@id values. If didl-lite:@id values contain a numeric (sub)string that contains values that
increment with each new object creation, then use Lexical Numeric; otherwise, use Lexical.

Input: The desired setting.
Output: The current setting.

B.4.1.1 scheduledCDSObjectID@Iink
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledCDSObjectiD@Ilink contains a unique, vendor-defined link identifier that
unambiguously links its scheduledCDSObjectID property to a particular cdsReference property instance
within the same recordSchedule object. See Appendix B.17, “ContentDirectory Service Imported
Properties” for details.

Default Value: N/A — Output only.
Sort Order: Same as cdsReference@link.
Input: N/A.

Output: The current setting.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 154

B.4.2 scheduledChannellD
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledChannellD property provides channel information for the recordSchedule. Its
format depends on the scheduledChannellD@type property as follows:

If scheduledChannellD@type = “ANALOG” then the scheduledChannellD property contains the channel
number.

Note: The label “ANALOG” actually is a misnomer. The format of the scheduledChannellD property does
not indicate the nature of the channel (analog versus digital). Rather, it merely indicates the format
of the label (for example, a single channel number versus a channel number pair). Therefore, the
label “ANALOG” should be interpreted as meaning: the scheduledChannellD property’s format is a
single channel number.

Examples: “5”, “7”, etc.

If scheduledChannellD@type = “DIGITAL” then the scheduledChannellD property contains the channel
number pair “<Major Channel Number>,<Minor Channel Number>".

Note: The label “DIGITAL” actually is a misnomer. The format of the scheduledChannellD property does
not indicate the nature of the channel (analog versus digital). Rather, it merely indicates the format
of the label (for example, a single channel number versus a channel number pair). Therefore, the
label “DIGITAL” should be interpreted as meaning: the scheduledChannellD property’s format is a
channel number pair.

Examples: “5,1”, “5,2”, etc.

If scheduledChannellD@type = “FREQUENCY” then the scheduledChannellD property contains the
channel center frequency, expressed in Hz.

Examples: “150125000” (VHF band), “615000000” (UHF band), “96500000” (FM band), etc.

If scheduledChannellID@type = “SI” then the scheduledChannellD property contains the Service
Information Triplet “<Network 1D>,<Transport Stream ID>, <Service ID>", embedded in the content
stream.

Examples: “0x1234,0xFEDC,0x0102”, “12345,23456,32109”, etc.

If scheduledChannellID@type = “LINE” then the scheduledChannellD property contains a vendor-defined
label identifying the line input.

Examples: “Line 17, “AUX”, “Front”, “Rear”, etc.

If scheduledChannellID@type = “NETWORK?” then the scheduledChannellD property contains the URI
that uniquely identifies the content to be recorded.

Examples: “http://upnp-server/streaml._mp2/”, “http://internet/stream2._mp2/”
Default Value: N/A — Required on input.

Sort Order: type Relationship.

“ANALOG”: Numeric.

“DIGITAL”: Sequenced numeric.

“FREQUENCY”: Numeric.

“SI”: Sequenced lexical.

“LINE”: Lexical.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 155

“NETWORK?”: Lexical.

Vendor-defined: Vendor-defined sorting.
Input: The desired setting.

Output: The current setting.

B.4.2.1 scheduledChannelID@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledChannellD@type property determines the format that is used for the
scheduledChannellD property as defined above.

Default Value: N/A — Required on input.

Sort Order: Property Specific, based on the order in Table B-13. Ascending: first table entry first. If there
is a single vendor-defined value, it sorts in table position. If there are multiple vendor-defined values, they
sort lexically among themselves, all after the Table B-13 entries in ascending order and all before the
Table B-13 entries in descending order.

Input: The desired setting.
Output: The current setting.

B.4.2.1.1 allowedValueList for the scheduledChannellD@type Property

Table B-13: allowedValueList for the scheduledChannellD@type Property

Value R/O Description

“ANALOG” o

“DIGITAL” o

- - At least one value in these rows MUST be
FREQUENCY o) supported by a compliant ScheduledRecording

“g)” 0 service implementation. Control points should
— — support all values in these rows.

“LINEH Q

“NETWORK” o

Vendor-defined X

B.4.2.2 scheduledChannellD@distriNetworkName

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledChannellD@distriNetworkName property contains the name of the
Distribution Network that provides the channel, identified by the scheduledChannellD property.

Default Value: Vendor-defined.
Sort Order: Lexical.

Input: The desired setting.
Output: The current setting.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 156

B.4.2.3 scheduledChannellD@distriNetworkID
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledChannellD@distriNetworklD property contains an 1D that uniquely identifies
the Distribution Network that provides the channel, identified by the scheduledChannellD property

Default Value: Vendor-defined.
Sort Order: Lexical.

Input: The desired setting.
Output: The current setting.

B.4.3 scheduledStartDateTime
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The scheduledStartDateTime property indicates what date or day(s) and time the recording
will take place. This property does not account for any recording time adjustments such as
scheduledStartDateTimeAdjust, and device latencies.

The sched-start format syntax of the scheduledStartDateTime property is defined in Appendix D,
“EBNF Syntax Definitions”.

Examples: “02-07T15:30:00” (February 7", 3:30pm), “2005-02-07T15:30:00” (February 7", 2005,
3:30pm), “MONT15:30:00” (Mondays at 3:30pm), “T15:30:00” (Every day at 3:30pm)

Recording(s) will occur on the next occurrence(s) of the specified date or day(s) and time until the total
number of desired recordings (as indicated by the totalDesiredRecordTasks property) has been made.

Note that the scheduledStartDateTime property is a multi-valued property. Therefore, multiple date×
can be specified for the same recordSchedule. Recording will occur on every next occurrence of any of the
specified start date× until the total number of desired recordings (as indicated by the
totalDesiredRecordTasks property) has been made.

See Appendix B.7.1, “totalDesiredRecordTasks” for further details on the use of the
totalDesiredRecordTasks property.

The value “NOW” is defined by this specification to indicate that the recording MUST start immediately
(as soon as possible).

Default Value: N/A — Required on input.

Sort Order: Property Specific, in chronological order.
Input: The desired setting.

Output: The current setting.

B.4.4 scheduledDuration
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledDuration property indicates the scheduled duration of the recording. The
duration format syntax of the scheduledDuration property is defined in Appendix D, “EBNF Syntax
Definitions”.

Examples: “P01:30:00” (one hour and thirty minutes), “P2D01:15:00” (two-day and seventy five minutes
recording).

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 157

This property does not necessarily represent the exact recording duration but represents the scheduled
recording duration. This property does not account for any recording time adjustments such as
scheduledDurationAdjust, and device latencies.

Default Value: N/A — Required on input.

Sort Order: Property Specific, based on elapsed time. Ascending: shortest elapsed time first.
Input: The desired setting.

Output: The current setting.

B.4.5 scheduledProgramCode
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledProgramCode property indicates the program code provided by a program
guide service of a particular program item. The format of the program code is defined by the program
guide service. A scheduledProgramCode@type property MUST be specified with this property to identify
the program guide service used.

Default Value: N/A — Required on input.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.
Output: The current setting.

B.4.5.1 scheduledProgramCode@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledProgramCode@type property indicates the type of the program guide service
that defines the program code specified in the scheduledProgramCode property. The format of this
property is “<ICANN registered domain>" “_” “<program code name>".

Example: “epg.com_GuideCode”.

Default Value: N/A — Required on input.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.

Output: The current setting.

B.5 Matching Content Criteria Properties

Table B-14: Matching Content Criteria Properties

Property Name NS Data Type M-Val Reference
matchingName srs | xsd:string NO Appendix B.5.1
matchingName@type srs | xsd:string NO Appendix B.5.1.1
matchingName@subStringMatch srs | xsd:boolean NO Appendix B.5.1.2
matchinglD srs | xsd:string NO Appendix B.5.2
matchinglD@type srs | xsd:string NO Appendix B.5.2.1

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 158

B.5.1 matchingName
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingName property contains (part of) the name of a program or series. To match
the criteria of this recordSchedule, an external item’s name information MUST (partially) match the
specified matchingName value. Matching SHOULD be done using lexical matching (see Section 2.2.2.27,
“Lexical Matching”). It MAY be done using simple non-case-sensitive matching (see Section 2.2.2.29,
“Simple Non-case-sensitive Matching”).

Example: “NFL Worldcup 2005, “Friends”.
Default Value: N/A — Required on input.
Sort Order: Lexical.

Note: This is an exception to the normal rule of type Relationship sorting. The equivalent of type
Relationship sorting may be achieved by including “+srs:matchingName@type” in the sort property
list immediately in front of “+srs:matchingName”.

Input: The desired setting.
Output: The current setting.

B.5.1.1 matchingName@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: IF set to “PROGRAM”, then the matchingName property contains a program name. If set to
“SERIES”, then the matchingName property contains a series name.

Default Value: N/A — Required on input.

Sort Order: Property Specific, based on the order in Table B-15. Ascending: first table entry first.
Input: The desired setting.

Output: The current setting.

B.5.1.1.1 allowedValuelList for the matchingName@type Property

Table B-15: allowedValueList for the matchingName@type Property

Value R/O Description

“PROGRAM” R

“SERIES” R

B.5.1.2 matchingName@subStringMatch

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: If set to “1”, the value specified in the matchingName property is used for a substring match
search within the program or series name (title). If set to “0” the value specified in the matchingName
property must match the program or series name exactly.

Default Value: “1”.
Sort Order: Boolean.

Input: The desired setting.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 159

Output: The current setting.

B.5.2 matchingID
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchinglD property contains the unique ID of a program or series. To match the
criteria of this recordSchedule, an external item’s ID information MUST match the specified matchingID
value.

If the matchingID@type property is set to “SI_PROGRAMID”, then the matchinglD property is formatted
as follows:

“<Network 1D>,<Transport Stream 1D>,<Service ID>,<Program 1D>".

If the matchingID@type property is set to “SI_SERIESID”, then the matchinglD property is formatted as
follows:

“<Network 1D>,<Transport Stream ID>,<Service ID>,<Series ID>".

If the matchinglD@type property is set to <ICANN Name=>, then the matchinglD property is formatted as
follows:

“<Unique content ID, defined by the data provider>”.

Default Value: N/A — Required on input.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.

Output: The current setting.

B.5.2.1 matchinglD@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchinglD@type property indicates the type of the ID that is contained in the
matchinglD property.

Default Value: N/A — Required on input.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.
Output: The current setting.

B.5.2.1.1 allowedValueList for the matchingID@type Property

Table B-16: allowedValueList for the matchinglD@type Property

Value ‘ R/O Description
“SI_PROGRAMID” R
“Sl_SERIESID” R

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 160

Value ‘ R/O Description

<ICANN Name>_<Identifier> o <ICANN Name>: The ICANN name of the
organization that defines the format and values

of the matchinglD property.

<ldentifier>: A unique identifier for the
particular 1D type, defined by that organization.

Examples: “mycompany.com_ID1”,
“upnp.org_SpecialID”.

B.6 Matching Qualifying Criteria Properties
Table B-17: Matching Qualifying Criteria Properties

Property Name ‘NS Data Type M-Val Reference

matchingChannellD srs | xsd:string YES Appendix B.6.1
matchingChannelID@type srs | xsd:string NO Appendix B.6.1.1
matchingChannellD@distriNetworkName srs | xsd:string NO Appendix B.6.1.2
matchingChannellD@distriNetworklD srs | xsd:string NO Appendix B.6.1.3
matchingStartDateTimeRange srs | xsd:string YES Appendix B.6.2
matchingDurationRange srs | xsd:string YES Appendix B.6.3
matchingRatingLimit srs | xsd:string YES Appendix B.6.4
matchingRatingLimit@type srs | xsd:string NO Appendix B.6.4.2
matchingEpisodeType srs | xsd:string NO Appendix B.6.5
B.6.1 matchingChannellD

Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The matchingChannellD property contains a scheduledChannellD value. Its format depends
on the matchingChannelID@type property. To match the criteria of this recordSchedule, an external
item’s channel information (after translation into the format of a scheduledChannellD property) MUST
match one of the specified matchingChannellD values. If this property is omitted from the
recordSchedule, the external item’s channel information is not taken into consideration to determine a
match.

Default Value: N/A — Not used if omitted on input.

Sort Order: Same as scheduledChannellD.

Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

B.6.1.1 matchingChannelID@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 161

Description: The matchingChannellD@type property determines the format that is used for the
matchingChannellD property as defined in Appendix B.4.2, “scheduledChannellD” and Appendix
B.4.2.1, “scheduledChannellID@type”.

Default VValue: N/A — Not used if omitted on input .

Sort Order: Same as scheduledChannelID @type.

Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

B.6.1.2 matchingChannellD@distriNetworkName
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingChannellD@distriNetworkname property definition is identical to the
scheduledChannellD@distriNetworkName property definition. See Appendix B.4.2.2,
“scheduledChannellD@distriNetworkName” for details.

Default Value: N/A — Not used if omitted on input.
Sort Order: Same as scheduledChannellD@distriNetworkName property.

Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

B.6.1.3 matchingChannellD@distriNetworkID
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchinChannellD@distriNetworkID property definition is identical to the
scheduledChannellD@distriNetwork property definition. See Appendix B.4.2.3,
“scheduledChannellD@distriNetworklD” for details.

Default Value: N/A — Not used if omitted on input.
Sort Order: Same as scheduledChannellID@distriNetworkID property.

Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

B.6.2 matchingStartDateTimeRange
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The matchingStartDateTimeRange property contains a date range. The start-range
format syntax of the matchingStartDateTimeRange property is defined inAppendix D, “EBNF Syntax
Definitions”.

The value specified after the “/” MUST be equal or greater than the value specified before the “/”.

To match the criteria of this recordSchedule, an external item’s start date and time information MUST
fall within one of the specified matchingStartDateTimeRange ranges. If this property is omitted from the
recordSchedule, the external item’s start date and time information is not taken into consideration to
determine a match.

Note: The matchingStartDateTimeRange property is different from the activePeriod property in that the
first identifies the actual matching criteria whereas the second identifies the period of time when potential
matches are to be examined.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 162

Default Value: N/A — Not used if omitted on input.

Sort Order: Sequenced Sort of two date&time subvalues separated by “/”.
Both subvalues are sorted in chronological order.

Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

B.6.3 matchingDurationRange
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

The matchingDurationRange property contains a duration range. The duration-range format syntax
of the matchingDurationRange property is defined in Appendix D, “EBNF Syntax Definitions”.

The value specified after the “/” MUST be equal or greater than the value specified before the “/”.

To match the criteria of this recordSchedule, an external item’s duration information (after translation
into the format of a scheduledDuration property) MUST fall within the specified matchingDurationRange
range. If this property is omitted from the recordSchedule, the external item’s duration information is not
taken into consideration to determine a match.

Default Value: N/A — Not used if omitted on input.
Sort Order: Sequenced Sort of two duration subvalues separated by “/”.
Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

B.6.4 matchingRatingLimit
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The matchingRatingLimit property indicates a maximum allowed rating. Several different
rating systems are available. The rating system is indicated in the matchingRatingLimit@type property.
The allowed values for the matchingRatingLimit property depend on the rating system used.

Common rating systems as well as their allowed rating values (in order of ascending restriction level
beginning with the most lenient) for each rating system are defined below.

Other values MAY be specified using other rating systems identified by their ICANN domain names.

To match the criteria of this recordSchedule, an external item’s rating information MUST be less than or
equal to all of the specified matchingRatingLimit values. If this property is omitted from the
recordSchedule, the external item’s rating information is not taken into consideration to determine a
match. If the external item does not contain rating information and this property is specified, the external
item will not be recorded.

Default Value: N/A — Not used if omitted on input.
Sort Order: type Relationship.

For each value of matchingRatingLimit@type, based on the order in the table associated with the
matchingRatingLimit@type property below. Ascending: first table entry first.

Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

B.6.4.1

allowedValueList for the matchingRatingLimit Property

The allowed values for the matchingRatingLimit property depends on the matchingRatingLimit@type

property. The following tables list the allowed values for each defined rating system.

Table B-18: allowedValueList for the matchingRatingLimit Property Using the MPAA
Rating System (matchingRatingLimit@type = “MPAA.ORG")

163

Value ‘ R/O Description

“G” R General Audiences.

“PG” R Parental Guidance Suggested.
“PG-13" R Parents Strongly Cautioned.

“R” R Restricted.

“NC-17” R No One 17 and Under Admitted.
“NR” R Not Rated Yet.

Table B-19: allowedValueList for the matchingRatingLimit Property Using the RIAA
Rating System (matchingRatingLimit@type = “RIAA.ORG")

Value ‘ R/O Description
R Non-explicit Content
“PA-EC” R Parental Advisory — Explicit Content

Table B-20: allowedValueList for the matchingRatingLimit Property Using the ESRB
Rating System (matchingRatingLimit@type = “ESRB.ORG”")

Value ‘ R/O Description

“EC” R Early Childhood.

“E” R Everyone.

“E10+" R Everyone 10 and Older.
“T" R Teen.

“M” R Mature.

“AQ” R Adults Only.

“RP” R Rating Pending.

Table B-21: allowedValueList for the matchingRatingLimit Property Using the
TVGUIDELINES Rating System (matchingRatingLimit@type =

“TVGUIDELINES.ORG")

Value ‘ R/O Description

“TV-Y” R All Children.

“TV-Y7” R Directed to Older Children.

“TV-Y7EV” R Directed to Older Children — Fantasy Violence.
“TV-G” R General Audience.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 164

Value ‘ R/O Description

“TV-PG” R Parental Guidance Suggested.

“TV-14" R Parents Strongly Cautioned.

“TV-MA” R Mature Audience Only.

B.6.4.2 matchingRatingLimit@type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingRatingLimit@type property indicates the rating system used in the
matchingRatingLimit property. Several different rating systems are available. The allowed values for the
matchingRatingLimit property depend on the rating system used.

Other rating systems MAY be specified using their ICANN domain names.

This is not a matching property. It is used in conjunction with the matchingRatingLimit property and
identifies the used rating system.

Default Value: N/A — Required in input.
Sort Order: Lexical.

Input: The desired setting.

Output: The current setting.

B.6.4.2.1 allowedValuelList for the matchingRatingLimit@type Property

Table B-22: allowedValueList for the matchingRatingLimit@type Property

Value ‘ R/O Description Remarks

“MPAA.ORG” (6] The Motion Picture

Association of America. At least one value in these rows

“RIAA.ORG” 0 The Recording Industry MUST be supported by a
Association of America. compliant ScheduledRecording
- service implementation.
ESRB.ORG O | The Entertainment Control points should support
Software Rating Board. all values in these rows.
“TVGUIDELINES.ORG” 0] TV Parental Guidelines.
<ICANN Name>_<Identifier> | X <ICANN Name>: The

ICANN name of the
organization that defines
the rating.

<ldentifier>: A unique
identifier for a particular
rating system, defined by
that organization.

Examples:
“mycompany.com_RS1”,
“upnp.org_ratingx”.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 165

B.6.5 matchingEpisodeType
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingEpisodeType property indicates the type of content to be recorded in terms of
its broadcast novelty. To match the criteria of this recordSchedule, an external item’s episode type
information MUST match the specified matchingEpisodeType value. If this property is omitted from the
recordSchedule, the external item’s episode type information is not taken into consideration to determine
a match. If the external item does not contain episode type information and this property is specified, the
external item will not be recorded.

Default Value: N/A — Not used if omitted on input.
Sort Order: Property Specific, based on the order in Table B-23. Ascending: first table entry first.
Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

B.6.5.1 allowedValuelList for the matchingEpisodeType Property

Table B-23: allowedValueList for the matchingEpisodeType Property

Value ‘ R/O Description
“ALL” R All programs are recorded.
“FIRST-RUN” R Only programs that have an original air date

equal to the current date are recorded.

“REPEAT”

|70

Only programs that have an original air date
earlier than the current date are recorded.

B.7 Content Control Properties

Table B-24: Content Control Properties

Property Name NS Data Type M-Val Reference
totalDesiredRecordTasks srs | xsd:unsignedint | NO Appendix B.7.1
scheduledStartDateTimeAdjust srs | xsd:string NO Appendix B.7.2
scheduledDurationAdjust srs | xsd:string NO Appendix B.7.3
activePeriod srs | xsd:string NO Appendix B.7.4
durationLimit srs | xsd:string NO Appendix B.7.5
durationLimit@effect srs | xsd:string NO Appendix B.7.5.1
channelMigration srs | xsd:boolean NO Appendix B.7.6
timeMigration srs | xsd:boolean NO Appendix B.7.7
allowDuplicates srs | xsd:boolean NO Appendix B.7.8

B.7.1 totalDesiredRecordTasks
Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 166

Description: The totalDesiredRecordTasks property indicates the maximum number of recordTask
instances, associated with a given recordSchedule that will ever be generated over the lifetime of the
recordSchedule. A value of 0 means that an unlimited number of recordTask instances can be spawned
from the recordSchedule.

This property is used to enable or disable recurrence. If a value different from 1 is specified in the
totalDesiredRecordTasks property, then the recordSchedule MUST remain active after the first
recordTask has been spawned and MUST monitor its internal state to determine if the conditions that
caused the first recordTask to be spawned are met again in the future. Whenever this happens, a new
recordTask MUST be spawned until the total number of spawned recordTask instances reaches the value,
specified in the totalDesiredRecordTasks property. The activePeriod property can be used to terminate
this process prematurely.

Default Value: 1 (recurrence is disabled by default).
Sort Order: Numeric.

Input: The desired setting.

Output: The current setting.

B.7.2 scheduledStartDateTimeAdjust
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledStartDateTimeAdjust property indicates a time period to be applied as an
adjustment to the scheduled start time. The duration-ad]j format syntax of the
scheduledStartDateTimeAdjust property is defined in Appendix D, “EBNF Syntax Definitions”.

Note that the scheduledStartDateTimeAdjust property can take on both positive and negative values.
Negative values provide pre-roll functionality (notice the + sign in the formula below) whereas positive
values allow for starting the recording a certain period of time into the recording. The actual scheduled
start time is calculated as:

actualScheduledStartDateTime = scheduledStartDateTime + scheduledStartDateTimeAdjust

Default Value: Vendor-defined.

Sort Order: Property Specific, based on elapsed time. Ascending: from longest negative elapsed time to
longest positive elapsed time.

Input: The desired setting.
Output: The current setting.

B.7.3 scheduledDurationAdjust
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledDurationAdjust property indicates a period of time to be applied as an
adjustment to the scheduled duration time. The duration-adj format syntax of the
scheduledDurationAdjust property is defined in Appendix D, “EBNF Syntax Definitions”.

Note that the scheduledDurationAdjust property can take on both positive and negative values. Positive
values provide post-roll functionality whereas negative values allow for ending the recording a certain
time period before the end of the recording. The actual scheduled end time and actual scheduled duration
are calculated as:

actualScheduledEndDateTime = scheduledStartDateTime + scheduledDuration +
scheduledDurationAdjust

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 167

actualScheduledDuration actualScheduledEndDateTime — actualScheduledStartDateTime

scheduledDuration + scheduledDurationAdjust —
scheduledStartDateTimeAdjust

Default Value: Vendor-defined.

Sort Order: Property Specific, based on elapsed time. Ascending: from longest negative elapsed time to
longest positive elapsed time.

Input: The desired setting.
Output: The current setting.

B.7.4 activePeriod
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The activePeriod property indicates the date&time range within which the recordSchedule
is active; that is: the recordSchedule MUST NOT spawn any recordTask instances whose
actualStartDateTime fall outside the period specified in the activePeriod property. The start-range
format syntax of the activePeriod property is defined in Appendix D, “EBNF Syntax Definitions”.

The value specified after the “/” MUST be equal or greater than the value specified before the “/”.

A recordSchedule MUST not generate new recordTask instances for programs broadcast after the
expiration date.

A value of “NOW/INFINITY” means that recordTasks corresponding to content that is available from the
current time of day into the future are spawned. A value of “PAST/INFINITY” means that there are no
time-based restrictions on recordTask instances that are created. Implementations are that are able to
temporarily preserve transitory content that was broadcast in the past are allowed to record content that
was broadcast in the past. For implementations that are not able to temporarily preserve content,
“PAST/INFINITY” is equivalent to “NOW/INFINITY”.

Note: The activePeriod property is different from the matchingStartDateTimeRange property in that the
first identifies the period of time when potential matches are to be examined whereas the second identifies
the actual matching criteria.

Default Value: “PAST/INEINITY”.

Sort Order: Sequenced Sort of two date&time subvalues separated by “/”.
Both subvalues are sorted in chronological order.

Input: The desired setting.

Output: The current setting.

B.7.5 durationLimit
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The durationLimit property indicates the maximum allowed duration of the recording. The
duration-1long format syntax of the durationLimit property is defined in Appendix D, “EBNF Syntax
Definitions”.

If the actual duration of the recording exceeds the value specified in the durationLimit property, then the
ScheduledRecording service MUST stop recording and either delete the partially recorded content so far
or preserve part of the recorded content depending on the current setting of the durationLimit@effect

property.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 168

If the durationLimit property is set to “INFINITY”, then no limit is in effect.

Example: the value “P02:30:00” indicates that the recording MUST be stopped after two and a half hours.
Default Value: Vendor-defined.

Sort Order: Property Specific, based on elapsed time. Ascending: shortest elapsed time first.

Input: The desired setting.

Output: The current setting.

B.7.5.1 durationLimit@effect
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The durationLimit@effect property determines the behavior of the recordSchedule when the
duration of the content exceeds the value specified in the durationLimit property.

If set to “SKIP”, then the partially recorded content is deleted once the actualDuration of the recording
exceeds the value specified in the durationLimit property.

If set to “LAST”, then only the latest part (in length equal to the value specified in the durationLimit
property) of the content is preserved, effectively deleting the first part of the recording.

If set to “FIRST”, then only the initial part (in length equal to the value specified in the durationLimit
property) of the content is preserved, effectively deleting the last part of the recording.

Default Value: Vendor-defined.

Sort Order: Property Specific, based on the order in Table B-25. Ascending: first table entry first.
Input: The desired setting.

Output: The current setting.

B.7.5.1.1 allowedValueList for the durationLimit@effect Property

Table B-25: allowedValueList for the durationLimit@effect Property

Description
SKIP = At least one value in these rows MUST be
“LAST” (6] supported. Control points should support all
“EIRST”) values in these rows.
B.7.6 channelMigration
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: A program’s scheduled channel may change between the time the recordSchedule was
created and the actual broadcast time. If this property is set to “1”, then the ScheduledRecording service
MUST automatically follow the program if it moves to another channel (The reservation will be tracking
broadcast channel change). If this value is set to “0”, then the ScheduledRecording service does not follow
the program, and the recording will take place on the channel that was specified at the time the
recordSchedule created the accociated recordTask.

Default Value: Vendor-defined.

Sort Order: Boolean.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 169

Input: The desired setting.
Output: The current setting.

B.7.7 timeMigration
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: A program’s scheduled date&time may change between the time the recordSchedule was
created and the actual broadcast time. If this property is set to “1”, then the ScheduledRecording service
MUST automatically follow the program if it moves to another date&time (The reservation will be
tracking broadcast date&time change). If this value is set to “0”, then the ScheduledRecording service
does not follow the program, and the recording will take place at the date&time that was specified at the
time the recordSchedule created the accociated recordTask.

Default Value: Vendor-defined.
Sort Order: Boolean.

Input: The desired setting.
Output: The current setting.

B.7.8 allowDuplicates
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: If set to “1”, then programs are recorded, even if a duplicate program has already been
recorded as a result of the recordSchedule. If set to “0”, no duplicates are recorded. Detection of duplicate
programs is device- and EPG-dependent.

Default Value: Vendor-defined.
Sort Order: Boolean.

Input: The desired setting.
Output: The current setting.

B.8 Storage Related Properties

Table B-26: Storage Related Properties

Property Name NS Data Type M-Val Reference
persistedRecordings srs | xsd:unsignedint | NO Appendix B.8.1
persistedRecordings@latest srs | xsd:boolean NO Appendix B.8.1.1
persistedRecordings@preAllocation srs | xsd:boolean NO Appendix B.8.1.2
persistedRecordings@storedLifetime srs | xsd:string NO Appendix B.8.1.3

B.8.1 persistedRecordings
Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 170

Description: The persistedRecordings property indicates the minimum number of recordings for a given
recordSchedule that will be preserved at all times, once available. Even when the ScheduledRecording
service needs to make space for other recordings, this minimum number of recordings (that is: the actual
content) generated by the recordSchedule will not be deleted. However, if more recordings, associated
with the recordSchedule exist, then these excess recordings MAY be deleted by the ScheduledRecording
service. Whether the oldest or the newest excess recordings will be deleted depends on the value of the
persistedRecordings@latest property.

Default Value: Vendor-defined.
Sort Order: Numeric.

Input: The desired setting.
Output: The current setting.

B.8.1.1 persistedRecordings @latest
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The persistedRecordings@latest property indicates whether newest or oldest recordings are
preserved. If set to “1”, then the newest recordings are preserved. The recordings prior to these MAY be
deleted when more recent content is recorded.

If set to “0”, then the oldest recordings are preserved. Older content will never be deleted to make room
for newer content.

Default Value: Vendor-defined.
Sort Order: Boolean.

Input: The desired setting.
Output: The current setting.

B.8.1.2 persistedRecordings@preAllocation
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The persistedRecordings@preAllocation property indicates whether to reserve storage space
on beforehand to accommodate for the number of recordings as indicated by the persistedRecordings
property. If set to “1”, adequate storage space is reserved. To reserve storage space, the
ScheduledRecording service calculates a best estimate based on parameters such as record quality, start
time and duration adjustment etc. However, the ScheduledRecording service can never guarantee that
sufficient storage space is reserved to accommodate the total number of recordings, specified in the
persistedRecordings property. If set to “0”, no storage space is reserved.

Default Value: Vendor-defined.
Sort Order: Boolean.

Input: The desired setting.
Output: The current setting.

B.8.1.3 persistedRecordings@storedLifetime
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The persistedRecordings@storedLifetime property indicates the minimum time recorded
content associated with a recordSchedule will be preserved after the recording completes. This will
prohibit a recording from being deleted by the auto-delete operation within the specified time period. The

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 171

duration-any format syntax of the persistedRecordings@storedLifetime property is defined in
Appendix D, “EBNF Syntax Definitions”.

If the value is set to “INFINITY”, then the content MUST never be automatically deleted.

A value of “ANY” indicates that the content can be deleted at any time by the auto-delete operation.
However, it is RECOMMENDED that a ScheduledRecording service implementation only deletes content
when space is needed.

Default Value: Vendor-defined.

Sort Order: Property Specific, based on elapsed time. Ascending: shortest elapsed time first. “ANY” is
considered the shortest elapsed time possible; “INFINITY” is considered the longest elapsed time possible.

Input: The desired setting.
Output: The current setting.

B.9 Schedule State Properties

Table B-27: Schedule State Properties

Property Name NS Data Type M-Val Reference
scheduleState srs | xsd:string NO Appendix B.9.1
scheduleState@currentErrors srs | CSV (xsd:int) NO Appendix B.9.1.2
abnormalTasksExist srs | xsd:boolean NO Appendix B.9.2

B.9.1 scheduleState
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduleState property indicates the overall state of the recordSchedule itself.
Default Value: N/A — Output only.

Sort Order: Property Specific, based on the order in Table B-28. Ascending: first table entry first.
Input: N/A.

Output: The current setting.

B.9.1.1 allowedValuelList for the scheduleState Property

Table B-28: allowedValuelList for the scheduleState Property

Value R/O Description

“OPERATIONAL” R recordSchedule is operating and spawning
recordTask instances as scheduled.

“COMPLETED” R recordSchedule is completed and reached final
disposition. No properties will change.
“ERROR” R recordSchedule ceases spawning recordTask

instances due to error.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 172

B.9.1.2 scheduleState@currentErrors
Namespace: srs Property Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The scheduleState@currentErrors property indicates the current error(s) that cause the
schedule to be in the “ERROR?” state. This error list pertains specifically to the behavior of a
recordSchedule and describes a recordSchedule’s inability to create new tasks. When the scheduleState
property has the value “OPERATIONAL”, the scheduleState@currentErrors property MUST be empty.
The list of error codes are listed in the recordSchedule error code section.

Default VValue: N/A — Output only.
Sort Order: Sequenced Numeric.
Input: N/A.

Output: The current setting.

B.9.1.2.1 allowedValueList for the scheduleState@currentErrors Property

Table B-29: allowedValueList for the scheduleState@currentErrors Property

Value R/O Description

0-99 N/A Reserved

100 R General error — an error is detected but the cause can not be identified.

101 (6] The number of spawned recordTask instances has reached some device
dependent limit.

102 (6] EPG information not available.

103 (6] recordSchedule is disabled by the user.

104 (6] Insufficient memory — The system does not have enough system memory to
create any additional recordTask instances.

105 (6] General resource error — some system related resource is causing the
recordSchedule to malfunction.

106-149 (6] Reserved for future recordSchedule error codes.

150-199 X Vendor extended recordSchedule error codes.

200 and above N/A Reserved for future extensions.

B.9.2 abnormalTasksEXist
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: If this property is set to “1”, then that indicates that at least one abnormal recordTask exists
for the recordSchedule. If this property is set to “0”, then no abnormal recordTask exists for the
recordSchedule. A recordTask is considered abnormal if it reaches any state other than “IDLE.READY”,
“ACTIVE.RECORDING.FROMSTART.OK” or “DONE.FULL".

Default Value: N/A — Output only.

Sort Order: Boolean.
Input: N/A.
Output: The current setting.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 173

B.10 Statistics Properties

Table B-30: Statistics Properties

Property Name NS Data Type M-Val Reference

currentRecordTaskCount srs | xsd:unsignedint | NO Appendix B.10.1
totalCreatedRecordTasks srs | xsd:unsignedint | NO Appendix B.10.2
totalCompletedRecordTasks srs | xsd:unsignedint | NO Appendix B.10.3

B.10.1 currentRecordTaskCount
Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

Description: The currentRecordTaskCount property indicates the number of existing recordTask
instances that are currently associated with a given recordSchedule. Previously generated recordTask
instances that have finished recording and that have been (auto-)deleted by the ScheduledRecording
service are not taken into account.

Default Value: N/A — Output only.
Sort Order: Numeric.

Input: N/A.

Output: The current setting.

B.10.2 totalCreatedRecordTasks
Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

Description: The totalCreatedRecordTasks property indicates how many recordTask instances have been
created during the lifetime of the associated recordSchedule. This includes previously generated
recordTask instances that have finished recording and that have been (auto-)deleted by the
ScheduledRecording service.

Default Value: N/A — Output only.
Sort Order: Numeric.

Input: N/A.

Output: The current setting.

B.10.3 totalCompletedRecordTasks
Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

Description: The totalCompletedRecordTasks property indicates how many recordTask instances have
been completed (that is: reached any of the “DONE.xxx” states, during the lifetime of the associated
recordSchedule. This includes previously generated recordTask instances that have finished recording
and that have been (auto-)deleted by the ScheduledRecording service.

Default Value: N/A — Output only.
Sort Order: Numeric.

Input: N/A.

Output: The current setting.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 174

B.11 Task General Properties

Table B-31: Task General Properties

Property Name NS Data Type M-Val Reference
recordSchedulelD srs | xsd:string NO Appendix B.11.1
recordedCDSObjectID srs | xsd:string NO Appendix B.11.2
recordedCDSObjectID@Iink srs | xsd:string NO Appendix B.11.2.1

B.11.1 recordSchedulelD
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The recordSchedulelD property contains the value of the @id property of the
recordSchedule that generated the recordTask.

Default Value: N/A — Output only.
Sort Order: Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method maost appropriate for its method of generating @id
values. If @id values contain a numeric (sub)string that contains values that increment with each new
object creation, then use Lexical Numeric; otherwise, use Lexical.

Input: N/A.
Output: The current setting.

B.11.2 recordedCDSObjectID
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The recordedCDSObjectID property contains the didl-lite:@id property value of the
ContentDirectory service object that represents the content recorded by the recordTask.

Default Value: N/A — Output only.
Sort Order Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of generating
didl-lite:@id values. If didl-lite:@id values contain a numeric (sub)string that contains values that
increment with each new object creation, then use Lexical Numeric; otherwise, use Lexical.

Input: N/A.
Output: The current setting.

B.11.2.1 recordedCDSObjectID@Ilink
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The recordedCDSObjectID@Iink contains a unique, vendor-defined link identifier that
unambiguously links its recordedCDSObjectID property to a particular cdsReference property instance
within the same recordTask object. See Appendix B.17, “ContentDirectory Service Imported Properties”
for details.

Default Value: N/A — Output only.

Sort Order: Same as cdsReference@link property.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 175

Input: N/A.
Output: The current setting.

B.12 Task Content Identification Properties

Table B-32: Task Content Identification Properties

Property Name NS Data Type M-Val Reference
taskCDSObjectID srs | xsd:string NO Appendix B.12.1
taskCDSObjectID@Iink srs | xsd:string NO Appendix B.12.1.1
taskChannellD srs | xsd:string NO Appendix B.12.2
taskChannelID@type srs | xsd:string NO Appendix B.12.2.1
taskChannelID@distriNetworkName srs | xsd:string NO Appendix B.12.2.2
taskChannelID@distriNetworkID srs | xsd:string NO Appendix B.12.2.3
taskStartDateTime srs | xsd:string NO Appendix B.12.2.2
taskDuration srs | xsd:string NO Appendix B.12.4
taskProgramCode srs | xsd:string NO Appendix B.12.5
taskProgramCode@type srs | xsd:string NO Appendix B.12.5.1
recordQuality srs | xsd:string YES Appendix B.12.6
recordQuality@type srs | xsd:string NO Appendix B.12.6.2

B.12.1 taskCDSObjectID
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO
Description: The taskCDSObjectlD property contains the didl-lite@id property value of the

ContentDirectory service object from which relevant metadata information was extracted to create the
recordSchedule that generated this recordTask.

Default Value: N/A — Output only.
Sort Order: Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of generating
didl-lite:@id values. If didl-lite:@id values contain a numeric (sub)string that contains values that
increment with each new object creation, then use Lexical Numeric; otherwise, use Lexical.

Input: N/A.
Output: The current setting.

B.12.1.1 taskCDSObjectID@link
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskCDSObjectID@Iink contains a unique, vendor-defined link identifier that
unambiguously links its taskCDSObjectID property to a particular cdsReference property instance within
the same recordTask object. See Appendix B.17, “ContentDirectory Service Imported Properties” for
details.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 176

Default Value: N/A — Output only.
Sort Order: Same as cdsReference@link property.
Input: N/A.

Output: The current setting.

B.12.2 taskChannellD
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskChannellD property indicates the actual channel that is used for the recording. Its
format depends on the taskChannelID@type property. The possible formats and the dependency on the
taskChannelID@type property are identical to the possible formats of the scheduledChannelID and its
dependency on the scheduledChannelID@type property as described in Appendix B.4.2,
“scheduledChannellD” and Appendix B.4.2.1, “scheduledChannelID@type”.

Default VValue: N/A — Output only.

Sort Order: Same as scheduledChannellD property.
Input: N/A.

Output: The current setting.

B.12.2.1 taskChannellD@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskChannelID@type property determines the format that is used for the taskChannellD
property as defined above. See Appendix B.4.2.1, “scheduledChannelID@type” for details and allowed
values.

Default Value: N/A — Output only.
Sort Order: Same as scheduledChannelID@type property.
Input: N/A.

Output: The current setting.

B.12.2.2 taskChannellD@distriNetworkName
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskChannelID@distriNetworkname property definition is identical to the
scheduledChannellD@distriNetworkName property definition. See Appendix B.4.2.2,
“scheduledChannellD@distriNetworkName” for details.

Default Value: N/A — Output only.
Sort Order: Same as scheduledChannellD@distriNetworkName property.
Input: N/A.

Output: The current setting.

B.12.2.3 taskChannellD@distriNetworkID
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 177

Description: The taskChannelID@distriNetworkID property definition is identical to the
scheduledChannellD@distriNetwork property definition. See Appendix B.4.2.3,
“scheduledChannellD@distriNetworklD” for details.

Default Value: N/A — Output only.
Sort Order: Same as scheduledChannellD@distriNetworkID property.
Input: N/A.

Output: The current setting.

B.12.3 taskStartDateTime
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskStartDateTime property indicates the actual start date&time (based on the current
information) of the recording. This date&time does not include any adjustments. These are reflected in the
taskStartDateTimeAdjust property. The date-time format syntax of the taskStartDateTime property is
defined in Appendix D, “EBNF Syntax Definitions”.

Default Value: N/A — Output only.

Sort Order: Property Specific, in chronological order.
Input: N/A.

Output: The current setting.

B.12.4 taskDuration
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskDuration property indicates the actual duration (based on the current information)
of the recording. This duration does not include any adjustments. These are reflected in the
taskDurationAdjust property. The duration format syntax of the taskDuration property is defined in
Appendix D, “EBNF Syntax Definitions”.

Default Value: N/A — Output only.

Sort Order: Property Specific, based on elapsed time. Ascending: shortest elapsed time first.
Input: N/A.

Output: The current setting.

B.12.5 taskProgramCode
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskProgramCode property indicates the actual program code that is used for the
recording. The format is identical to the format of the scheduledProgramCode property. See Appendix
B.4.5, “scheduledProgramCode” for details.

Default VValue: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 178

B.12.5.1 taskProgramCode@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskProgramCode@type property indicates the type of the program guide service that
defines the program code specified in the taskProgramCode property. The format is identical to the format
of the scheduledProgramCode@type property. See Appendix B.4.5.1, “scheduledProgramCode @type”
for details.

Default Value: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

B.12.6 recordQuality
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The recordQuality property expresses the recording quality level that is used for a particular
recordTask.

When the recordTask is in the “IDLE” phase (the actual recording has not started yet), this property
contains a best-known estimate of the recording quality for the recording. Therefore, the recordQuality
property MUST contain one of the vendor-defined values supported by the ScheduledRecording service.
The value “AUTO” is not allowed. If the implementation does not have enough information to generate a
value with some accuracy, then the value “UNKNOWN” MUST be used.

When the recordTask is in the “ACTIVE” or “DONE” phase, the recordQuality property MUST contain
one of the values supported by the implementation, that describes the actual recording quality. The values
“AUTO” and “UNKNOWN?" are not allowed.

There are many ways to express recording quality. Some implementations use bitrates, some use user-
friendly labels etc. Some implementations might even support multiple ways to express recording quality
simultaneously. The recordQuality property is used in conjunction with the recordQuality@type to allow
implementations to express these type variations.

For each type variation, the allowed values for the recordQuality property MUST be the same as the
allowed values supported for the corresponding type variation of the desiredRecordQuality property,
except that “UNKNOWN?” replaces “AUTO”.

Note that the recordQuality property is a multi-valued property. Therefore, the actual recording quality
level can be expressed using different type variations simultaneously. As a baseline, all implementations
MUST support type variation “DEFAULT”. All record quality levels expressed in a certain type variation
MUST have equivalent quality levels expressed in all other type variations, supported by the
implementation. If an implementation supports multiple type variations to express recording quality, then
it MUST provide the recording quality level expressed in all supported type variations.

Example: Assume a (hypothetical) implementation that supports the type variations “DEFAULT”,
“ATSC” and “QLEVEL” for the recordQuality@type property. The following table expresses the
supported recordQuality property values for those variations and also indicates how the different type
variations interrelate for this particular implementation:

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 179

Table B-33: recordQuality Example

DEFAULT fATsc folever |
“1080p30”
“1080p24” “Q1”
“1080i60”
“720p60”
“720p30” “Q2”
“720p24”
“ED” “480p60”
“480p30”
“SD” “480p24”
“480i60”
“UNKNOWN” “UNKNOWN” “UNKNOWN”

“H Dn

uan

e Assuming the actual recording quality of a recordTask is “720p60” (as an example), then the
recordTask object MUST include three instances of the recordQuality property as illustrated by
the following XML fragment:

<recordQuality type="DEFAULT">HD</recordQuality>
<recordQuality type="ATSC">720p60</recordQuality>
<recordQuality type="QLEVEL">Q2</recordQuality>

e Assuming the actual recording quality of a recordTask is “480p60”, then the recordTask object
MUST include three instances of the recordQuality property as illustrated by the following XML
fragment:

<recordQuality type="DEFAULT">ED</recordQuality>
<recordQuality type="ATSC">480p60</recordQuality>
<recordQuality type="QLEVEL">Q3</recordQuality>

When the ScheduledRecording service responds to a GetAllowedValues() action with recordQuality
information, then the allowed values MUST be listed in order of quality from highest quality to lowest.

Default Value: N/A — Output only.
Sort Order: type Relationship.
Input: N/A.

Output: The current setting.

B.12.6.1 allowedValuelList for the recordQuality Property

Table B-34: allowedValueList for the recordQuality Property

Description

“UNKNOWN?” R The recording quality is unknown by the
ScheduledRecording service. Only applicable
when the recordTask is in the “IDLE” phase.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 180

R/O Description

Vendor-defined X

B.12.6.2 recordQuality @type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: There are many ways to express recording quality. Some implementations use bitrates, some
use user-friendly labels etc. Some implementations might even support multiple ways to express recording
quality simultaneously. The recordQuality@type property is used to express which type variation is used
in its associated independent recordQuality property. The “DEFAULT” value MUST be supported.

Default VValue: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.
Output: The current setting.

B.13 Task Matched Content Criteria Properties

Table B-35: Task Matched Content Criteria Properties

Property Name NS Data Type M-Val Reference
matchedName srs | xsd:string NO Appendix B.13.1
matchedName@type srs | xsd:string NO Appendix B.13.1.1
matchedID srs | xsd:string NO Appendix B.13.2
matchedID@type srs | xsd:string NO Appendix B.13.2.1

B.13.1 matchedName
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchedName property contains the full matched name of a program or series. This is
the full program or series name of the external item that (partially) matched the name specified in the
matchingName property of the recordSchedule.

Default VValue: N/A — Output only.

Sort Order: Same as matchingName property.
Input: N/A.

Output: The current setting.

B.13.1.1 matchedName@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: IF set to “PROGRAM”, then the matchedName property contains a program name. If set to
“SERIES”, then the matchedName property contains a series name. The format is identical to the format
of the matchingName@type property. See Appendix B.5.1.1, “matchingName@type” for details.

Default Value: N/A — Output only.
Sort Order: Same as matchingName@type property.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 181

Input: N/A.
Output: The current setting.

B.13.2 matchedID
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchedID property contains the matched ID of a program or series. This is the ID of
the external item that matched the ID specified in the matchinglD property of the recordSchedule. The
format is identical to the format of the matchinglD property. See Appendix B.5.2, “matchinglD” for
details.

Default Value: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

B.13.2.1 matchedID@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO
Description: The matchedID@type property indicates the type of the ID that is contained in the

matchedID property. The format of this property is identical to the format of the matchingID@type
property. See Appendix B.5.2.1, “matchinglD@type” for details.

Default Value: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

B.14 Task Matched Qualifying Criteria Properties

Table B-36: Task Matched Qualifying Criteria Properties

Property Name NS Data Type M-Val Reference

matchedRating srs | xsd:string YES Appendix B.14.1
matchedRating@type srs | xsd:string NO Appendix B.14.2
matchedEpisodeType srs | xsd:string NO Appendix B.14.3

B.14.1 matchedRating
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The matchedRating property contains the actual rating of the recording. This is the rating of
the external item that matched (was less or equal to) a rating limit specified in one of the
matchingRatingLimit properties of the recordSchedule. The format is identical to the format of the
matchingRatingLimit property. See Appendix B.6.4, “matchingRatingLimit for details.

Default VValue: N/A — Output only.

Sort Order: Same as matchingRatingLimit property.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 182

Input: N/A.
Output: The current setting.

B.14.2 matchedRating@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchedRating@type property indicates the rating system used in the matchedRating
property. The format is identical to the format of the matchingRatingLimit@type property. See Appendix
B.6.4.2, “matchingRatingLimit@type” for details.

Default Value: N/A — Output only.
Sort Order: Same as matchingRatingLimit@type property.
Input: N/A.

Output: The current setting.

B.14.3 matchedEpisodeType
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchedEpisodeType property contains the actual episode type of the recording. This is
the episode type of the external item that matched episode type specified in the matchingEpisodeType
property of the recordSchedule. The format is identical to the format of the matchingEpisodeType
property. See Appendix B.6.5, “matchingEpisodeType” for details.

Default Value: N/A — Output only.
Sort Order: Same as matchingEpisodeType property.
Input: N/A.

Output: The current setting.

B.15 Task Matched Content Control Properties

Table B-37: Task Matched Content Control Properties

Property Name NS Data Type M-Val Reference

taskStartDateTimeAdjust srs | xsd:string NO Appendix B.15.1
taskDurationAdjust srs | xsd:string NO Appendix B.15.2
taskDurationLimit srs | xsd:string NO Appendix B.15.3
taskDurationLimit@effect srs | xsd:string NO Appendix B.15.4
taskChannelMigration srs | xsd:boolean NO Appendix B.15.5
taskTimeMigration srs | xsd:boolean NO Appendix B.15.6

B.15.1 taskStartDateTimeAdjust
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskStartDateTimeAdjust property is set to the value of the
scheduledStartDateTimeAdjust property of the parent recordSchedule. The format is identical to the

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 183

format of the scheduledStartDateTimeAdjust property. See Appendix B.7.2,
“scheduledStartDateTimeAdjust” for details.

Default Value: N/A — Output only.
Sort Order: Same as scheduledStartDateTimeAdjust property.
Input: N/A.

Output: The current setting.

B.15.2 taskDurationAdjust
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskDurationAdjust property is set to the value of the scheduledDurationAdjust property
of the parent recordSchedule. The format is identical to the format of the scheduledDurationAdjust
property. See Appendix B.7.3, “scheduledDurationAdjust” for details.

Default VValue: N/A — Output only.
Sort Order: Same as scheduledDurationAdjust property.
Input: N/A.

Output: The current setting.

B.15.3 taskDurationLimit
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

The taskDurationLimit property is set to the value of the durationLimit property of the parent
recordSchedule. The format is identical to the format of the durationLimit property. See Appendix B.7.5,
“durationLimit” for details.

Default Value: N/A — Output only.

Sort Order: Same as durationLimit property.
Input: N/A.

Output: The current setting.

B.15.4 taskDurationLimit@effect
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

The taskDurationLimit@effect property is set to the value of the durationLimit@effect property of the
parent recordSchedule. The format is identical to the format of the durationLimit@effect property. See
Appendix B.7.5.1, “durationLimit@effect” for details.

Default Value: N/A — Output only.
Sort Order: Same as durationLimit@effect property.
Input: N/A.

Output: The current setting.

B.15.5 taskChannelMigration
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 184

Description: The taskChannelMigration property is set to the value of the channelMigration property of
the parent recordSchedule. The format is identical to the format of the channelMigration property. See
Appendix B.7.6, “channelMigration” for details.

Default Value: N/A — Output only.
Sort Order: Same as channelMigration property.
Input: N/A.

Output: The current setting.

B.15.6 taskTimeMigration
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskTimeMigration property is set to the value of the timeMigration property of the
parent recordSchedule. The format is identical to the format of the timeMigration property. See Appendix
B.7.7, “timeMigration” for details.

Default VValue: N/A — Output only.

Sort Order: Same as timeMigration property.
Input: N/A.

Output: The current setting.

B.16 Task State Properties

Table B-38: State Related Properties

Property Name NS Data Type M-Val Reference
taskState srs | xsd:string NO Appendix B.16.1
taskState@phase srs | xsd:string NO Appendix B.16.1.2
taskState@startDateTimeMet srs | xsd:boolean NO Appendix B.16.1.3
taskState@endDateTimeMet srs | xsd:boolean NO Appendix B.16.1.4
taskState@recording srs | xsd:boolean NO Appendix B.16.1.5
taskState@someBitsRecorded srs | xsd:boolean NO Appendix B.16.1.6
taskState@someBitsMissing srs | xsd:boolean NO Appendix B.16.1.7
taskState @firstBitsRecorded srs | xsd:boolean NO Appendix B.16.1.8
taskState@lastBitsRecorded srs | xsd:boolean NO Appendix B.16.1.9
taskState@fatalError srs | xsd:boolean NO Appendix B.16.1.10
taskState@-currentErrors srs | CSV (xsd:int) NO Appendix B.16.1.11
taskState@errorHistory srs | CSV (xsd:int) NO Appendix B.16.1.12
taskState@pendingErrors srs | CSV (xsd:int) NO Appendix B.16.1.13
taskState@infoL st srs | CSV (xsd:int) NO Appendix B.16.1.14

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 185

B.16.1 taskState
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskState property indicates the overall state of the recordTask.

Default Value: N/A — Output only.

Sort Order: Property Specific, based on the order in Table B-39. Ascending: first table entry first.
Input: N/A.

Output: The current setting.

B.16.1.1 allowedValueList for the taskState Property

This section defines the normative allowed values for the taskState property. Each of these values
represents a semantically meaningful combination of values for some of the “low-level” state properties
(that is: taskState@xxx). Although it is possible to derive the value of the taskState property from some of
the “low-level” taskState@xxx properties, the taskState property provides a more convenient mechanism
to determine the current state of the recordTask.

The definition of each state is shown in the table below. This table represents the normative definitions of
the various states. Although some of the low-level state properties have been declared as optional, their
underlying semantics and their significance towards the definition of each valid taskState value is not
diminished. Regardless of whether or not a given device is able to expose all of the low-level state
properties, every device has a conceptual notion of property semantics. For example, some devices may
not be able to support the taskState@lastBitsRecorded property, however, even these devices have an
internal concept that the last bits of the content have or have not been recorded.

In some cases, a specific low-level state property does not contribute to the definition of a given state. In
other words, the low-level property can have any value without affecting the semantics of the state. This
situation is indicated by a - in the table entry.

The “@” symbol is used to indicate an empty attribute. The “{}” symbol is used when the attribute is not
empty.

Following this table, a more intuitive informational description of each state value and their support level
is described.

Table B-39: allowedValuelList for the taskState Property

“IDLE.READY” “IDLE” 0 0 0 0 1] 1] 0 0 0 0
“|DLE.ATRISK” “IDLE” 0 0 0 0 g | 0 0 0 0
“ACTIVE.TRANSITION.FROMSTART” “ACTIVE” | O 0 0 0 1] - 1 0 0 0
“ACTIVE.TRANSITION.RESTART” “ACTIVE” | O - 1 0 1] - O 1 0 - 0
“ACTIVE.RECORDING.FROMSTART.OK” “ACTIVE” | 1 1 0 0 1] 1] 1 0 1 0
“ACTIVE.RECORDING.FROMSTART.ATRISK” | “ACTIVE” | 1 1 0 0 g | 1 0 1 0
“ACTIVE.RECORDING.RESTART.OK” “ACTIVE” | 1 1 1 0 1] g | 1 0 - 0

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 186

“ACTIVE.RECORDING.RESTART.ATRISK” “aACTIVE” | 1 | 1 |1 | o @ | Q|10 -1]o0
“ACTIVE.NOTRECORDING” “ACTIVE”| 0 | - |12 | o || -8l 1|o]-1]o
“DONE.FULL" “DONE” | 0 | 1 |0 |0 | @ | -|@|1]|1]|1]1
“DONE.PARTIAL” “DONE” | 0 | 1 |1 |o|@ |- |1]1]|-]-
DONE” | 0 | 1 |1 |1 |@ | - |8 -10]-]|-

“DONE.EMPTY” “DONE” | 0 | 0|1 o |@ | -|Q)|-]1]0]o0
“poNE” | 0 | O |1 |1 |@| -] -]0o]o]o

* Some implementations may not expose these individual properties to the control point. However, in this
case, all visible external behavior of the device MUST be as if it implemented all of the properties as
specified in the table above.

In the following table, a more intuitive informational description of each state value and its support level
is described.

Table B-40: allowedValuelList for the taskState Property

Value ‘ R/O Description

“IDLE.READY” R The recordTask is waiting for the start
time to be reached. No errors have been
detected.

“IDLE.ATRISK” (6] The recordTask is waiting for the start

time to be reached while some pending
errors exist.

“ACTIVE.TRANSITION.FROMSTART”

O

The device’s record mechanism has been
initiated to record the content from its
beginning but no actual recording has
occurred.

“ACTIVE. TRANSITION.RESTART”

O

The device’s record mechanism has been
re-initiated following some content loss
from previous error conditions.

“ACTIVE.RECORDING.FROMSTART.OK”

|70

The device’s record mechanism is
currently continuously recording from the
beginning. No current or pending errors
exist.

“ACTIVE.RECORDING.FROMSTART.ATRISK” The device’s record mechanism is
currently continuously recording from the
beginning. Some pending errors are

detected.

O

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 187

Value ‘ R/O Description

“ACTIVE.RECORDING.RESTART.OK” (6] The device’s record mechanism is
currently recording content, following
some content loss from previous error
conditions. No current or pending errors
exist.

“ACTIVE.RECORDING.RESTART.ATRISK” The device’s record mechanism is
currently recording content following
some content loss from previous error
conditions. One or more pending errors
are detected, which will block the

recording in the future.

O

“ACTIVE.NOTRECORDING” The device’s record mechanism is
currently NOT recording content due to

one or more error conditions.

O

“DONE.FULL”

|70

The recordTask has reached its final
disposition and no other property or
attribute changes will occur. All of the
content has been recorded.

“DONE.PARTIAL”

|70

The recordTask has reached its final
disposition and no other property or
attribute changes will occur. The content
is only partially recorded due to error(s).

“DONE.EMPTY”

|70

The recordTask has reached its final
disposition and no other property or
attribute changes will occur. No content
has been recorded at all due to error
conditions.

B.16.1.2 taskState@phase
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskState@phase property indicates the current phase of a recordTask within its normal
lifetime. The following allowed values for this property are sequentially assigned at the appropriate points
in time within the recordTask’s normal lifetime: “IDLE” - “ACTIVE” - “DONE”. In certain cases,
some of the phase values may be skipped, for example, when a fatal error is detected.

Default Value: N/A — Output only.

Sort Order: Property Specific, based on the order in Table B-41. Ascending: first table entry first.
Input: N/A.

Output: The current setting.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 188

B.16.1.2.1 allowedValueList for the taskState@phase Property

Table B-41: allowedValuelList for the taskState@phase Property

Value R/O Description

“IDLE” R Indicates that the recordTask’s start time has not
yet been reached.

“ACTIVE” R Indicates that the recordTask is in between the
“IDLE” and “DONE” phases. Typically, the
recordTask’s content is (partially) available and
an attempt is made to record the remaining
content.

13 DONEH

|70

Indicates that the recordTask’s final disposition
has been reached. For example, the recordTask’s
end time has been reached or a fatal error has
occurred. Once the device reaches this phase, no
additional state changes occure.

B.16.1.3 taskState@startDateTimeMet
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@startDateTimeMet property indicates whether the recordTask’s
actualStartDateTime has been reached. See Section 2.2, “Terms” for the definition of
actualStartDateTime.

If a recordTask has reached the “DONE” phase, this property indicates the last status before the
recordTask has reached the “DONE” phase. Note: if the recordTask terminates prematurely (that is:
reaches the “DONE” phase before the start time is reached, for example, due to a fatal error), this property
is not updated.

Default VValue: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.4 taskState@endDateTimeMet
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@endDateTimeMet property indicates whether the recordTask’s
actualEndDateTime has been reached. See Section 2.2, “Terms” for the definition of actualEndDateTime.

If a recordTask has reached the “DONE” phase, this property indicates the last status before the
recordTask has reached the “DONE” phase. Note: if the recordTask terminates prematurely (that is:
reaches the “DONE” phase before the end time is reached, for example, due to a fatal error), this property
is not updated.

Default VValue: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 189

B.16.1.5 taskState@recording
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@recording property indicates whether one of the device’s record destinations
is currently recording the content identified by the recordTask.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.6 taskState@someBitsRecorded
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@someBitsRecorded property indicates whether some portion of the content
identified by the recordTask has been recorded.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.7 taskState@someBitsMissing
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@someBitsMissing property indicates whether some portion of the content
identified by the recordTask has not been recorded. This property will be “0” as long as all the bits that
have been available so far have also been recorded.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.8 taskState@firstBitsRecorded
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@firstBitsRecorded property indicates whether the first portion of the content
identified by the recordTask has been recorded.

Default VValue: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.9 taskState@lastBitsRecorded
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 190

Description: The taskState@lastBitsRecorded property indicates whether the ending portion of the
content identified by the recordTask has been recorded.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.10 taskState@fatalError
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@fatalError property indicates whether a fatal error has occurred. A fatal error
is defined to be an error condition that causes the recordTask to terminate before its actualEndDateTime
has been reached.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.11 taskState@currentErrors
Namespace: srs Property Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The taskState@currentErrors property identifies the CSV list of errors that are currently
preventing the recordTask from recording. An empty CSV list indicates that there are no errors currently
blocking the recording. Multiple errors are listed in order of occurrence starting with the oldest error and
ending with the most recent.

When the errors are not resolved before reaching the “DONE” phase, they MAY be persisted in the
“DONE” phase. If a device persists current errors, the value of this property MUST be set to the value that
this property had immediately prior to entering the “DONE” phase.If a device does not persist current
errors, the taskState@currentErrors MUST be empty in the “DONE” phase.

By definition, this property MUST be empty while in the “IDLE” phase. The current errors are also copied
to the taskState@errorHistory property.

Default Value: N/A — Output only.
Sort Order: Sequenced Numeric.
Input: N/A.

Output: The current setting.

B.16.1.11.1 allowedValueList for the taskState@currentErrors Property and Other Error
Properties

The following table defines error codes for all error properties of a recordTask, such as
taskState@currentErrors, taskState@errorHistory, etc. to expose error conditions. This error list can be
extended in the future or by vendors. The errors are grouped into separate categories and labeled 1xx, 2xx,
3xx, and 4xx groups, each group representing the nature of errors; that is: general errors, media errors,
system errors and content errors, respectively. The grouping of error codes allows a control point to be
able to understand the nature of errors when an unknown error code (that is: extended specification or

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

191

vendor extended) is encountered. For example, if an unknown error is labeled 3xx, it can be interpreted by

the control point as 300.

Table B-42: allowedValueList for the taskState@xxx Properties

Value ‘ R/O Description

Non-positive N/A These error codes are reserved for future use. Control points should gracefully
ignore any non-positive error codes.

001-099 N/A Reserved.

100-199 N/A General Error Code Group - arbitrary errors, which do not belong to other
groups.

100 R General Problem — a problem is confirmed, but no specific reason can be
identified.

101 (6] Disabled - the recordTask is disabled by the user.

102 o The recordTask’s enable/disable behavior is overriding the default behavior
specified by the associated recordSchedule.

103-149 N/A Reserved for future General Error Codes.

150-199 N/A Reserved for vendor-defined General Error Codes.

200-299 N/A Media Error Code Group - arbitrary media related errors.

200 (6] General Media Problem — some trouble related to media is detected. Replacing
the media may likely resolve it.

201 (6] No Media — necessary media is missing from the recording device.

202 (6] Media Write Protect - write access to the recording media is prohibited.

203 (6] Insufficient Media Space - recording media does not have enough available
space to complete the recordTask.

204 (6] Media Low Space - the recording media has low available space and the
recordTask may fail. The criteria to determine “low space” is vendor
dependent and may be independent from the size of the scheduled content to
record.

205-249 N/A Reserved for future Media ErrorCodes.

250-299 N/A Reserved for vendor-defined Media Error Codes.

300-399 N/A System Error Code Group - arbitrary system related error.

300 (6] General System Problem — a problem related to the system is detected. It may
affect all recordTask instances in the ScheduledRecording service.

301 (6] Insufficient Memory- the system does not have enough system memory to
complete the recordTask.

302 (6] Insufficient Processing - the system does not have enough CPU power to
execute the recordTask.

303 (6] Low Memory - the system has low available memory and the recordTask may
fail. The criteria to determine “low memory” is vendor dependent and may be
independent from the size of the scheduled content to record.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

192

Value ‘ R/O Description

304 (6] Low Processing - the system has low available CPU power and the recordTask
may fail. The criteria to determine “low processing” is vendor dependent and
may be independent from the size of the scheduled content to record.

305 (6] Signal Lost - the system has lost the input signal.

306 (6] Low Signal - The system has low input signal and the recordTask may fail.
The criteria to determine “low processing” is vendor dependent.

307 (6] No EPG - the system lost access to the EPG.

308-349 N/A Reserved for future System Error Codes.

350-399 N/A Reserved for vendor-defined System Error Codes.

400-499 N/A Content Error Code Group - arbitrary errors related to the content program to
be recorded.

400 (6] General Content Problem — a problem related to the content is detected. It may
be associated with the content that is being recorded.

401 (6] Conflicting Program Loser — there are other conflicting programs with
overlapping time period, and the current recordTask is superseded by the
conflicting program.

402 (6] Conflicting Program Winner - there are other conflicting programs with
overlapping time period, and the current recordTask superseded the
conflicting program.

403 (6] PPV (Pay per View) - the content is PPV and some procedures are needed for
the recordTask to begin.

404 (6] Content Rescheduled - the originally scheduled content has been preempted.

405-449 N/A Reserved for future Content Error Codes.

450-499 N/A Reserved for vendor-defined Content Error Codes.

500 and above N/A Reserved for future new category information extensions.

B.16.1.12 taskState@errorHistory

Namespace: srs

Property Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The taskState@errorHistory property identifies the CSV list of errors that have (at any time)
prevented the recordTask from completing successfully. This includes both past and current recording
errors. Multiple errors are listed in order of occurrence starting with the oldest error and ending with the
most recent. An empty list indicates that none of the recordTask’s content has yet been prevented from
being recorded. By definition, this list will always be empty while in the “IDLE” phase. Note: Any errors

listed in taskState@currentErrors MUST also be copied to and persisted in this property.

Default Value: N/A — Output only.

Sort Order: Sequenced Numeric.

Input: N/A.

Output: The current setting.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 193

B.16.1.12.1 allowedValueList for the taskState@errorHistory Property
See Appendix B.16.1.11.1, “allowedValueList for the taskState@currentErrors Property” for details.

B.16.1.13 taskState@pendingErrors
Namespace: srs Property Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The taskState@pendingErrors property identifies the CSV list of errors that may prevent the
recordTask from completing successfully at some time in the future unless resolved. An empty CSV list
means that no pending errors have been detected. The list of errors that the device is able to detect before
they actually occur may be obtained via the GetAllowedValues() action.

Those devices that are not able to detect any pending errors before they actually occur MAY always return
an empty list for the value of this property. In this case, the value returned by GetAllowedValues() for this
property MUST also be an empty list.

If any of these pending errors actually occur, they MUST be added to the taskState@currentErrors list
and taskState@errorHistory and removed from this list. When the pending errors did not occur, these
errors MAY be persisted to the “DONE” phase. If a device does not persist any pending errors that have
not occurred yet, then the taskState@pendingErrors MUST be empty in the “DONE” phase. Otherwise
the value of this property MUST be set to the value that this property had immediately prior to entering
the “DONE” phase.

Default Value: N/A — Output only.

Sort Order: Sequenced Numeric.
Input: N/A.
Output: The current setting.

B.16.1.13.1 allowedValueList for the taskState@pendingErrors Property
See Appendix B.16.1.11.1, “allowedValueList for the taskState@currentErrors Property” for details.

B.16.1.14 taskState@infoList
Namespace: srs Property Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The taskState@infoList property identifies the CSV list of additional conditions that have
been detected but will not block the current recordTask, for example, conflict winner.

The list of possible information that the device is able to detect may be obtained via the
GetAllowedValues() action.

Devices that are not able to detect any additional information MUST always return an empty list. In this
case, the value returned by GetAllowedValues() for this property MUST also be an empty list.

Note: a device can also use additionalStatusinfo to expose information in text format.

Default VValue: N/A — Output only.
Sort Order: Sequenced Numeric.
Input: N/A.

Output: The current setting.

B.16.1.14.1 allowedValueList for the taskState@infoList Property
See Appendix B.16.1.11.1, “allowedValueList for the taskState@currentErrors Property” for details.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 194

B.17 ContentDirectory Service Imported Properties

ContentDirectory service properties are imported through the cdsReference multi-valued property. The
main reason to import properties (metadata) from ContentDirectory service objects into a recordSchedule
or recordTask object is to make that object self-contained; that is: a control point can retrieve relevant
metadata from the ScheduledRecording service object without having to first extract the object IDs of
external ContentDirectory service objects and then retrieve the metadata from these objects via additional
actions. In addition, even when the referenced object in the ContentDirectory service is deleted, its
metadata is still preserved within the ScheduledRecording service. It is the responsibility of the device to
maintain consistency between the actual ContentDirectory service object’s metadata and the metadata
contained in the corresponding cdsReference property.

The cdsReference property MUST contain a valid (it MUST contain all the REQUIRED properties as
dictated by the DIDL-Lite Schema; also, if dependent properties are imported, their independent
properties MUST be imported as well.) and properly escaped DIDL-Lite XML Document as defined in the
ContentDirectory service specification. (Care must be taken to correctly define namespaces.)

The DIDL-Lite XML Document describes a device-dependent (sub)set of imported properties (metadata) of
the ContentDirectory service object that is referenced by the linked xxxCDSObjectID property. The
information contained in the DIDL-Lite XML Document MUST exactly match the DIDL-Lite XML
Document that would be returned in the Result argument of the ContentDirectory::Browse() action with
its input arguments set as follows:

ObjectID: The linked xxxCDSObjectID property value.
BrowseFlag: Set to “BrowseMetaData”.

Filter: Set to the list of property names that are imported from the ContentDirectory service by the
ScheduledRecording service.

Startinglndex: O.

RequestedCount: 0.
SortCriteria: “”, the empty string.

The following example illustrates the possible content of a cdsReference property in the context of a
recordSchedule object (expressed in XML).

<?xml version="1.0" encoding=""UTF-8"7>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmlns:xsi="http://www_w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www._upnp.org/schemas/av/srs.xsd">
<item id="sched001">
<class>0BJECT .RECORDSCHEDULE .DIRECT .CDSEPG</class>
<title>My Schedule</title>

_, <scheduledCDSObjectID Iink="sched0bjo01">
epg001
</scheduledCDSObjectID>

L» <cdsReference link=""schedObj001"">

<I--

The following DIDL-Lite XML Document needs to be interpreted as a simple
string and therefore needs to be properly escaped
-——>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 195

</item>
</srs>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 196

The next example illustrates the possible content of two cdsReference property instances relating to the
taskCDSObjectlD and recordedCDSObjectID property in the context of a recordTask object (expressed in
XML).

<?xml version="1.0" encoding=""UTF-8"7>
<Srs
xmIns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www._w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id="Task001'>
<class>0BJECT .RECORDTASK</class>
<title>My Task</title>

—» <taskCDSObjectID link="tskObj001">
epg001
</taskCDSObjectID>

—> érecordedCDSObjectlD link="recObj001">
rec001
</recordedCDSObjectID>

, <cdsReference link="tskObj001">

<ll-

The following DIDL-Lite XML Document needs to be interpreted as a simple

string and therefore needs to be properly escaped
——p

&It;?xml version="1.0" encoding=""UTF-8"?>

&It;?DIDL-Lite

xmlIns:dc="http://purl _org/dc/elements/1.1/"

xmIns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"*

xmIns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/">

&It;?item id="epg001" parentlD="container007"
restricted="'0">
&It;?dc:title>Friends<?/dc:title>
&It;?upnp:classégt;
object.item.epgltem.videoProgram

&It;?/upnp:classé>

&1t;?/itemigt;
&It;?/DIDL-Lite>

<I-—- End of DIDL-Lite XML Document -->

</cdsReference>

—> <cdsReference link="recObj001">

<I--

The following DIDL-Lite XML Document needs to be interpreted as a simple
string and therefore needs to be properly escaped
-——>

&It;?xml version="1.0" encoding=""UTF-8"?>

&It;?DIDL-Lite
xmIns:dc="http://purl _org/dc/elements/1.1/"

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 197

</item>
</srs>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 198

Appendix C. AV Working Committee Class Definitions
(Normative)

C.1 Class Hierarchy

The ScheduledRecording service exposes a class hierarchy which is used to type all objects that can be
retrieved from it. Each class is named using a string of the form described in Appendix D.3, “Class Name
Syntax” below.

For a particular class, some properties are REQUIRED, others are OPTIONAL and some are
PROHIBITED.

A class that is derived from another class MUST include all of the member properties of the parent class.
The definition of a derived class MAY make some optional properties of the base class REQUIRED.

Each class definition includes a list of properties. Each property is expressed in XML as either an XML
Element or an XML Attribute. Some independent properties are multi-valued for a class, meaning that, in
an XML instance of the class, the property may occur more than once.

This Appendix defines the base class object from which all other classes are derived. No object of this
abstract class can be instantiated. From the object class, two classes are derived; the
object.recordSchedule class and the object.recordTask class.

The abstract object.recordSchedule class and its two derived abstract classes object.recordSchedule.direct
and object.recordSchedule.query make up the basic hierarchy from which all other recordSchedule
classes are derived. These three classes can not be instantiated (no object can exist within the
ScheduledRecording service that has its class property set to “OBJECT.RECORDSCHEDULE”,
“OBJECT.RECORDSCHEDULE.DIRECT” or “OBJECT.RECORDSCHEDULE.QUERY?”).

The object.recordTask class is used to type all recordTask objects in the ScheduledRecording service. The
object.recordTask class has no derived classes defined yet.

In addition to these classes, a number of classes are derived from the object.recordSchedule.direct and
object.recordSchedule.query classes. Figure 7 below shows the hierarchy of these classes.

object

recordSchedule recordTask
dirvect query
manual cdsEPG cdsNonEPG programCode contentName contentlD
4 A A 4 A 4 A

Vendor defined class extensions

Figure 7: Class hierarchy for the ScheduledRecording service.

Vendors MAY extend the functionality, provided by the standard record classes, by adding vendor-defined
properties. Any device that adds a property whose description matches one of the AV Working
Committee-defined property descriptions MUST use the AV Working Committee-defined property name.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 199

In addition, any device that uses a property name from the ScheduledRecording service specification
MUST use it with the same semantics as the AV Working Committee-defined description of that property.
In order to accommodate vendor-defined properties, control points should gracefully ignore any properties
whose names and semantics they do not understand.

When adding properties, it is RECOMMENDED that vendors create a vendor-defined derived class with a
vendor-defined class name, rather than adding the properties to the existing standard class without
creating a vendor-defined class. This provides a simple mechanism for control points to determine if a
class has been extended by simply examining the class property value. In all cases, vendor-defined classes
MUST remain fully compatible with the standard class from which they were derived. In other words,
control points that do not understand the specifics of the vendor-defined additions should still be able to
interact with an instance of the vendor-defined derived class object as if it were an instance of that
standard class.

Vendor-defined classes MUST always be derived from standard classes that can be instantiated (the green-
colored boxes in Figure 7). It is therefore PROHIBITED to derive vendor-defined classes directly from
classes, such as “OBJECT.RECORDSCHEDULE”, “OBJECT.RECORDSCHEDULE.DIRECT”, and
“OBJECT.RECORDSCHEDULE.QUERY”. It is allowed to derive vendor-defined classes from class
“OBJECT.RECORDTASK™.

All standard classes and vendor-defined derived classes supported by a particular ScheduledRecording
service implementation MUST be individually listed in the allowedValueList of the class property. (This
list can be retrieved via the GetAllowedValues() action.) Implementations are REQUIRED to support all
intermediate classes in a chain of derived classes. For example, if an implementation supports a vendor-
defined class “OBJECT.RECORDSCHEDULE.DIRECT.CDSEPG.HDTV.LOCAL”, then it MUST also
support the “OBJECT.RECORDSCHEDULE.DIRECT.CDSEPG.HDTV” and
“OBJECT.RECORDSCHEDULE.DIRECT.CDSEPG” classes.

As indicated in Appendix D.3, “Class Name Syntax”, strict naming conventions MUST be followed when
naming derived vendor-defined classes. Vendor-defined class names MUST be based on one of the
instantiatable class names in this specification. Therefore, all vendor-defined class names MUST start
with one of the string values, defined in Table B-2, “allowedValueList for the class Property”.

Control points that need to examine class property values, should be prepared to handle vendor-defined
class names. Therefore, control points should never use simple string matching to determine the actual
class of an object. Rather, they should parse the class name from left to right and determine if there is at
least a left substring match with one of the string values defined in Table B-2, “allowedValueList for the
class Property”. If such a match is found, the remaining characters in the class name can be examined for
potential matches with vendor-defined class names of which the control point is aware. If no such match
is found, the control point can treat the object as if it were an instance of the most specialized class for
which a match was found.

C.l1 Relationships between Classes and Properties

The following tables present a complete overview of all the defined properties and in which classes these
properties are actually used (member properties).

For a particular class, some properties are REQUIRED, others are OPTIONAL and some are
PROHIBITED. Every instance of a class MUST have a value for each supported REQUIRED or
OPTIONAL member property of that class (see Section 2.2, “Terms”).

The support level of a member property defines how the member property MUST be used in the
arguments of an action when that action is invoked. The support level of a member property can be
different for recordSchedule, recordScheduleParts, and recordTask usage.

The recordScheduleParts support level for the specified class indicates the use of a member property when
a control point requests to create a recordSchedule. If a member property is defined as REQUIRED for
recordScheduleParts usage, an argument of type A_ ARG _TYPE RecordScheduleParts MUST contain

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 200

that member property and the ScheduledRecording service MUST support it. If it is defined as
OPTIONAL, the ScheduledRecording service MAY support the member property and a control point may
specify or omit the member property in a request message even if the member property is supported by the
ScheduledRecording service. PROHIBITED or unsupported OPTIONAL member properties specified in
an argument of type A_ ARG _TYPE RecordScheduleParts MUST be gracefully ignored by the
ScheduledRecording service. The set of properties that are supported for an argument of type

A ARG _TYPE_ RecordScheduleParts can be retrieved by specifying

“A_ ARG _TYPE_ RecordScheduleParts” in the DataTypelD argument when invoking the
GetPropertyList() action. The support level for each of those supported member properties of each class
can be retrieved by invoking the GetAllowedValues() action.

The recordSchedule support level for the specified class indicates the use of a member property when a
control point retrieves a recordSchedule object. If a member property is defined as REQUIRED for
recordSchedule usage, an argument of type A_ ARG _TYPE RecordSchedule MUST contain that member
property and the ScheduledRecording service MUST support it. OPTIONAL supported member properties
that are enumerated in the Filter argument MUST also be specified in the argument. If the resulting XML
is not a valid document, other OPTIONAL properties MUST be added to create the smallest valid XML
document. If the action does not have a Filter argument (like the CreateRecordSchedule() action), the
action MUST return all OPTIONAL supported member properties (as if the Filter argument were set to
“*:*7)_If a control point does not specify a supported OPTIONAL member property in a request, the
ScheduledRecording service MUST add it into the response and provide its default setting. The set of
properties that are supported for an argument of type A_ ARG _TYPE RecordSchedule can be retrieved by
specifying “A_ARG_TYPE_ RecordSchedule” in the DataTypelD argument when invoking the
GetPropertyList() action. The support level for each of those supported member properties of each class
can be retrieved by invoking the GetAllowedValues() action.

The recordTask support level for the specified class indicates the use of a member property when a control
point retrieves a recordTask object. If a member property is defined as REQUIRED for recordTask usage,
an argument of type A_ ARG _TYPE RecordTask MUST contain that member property and the
ScheduledRecording service MUST support it. OPTIONAL supported member properties that are
enumerated in the Filter argument MUST also be specified in the argument. If the resulting XML is not a
valid document, other OPTIONAL properties MUST be added to create the smallest valid XML
document. The set of properties that are supported for an argument of type A_ ARG_TYPE_RecordTask
can be retrieved by specifying “A_ARG TYPE RecordTask” in the DataTypelD argument when invoking
the GetPropertyList() action. The support level for each of those supported member properties of each
class can be retrieved by invoking the GetAllowedValues() action.

Dependent properties are PROHIBITED if their associated independent property does not exist. They can
be REQUIRED or OPTIONAL when the independent property does exist.

C.l1.z2 recordScheduleParts Properties

The following table indicates the support level (REQUIRED, OPTIONAL , EREEIBIES or
WI\IBJSIFINISD)) of a property when used in an argument of type A_ ARG _TYPE RecordScheduleParts for
each class. The vV mark indicates that the property’s support level is inherited from the parent class. The
coloring still indicates the support level.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

Table C-1: Class Properties Overview for recordScheduleParts usage

E REQUIRED

OPTIONAL

PROHIBITED
UNDEFINED

INHERITED

Property Name

Common Properties

Base Properties

@id RIVI Y|V Y| Y| Y| | Y| Y]|Y
title RIVI Y|V Y| Y| Y| | Y| Y]|Y
class RIVI Y|V Y| Y| Y| | Y| Y]|Y

additionalStatusinfo

cdsReference

cdsReference@link

Priority Properties

priority
priority@orderedValue

[e)
<
<
<
I<_
<
<
<
<
I<_

desiredPriority

desiredPriority@type

|70
=
=
=
<
=
=
=
=
=

Output Control Properties

(e}
=
=
=
=
=
=
=

recordDestination

recordDestination@mediaType

[e)
<
<
I<_
<
<
<
<
I<_

[e)
<
<
I<_
<
<
<
<
I<_

recordDestination@targetURL

[e)
<
<
I<_
<
<
<
<
I<_

recordDestination@preference

desiredRecordQuality
desiredRecordQuality@type

[e)
<
<
<
I<_
<
<
<
<
I<_

|70
=
=
=
<
=
=
=
=
=

Schedule Only Properties

Content ID Related Properties

scheduledCDSObjectID

scheduledCDSObijectID@Ilink

scheduledChannellD

scheduledChannelID@type

scheduledChannelID@distriNetworkName

scheduledChannelID@distriNetworkID

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

© 2011, UPnP Forum. All rights Reserved.

201

ScheduledRecording:2

REQUIRED

OPTIONAL
PROHIBITED
UNDEFINED

INHERITED

Property Name

scheduledProgramCode@type

Matching Content Criteria

matchingName

matchingName@type

matchingName@subStringMatch

matchingID

matchinglD@type
Matching Qualifying Criteria

matchingChannellD

matchingChannellD @type

matchingChannellD @distriNetworkName

matchingChannellD @distriNetworklD

matchingStartDateTimeRange

matchingDurationRange

matchingRatingLimit

matchingRatingLimit@type

matchingEpisodeType

Content Control Properties

totalDesiredRecordTasks

scheduledStartDateTimeAdjust

scheduledDurationAdjust

activePeriod

durationLimit
durationLimit@effect
channelMigration

timeMigration

allowDuplicates

Storage Related Properties

persistedRecordings

persistedRecordings@Ilatest

persistedRecordings@preAllocation

persistedRecordings@storedLifetime

© 2011, UPnP Forum. All rights Reserved.

202

ScheduledRecording:2

REQUIRED

OPTIONAL
PROHIBITED
UNDEFINED
INHERITED

Property Name

Schedule State Properties

scheduleState

scheduleState@currentErrors

abnormalTasksExist

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

Task Only Properties

General Properties

recordSchedulelD

recordedCDSObjectID

recordedCDSObjectID@Ilink

Content ID Related Properties

taskCDSObjectID
taskCDSObjectID@link

taskChannellD
taskChannellD @type

taskChannellD @distriNetworkName

taskChannellD@distriNetworklD

taskStartDateTime

taskDuration

taskProgramCode

taskProgramCode @type

recordQuality

recordQuality@type

Matched Content Criteria

matchedName

matchedName@type

matchedID

matchedID@type

Matched Qualifying Criteria

© 2011, UPnP Forum. All rights Reserved.

203

ScheduledRecording:2 204

REQUIRED

OPTIONAL
PROHIBITED
UNDEFINED
INHERITED

Property Name

matchedRating

matchedRating@type

matchedEpisodeType

Content Control Properties

taskStartDate TimeAdjust

taskDurationAdjust

taskDurationLimit

taskDurationLimit@effect

taskChannelMigration

taskTimeMigration

Task State Properties

taskState

taskState@phase

taskState@startDateTimeMet

taskState@endDateTimeMet

taskState@recording

taskState @someBitsRecorded

taskState @someBitsMissing

taskState @firstBitsRecorded

taskState@lastBitsRecorded

taskState@fatalError

taskState@currentErrors

taskState@errorHistory

taskState@pendingErrors

taskState@infoList

C.1.3 recordSchedule Properties

The next table indicates the support level (REQUIRED, OPTIONAL , EREEIBIES or SYNBEFINED) of
a property when used in an argument of type A_ARG_TYPE_RecordSchedule for each class. The \ mark
indicates that the property’s support level is inherited from the parent class. The coloring still indicates
the support level.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 205

Table C-2: Class Properties Overview for recordSchedule usage

E REQUIRED

OPTIONAL

PROHIBITED
UNDEFINED

INHERITED

Property Name

Common Properties

Base Properties

@id RIYI Y| V| Y| Y|Y]| |Y|Y]|Y
title RIYI Y| V| Y| Y|Y]| |Y|Y]|Y
class RIYI Y| V| Y| Y|Y]| |Y|Y]|Y
additionalStatusinfo V| Y|V
cdsReference (]
cdsReference@link R

Priority Properties

priority YA 1YY Y
priority@orderedValue /A A I
desiredPriority oY/ Y| Y| V| Y| | Y| Y]
desiredPriori e R| V| V| V| V| V| Y| || Y|V

Output Control Properties

|70
=
=
=
<
<
=
=
=

recordDestination

recordDestination@mediaType

|70
=
=
=
<
<
=
=
=

(@]
<
<
I<_
|<
|<
|<
<
|<

recordDestination@targetURL

|70
=
=
=
<
<
=
=
=

recordDestination@preference

desiredrecordQuality
desiredrecordQuality@type

(@]
|<
|<
<
I<_
|<
|<
|<
<
|<

|70
=
=
=
=
<
<
=
=
=

Schedule Only Properties

Content ID Related Properties

scheduledCDSObijectID

scheduledCDSObijectID@link

scheduledChannellD

scheduledChannelID@type

scheduledChannelID@distriNetworkName

scheduledChannelID@distriNetworkID

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

REQUIRED

OPTIONAL
PROHIBITED
UNDEFINED

INHERITED

Property Name

scheduledProgramCode@type

Matching Content Criteria

matchingName

matchingName@type
matchingName@subStringMatch

matchinglD
matchinglD@type

Matching Qualifying Criteria

matchingChannellD
matchingChannellD @type

matchingChannellD @distriNetworkName

matchingChannellD@distriNetworklD

matchingStartDateTimeRange

matchingDurationRange

matchingRatingLimit

matchingRatingLimit@type

matchingEpisodeType

Content Control Properties

totalDesiredRecordTasks

scheduledStartDateTimeAdjust

scheduledDurationAdjust

activePeriod

durationLimit
durationLimit@effect
channelMigration

timeMigration

allowDuplicates

Storage Related Properties

persistedRecordings

persistedRecordings@latest

persistedRecordings@preAllocation

persistedRecordings@storedLifetime

© 2011, UPnP Forum. All rights Reserved.

206

ScheduledRecording:2 207

REQUIRED

OPTIONAL
PROHIBITED
UNDEFINED

INHERITED

Property Name

Schedule State Properties .

|70
=
=
=
<
<
=
=
=

scheduleState

scheduleState@currentErrors

|70
=
=
=
<
<
=
=
=

|70
=
=
=
<
<
=
=
=

abnormalTasksExist

Statistics Properties .

currentRecordTaskCount Rl VY| Y| VY] | Y|V
totalCreatedRecordTasks ol VY| Y| VY| | V|V Y
totalCompletedRecordTasks ol VY| Y| VY| | V|V Y

Task Only Properties

General Properties

recordSchedulelD

recordedCDSObjectID

recordedCDSObjectID@Ilink

Content ID Related Properties

taskCDSObjectID
taskCDSObjectID@link

taskChannellD

taskChannelID@type
taskChannellD@distriNetworkName

taskChannellD @distriNetworklD

taskStartDateTime

taskDuration

taskProgramCode

taskProgramCode @type

recordQuality

recordQuality@type
Matched Content Criteria

matchedName
matchedName@type
matchedID

matchedID @type
Matched Qualifying Criteria

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 208

REQUIRED

OPTIONAL
PROHIBITED
UNDEFINED

INHERITED

Property Name

matchedRating
matchedRatingt@type
matchedEpisodeType

Content Control Properties

taskStartDateTimeAdjust

taskDurationAdjust

taskDurationLimit

taskDurationLimit@effect

taskChannelMigration

taskTimeMigration

Task State Properties

taskState

taskState@phase

taskState@startDate TimeMet

taskState@endDate TimeMet

taskState@recording

taskState@someBitsRecorded

taskState@someBitsMissing

taskState@firstBitsRecorded

taskState@IastBitsRecorded

taskState@fatalError

taskState@currentErrors

taskState@errorHistory

taskState@pendingErrors

taskState@infoList

Cl4 recordTask Properties

The next table indicates the support level (REQUIRED, OPTIONAL , EREEIBIES or SNBEFINED) of
a property when used in an argument of type A_ARG_TYPE_RecordTask. The ¥ mark indicates that the
property’s support level is inherited from the parent class. The coloring still indicates the support level.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 209

Table C-3: Class Properties Overview for recordTask usage

E REQUIRED

OPTIONAL

PROHIBITED
UNDEFINED

INHERITED

Property Name

Common Properties

Base Properties

@id RV
ttle R|v
class RlY

additionalStatusinfo

le}

cdsReference

le}

cdsReference@link

170

Priority Properties

170

priority
priority@orderedValue

le}

desiredPriority Of v
desiredPriority@type R| Y

Output Control Properties

recordDestination

recordDestination@mediaType

recordDestination@targetURL

recordDestination@preference

desiredrecordQuality Of v
desiredrecordQuality@type R| Y

Schedule Only Properties

Content ID Related Properties

scheduledCDSObjectID

scheduledCDSObijectID@link

scheduledChannellD

scheduledChannelID@type

scheduledChannelID@distriNetworkName

scheduledChannellD@distriNetworkID

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

scheduledProgramCode@type

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

REQUIRED

OPTIONAL
PROHIBITED
UNDEFINED

INHERITED

Property Name

Matching Content Criteria

matchingName

matchingName @type

matchingName@subStringMatch

matchinglD

matchinglD@type
Matching Qualifying Criteria

matchingChannellD
matchingChannellD @type

matchinChannellD@distriNetworkName

matchingChannellD @distriNetworklD

matchingStartDateTimeRange

matchingDurationRange

matchingRatingLimit
matchingRatingLimit@type

matchingEpisodeType

Content Control Properties

totalDesiredRecordTasks

scheduledStartDateTimeAdjust

scheduledDurationAdjust

activePeriod

durationLimit
durationLimit@effect
channelMigration
timeMigration

allowDuplicates
Storage Related Properties

persistedRecordings

persistedRecordings@Ilatest

persistedRecordings@preAllocation

persistedRecordings@storedLifetime

Schedule State Properties

scheduleState

© 2011, UPnP Forum. All rights Reserved.

210

ScheduledRecording:2 211

REQUIRED

OPTIONAL
PROHIBITED
UNDEFINED
INHERITED

Property Name

scheduleState@currentErrors

abnormalTasksExist

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

Task Only Properties

General Properties

recordSchedulelD

recordedCDSObjectID

recordedCDSObjectID@Ilink

Content ID Related Properties

taskCDSObjectID
taskCDSObjectID@link

taskChannellD

taskChannellD @type
taskChannellD @distriNetworkName

taskChannellD@distriNetworklD

taskStartDateTime

taskDuration

taskProgramCode
taskProgramCode @type
recordQuality

recordQuality@type
Matched Content Criteria

matchedName

matchedName@type

matchedID

matchedID @type
Matched Qualifying Criteria

matchedRating
matchedRatingt@type
matchedEpisodeType

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 212

REQUIRED

OPTIONAL
PROHIBITED
UNDEFINED

INHERITED

Property Name

Content Control Properties

taskStartDate TimeAdjust

taskDurationAdjust

taskDurationLimit

taskDurationLimit@effect

taskChannelMigration

taskTimeMigration
Task State Properties

taskState

taskState@phase
taskState@startDateTimeMet

taskState@endDateTimeMet

taskState@recording
taskState @someBitsRecorded

taskState @someBitsMissing

taskState @firstBitsRecorded

taskState@lastBitsRecorded

taskState@fatalError

taskState@currentErrors

taskState@errorHistory

taskState@pendingErrors

taskState@infoList

C.2 Class Definitions

The following sections define the standard record classes. The support level of the available properties for
each class is also indicated. Vendors MAY add vendor-dependent properties to any of the defined classes.
An instance of a normative class MUST NOT add properties, other than the properties already listed for
each class definition below. In other words, a given instance of a record class can only have:

e The properties listed for that class (as per each definiton below).
e The properties that are defined members of the parent class.
e Vendor-defined properties that are using other XML namespace(s).

e ContentDirectory service properties imported with a normative namespace prefix (see Appendix
B.17, “ContentDirectory Service Imported Properties”).

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 213

C.3 object Base Class

This is the abstract base class for the entire ScheduledRecording service class hierarchy. No object of this
abstract class can be instantiated. The object class defines properties that are common to all
ScheduledRecording service abjects. The table below lists all standard defined properties (see Appendix B,
“AV Working Committee Extended Properties” for the definition of each property) and indicates the
support level (ERGEIBEIEE, OPTIONAL, REQUIRED, and [BNIBJSFIN[E) in this class for each
property.

Table C-4: object Base Class Properties

Property Name ‘ Property Name

Base Properties Content Control Properties .
@id R totalDesiredRecordTasks
title R scheduledStartDateTimeAdjust
class R scheduledDurationAdjust
additionalStatusInfo activePeriod
cdsReference durationLimit
cdsReference@link durationLimit@effect
Priority Properties channelMigration
— timeMigration
pr!or!ty allowDuplicates
priority@orderedValue -
desiredPriority 0 Storage Related Properties .
desiredPriority@type R persistedRecordings
Output Control Properties persistedRecordings@latest
Destirati persistedRecordings@preAllocation
recor est!nat!on - persistedRecordings@storedLifetime
recordDestination@mediaType -
recordDestination@targetURL Schedule State Properties .
recordDestination@preference scheduleState
desiredRecordQuality (6] scheduleState@currentErrors
desiredRecordQuality@type R abnormalTasksExist
Content ID Related Properties Statistics Properties .
scheduledCDSObjectID currentRecordTaskCount
scheduledCDSObjectID@link totalCreatedRecordTasks
scheduledChannellD totalCompletedRecordTasks
scheduledChannelID@type Task General Properties .
scheduledChannelID@distriNetworkName TSeheduielD
scheduledChannellD@distriNetworkID record gceDgoeb' 5
scheduledStartDateTime recorde !ect -
scheduledDuration recordedCDSObjectID@link
scheduledProgramCode Task Content ID Properties .
scheduledProgramCode @type taskCDSObjectlD
Matching Content Criteria taskCDSObijectID@link
matchingName taskChannellD
matchingName@type taskChannellD @type
matchingName @subStringMatch taskChannellD @distriNetworkName
matchingID taskChannellD@distriNetworkID
- taskStartDateTime
matchinglD@type
- 4 — — taskDuration
Matching Qualifying Criteria taskProgramCode
matchingChannellD taskProgramCode @type
matchingChannellD@type recordQuality
matchingChannellD @distriNetworkName recordQuality@type
matchingChannellD@distriNetworkID Matched Content Criteria .
matchingStartDateTimeRange rodN
matchingDurationRange matchedName
matchingRatingLimit matchedlsme@_w@
matchingRatingLimit@type matchedID
matchingEpisodeType matchedID@type

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

Property Name

Matched Qualifying Criteria .
matchedRating

matchedRating@type

matchedEpisodeType

Content Control Properties .

taskStartDate TimeAdjust
taskDurationAdjust
taskDurationLimit
taskDurationLimit@effect
taskChannelMigration
taskTimeMigration

Task State Properties

C.3.1 object.recordSchedule Class

214

Property Name
taskState

taskState@phase
taskState@startDateTimeMet
taskState@endDateTimeMet
taskState@recording
taskState@someBitsRecorded
taskState @someBitsMissing
taskState@firstBitsRecorded
taskState@lastBitsRecorded
taskState@fatalError
taskState@currentErrors
taskState@errorHistory
taskState@pendingErrors
taskState@infoList

This is the abstract base class for the ScheduledRecording service record schedules class hierarchy. No
object of this abstract class can be instantiated. The object.recordSchedule class defines properties that are
common to all object.recordSchedule list entries. The table below lists all recordSchedule-related
standard defined properties (recordTask-only properties are omitted from the table — see Appendix B,
“AV Working Committee Extended Properties” for the definition of each property) and indicates the

support level (ERGEIBIIEE, OPTIONAL, REQUIRED, and FNIBISFIN[ED) in this class for
recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

Table C-5: object.recordSchedule Base Class Properties

Property Name ‘% 0
X o

Base Properties

@id V|V

title YV

class V|V

additionalStatusinfo (6]

cdsReference

cdsReference@link

Priority Properties

priority R

priority@orderedValue (6]

desiredPriority V|V

desiredPriority@type V|V

Output Control Properties

recordDestination

recordDestination@mediaType

recordDestination@targetURL

recordDestination@preference

desiredRecordQuality

= |<_[O]OfO]O
=< _[=fo =)z

desiredRecordQuality@type

Content ID Related Properties

scheduledCDSObjectID
scheduledCDSObjectID@link
scheduledChannellD

scheduledChannellD @type
scheduledChannelID@distriNetworkName
scheduledChannellD@distriNetworkID
scheduledStartDateTime

© 2011, UPnP Forum. All rights Reserved.

Property Name

scheduledDuration
scheduledProgramCode
scheduledProgramCode @type

Matching Content Criteria

matchingName
matchingName@type
matchingName@subStringMatch
matchinglD

matchinglD@type

Property Name

Matching Qualifying Criteria
matchingChannellD
matchingChannellD@type
matchingChannellD @distriNetworkName
matchingChannellD @distriNetworklD
matchingStartDateTimeRange
matchingDurationRange
matchingRatingLimit
matchingRatingLimit@type
matchingEpisodeType

Content Control Properties

totalDesiredRecordTasks
scheduledStartDateTimeAdjust
scheduledDurationAdjust
activePeriod

e} (e} (@]
e} (e} (@]

ScheduledRecording:2

Property Name

durationLimit
durationLimit@effect
channelMigration
timeMigration
allowDuplicates

Storage Related Properties

persistedRecordings 0|0
persistedRecordings@Ilatest 0|0
persistedRecordings@preAllocation 0|0
persistedRecordings@storedLifetime 0|0
Schedule State Properties

scheduleState .E

C3.11

Property Name

scheduleState@currentErrors
abnormalTasksExist

Statistics Properties

currentRecordTaskCount
totalCreatedRecordTasks
totalCompletedRecordTasks

object.recordSchedule.direct Class

215

The object.recordSchedule.direct abstract class is derived from the object.recordSchedule class. No object

of this abstract class can be instantiated.

The main characteristic of the object.recordSchedule.direct class is that all the information that is needed

to create associated recordTask instances is contained within the properties of the recordSchedule. The
properties contain sufficient information to allow the ScheduledRecording service to translate this
information into a deterministic set of recordTask properties. For example, if a ScheduledRecording
service implementation supports the object.recordSchedule.direct.programCode class, the

ScheduledRecording service is able to interpret the scheduledProgramCode property and derive the
appropriate taskStartDate, taskStartTime, taskDuration, and taskChannellD recordTask properties from

it. The table below lists all standard defined properties (see Appendix B, “AV Working Committee

Extended Properties” for the definition of each property) and indicates the support level (|

OPTIONAL, REQUIRED, and [SJNIBJSIZINII®)) in this class for recordScheduleParts (RSP) and

recordSchedule (RS) usage for each property.

Table C-6:

Property Name

RSP
RS

Base Properties
@id

title

class
additionalStatusinfo
cdsReference
cdsReference@link

Priority Properties

<< [=
= ===

priority
priority@orderedValue
desiredPriority
desiredPriority@type

Output Control Properties

= [
(== ==

recordDestination
recordDestination@mediaType
recordDestination@targetURL
recordDestination@preference
desiredRecordQuality
desiredRecordQuality@type

Content ID Related Properties
scheduledCDSObjectID

(=== |=[=|=
= < [= < ==

© 2011, UPnP Forum. All rights Reserved.

object.recordSchedule.direct Class Properties

Property Name

scheduledCDSObjectID@link
scheduledChannellD
scheduledChannellD @type
scheduledChannelID@distriNetworkName
scheduledChannellD@distriNetworkID
scheduledStartDateTime
scheduledDuration
scheduledProgramCode
scheduledProgramCode @type

Matching Content Criteria

matchingName
matchingName@type
matchingName@subStringMatch
matchinglD

matchinglD@type

Property Name

Matching Qualifying Criteria

matchingChannellD
matchingChannellD@type
matchingChannellD @distriNetworkName
matchingChannellD @distriNetworklD

ScheduledRecording:2

Property Name

matchingStartDateTimeRange
matchingDurationRange
matchingRatingLimit
matchingRatingLimit@type
matchingEpisodeType

Content Control Properties

totalDesiredRecordTasks
scheduledStartDateTimeAdjust
scheduledDurationAdjust
activePeriod

durationLimit
durationLimit@effect
channelMigration
timeMigration
allowDuplicates

=< [=
== f=

Storage Related Properties

C3.1l11

Property Name

persistedRecordings
persistedRecordings@Ilatest
persistedRecordings@preAllocation
persistedRecordings@storedLifetime

!

< < |<_|< &S]

Y

Schedule State Properties

scheduleState
scheduleState@currentErrors
abnormalTasksExist

Statistics Properties

currentRecordTaskCount
totalCreatedRecordTasks
totalCompletedRecordTasks

object.recordSchedule.direct.manual Class

The object.recordSchedule.direct. manual class is used to create recordSchedule instances for manual

216

scheduling of recordings. The content to be recorded is uniquely identified by the scheduledChannelID,
scheduledStartDateTime, and scheduledDuration properties.

The table below lists all standard defined properties (see Appendix B, “AV Working Committee Extended
Properties” for the definition of each property) and indicates the support level (
OPTIONAL, REQUIRED, and [SJNIBJSIZINI=®)) in this class for recordScheduleParts (RSP) and

recordSchedule (RS) usage for each property.

Table C-7:

object.recordSchedule.direct.manual Class Properties

Property Name ‘ 2

RS

Base Properties
@id

title

class
additionalStatusinfo
cdsReference
cdsReference@link

Priority Properties

<< [=
= ===

priority
priority@orderedValue
desiredPriority
desiredPriority@type

Output Control Properties

=<
== ==

recordDestination
recordDestination@mediaType
recordDestination@targetURL
recordDestination@preference
desiredRecordQuality
desiredRecordQuality@type

Content ID Related Properties

scheduledCDSObjectID
scheduledCDSObjectID@link
scheduledChannellD

scheduledChannellD @type
scheduledChannelID@distriNetworkName

[=== ==
== == ==

1O (PO |z
1O [Fo =0

© 2011, UPnP Forum. All rights Reserved.

Property Name ‘

scheduledChannellD@distriNetworkID
scheduledStartDateTime
scheduledDuration
scheduledProgramCode
scheduledProgramCode @type

Matching Content Criteria

s Bl [@ RSP
Esl B[O RS

matchingName
matchingName@type
matchingName@subStringMatch
matchinglD

matchinglD@type

Property Name

Matching Qualifying Criteria

matchingChannellD
matchingChannellD@type
matchingChannellD @distriNetworkName
matchingChannellD @distriNetworklD
matchingStartDateTimeRange
matchingDurationRange
matchingRatingLimit
matchingRatingLimit@type
matchingEpisodeType

Content Control Properties

ScheduledRecording:2

217

Property Name ‘ 2 0 Property Name
totalDesiredRecordTasks V|V Schedule State Properties
scheduledStartDateTimeAdjust ViV

- - =T scheduleState
scheduledDurationAdjust V|V
activePeriod olo scheduleStai@cu.rrentErrors
durationLimit abnormalTasksExist
durationLimit@effect Statistics Properties
channelMigration currentRecordTaskCount
timeMigration totalCreatedRecordTasks
allowDuplicates totalCompletedRecordTasks
Storage Related Properties
persistedRecordings V|V
persistedRecordings@latest V|V
persistedRecordings@preAllocation V|V
persistedRecordings@storedL ifetime V|V

C.3.1.1.2 object.recordSchedule.direct.cdsEPG Class

The object.recordSchedule.direct.cdsEPG class is used to create recordSchedule instances for scheduling
of recordings, based on local EPG information. The content to be recorded is uniquely identified by the
scheduledCDSObjectlD property that MUST reference an EPG item (object.item.epgltem class) in an
associated ContentDirectory service. Most EPG item types currently defined identify only a single
recording event. In the future, new EPG item types may be defined that identify multiple recording events.

The REQUIRED association between a ContentDirectory service and a ScheduledRecording service is
established by having both services reside within the same UPnP MediaServer device. See also Appendix
E, “ScheduledRecording Service Relationship to ContentDirectory Service” and Appendix F,
“ScheduledRecording Service Relationship to EPG” for further details.

The table below lists all standard defined properties (see Appendix B, “AV Working Committee Extended
Properties” for the definition of each property) and indicates the support level (

OPTIONAL, REQUIRED, and [BNISJIFINIE®) in this class for recordScheduleParts (RSP) and
recordSchedule (RS) usage for each property.

Table C-8: object.recordSchedule.direct.cdsEPG Class Properties

Property Name ‘

RSP

Base Properties

Property Name
scheduledCDSObijectID

@id

scheduledCDSObijectID

title

scheduledChannellD

class
additionalStatusinfo
cdsReference
cdsReference@link

Priority Properties

priority
priority@orderedValue
desiredPriority

scheduledChannellD @type

scheduledChannelID@distriNetworkName

scheduledChannellD@distriNetworkID

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

scheduledProgramCode @type

Matching Content Criteria

= [

desiredPriority@type

matchingName

Output Control Properties

matchingName@type

matchingName@subStringMatch

recordDestination

matchinglD

recordDestination@mediaType

matchinglD@type

recordDestination@targetURL

recordDestination@preference

desiredRecordQuality

(=== |=[=|=
= < [= < ==

desiredRecordQuality@type

Property Name

Matching Qualifying Criteria

Content ID Related Properties

matchingChannellD

matchingChannellD@type

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

Property Name

matchingChannellD @distriNetworkName
matchingChannellD @distriNetworklD
matchingStartDateTimeRange
matchingDurationRange
matchingRatingLimit
matchingRatingLimit@type
matchingEpisodeType

Content Control Properties

totalDesiredRecordTasks
scheduledStartDateTimeAdjust
scheduledDurationAdjust
activePeriod

durationLimit
durationLimit@effect
channelMigration
timeMigration

(o] (e} (o] (o] (o) By By By
(O[O F]O|O[<_<_[<|

C.3.1.13

Property Name

allowDuplicates

RSP
RS

Storage Related Properties

persistedRecordings

persistedRecordings@Ilatest

persistedRecordings@preAllocation

persistedRecordings@storedLifetime

Y
= ===

Schedule State Properties

scheduleState

scheduleState@currentErrors

abnormalTasksExist

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

object.recordSchedule.direct.cdsNonEPG Class

The object.recordSchedule.direct.cdsNonEPG class is used to create recordSchedule instances for

218

scheduling of recordings, for which (only) channel information is available in a local ContentDirectory
database. The content to be recorded is uniquely identified by the scheduledStartDateTime, and
scheduledDuration properties, supplemented with the scheduledCDSObjectID property that MUST
reference a ContentDirectory service object whose class is not “object.item.epgltem” or derived from that

class. Additionally, the referenced ContentDirectory service object MUST identify content that will be

available for recording at the time the recording is scheduled to start.

Examples of applicable ContentDirectory service objects are:

e A User Channel object that contains specific channel information.

e An object that represents an analog A/V input connection to the device.

e An object that represents an IP network program feed.

e An object that represents an already existing file.

e Efc.

The REQUIRED association between a ContentDirectory service and a ScheduledRecording service is

established by having both services reside within the same UPnP MediaServer device. See also Appendix

E, "ScheduledRecording Service Relationship to ContentDirectory Service” and Appendix F,

“ScheduledRecording Service Relationship to EPG” for further details.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

The table below lists all standard defined properties (see Appendix B, “AV Working Committee Extended

Properties” for the definition of each property) and indicates the support level (
OPTIONAL, REQUIRED, and [SJNIBJSIZINI=I®)) in this class for recordScheduleParts (RSP) and

recordSchedule (RS) usage for each property.

Table C-9:

object.recordSchedule.direct.cdsNonEPG Class Properties

Property Name ‘

matchingName@subStringMatch
matchinglD

matchinglD@type

o
0 0 Property Name
Y
Base Properties Matching Qualifying Criteria
@id matchingChannellD
title matchingChannellD@type
class matchingChannellD @distriNetworkName
additionalStatusinfo matchingChannellD @distriNetworklD
cdsReference matchingStartDateTimeRange
cdsReference@link matchingDurationRange
Priority Properties match!anat!nqL!m!t
— matchingRatingLimit@type
priority v matchingEpisodeType
priority@orderedValue v
desiredPriority VIV Content Control Properties
desiredPriority@type V|V totalDesiredRecordTasks V]| v
Output Control Properties scheduledStartDate TimeAdjust V|V
scheduledDurationAdjust
recordDestination V[- - = vV
— - —— activePeriod 0|0
recordDestination@mediaType V[—
IDestinati ORL ?/ ?/ durationLimit
recor est!nat!on@Larqet ?/ :/ durationLimit@effect
recgrdDestmatlon@preference V[channelMigration
desiredRecordQuality V]V imeMiarati
- - = gration
desiredRecordQuality@type V|V allowDuplicates
Content ID Related Properties Storage Related Properties
scheduledCDSOb!ectlD . RI|R persistedRecordings V|V
scheduledCDSObjectID@link O persistedRecordings@Ilatest V|V
scheduledChannellD persistedRecordings@preAllocation V|V
scheduledChanneIID@_y&t. € persistedRecordings@storedLifetime V]V
scheduledChannellD@distriNetworkName - T
scheduledChannelID@distriNetworklD Schedule State Properties
scheduledStartDateTime R|R scheduleState
scheduledDuration R[R scheduleState@currentErrors
scheduledProgramCode abnormalTasksExist
scheduledProgramCode @type Statistics Properties
Matching Content Criteria currentRecordTaskCount
matchingName totalCreatedRecordTasks
matchingName@type totalCompletedRecordTasks

C.3.1.14 object.recordSchedule.direct.programCode Class

The object.recordSchedule.direct.programCode class is used to create recordSchedule instances for
scheduling of recordings, based on program code information. The content to be recorded is uniquely
identified by the scheduledprogramCode property that contains a unique code that can be translated by the
ScheduledRecording service into a precise start date, start time, duration and channel for the recording
event(s). However, most program code types currently defined identify only a single recording event. In
the future, new program code types may be defined that identify multiple recording events.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 220

The table below lists all standard defined properties (see Appendix B, “AV Working Committee Extended
Properties” for the definition of each property) and indicates the support level (

OPTIONAL, REQUIRED, and [BNISJIFINIE®) in this class for recordScheduleParts (RSP) and
recordSchedule (RS) usage for each property.

Table C-10: object.recordSchedule.direct.programCode Class Properties

RSP

Property Name 0 Property Name
Base Properties Matching Qualifying Criteria
@id V|V matchingChannellD
title V|V matchingChannellD@type
class V|V matchingChannellD@distriNetworkName
additionalStatusInfo v matchingChannellD@distriNetworklD
cdsReference matchingStartDateTimeRange
cdsReference@link matchingDurationRange
Priority Properties matchingRatingLimit
— matchingRatingLimit@type
priority v matchingEpisodeType
priority@orderedValue v
desiredPriority VIV Content Control Properties
desiredPriority@type V|V totalDesiredRecordTasks V]| v
Output Control Properties scheduledStartDateTimeAdjust V|V
recordDestination V[sch.eduled.DuratlonAgu_st RUF
— - — = activePeriod
recordDestination@mediaType V[durationLimi
— urationLimit
recordDest!nat!on@LarqetURL V|V durationLimit@effect
recgrdDestlnatlon@preference V[channelMigration
desiredRecordQuality V|V timeMigration
desiredRecordQuality@type V|V allowDuplicates
Content ID Related Properties Storage Related Properties
scheduledCDSOb?ectlD . persistedRecordings V|V
scheduledCDSObjectiD@link persistedRecordings@latest V|V
scheduledChannellD persistedRecordings@preAllocation V|V
scheduledChanneIID@_&@. persistedRecordings@storedLifetime V|V
scheduledChannelID@distriNetworkName =T
scheduledChannelID@distriNetworklD Schedule State Properties
scheduledStartDateTime scheduleState
scheduledDuration scheduleState@currentErrors
scheduledProgramCode RIR abnormalTasksExist
scheduledProgramCode@type £ lUE Statistics Properties
Matching Content Criteria currentRecordTaskCount
matchingName totalCreatedRecordTasks
matchingName@type totalCompletedRecordTasks
matchingName@subStringMatch
matchinglD
matchinglD@type
C.3.1.2 object.recordSchedule.query Class

The object.recordSchedule.query abstract class is derived from the recordSchedule base class. No object
of this abstract class can be instantiated.

The main characteristic of the object.recordSchedule.query class is that the properties of the
recordSchedule are used as matching criteria to select items from external sources (like EPG databases,
side-band metadata streams in digital broadcasts, etc.). After appropriate searching and matching, the
metadata from these external items is used to populate recordTask instances. This process ensures that the
recordTask properties match the rules set forth in the recordSchedule’s properties (matching criteria).

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 221

The table below lists all standard defined properties (see Appendix B, “AV Working Committee Extended
Properties” for the definition of each property) and indicates the support level (

OPTIONAL, REQUIRED, and [BNISJFINIE®) in this class for recordScheduleParts (RSP) and
recordSchedule (RS) usage for each property.

Table C-11: object.recordSchedule.query Class Properties

RSP

Property Name 0 Property Name

Base Properties Matching Qualifying Criteria

@id V|V matchingChannellD

title V|V matchingChannellD@type

class V|V matchingChannellD@distriNetworkName
additionalStatusInfo v matchingChannellD@distriNetworklD
cdsReference matchingStartDateTimeRange

cdsReference@link matchingDurationRange

Priority Properties matchingRatingLimit

Sriority 7 match?anaFinqLimit@_typ_e

priority@orderedValue z/ -

desiredPriority V[V Content Control Properties

desiredPriority@type V|V totalDesiredRecordTasks V]| v
Output Control Properties scheduledStartDateTimeAdjust Vv
recordDestination V[Zi?ﬁig:ﬂg;rammm é/ é/
recordDestination@mediaType V[durationLimit olo
recordDestination@targetURL V|V durationLimit@effect olR
recordDestination@preference V[channelMigration olo
desiredRecordQuality V|V timeMigration olo
desiredRecordQuality@type V|V allowDuplicates olo
Content ID Related Properties Storage Related Properties
scheduledCDSOb?ectlD . persistedRecordings FiF
scheduledCDSObjectID@Iink persistedRecordings@Ilatest V|V
scheduledChannellD persistedRecordings@preAllocation V|V
scheduledChannelID@type persistedRecordings@storedLifetime V]V
scheduledChannellD@distriNetworkName - =T
scheduledChannellD@distriNetworklD Schedule State Properties
scheduledStartDateTime scheduleState

scheduledDuration scheduleState@currentErrors
scheduledProgramCode abnormalTasksExist
scheduledProgramCode@type Statistics Properties

Matching Content Criteria currentRecordTaskCount

matchingName totalCreatedRecordTasks

matchingName@type totalCompletedRecordTasks
matchingName@subStringMatch

matchinglD

matchinglD@type

C.3.1.21 object.recordSchedule.query.contentName Class

The object.recordSchedule.query.contentName class is used to create recordSchedule instances for
scheduling of recordings, based on program or series name information. The content to be recorded is
determined by matching the value, specified in the matchingName property to the names of content items
made available to the ScheduledRecording service by REQUIRED external resources like access to EPG
databases, access to Service Information side-band data in digital broadcasts, etc. The matching process
can be further restricted by providing a combination of Matching Qualifying Criteria properties. Any
external content item MUST match those additional criteria to be considered a potential candidate for
recording.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 222

The table below lists all standard defined properties (see Appendix B, “AV Working Committee Extended
Properties” for the definition of each property) and indicates the support level (

OPTIONAL, REQUIRED, and [BNISJSFINIE®) in this class for recordScheduleParts (RSP) and
recordSchedule (RS) usage for each property.

Table C-12: object.recordSchedule.query.contentName Class Properties

matchingRatingLimit
matchingRatingLimit@type

Priority Properties

Property Name ‘2 0 Property Name ‘2 0
Base Properties Matching Qualifying Criteria
@id V|V matchingChannellD oo
title V|V matchingChannellD@type R|R
class V|V matchingChannellD@distriNetworkName [0] O
additionalStatusinfo v matchingChannellD@distriNetworklD 0|0
cdsReference matchingStartDateTimeRange [e] K¢l
cdsReference@link matchingDurationRange [e] K¢l
0[O0
RIR
O[O

priority ?\; matchingEpisodeType
priority@orderedValue N -
desiredPriority e Content Control Properties
desiredPriority@type VIV totalDesiredRecordTasks

scheduledStartDateTimeAdjust
scheduledDurationAdjust
activePeriod

durationLimit
durationLimit@effect
channelMigration
timeMigration
allowDuplicates

Output Control Properties

recordDestination
recordDestination@mediaType
recordDestination@targetURL
recordDestination@preference
desiredRecordQuality
desiredRecordQuality@type

[=== ==
== == ==
= = === == ==
= = === == ==

Content ID Related Properties Storage Related Properties

scheduledCDSOb?ectlD . persistedRecordings V|V
scheduledCDSObjectID@link persistedRecordings@Ilatest M
scheduledChannellD persistedRecordings@preAllocation M
scheduledChannelID@type persistedRecordings@storedL ifetime M

scheduledChannelID@distriNetworkName
scheduledChannelID@distriNetworkID

Schedule State Properties

scheduledStartDatetime scheduleState
scheduledDuration scheduleState@currentErrors
scheduledProgramCode abnormalTasksExist
scheduledProgramCode@type Statistics Properties
Matching Content Criteria currentRecordTaskCount

totalCreatedRecordTasks
totalCompletedRecordTasks

matchingName

matchingName@type
matchingName@subStringMatch

matchinglD
matchinglD@type

1O POz
1O (o=

C.3.1.2.2 object.recordSchedule.query.contentlD Class

The object.recordSchedule.query.contentID class is used to create recordSchedule instances for
scheduling of recordings, based on program or series ID information. The content to be recorded is
determined by matching the value, specified in the matchinglD property to the 1Ds of content items made
available to the ScheduledRecording service by REQUIRED external resources like access to EPG
databases, access Service Information side-band data in digital broadcasts, etc. The matching process can
be further restricted by providing a combination of Matching Qualifying Criteria properties. Any external
content item MUST match those additional criteria to be considered a potential candidate for recording.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

The table below lists all standard defined properties (see Appendix B, “AV Working Committee Extended

Properties” for the definition of each property) and indicates the support level (
OPTIONAL, REQUIRED, and [SJNIBJSIZINI=®)) in this class for both input and output for each property

Table C-13: object.recordSchedule.query.contentlD Class Properties

Property Name ‘% 0
¥ o

Base Properties

@id V|V

title vV

class V]|V

additionalStatusinfo v

cdsReference

cdsReference@link

Priority Properties

priority v

priority@orderedValue v

desiredPriority V|V

desiredPriority@type V|V

Output Control Properties

recordDestination

recordDestination@mediaType

recordDestination@targetURL

recordDestination@preference

desiredRecordQuality

=== ===
== == ==

desiredRecordQuality@type

Content ID Related Properties

scheduledCDSObjectID
scheduledCDSObjectID@link
scheduledChannellD

scheduledChannellD @type
scheduledChannelID@distriNetworkName
scheduledChannelID@distriNetworkID
scheduledStartDateTime
scheduledDuration
scheduledProgramCode
scheduledProgramCode@type

Matching Content Criteria

matchingName
matchingName@type
matchingName@subStringMatch
matchinglD

170 (170
170 (170

matchinglD@type

© 2011, UPnP Forum. All rights Reserved.

Property Name

Matching Qualifying Criteria

matchingChannellD

matchingChannellD@type

matchingChannellD @distriNetworkName

matchingChannellD @distriNetworkID

matchingStartDateTimeRange

matchingDurationRange

matchingRatingLimit

matchingRatingLimit@type

matchingEpisodeType

e} =5l (o] (o) (@]
e} =5l (o] (o) (@]

Content Control Properties

totalDesiredRecordTasks

scheduledStartDateTimeAdjust

scheduledDurationAdjust

activePeriod

durationLimit

durationLimit@effect

channelMigration

timeMigration

allowDuplicates

= = === == ==
= = === == ==

Storage Related Properties

persistedRecordings

persistedRecordings@Ilatest

persistedRecordings@preAllocation

persistedRecordings@storedLifetime

Y

= ===

Schedule State Properties

scheduleState

scheduleState@currentErrors

abnormalTasksExist

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

ScheduledRecording:2 224

C.3.2 object.recordTask Class

This is the base class for the ScheduledRecording service record task class hierarchy. Currently, this is the
only class defined in this hierarchy. All recordTask objects in the ScheduledRecording service are
members of this class. The object.recordTask class defines properties that are common to all recordTask
list entries.

A recordTask object represents an actual recording occurrence. More sophisticated ScheduledRecording
service implementations MAY implement OPTIONAL actions that allow a control point to manipulate
individual recordTask instances. For example, the OPTIONAL DisableRecordTask() action can be used to
selectively disable (that is: recording task suspended and any actual recording MUST NOT occur) one or
more recordTask instances, spawned from the same recordSchedule if not all recordings are desired.

A recordTask SHOULD be created by the ScheduledRecording service as soon as all necessary
information (like EPG data) becomes available. It SHOULD be maintained at least until the recordTask
has finished. It is RECOMMENDED to maintain all completed recordTask instances for a reasonable
time or until space is needed so that control points can retrieve recordTask state information after the
recording has finished.

One or more recordTask instances can be created per recordSchedule. Some recordSchedule instances
may not have a recordTask because they have not scheduled any recordings yet.

The list of the recordTask instances can be obtained using the BrowseRecordTasks() action. A recordTask
can be disabled using the DisableRecordTask() action.

Note that a recordTask is not created by a control point directly; therefore, the input support level below
indicates ERGEIBEIED for all properties.

The table below lists all recordTask-related standard defined properties (recordSchedule-only properties
are omitted from the table — see Appendix B, “AV Working Committee Extended Properties” for the
definition of each property) and indicates the support level (ERGEIBEIED, OPTIONAL, and
REQUIRED) in this class for recordTask (RT) usage for each property.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

Table C-14: object.recordTask Base Class Properties

Property Name

Base Properties

RT

@id

title

Property Name

Matched Content Criteria

RT

class

matchedName

additionalStatusinfo

matchedName@type

cdsReference

matchedID

cdsReference@link

70O O ===

matchedID@type

o) [@] =+ (@}

Priority Properties

Matched Qualifying Criteria

priority

matchedRating

priority@orderedValue

matchedRating@type

desiredPriority

matchedEpisodeType

1O [FE]o

desiredPriority@type

= [<_[O[=

Output Control Properties

Content Control Properties

taskStartDate TimeAdjust

recordDestination

taskDurationAdjust

recordDestination@mediaType

taskDurationLimit

recordDestination@targetURL

taskDurationLimit@effect

recordDestination@preference

taskChannelMigration

desiredRecordQuality

taskTimeMigration

O[O []O oo

desiredRecordQuality@type

= | [FE|o |

General Properties

Task State Properties

taskState

recordSchedulelD

recordedCDSObjectID

recordedCDSObjectID@Ilink

(e} [@] =)

Content ID Related Properties

taskCDSObjectID

taskCDSObjectID@link

taskChannellD

taskChannellD @type

taskChannellD @distriNetworkName

taskChannellD@distriNetworklD

taskStartDateTime

taskDuration

taskProgramCode

taskState@phase

taskState@startDateTimeMet

taskState@endDateTimeMet

taskState@recording

taskState @someBitsRecorded

taskState @someBitsMissing

taskState @firstBitsRecorded

taskState@lastBitsRecorded

taskState@fatalError

taskState@currentErrors

taskState@errorHistory

taskState@pendingErrors

taskState@infoList

[zsh ek ek Be) Bl (@] [@F o) Be) el (@] (@ o))

taskProgramCode@type

recordQuality

recordQuality@type

[zsh Bsh Bel (@] o) o) (@] (@ Bo) o) (o] (@]

© 2011, UPnP Forum. All rights Reserved.

225

ScheduledRecording:2 226

Appendix D. EBNF Syntax Definitions (Normative)

The following sections define the syntax used for some of the properties and classes described in the
previous sections. The syntax is formally defined using EBNF as described in Section 1.2.3, “Extended
Backus-Naur Form”.

D.1 Priority Syntax

Note: Due to possible future extensions, unknown value inputs MUST be gracefully ignored. In this case,
the semantics of the “DEFAULT” value MUST be applied.

priority-value ::= standard-value]
extended-value (* extended-value is only
applicable i1f priority@orderedvalue is
supported *)

standard-value ::= level|"DEFAULT"

level 2= ("L" number)

number 2= (* integer (n>0) *)

extended-value ::= FHIGHEST"]"LOWEST"|level-hi]level-low]|object-id
level-hi ::= level " _HIT

level-low ::= level " _LOW*

object-id 2= (* @id value *)

D.2 Date&time Syntax

sched-start 1= date-time
day-of-yr-time
named-day-time
T-1abeled-time

“Now*

start-range := (date-time|"PAST"]"NOW") */* (date-
time] "INFINITY")

date-time-range ::= date-time /" date-time

duration
duration-1long
duration-any
duration-adj
duration-range

"P®" [n D] time

duration| "INFINITY"
duration] " INFINITY" | "ANY"*
(*+7]°-") duration
duration */° duration-long

yyyy "-" mm "-° dd T-labeled-time
mm - dd T-labeled-time
named-day T-labeled-time

date-time
day-of-yr-time
named-day-time

T-labeled-time "T" time [zone]

time 2= HH ":°" MM ":" SS

zone iz "ZT)(CHTT=T) HH o MM)

month-day = mm -7 dd

named-day Z:= "MON®|]"TUE®"|"WED" | "THU" | "FRI™] "SAT"] "SUN"|
"MON-FRI "] "MON-SAT"

n = 1*DIGIT (* non-negative integer *)

yyyy := 4DIGIT (* 0001-9999 *)

mm = 2DIGIT (* 01-12 *)

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

Q
o
1

=
=
I

227

2DIGIT (* 01-28, 01-29, 01-30, 01-31
based on month/year *)

2DIGIT (* 00-23 *)

2DIGIT (* 00-59 *)

2DIGIT (* 00-59 *)

D.3 Class Name Syntax

className

sName

tName

dName

gName

directName

queryName

shortName

"OBJECT.* (sName]tName)

"RECORDSCHEDULE.* (dName]gName)
"RECORDTASK®™ ("." shortName)*

"DIRECT." directName ("." shortName)*
"QUERY." queryName ("." shortName)*
"MANUAL"™ | "CDSEPG™ | "CDSNONEPG" | "PROGRAMCODE*
"CONTENTNAME™ | "CONTENTID"

(* valid XML 1.0 name, excluding the characters
"." (UTF-8 code 0Ox2E)

and

":" (UTF-8 code 0x3A) *)

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 228

Appendix E. ScheduledRecording Service Relationship to
ContentDirectory Service (Informative)

As noted in the specification, the only formal relationship between a ScheduledRecording service and a
ContentDirectory service is through the object.recordSchedule.direct.cdsEPG and
object.recordSchedule.direct.cdsNonEPG classes. The reason for keeping the ScheduledRecording service
and ContentDirectory service as separate services is because they serve different purposes. The
ScheduledRecording service is a service for creating a schedule of recording operations whereas the
ContentDirectory service is a service for exposing content and its metadata. Therefore, the only formal
dependency on a ContentDirectory service is to accommodate the case where a control point identifies
recordable content on a ContentDirectory service and then instructs a sibling ScheduledRecording service
to record that content.

Although a ScheduledRecording service and a ContentDirectory service are generally separated at the
protocol layer, the two services can often interact in an out-of-band manner to realize some additional
usages.

Showing Recorded Content in a ContentDirectory service: Vendors who are interested in making
recorded content discoverable and network-consumable can expose the recorded content through the
associated ContentDirectory service. The exact location where the recorded content will be exposed is
determined by the implementation and is vendor-dependent.

Sending recorded bits to a ContentDirectory service: One methodology for sending recorded content to
a ContentDirectory service (that is completely separate from the ScheduledRecording service) is to do the
following: Start the process by having the control point invoke the ContentDirectory::CreateObject()
action and obtain a res@importUri where binary data can be deposited via HTTP-POST. As a second
step, the control point uses the CreateRecordSchedule() action with the appropriate destination type
(recordDestination = “MyNAS”, recordDestination@mediaType = “HDD”,
recordDestination@targetURL = res@importUri) to accommodate a URI that accepts HTTP-POST
transmissions. When the ScheduledRecording service begins to record (or finishes recording) the
ScheduledRecording service implementation can transmit the recorded bits using an HTTP-POST
transaction. When the transmission is complete, the ContentDirectory service updates its metadata to
allow rendering endpoints to play the content.

Scheduled recording from an external location: Vendors who want to use an external location as a
source of recordable content can achieve this use case in the following manner. The control point obtains
a URI that represents content that can be recorded. The control point creates a manual recordSchedule
with the appropriate scheduling information and the URI as the input source in the scheduledChannellD
property. At the instructed time, the ScheduledRecording service will download or stream the content data
bytes from the URI to complete the recording.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 229

Appendix F. ScheduledRecording Service Relationship to
EPG (Informative)

ScheduledRecording service implementations are NOT REQUIRED to be tied to an Electronic Program
Guide (EPG), as demonstrated by the object.recordSchedule.direct.manual class. However the subject of
EPG data is an important discussion point for achieving a variety of use cases. This appendix does not
exhaustively cover every relationship between a ScheduledRecording service and EPG, but it does discuss
how the out-of-band EPG can fit into various use cases.

For scenarios where a control point creates a manual recordSchedule, the EPG directly provides
information to the user. In some setups, the user may have to read an EPG in order to manually provide
the control point with the scheduling and tuning input values. In other setups, the control point may have
access to EPG data, allowing the control point to provide a user interface that is focused on the EPG,
hiding the control point input values from the user. By design, the object.recordSchedule.direct.manual
class does not require an EPG on the ScheduledRecording service because the ScheduledRecording service
can resolve a manual recording type to discrete recordTask instances, without any additional information.

For scenarios where the control point creates a object.recordSchedule.direct.cdsEPG or
object.recordSchedule.query.contentName/contentID class recordSchedule, the user still interacts with
the EPG in some way. In some setups, the user will need to obtain a well-defined value (program or series
ID, program title, etc.) from the EPG. In setups where the control point has access to EPG data, the user
may not need to know about those well-defined values. Regardless of how the control point acquires the
well-defined values, the ScheduledRecording service still needs to be able to translate this higher-level
information into a recordSchedule object. In some setups, the ScheduledRecording service will have
access to a complete EPG to assist with the creation of individual recordSchedule instances. In other
setups, the ScheduledRecording service may have access to limited scheduling information on a broadcast
stream that allows the ScheduledRecording service to know when to perform a recording operation.
Intentionally, these types of recording types are designed around a particular EPG or broadcast system.

For scenarios where the control point creates a object.recordSchedule.query.contentName class of
recordSchedule, the ScheduledRecording service will likely have direct access to EPG data. The reason is
that this type of recordSchedule allows the control point to specify values that are not well-defined but
still convey the desired content for recording. Therefore, the ScheduledRecording service generally needs
to have additional intelligence to translate the recordSchedule into discrete recordTask instances. Often
this process will include continually cross-referencing the recordSchedule properties with information in
an EPG, and generating a recordTask instance every time a match is found between the matching criteria
of the recordSchedule and an EPG item.

For scenarios where the control point creates a object.recordSchedule.direct.cdsEPG class of
recordSchedule, the ScheduledRecording service and its sibling ContentDirectory service will likely have
access to some kind of EPG data. The ContentDirectory service uses the EPG to expose recordable content
to the control point/user. The user chooses a recordable object and then instructs the ScheduledRecording
service to record using the didl-lite:@id value of the recordable object. Although it is generally useful for
a ContentDirectory service to expose as much scheduling metadata as possible, the EPG data that is
exposed by the ContentDirectory service is determined by the ContentDirectory/ScheduledRecording
service implementer. As such, the only thing that a user needs is a control point that is capable of
representing the recordable objects found in the ContentDirectory service.

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 230

Appendix G. AVDT Examples (Informative)

The following sections contain full-fledged examples of AVDT XML Document instances that a particular
implementation might return in response to the invocation of the GetAllowedValues() action. All AV
Working Committee defined values are printed using the forum character style. All device dependent
values are printed using the vendor character style.

Note: These examples may be used as a starting point for real life implementations. Vendors may delete
OPTIONAL property definitions that they do not support and add, delete and/or modify device dependent
values to match their implementation.

G.1 A ARG TYPE RecordSchedule AVDT Example
Note: This A_ ARG _TYPE RecordSchedule example is marked by a grey background.

Request:
GetAllowedValues("'A_ARG_TYPE_RecordSchedule', "*:*'")

The following response will be generated:

Response:

GetAl lowedValues(

<?xml version="1.0" encoding="UTF-8"?>

<AVDT

xmIns:xsd="http://www.w3.0rg/2001/XMLSchema""

xmlns:srs="urn:schemas-upnp-org:av:srs"

xmlns=""urn:schemas-upnp-org:av:avdt"

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd
urn:schemas-upnp-org:av:avdt
http://www.upnp.org/schemas/av/avdt.xsd">

<contextliD>
uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording: 1
</contextlD>

<dataStructType>A ARG TYPE RecordSchedule</dataStructType>

<fieldTable>

<field>
<name>srs:@id</name>
<dataType maxSize="256">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedvalueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

<field>
<name>srs: title</name>
<dataType maxSize="128">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedvalueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

<al lowedValue>HIGHEST</al lowedValue>
<al lowedValue>LOWEST</al lowedValue>
<allowedValue>L1 Hl</allowedValue>
<allowedValue>L1 | O</allowedValue>
<allowedValue>L2 Hl</allowedValue>
<allowedValue>L2 | O</allowedValue>
<allowedValue>L3 Hl</allowedValue>
<allowedValue>L3 LO</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredPriority@type</name>
<valueList>
<value>0BJECT ID</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<al lowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredPriority@type</name>
<dataType maxSize="16"">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredPriority</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<al lowedValue>PREDEF</al lowedValue>
<al lowedValue>0BJECT ID</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination</name>

<dataType maxSize="1024">xsd:string</dataType>

<minCountTotal>1</minCountTotal>

<maxCountTotal>3</maxCountTotal>

<al lowedValueDescriptor>
<allowedValueList>

<allowedValue>Hard Disk 1</allowedValue>
<allowedValue>Hard Disk 2</allowedValue>

<allowedValue>DVD Drive</allowedValue>

<allowedValue>Remote Media Jukebox</allowedValue>

</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@mediaType</name>

233

<dataType csv="'xsd:string" maxSize="16">xsd:string</dataType>

<maxCountTotal>3</maxCountTotal>
<minListSizeTotal>1</minListSizeTotal>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

<maxListSizeTotal>4</maxListSizeTotal>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valueList>
<value>HardDisk 1</value>
<value>HardDisk 2</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<allowedValueList>
<al lowedValue>HDD</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valueList>
<value>DVD Drive</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>4</maxListSize>
<allowedValuelList>
<al lowedValue>DVD+RW</al lowedValue>
<al lowedValue>DVD-RW</al lowedValue>
<al lowedValue>DVD-R</al lowedValue>
<al lowedValue>DVD+R</al lowedValue>
<al lowedValue>CD-R</al lowedValue>
<al lowedValue>CD-RW</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valueList>
<value>Remote Media Jukebox</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>2</maxListSize>
<allowedValuelList>
<al lowedValue>CD-R</al lowedValue>
<al lowedValue>CD-RW</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@targetURL</name>
<dataType>xsd:anyURI</dataType>
<maxCountTotal>3</maxCountTotal>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>

© 2011, UPnP Forum. All rights Reserved.

234

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 236

<al lowedvValue>1080i60</al lowedValue>
<al lowedValue>720p60</al lowedValue>
<al lowedValue>720p30</al lowedValue>
<al lowedValue>720p24</al lowedValue>
<al lowedValue>480p60</al lowedValue>
<al lowedValue>480p30</al lowedValue>
<al lowedValue>480p24</al lowedValue>
<al lowedValue>480i60</al lowedValue>
<al lowedValue>AUTO</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQual i ty@type</name>
<valueList>
<value>QLEVEL</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>4</maxListSize>
<al lowedValueList>
<allowedValue>Ql</al lowedValue>
<allowedValue>Q2</al lowedValue>
<al lowedValue>Q3</al lowedValue>
<al lowedValue>AUTO</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredRecordQual i ty@type</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQual i ty</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<al lowedValue>DEFAULT</al lowedValue>
<al lowedValue>ATSC</al lowedValue>
<allowedValue>QLEVEL</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledCDSObjectlID</name>
<dataType maxSize="1024">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .DIRECT . CDSEPG</value>
<value>0BJECT .RECORDSCHEDULE .DIRECT . CDSNONEPG</value>
</valuelList>
</dependentField>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 243

</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE . QUERY . CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE . QUERY . CONTENT ID</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:matchingRatingLimit@type</name>
<valueList>
<value>ESRB.ORG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedvValue>EC</al lowedValue>
<allowedvValue>E</al lowedValue>
<allowedValue>E10+</allowedValue>
<allowedValue>T</al lowedValue>
<allowedVvalue>\</al lowedValue>
<allowedvValue>AO</al lowedValue>
<al lowedValue>RP</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE . QUERY . CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE . QUERY . CONTENT ID</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:matchingRatingLimit@type</name>
<valueList>
<value>TVGUIDELINES.ORG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue>TV-Y</allowedValue>
<allowedValue>TV-Y7</allowedValue>
<allowedValue>TV-Y7FV</al lowedValue>
<allowedValue>TV-G</al lowedValue>
<allowedValue>TV-PG</allowedValue>
<allowedValue>TV-14</allowedValue>
<al lowedValue>TV-MA</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingRatingLimit@type</name>
<dataType maxSize="32">xsd:string</dataType>
<al lowedValueDescriptor>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

<dataType>xsd:boolean</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:scheduleState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<al lowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:currentRecordTaskCount</name>
<dataType>xsd:unsignedlInt</dataType>
<minCountTotal>1</minCountTotal>
<al lowedvalueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

<field>
<name>srs:totalCreatedRecordTasks</name>
<dataType>xsd:unsignedlInt</dataType>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:totalCompletedRecordTasks</name>
<dataType>xsd:unsignedInt</dataType>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

</fieldTable>
</AVDT>

G.2 A ARG TYPE RecordTask AVDT Example

Note: This A_ ARG TYPE RecordTask example is marked by a light turquoise background.

Request:
GetAllowedValues("'A_ARG_TYPE_RecordTask™, "*:*')

The following response will be generated:

Response:

GetAl lowedValues(

<?xml version="1.0" encoding=""UTF-8"7>

<AVDT

xmlns:xsd="http://www.w3.0org/2001/XMLSchema""

xmlns:srs=""urn:schemas-upnp-org:av:srs"

xmIns=""urn:schemas-upnp-org:av:avdt"

xmlns:xsi="http://www._w3.0rg/2001/XMLSchema-instance"

Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd

© 2011, UPnP Forum. All rights Reserved.

248

ScheduledRecording:2 249

urn:schemas-upnp-org:av:avdt
http://www.upnp.org/schemas/av/avdt.xsd">

<contextliD>
uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording:1
</contextlID>

<dataStructType>A ARG TYPE RecordTask</dataStructType>

<fieldTable>
<field>
<name>srs:@id</name>
<dataType maxSize="256">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:title</name>
<dataType maxSize="128">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

<field>
<name>srs:class</name>
<dataType maxSize=""64">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowedValueList>
<allowedValue>0BJECT .RECORDTASK</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:additional Info</name>
<dataType maxSize="1024">xsd:string</dataType>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:cdsReference</name>
<dataType maxSize="8192">xsd:string</dataType>
<maxCountTotal>2</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskCDSObjectlD</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<al lowAny></al lowAny>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordedCDSObjectlD</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:cdsReference@l ink</name>
<dataType maxSize="'1024">xsd:string</dataType>
<maxCountTotal>2</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:cdsReference</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:Priority</name>
<dataType maxSize=""8">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedvalueDescriptor>
<allowedValueList>
<allowedValue>L1</al lowedValue>
<allowedValue>L2</al lowedValue>
<allowedValue>L3</al lowedValue>
</allowedVvalueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:priority@orderedValue</name>
<dataType>xsd:unsignedInt</dataType>
<allowedValueDescriptor>
<allowedValueRange>
<minimum>1</minimum>
<maximum>64</maximum>
<step>1</step>
</al lowedValueRange>
</allowedValueDescriptor>
</field>

<field>

<name>srs:desiredPriority</name>

<dataType maxSize="1024">xsd:string</dataType>

<allowedValueDescriptor>

<dependentField>
<name>srs:desiredPriority@type</name>
<valueList>
<value>PREDEF</value>

</valuelList>

© 2011, UPnP Forum. All rights Reserved.

250

ScheduledRecording:2 251

</dependentField>
<allowedValueList>
<allowedValue>DEFAULT</al lowedValue>
<allowedValue>L1</al lowedValue>
<allowedValue>L2</al lowedValue>
<allowedValue>L3</al lowedValue>
<allowedValue>HIGHEST</al lowedValue>
<allowedValue>LOWEST</al lowedValue>
<allowedValue>L1 HI</allowedValue>
<allowedValue>L1l LO</allowedValue>
<allowedValue>L2 HIl</allowedValue>
<allowedValue>L2 LO</allowedValue>
<allowedValue>L3 HIl</allowedValue>
<allowedValue>L3 LO</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredPriority@type</name>
<valueList>
<value>0BJECTID</value>
</valuelList>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredPriority@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredPriority</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>PREDEF</al lowedValue>
<allowedValue>0BJECTID</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination</name>
<dataType maxSize="'1024">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<allowedValuelList>
<allowedValue>Hard Disk 1</allowedValue>
<allowedValue>Hard Disk 2</allowedValue>
<allowedValue>DVD Drive</allowedValue>
<allowedValue>Remote Media Jukebox</allowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 252

<field>
<name>srs:recordDestination@mediaType</name>
<dataType csv=""xsd:string"” maxSize="'16"">xsd:string</dataType>
<maxCountTotal>3</maxCountTotal>
<minListSizeTotal>1</minListSizeTotal>
<maxListSizeTotal>4</maxListSizeTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valueList>
<value>HardDisk 1</value>
<value>HardDisk 2</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<al lowedValueList>
<al lowedValue>HDD</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valueList>
<value>DVD Drive</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1l</minListSize>
<maxListSize>4</maxListSize>
<allowedValuelList>
<al lowedValue>DVD+RW</al lowedValue>
<al lowedValue>DVD-RW</al lowedValue>
<al lowedValue>DVD-R</al lowedValue>
<al lowedValue>DVD+R</al lowedValue>
<allowedValue>CD-R</al lowedValue>
<al lowedValue>CD-RW</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valueList>
<value>Remote Media Jukebox</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>2</maxListSize>
<allowedValuelList>
<al lowedValue>CD-R</al lowedvValue>
<al lowedValue>CD-RW</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@targetURL</name>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 253

<dataType>xsd:anyURI</dataType>
<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@preference</name>
<dataType>xsd:unsignedInt</dataType>
<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<al lowedvalueRange>
<minimum>1</minimum>
<maximum>3</maximum>
<step>1</step>
</al lowedValueRange>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredRecordQual i ty</name>
<dataType csv=""xsd:string"” maxSize="1024">xsd:string</dataType>
<maxListSizeTotal>UNBOUNDED</maxListSizeTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQual ity@type</name>
<valueList>
<value>DEFAULT</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>4</maxListSize>
<allowedValueList>
<allowedValue>HD</al lowedValue>
<allowedValue>ED</al lowedValue>
<allowedValue>SD</al lowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQual ity@type</name>
<valueList>
<value>ATSC</value>
</valuelList>
</dependentField>
<minCount>1</minCount>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

<minListSize>1</minListSize>
<maxListSize>1l</maxListSize>
<allowedValueList>
<allowedValue>1080p30</al lowedValue>
<allowedValue>1080p24</al lowedValue>
<allowedValue>1080i60</al lowedValue>
<allowedValue>720p60</al lowedValue>
<allowedValue>720p30</al lowedValue>
<allowedValue>720p24</allowedValue>
<allowedValue>480p60</al lowedValue>
<allowedValue>480p30</al lowedValue>
<allowedValue>480p24</allowedValue>
<allowedValue>480i160</al lowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQual ity@type</name>
<valueList>
<value>QLEVEL</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>4</maxListSize>
<allowedValueList>
<allowedValue>Ql1</al lowedValue>
<allowedValue>Q2</al lowedValue>
<allowedValue>Q3</al lowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredRecordQual ity@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQual i ty</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>DEFAULT</al lowedValue>
<allowedValue>ATSC</al lowedValue>
<allowedValue>QLEVEL</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordSchedullelD</name>
<dataType maxSize="256">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedvalueDescriptor>

© 2011, UPnP Forum. All rights Reserved.

254

ScheduledRecording:2

<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordedCDSObjectlD</name>
<dataType maxSize="'8192">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

<field>
<name>srs:recordedCDSObjectID@l ink</name>
<dataType maxSize="'1024">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordedCDSObjectlD</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskCDSObjectlD</name>
<dataType maxSize="8192">xsd:string</dataType>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskCDSObjectID@l ink</name>
<dataType maxSize="'1024">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskCDSObjectlD</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskChannel 1D</name>
<dataType maxSize="256">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

<field>
<name>srs:taskChannel ID@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>

© 2011, UPnP Forum. All rights Reserved.

255

ScheduledRecording:2 256

<dependentField>
<name>srs:taskChannel 1D</name>
<anyValue></anyValue>

</dependentField>

<minCount>1</minCount>

<al lowedVvalueList>
<al lowedValue>ANALOG</al lowedValue>
<allowedValue>DIGITAL</al lowedValue>
<allowedValue>FREQUENCY</al lowedValue>
<allowedValue>Sl</allowedValue>
<allowedValue>LINE</al lowedvValue>
<al lowedValue>NETWORK</al lowedValue>

</allowedValuelList>

</allowedValueDescriptor>
</field>

<field>
<name>srs:taskChannel 1D@distriNetworkName</name>
<dataType maxSize="32">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskChannel I1D</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskChannel 1D@distriNetworklD</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskChannel I1D</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskStartDateTime</name>
<dataType maxSize="64">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

<field>
<name>srs:taskDuration</name>
<dataType maxSize="64">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 257

<field>
<name>srs:taskProgramCode</name>
<dataType maxSize=""64">xsd:string</dataType>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskProgramCode@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskProgramCode</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordQual i ty</name>
<dataType maxSize="16">xsd:string</dataType>
<minCountTotal>3</minCountTotal>
<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordQual ity@type</name>
<valueList>
<value>DEFAULT</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:taskState@phase</name>
<valueList>
<value>IDLE</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>HD</al lowedValue>
<allowedValue>ED</al lowedValue>
<allowedValue>SD</al lowedValue>
<allowedValue>UNKNOWN</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordQual ity@type</name>
<valueList>
<value>DEFAULT</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:taskState@phase</name>
<valueList>
<value>ACTIVE</value>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

<value>DONE</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue>HD</al lowedValue>
<allowedValue>ED</al lowedValue>
<allowedValue>SD</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordQual ity@type</name>
<valueList>
<value>ATSC</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:taskState@phase</name>
<valueList>
<value>IDLE</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue>1080p30</al lowedValue>
<allowedValue>1080p24</al lowedValue>
<allowedValue>1080i60</al lowedValue>
<allowedValue>720p60</al lowedValue>
<allowedValue>720p30</al lowedValue>
<allowedValue>720p24</allowedValue>
<allowedValue>480p60</al lowedValue>
<allowedValue>480p30</al lowedValue>
<allowedValue>480p24</allowedValue>
<allowedValue>480i160</al lowedValue>
<allowedValue>UNKNOWN</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordQual ity@type</name>
<valueList>
<value>ATSC</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:taskState@phase</name>
<valueList>
<value>ACTIVE</value>
<value>DONE</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue>1080p30</al lowedValue>
<allowedValue>1080p24</al lowedValue>
<allowedValue>1080i60</al lowedValue>

© 2011, UPnP Forum. All rights Reserved.

258

ScheduledRecording:2

<allowedValue>720p60</al lowedValue>
<allowedValue>720p30</al lowedValue>
<allowedValue>720p24</al lowedValue>
<allowedValue>480p60</al lowedValue>
<allowedValue>480p30</al lowedValue>
<allowedValue>480p24</allowedValue>
<allowedValue>480i160</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordQual ity@type</name>
<valueList>
<value>QLEVEL</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:taskState@phase</name>
<valueList>
<value>IDLE</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>Ql1</al lowedValue>
<allowedValue>Q2</al lowedValue>
<allowedValue>Q3</al lowedValue>
<allowedValue>UNKNOWN</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordQual ity@type</name>
<valueList>
<value>QLEVEL</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:taskState@phase</name>
<valueList>
<value>ACTIVE</value>
<value>DONE</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>Q1</al lowedValue>
<allowedValue>Q2</al lowedValue>
<allowedValue>Q3</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordQual ity@type</name>

<dataType maxSize="16">xsd:string</dataType>

<allowedValueDescriptor>
<dependentField>

© 2011, UPnP Forum. All rights Reserved.

259

ScheduledRecording:2

<name>srs:recordQual i ty</name>
<anyValue></anyValue>
</dependentField>
<minCount>3</minCount>
<maxCount>3</maxCount>
<allowedValueList>
<allowedValue>DEFAULT</al lowedValue>
<allowedValue>ATSC</al lowedValue>
<allowedValue>QLEVEL</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchedName</name>
<dataType maxSize="128">xsd:string</dataType>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchedName@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchedName</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>PROGRAM</al lowedValue>
<allowedValue>SERIES</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchedlD</name>
<dataType maxSize="256">xsd:string</dataType>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchedlD@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchedlD</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue>S1 PROGRAMID</al lowedValue>
<allowedValue>S1 SERIESID</al lowedValue>
</allowedValueList>

© 2011, UPnP Forum. All rights Reserved.

260

ScheduledRecording:2 261

</allowedValueDescriptor>
</field>

<field>
<name>srs:matchedRating</name>
<dataType maxSize="16">xsd:string</dataType>
<maxCountTotal>2</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchedRating@type</name>
<valueList>
<value>MPAA.ORG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue>G</al lowedValue>
<allowedValue>PG</al lowedValue>
<allowedValue>PG-13</al lowedValue>
<allowedValue>R</al lowedValue>
<allowedValue>NC-17</al lowedValue>
<allowedValue>NR</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchedRating@type</name>
<valueList>
<value>RIAA.ORG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue></allowedValue>
<allowedValue>PA-EC</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchedRating@type</name>
<valueList>
<value>ESRB.ORG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue>EC</al lowedValue>
<allowedValue>E</al lowedValue>
<allowedValue>E10+</allowedValue>
<allowedValue>T</al lowedValue>
<allowedValue>M</al lowedValue>
<allowedValue>AO</al lowedValue>
<allowedValue>RP</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchedRating@type</name>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 262

<valueList>
<value>TVGUIDELINES.ORG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<al lowedvaluelList>
<allowedValue>TV-Y</al lowedvValue>
<allowedValue>TV-Y7</al lowedValue>
<allowedValue>TV-Y7FV</al lowedValue>
<allowedValue>TV-G</al lowedvValue>
<allowedValue>TV-PG</al lowedValue>
<allowedValue>TV-14</al lowedvValue>
<allowedValue>TV-MA</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchedRating@type</name>
<dataType maxSize="32">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchedRating</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue>MPAA.ORG</al lowedValue>
<allowedValue>RI1AA.ORG</al lowedValue>
<allowedValue>ESRB.ORG</al lowedValue>
<allowedValue>TVGUIDLINES.ORG</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchedEpisodeType</name>
<dataType maxSize=""8">xsd:string</dataType>
<allowedValueDescriptor>
<allowedValueList>
<allowedValue>ALL</allowedValue>
<allowedValue>FIRST RUN</al lowedValue>
<allowedValue>REPEAT</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskStartDateTimeAdjust</name>
<dataType maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskDurationAdjust</name>
<dataType maxSize="16">xsd:string</dataType>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 263

<allowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>
</field>

<field>
<name>srs:taskDurationLimit</name>
<dataType maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskDurationLimit@effect</name>
<dataType maxSize=""8">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskDurationLimit</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>FIRST</allowedValue>
<allowedValue>LAST</allowedVvValue>
<allowedValue>SKIP</al lowedVvalue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskChannelMigration</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskTimeMigration</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>

<name>srs: taskState</name>

<dataType maxSize="64">xsd:string</dataType>

<minCountTotal>1</minCountTotal>

<al lowedvalueDescriptor>

<allowedValuelList>
<allowedValue>IDLE.READY</al lowedValue>
<allowedValue>IDLE._ATRISK</al lowedValue>
<allowedValue>ACTIVE.TRANSITION.FROMSTART</al lowedvValue>
<allowedValue>ACTIVE.TRANSITION.RESTART</al lowedValue>
<allowedValue>
ACTIVE .RECORDING . FROMSTART . OK

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 264

</allowedValue>
<allowedValue>

ACTIVE .RECORDING.FROMSTART .ATRISK
</allowedValue>
<allowedValue>

ACTIVE .RECORDING.RESTART .OK
</allowedValue>
<allowedValue>

ACTIVE .RECORDING.RESTART .ATRISK
</allowedValue>
<allowedValue>ACTIVE.NOTRECORDING</al lowedValue>
<al lowedValue>DONE.FULL</al lowedvValue>
<allowedValue>DONE.PARTIAL</al lowedValue>
<allowedValue>DONE.EMPTY</al lowedValue>

</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@phase</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>IDLE</al lowedValue>
<allowedValue>ACTIVE</al lowedValue>
<allowedValue>DONE</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs: taskState@startDateTimeMet</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs: taskState@endDateTimeMet</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 265

</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@recording</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs: taskState@someBitRecorded</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@someBitsMissing</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@firstBitsRecorded</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@lastBitsRecorded</name>
<dataType>xsd:boolean</dataType>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 266

<allowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs: taskState@fatalError</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs: taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs: taskState@currentErrors</name>
<dataType csv="xsd:iInt" maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue></allowedValue>
<allowedValue>100</al lowedValue>
<allowedValue>101</al lowedValue>
<allowedValue>102</al lowedValue>
<I-- Additional vendor defined values go hear -->
</allowedValueList>
<allowedValueRange>
<minimum>200</minimum>
<max imum>204</max imum>
<step>1</step>
</al lowedValueRange>
<allowedValueRange>
<minimum>300</minimum>
<maximum>307</maximum>
<step>1</step>
</al lowedValueRange>
<allowedValueRange>
<minimum>400</minimum>
<max imum>404</maximum>
<step>1</step>
</al lowedValueRange>
</allowedValueDescriptor>
</field>

<field>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 267

<name>srs:taskState@errorHistory</name>
<dataType csv=""xsd:iInt"™ maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue></allowedValue>
<allowedValue>100</al lowedValue>
<allowedValue>101</al lowedValue>
<allowedValue>102</al lowedValue>
<I-- Additional vendor defined values go here -->
</allowedValueList>
<allowedValueRange>
<minimum>200</minimum>
<max imum>204</max imum>
<step>1</step>
</al lowedValueRange>
<allowedValueRange>
<minimum>300</minimum>
<maximum>307</maximum>
<step>1</step>
</al lowedValueRange>
<allowedValueRange>
<minimum>400</minimum>
<max imum>404</max imum>
<step>1</step>
</al lowedValueRange>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@pendingErrors</name>
<dataType csv="xsd:iInt" maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue></allowedValue>
<allowedValue>100</al lowedValue>
<allowedValue>101</al lowedValue>
<allowedValue>102</al lowedValue>
<I-- Additional vendor defined values go here -->
</allowedValueList>
<allowedValueRange>
<minimum>200</minimum>
<maximum>204</max imum>
<step>1</step>
</al lowedValueRange>
<allowedValueRange>
<minimum>300</minimum>
<max imum>307</maximum>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2

<step>1</step>
</allowedValueRange>
<allowedValueRange>

<minimum>400</minimum>

<max imum>404</maximum>

<step>1</step>
</allowedValueRange>

</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@infolList</name>
<dataType csv=""xsd:iInt"™ maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue></allowedValue>
<allowedValue>100</al lowedValue>
<allowedValue>101</allowedValue>
<allowedValue>102</allowedValue>
<!-- Additional vendor defined values go here -->
</allowedValueList>
<allowedValueRange>
<minimum>200</minimum>
<maximum>204</max imum>
<step>1</step>
</al lowedValueRange>
<allowedValueRange>
<minimum>300</minimum>
<maximum>307</maximum>
<step>l1</step>
</al lowedValueRange>
<allowedValueRange>
<minimum>400</minimum>
<max imum>404</max imum>
<step>1</step>
</al lowedValueRange>
</allowedValueDescriptor>
</field>

</fieldTable>
</AVDT>

G.3 A ARG TYPE RecordScheduleParts AVDT Example
Note: This A_ARG _TYPE RecordScheduleParts example is marked by a white background.

Request:
GetAllowedValues("'A_ARG_TYPE_RecordScheduleParts™, "*:*")

The following response will be generated:

Response:
GetAllowedValues(
<?xml version="1.0" encoding=""UTF-8"7>

© 2011, UPnP Forum. All rights Reserved.

268

ScheduledRecording:2 269

<AVDT
xmlns:xsd="http://www._w3.0rg/2001/XMLSchema""
xmlns:srs=""urn:schemas-upnp-org:av:srs"
xmlns=""urn:schemas-upnp-org:av:avdt"
xmlns:xsi="http://www_w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www._upnp.org/schemas/av/srs.xsd
urn:schemas-upnp-org:av:avdt
http://www.upnp.org/schemas/av/avdt._xsd">

<contextliD>
uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording:1
</contextlID>

<dataStructType>A ARG TYPE RecordScheduleParts</dataStructType>

<fieldTable>
<field>
<name>srs:@id</name>
<dataType maxSize="256">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowedValueList>
<allowedValue></allowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:title</name>
<dataType maxSize="128">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

<field>
<name>srs:class</name>
<dataType maxSize="64">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowedValuelList>
<allowedValue>
OBJECT .RECORDSCHEDULE .DIRECT . MANUAL
</allowedValue>
<allowedValue>
OBJECT .RECORDSCHEDULE .DIRECT .CDSEPG
</allowedValue>
<allowedValue>
OBJECT .RECORDSCHEDULE .DIRECT . CDSNONEPG
</allowedValue>
<allowedValue>
OBJECT .RECORDSCHEDULE .DIRECT . PROGRAMCODE
</allowedValue>
<allowedValue>
OBJECT .RECORDSCHEDULE . QUERY . CONTENTNAME
</allowedValue>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 270

<allowedValue>
OBJECT .RECORDSCHEDULE .QUERY .CONTENTID
</allowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredPriority</name>
<dataType maxSize="'1024">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:desiredPriority@type</name>
<valueList>
<value>PREDEF</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<defaultValue>DEFAULT</defaultValue>
<allowedValueList>
<allowedValue>DEFAULT</al lowedValue>
<allowedValue>L1</allowedValue>
<allowedValue>L2</al lowedValue>
<allowedValue>L3</al lowedValue>
<allowedValue>HIGHEST</al lowedValue>
<allowedValue>LOWEST</al lowedValue>
<allowedValue>L1 HI</allowedValue>
<allowedValue>L1l LO</allowedValue>
<allowedValue>L2 HIl</allowedValue>
<allowedValue>L2 LO</allowedValue>
<allowedValue>L3 HI</allowedValue>
<allowedValue>L3 LO</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredPriority@type</name>
<valueList>
<value>0BJECTID</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<al lowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredPriority@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:desiredPriority</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<defaultValue>PREDEF</defaultValue>
<allowedValueList>
<allowedValue>PREDEF</al lowedValue>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 271

<allowedValue>0OBJECTID</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination</name>
<dataType maxSize="'1024">xsd:string</dataType>
<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<defaultValue>Hard Disk 2</defaultValue>
<allowedValuelList>
<allowedValue>Hard Disk 1</allowedValue>
<allowedValue>Hard Disk 2</allowedValue>
<allowedValue>DVD Drive</allowedValue>
<allowedValue>Remote Media Jukebox</allowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@mediaType</name>
<dataType csv="xsd:string"” maxSize="16">xsd:string</dataType>
<maxCountTotal>3</maxCountTotal>
<maxListSizeTotal>4</maxListSizeTotal>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:recordDestination</name>
<valueList>
<value>HardDisk 1</value>
<value>HardDisk 2</value>
</valuelList>
</dependentField>
<maxListSize>1</maxListSize>
<defaultValue>HDD</defaultValue>
<allowedValuelList>
<allowedValue>HDD</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valueList>
<value>DVD Drive</value>
</valuelList>
</dependentField>
<maxListSize>4</maxListSize>
<allowedValuelList>
<allowedValue>DVD+RW</al lowedValue>
<allowedValue>DVD-RW</al lowedValue>
<allowedValue>DVD-R</al lowedValue>
<allowedValue>DVD+R</al lowedValue>
<allowedValue>CD-R</al lowedValue>
<allowedValue>CD-RW</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 272

<name>srs:recordDestination</name>
<valueList>
<value>Network Jukebox Recorder</value>
</valuelList>
</dependentField>
<maxListSize>2</maxListSize>
<defaultValue>CD-R</defaultvalue>
<allowedValuelList>
<allowedValue>CD-R</al lowedValue>
<allowedValue>CD-RW</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@targetURL</name>
<dataType>xsd:anyURI</dataType>
<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@preference</name>
<dataType>xsd:unsignedInt</dataType>
<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<defaultValue>2</defaultValue>
<allowedValueRange>
<minimum>1</minimum>
<maximum>3</maximum>
<step>1</step>
</allowedValueRange>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredRecordQual i ty</name>
<dataType csv=""xsd:string"” maxSize="1024">xsd:string</dataType>
<maxListSizeTotal>UNBOUNDED</maxListSizeTotal>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:desiredRecordQual ity@type</name>
<valueList>
<value>DEFAULT</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 273

<maxListSize>4</maxListSize>
<defaultvValue>AUTO</defaultValue>
<allowedValueList>
<allowedValue>HD</al lowedValue>
<allowedValue>ED</al lowedValue>
<allowedValue>SD</al lowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQual ity@type</name>
<valueList>
<value>ATSC</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>1l</maxListSize>
<allowedValueList>
<allowedValue>1080p30</al lowedValue>
<allowedValue>1080p24</al lowedValue>
<allowedValue>1080i60</al lowedValue>
<allowedValue>720p60</al lowedValue>
<allowedValue>720p30</al lowedValue>
<allowedValue>720p24</allowedValue>
<allowedValue>480p60</al lowedValue>
<allowedValue>480p30</al lowedValue>
<allowedValue>480p24</allowedValue>
<allowedValue>480i160</al lowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQual ity@type</name>
<valueList>
<value>QLEVEL</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>4</maxListSize>
<allowedValueList>
<allowedValue>Ql</allowedValue>
<allowedValue>Q2</al lowedValue>
<allowedValue>Q3</al lowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredRecordQual ity@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField defaultDependency="1">

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 274

<name>srs:desiredRecordQual i ty</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<defaultValue>DEFAULT</defaultValue>
<allowedValueList>
<allowedValue>DEFAULT</al lowedValue>
<allowedValue>ATSC</al lowedValue>
<allowedValue>QLEVEL</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</Tield>

<field>
<name>srs:scheduledCDSObjectlID</name>
<dataType maxSize="'1024">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .CDSEPG</value>
<value>0BJECT .RECORDSCHEDULE .DIRECT . CDSNONEPG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledChannel 1D</name>
<dataType maxSize="256">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE.DIRECT .MANUAL</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledChannel ID@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:scheduledChannel ID</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvaluelList>
<allowedValue>ANALOG</al lowedValue>
<allowedValue>DIGITAL</al lowedValue>
<allowedValue>FREQUENCY</al lowedValue>
<allowedValue>Sli</allowedValue>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 275

<allowedValue>LINE</al lowedValue>
<allowedValue>NETWORK</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledChannel 1D@distriNetworkName</name>
<dataType maxSize="32">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:scheduledChannel 1D</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledChannel ID@distriNetworklD</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:scheduledChannel 1D</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledStartDateTime</name>
<dataType maxSize="64">xsd:string</dataType>
<maxCountTotal>2</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE.DIRECT .MANUAL</value>
<value>0BJECT .RECORDSCHEDULE .DIRECT . CDSNONEPG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledDuration</name>
<dataType maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .MANUAL</value>
<value>0BJECT .RECORDSCHEDULE .DIRECT . CDSNONEPG</value>
</valuelList>
</dependentField>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 276

<minCount>1</minCount>

<allowAny></al lowAny>

</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledProgramCode</name>
<dataType maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>
OBJECT .RECORDSCHEDULE . DIRECT . PROGRAMCODE
</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledProgramCode@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:scheduledProgramCode</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingName</name>
<dataType maxSize="128">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingName@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchingName</name>
<anyValue></anyValue>
</dependentField>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 277

<minCount>1</minCount>
<allowedValuelList>
<al lowedValue>PROGRAM</al lowedValue>
<allowedValue>SERIES</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingName@subStringMatch</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchingName</name>
<anyValue></anyValue>
</dependentField>
<defaultValue>l</defaultvalue>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchinglD</name>
<dataType maxSize="256">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchinglD@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchinglD</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>S1 PROGRAMID</al lowedValue>
<allowedValue>S1 SERIESID</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingChannel ID</name>
<dataType maxSize="256">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 278

<valueList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
</valuelList>
</dependentField>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingChannel 1D@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchingChannel I1D</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue>ANALOG</al lowedValue>
<allowedValue>DIGITAL</al lowedValue>
<allowedValue>FREQUENCY</al lowedValue>
<allowedValue>Sli</allowedValue>
<allowedValue>LINE</al lowedValue>
<allowedValue>NETWORK</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingChannel 1D@distriNetworkName</name>
<dataType maxSize="32">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchingChannel I1D</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingChannel 1D@distriNetworklD</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchingChannel 1D</name>
<anyValue></anyValue>
</dependentField>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingStartDateTimeRange</name>
<dataType maxSize="64">xsd:string</dataType>
<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<dependentField>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 279

<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingDurationRange</name>
<dataType maxSize="16">xsd:string</dataType>
<maxCountTotal>4</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingRatingLimit</name>
<dataType maxSize="16">xsd:string</dataType>
<maxCountTotal>2</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:matchingRatingLimit@type</name>
<valueList>
<value>MPAA.ORG</value>
</valuelList>
</dependentField>
<allowedValueList>
<allowedValue>G</al lowedValue>
<allowedValue>PG</al lowedValue>
<allowedValue>PG-13</al lowedValue>
<allowedValue>R</al lowedValue>
<allowedValue>NC-17</al lowedValue>
<allowedValue>NR</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 280

<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:matchingRatingLimit@type</name>
<valueList>
<value>RIAA.ORG</value>
</valuelList>
</dependentField>
<allowedValueList>
<allowedValue></allowedValue>
<allowedValue>PA-EC</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:matchingRatingLimit@type</name>
<valueList>
<value>ESRB.ORG</value>
</valuelList>
</dependentField>
<allowedValueList>
<allowedValue>EC</al lowedValue>
<allowedValue>E</al lowedValue>
<allowedValue>E10+</al lowedValue>
<allowedValue>T</al lowedValue>
<allowedValue>M</al lowedValue>
<allowedValue>AO</al lowedValue>
<allowedValue>RP</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:matchingRatingLimit@type</name>
<valueList>
<value>TVGUIDELINES.ORG</value>
</valuelList>
</dependentField>
<allowedValueList>
<allowedValue>TV-Y</al lowedValue>
<allowedValue>TV-Y7</allowedValue>
<allowedValue>TV-Y7FV</al lowedValue>
<allowedValue>TV-G</al lowedValue>
<allowedValue>TV-PG</al lowedValue>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 281

<allowedValue>TV-14</allowedvValue>
<allowedValue>TV-MA</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingRatingLimit@type</name>
<dataType maxSize="32">xsd:string</dataType>
<maxCountTotal>2</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchingRatingLimit</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvalueList>
<allowedValue>MPAA_ORG</al lowedValue>
<allowedValue>RIAA_ORG</al lowedValue>
<allowedValue>ESRB.ORG</al lowedValue>
<allowedValue>TVGUIDLINES.ORG</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingEpisodeType</name>
<dataType maxSize=""8">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<allowedValueList>
<allowedValue>ALL</al lowedValue>
<allowedValue>FIRST RUN</al lowedValue>
<allowedValue>REPEAT</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:totalDesiredRecordTasks</name>
<dataType>xsd:unsignedlInt</dataType>
<allowedValueDescriptor>
<defaultValue>l</defaultvalue>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledStartDateTimeAdjust</name>
<dataType maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<defaultValue>+P00:00:00</defaultvValue>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 282

<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledDurationAdjust</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<defaultValue>+P00:00:00</defaultvValue>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:activePeriod</name>
<dataType maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .MANUAL</value>
<value>0BJECT .RECORDSCHEDULE .DIRECT .CDSEPG</value>
<value>0BJECT .RECORDSCHEDULE .DIRECT . CDSNONEPG</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<defaultValue>NOW/INFINITY</defaultValue>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:durationLimit</name>
<dataType maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .CDSEPG</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<defaultValue>INFINITY</defaultValue>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:durationLimit@effect</name>
<dataType maxSize=""8">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:durationLimit</name>
<anyValue></anyValue>
</dependentField>
<defaultValue>FIRST</defaultValue>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 283

<allowedValueList>
<allowedValue>FIRST</al lowedValue>
<allowedValue>LAST</al lowedvValue>
<allowedValue>SKIP</al lowedvValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:channelMigration</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .CDSEPG</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<defaultValue>l</defaultvalue>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:timeMigration</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .CDSEPG</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<defaultValue>l</defaultvalue>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:al lowDuplicates</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<defaultValue>l</defaultvalue>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

© 2011, UPnP Forum. All rights Reserved.

ScheduledRecording:2 284

<field>
<name>srs:persistedRecordings</name>
<dataType>xsd:unsignedInt</dataType>
<allowedValueDescriptor>
<defaultvValue>0</defaultvValue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:persistedRecordings@latest</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:persistedRecordings</name>
<anyValue></anyValue>
</dependentField>
<defaultValue>1</defaultvalue>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:persistedRecordings@preAllocation</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:persistedRecordings</name>
<anyValue></anyValue>
</dependentField>
<defaultValue>0</defaultvValue>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:persistedRecordings@storedLifetime</name>
<dataType maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:persistedRecordings</name>
<anyValue></anyValue>
</dependentField>
<defaultValue>ANY</defaultValue>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

</TieldTable>
</AVDT>

© 2011, UPnP Forum. All rights Reserved.

