ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 1

ScheduledRecording:2 Service

For UPnP Version 1.0

Status: Standardized DCP (SDCP)
Date: March 31, 2013

Service Template Version 3.0

This Standardized DCP has been adopted as a Standardized DCP by the Steering
Committee of the UPnP Forum, pursuant to Section 2.1(c)(ii) of the UPnP Forum
Membership Agreement. UPnP Forum Members have rights and licenses defined by
Section 3 of the UPnP Forum Membership Agreement to use and reproduce the
Standardized DCP in UPnP Compliant Devices. All such use is subject to all of the
provisions of the UPnP Forum Membership Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL
PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED
DCPS ARE PROVIDED "AS IS" AND "WITH ALL FAULTS". THE UPNP FORUM MAKES
NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH
RESPECT TO THE STANDARDIZED DCPS, INCLUDING BUT NOT LIMITED TO ALL
IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS
FOR A PARTICULAR PURPOSE, OF REASONABLE CARE OR WORKMANLIKE
EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE.

© 2014, UPnP Forum. All rights Reserved.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013

Authors

Company

Wouter van der Beek (Vice-Chair)

Cisco Systems

Gary Langille Echostar
John Ritchie Intel
Keith Miller Intel

Seung R. Yang (Chair)

LG Electronics

Keith Miller Nokia
Vlad Stirbu Nokia
Julius Szakolczay Panasonic
Wouter van der Beek Philips
Jeffrey Kang Philips
Geert Knapen Philips
Russell Berkoff Pioneer

Russell Berkoff

Samsung Electronics

Wonseok Kwon

Samsung Electronics

SJae Oh

Samsung Electronics

Mahfuzur Raman

Samsung Electronics

Richard Bardini Sony

Wouter van der Beek TP Vision
Jeffrey Kang TP Vision
Nicholas Frame TP Vision

Note: The UPnP Forum in no way guarantees the accuracy or completeness of this author list and in no way
implies any rights for or support from those members listed. This list is not the specifications’ contributor list

that is kept on the UPnP Forum’s website.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 3

CONTENTS

Terms, definitions, symbols and abbreviations..........coccooi i,

3.1
3.2

PrOVISIONING LIS oo ittt ettt e
Terms specific to ScheduledRecording SErviCe.......oovuveiiiiiiiiiiiiiiieiece e

3.2.1

3.2.2

3.2.3

3.24

3.2.5

3.2.6

3.2.7

3.2.8

3.2.9

3.2.10
3.2.11
3.2.12
3.2.13
3.2.14
3.2.15
3.2.16
3.2.17
3.2.18
3.2.19
3.2.20
3.2.21
3.2.22
3.2.23
3.2.24
3.2.25
3.2.26
3.2.27
3.2.28
3.2.29
3.2.30
3.2.31
3.2.32
3.2.33
3.2.34
3.2.35
3.2.36
3.2.37

CDS OB CT .ttt
L0 EY=T O o T= o 1=

0bject MOdIfICAtION ...oouie i e
FECOIASCREAUIE ..ceit e
Conflicting_recordSChedUIE ... cu e
[f=ToTe] fo Il - TS PP UP RPN
(%0T 4] { [To3 4] aTo I =Yoo Y o I ==
FeCOrdSCNEAUIBPAITS . .eiee e
Property-Set Data Ty PO S .. ettt
L 0] 0 1= PPN
Y=Y 0 0T o L= G o 011 o
Supported Member Propertyo e
MUItI-VAlUEA PrOPEITY v e
Single-valued ProPertY e
Do/ S T o Yo U 4 1= o | P
XML Fragment.ottt
actualScheduledStartDateTimeo.oiuiiiii e
ACTUAISTAN D ALE TIME et
actualScheduledENADateTIMEcuiuiii e
ACTUAIENADAETIME L.ttt ees
actualScheduledDUuratioN.o
LeXiCal SOM OFUEI ... e
Lexical MatChinNgcc.oeni i
Simple Non-case-sensitive SOrt Order........oovviviiiiiiiie e
Simple Non-case-sensitive Matchingccocoviiiii
NUMEFIC SO OFUEI ..niniiee e
BOOIEAN SOt OFUEI «.eviiiiiiiie e
SEQUENCET SO .eniiiiii it
Sequenced LeXiCal SOt ...
Sequenced NUMEIIC SO ... e e

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 4

3.2.38 LeXiCal NUMEIIC SO ..iuuiin i e ea e eae e
3.2.39 type RelationShip SOt ...
3.3 SYMBOIS e
4 Notations and CoONVENTIONS ... e e e e e
s O N0) = L4 o
o O R B T Y = W Y o 1= S PP
4.1.2 Strings Embedded in Other StringsS.......coooviiii i
4.1.3 Extended Backus-Naur FOrMcooiiiiiiiii e e
4.2 DeriVEd DaAla Ty DS ottt
42,01 SUMM Y ettt e et ettt a
4.2.2 GOV LIS S ittt
4.3 Management of XML Namespaces in Standardized DCPSc.ocovviviiiiiicicineennn.
4.3.1 Namespace Prefix ReqUIrEMENTSot

4.3.2 Namespace Names, Namespace Versioning and Schema
V2T 61 T0T o] oo PP
4.3.3 Namespace Usage EXamples ...
4.4 Vendor-defined EXIENSIONS. ...
4.4.1 Vendor-defined ACiON NAMES ..ot
4.4.2 Vendor-defined State Variable Namesccocoooiiiiii
4.4.3 Vendor-defined XML Elements and attributescoooiiiiinnnn,
4.4.4 Vendor-defined Property NamesS......cc.oiiiiiiiii e
5 Service Modeling Definitions ...
L0t R oY Yo = RV o P
5.2 ScheduledRecording Service ArChiteCturecoiiiiiiiiii e
B.21 1eCOIdSCREAUIE «.onii e
B5.2.2 TECOIATASK . itiiiii it
5.3 State Variables. ..o
5.3.1 State Variable OVerVIEW ..o
5.3.2 SOrtCapabiliti©S . euueeneeie et
5.3.3 SortLevelCapabilityoceiiii e
5.3.4 StateUPAatelD .. iuuieii e
R R R - 1] (O 1 1= U o [PP
53.6 A ARG TYPE PropertyliSt. i iiiiiiiiiei e e e e e e e e e eaee e
537 A ARG TYPE DataTypPelD ittt e e e
5,38 A ARG TYPE ODJECHID ittt e e e e ee e
539 A ARG TYPE ODBJECHDLISE ceuttritiiiieeee i eeeer e e e e e e e e et e e e aneeneeneees
5.3.10 A ARG _TYPE PropertylInfo oo
R 5 N AN o T I = =S 1o [
5.3.12 A ARG TY PE COUNT ittt e e e ea s
5.3.13 A ARG _TYPE SOIMCIITEIIA «evueritiieiiee e eee e e e e e e e e eet e e eaeaneeneenees
5.3.14 A ARG _TYPE RecordSchedule.....cccciiuiiiiiiiiiiiieee e e
5.3.15 A ARG TYPE RECOIATASK . .iitiiiitiiiiiii et eie et e e e e e e e e e anea e
5.3.16 A ARG _TYPE RecordSchedulePartS.......cccoieeviiiiiiiiiee e
5.4 Eventing and MOAeration......cc.vu i

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 5

LTS T X o] {01 o PPN 48
B.5. 1 ACHON OVEIVIEW Louiiiiiiiii e e e eae e 48
5.5.2 GetSortCapabilitieS() «uveueeii e 49
5.5.3 GetPrOPertYLIST() cueeineiiei i 50
554 GetAllOWEAVAIUES() cieuuiitniiueiieii ettt ettt et et e e 51
5,55 GetStateUpdatelD () e e e e 53
55.6 BrowseRecOrdSChedUIES() . it 53
5.5.7 BrowSeRECOIMATASKS() ivueriuiiiiiiiiiiiiieiie et e e e e e e e ee e e 58
55.8 CreateRecordSChedule() «i v 60
55.9 DeleteRecordSchedule() «iuuviiiiiiieiei e 62
5.5.10 GetRecordSChedUIB() .. i 63
5.5.11 EnableRecordSChedUIB() . c.iieu ittt 64
5.5.12 DisableRecordSchedule() ..ccviuiiiiiiiiiii i 65
5.5.13 DeleteRECOTATASK() tevutetuiiuniiieiieiie ettt ettt e e e e e e 67
5.5.14 GetRECOIMATASK() tuttuinitiiniiie et e e e et e e et e e et e e aaennes 67
5.5.15 ENabIERECOIATASK() cuituiuitiitiiii ettt e e e e e e e aaea e 68
5.5.16 DiSableRECOTATASK() uuieuuieuniitiiieiie ettt ettt 70
5.5.17 RESEtRECOIATASK() tiuitiniiiitiiii et e et e e aea e 71
5.5.18 GetRecordScheduleCoNfliCtS() ... ieuierieuieiieiiieiiie e 72
5.5.19 GetRecordTaskCoONTlCIS() «iuvvviriiiiiiiiiie e e 73
5.5.20 ComMmMON EITOr COUBS .ouiuiiiiiiiii e e ea e 74
5.6 State Diagram Of r€COIATaSK .uuuiuuiiiii i e e e e e e 75
5.6.1 A Full-Featured State Diagramcccuieiniiiiiieee e e e 75
5.6.2 A Minimal-Implementation State Diagramcooeiiiiiiiiiiiiiiieeeeen 81
5.6.3 recordTask State EXample......oo.iiii e 84
5.7 ScheduledRecording Service Priority Model ... 85
5.7.1 Introduction of the ScheduledRecording Service Priority Model 85
5.7.2 Ordered Priority within Each Priority Level.........c.coooiiiiiiiiiiieee e, 86
5.7.3 Setting the Initial Priority Level of a recordSchedule............ccoeveiiiiinnnnnnn. 87

5.7.4 Sorting recordSchedule Instances Based on their Current
L 0T 1 VS 1= € Vo = 89
5.8 Theory Of OPeration ... e 90
B.8.1 INtrOTUCTION ..ot e 90
5.8.2 Checking the Capabilities of a ScheduledRecording Service 90
5.8.3 Adding a Scheduled Recording Entry to the Listcooiiiiiiiiinn. 102
5.8.4 Deleting a recordSChedule ..o 120
5.8.5 Browsing recordSchedule and recordTask instancesccccovvvvvvnennnenn. 120
5.8.6 RaANG SY S OM ettt 127
5.8.7 Conflict Detection and ReSOIULIONcouiiiiiiiiii 127
B XML SerVIiCE DS CIIPION ittt e e e e e e e et e e e e e e aeas 129
7 1 =T 1 S PP 139
Annex A (normative) Srs XML DOCUMENT . ..ininiiii e e 140
A.1 A ARG _TYPE RecordSchedule AVDT XML Document.........ccocceeviiiiiiincininnnnnn. 140
A.2 A ARG TYPE RecordTask AVDT XML Document.........cccooeiiiiiiiiiiiiiiieiceeeenn, 141

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 6

A.3 A ARG _TYPE RecordScheduleParts AVDT XML Document............ccocoevveniinennnnns 141
Annex B (normative) AV Working Committee Extended Properties.......c.ccoccevvnvvnnennnnn. 143
2 T N = = 1Y I 0] o 1= €= 143
2 0 (o 143

Bl 2 HE e i e 144

2 T o] - 1 144

B.1.4 additionalStatuUSINfO......ccuiiuiiii i 144

B.1.5 CASREIEIENCE ot e e 145

B.2 POty PrOPertieS oo e 146
= 20 R o (0] 1 PP 146
B.2.2 dESITEAPTIONITY ceuitiiiie et e e 147

[T B @ 1014010} A @ o] (o] B =d 0] 1= 1 1= 149
B.3.1 reCOrdDESHINALION . vuieieieee et e e e 149
B.3.2 desiredReCOrdQUAlITY ..uuuiuuiee i eeiee e e e 151

B.4 Content Identification Related Propertiesccoccvvuiiiiiiiiiiiiiice e 154
B.4.1 sScheduledCDSODECHID ...iuiiit et 154
B.4.2 scheduledChannellDccuiiiiiiiiiie e e e e 155
B.4.3 scheduledStartDateTime ..uuuuieeieeieeeiiee e e e e e e e e e e e e e eaeees 157
B.4.4 SCheduledDUrationcc.cuiieiii e e e 158
B.4.5 scheduledProgramCOdec.oiuiiuiiiiiiie e 158

B.5 Matching Content Criteria Propertiesooouiiiiiiiii e 159
B.5.1 MatChiNGNAME ..oeiiie e e 159
B.5.2 MACHINGID .ueniiiiiii e e e e 160

B.6 Matching Qualifying Criteria Propertiescouiiuiiiiiii e 161
B.6.1 matchingChannellDc.ciuiiiiiiii e 162
B.6.2 matchingStartDateTIMERANGE . vvuvvuieeieiee e e e e e eneees 163
B.6.3 matchingDUratioNRANGE . ..ovuiviiiiie e e e 163
B.6.4 matchingRAtINGLIMIT......uivuiiiiiiie e e e e 164
B.6.5 MatChiNgEPISOETYPE cuivuiiiiii i e e e e 166

B.7 Content CoNtrol PrOoPertiesS e e 167
B.7.1 10talDeSiredRECOIATASKS tuivuiriieiiien i ie et et e e e e e ee e e 167
B.7.2 scheduledStartDate TIMEAdJUSE....iiuiiii e 168
B.7.3 scheduledDuratioNAdIUSEiveiieieiee e e 168
B.7.4 ACHIVEP IO .o 169
B.7.5 dUratioONLimit cuuveieiiiie e e e e e e 169
B.7.6 ChannelMigration . ..o i e 170
B.7.7 tIMEMIGIAtiON ..cuieiiiie e e 171
B.7.8 QllOWDUPIICAIES . .vvuitiiiei e e e et e e e e e e e e e e e e e 171

B.8 Storage Related Propertiesouuiiu i e 171
T N o =] Y 1Y (oo | =T o o] o 11 o 172

B.9 Schedule State PropPertieS ..o e e 173
B.9.1 SChEAUIESTALE .euiriieiiii e 173
B.9.2 abnormalTasSKSEXIST .uuuiuuieuiiniieiiiieee e et e e e e e e e e e e eaees 175

B.10 StatiStiCS PrOPEItIES cuuiin it e et 175

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 7

B.11

B.12

B.13

B.14

B.15

B.16

B.17
Annex C

Cl1

Cc.2
C3

Annex D

D.1
D.2

B.10.1 currentRecordTasKCOUNTccuiiiiii e e e e e e e e e e aeen e 175
B.10.2 totalCreatedRECOIATASKS . iuuiiiiiii e e et e e 175
B.10.3 totalCompletedRECOIATASKS . .uuiiiiiiii i ee e 176
TaSK General PropPertieS. . i e 176
B.11.1 recordSCREAUIBID ... e e e 176
B.11.2 recordedCDSODIECHID ..vuiuiiii e 176
Task Content ldentification Propertieso 177
B.12.1 taSKCDSODJECHID ..iuiriniiii e e 178
B.12.2 taSKCNANNEIID ...cuuiiiiiei e et 178
B.12.3 taSKStArtDateTIME .uuieniiieiiiie et e et 179
B.12.4 1aSKDUIAIION ..ttt e e e 180
B.12.5 taSKProgramCOdeuiuuiiiiiiiiii e e et 180
B.12.6 IeCOrAQUALITY «uueeieiee et 180
Task Matched Content Criteria Propertieso 183
0 I T A = o 1= o | N =Y 4 P 183
B.13.2 MaChEAID .. et e 183
Task Matched Qualifying Criteria PropertieS...... ..o 184
B.14.1 MatChedRAING «ouiviniiii i e 184
B.14.1.1 mMatCchedRatING@ Y PO .. iiuniiiiii e 184
B.14.1.2 matchedRating@equivValeNtAGEcueviiriiiiii e 185
B.14.2 MatChedEPISOUETYPE tuuiruiiiniiiiiei e e e e ettt e e e e e 185
Task Matched Content Control Properties 185
B.15.1 taskStartDate TIMEAdJUSE ...cuuir e 185
B.15.2 taSkDUratiONAGJUSE ..uienieiiiiee e 186
B.15.3 tasSkDUratioNLIMilcuueeieiiiii e 186
B.15.3.1 taskDurationLimit@effectoeuuuviuiiiiiii 186
B.15.4 taskChannelMigrationocu.viueiiiei e 187
B.15.5 taSKTIimMEeMIGratiON ..cuuieieie i e e e et e e e et e e e e et eaaaenes 187
TaSK State PrOPertieS .. i 187
B.LB. L 1A K S Al ittt e 188
ContentDirectory Service Imported Properties ..o 196
(normative) AV Working Committee Class Definitionsccocoviiiiiins 200
Class HIBIarCNY ... e e 200
C.1.1 Relationships between Classes and Propertiesccoccevvviiiniineenennnnnn. 202
C.1.2 recordScheduleParts ProPerties ...cu i iiieee e e eae e 203
C.1.3 recordSchedule Properties ... 207
C.1.4 recordTask Properties e 211
Class DefiNMitiONS ... 213
ODJECT BASE ClaSS wuiviiiiiiii it 214
C.3.1 object.recordSchedule ClasSiiiu i 215
C.3.2 object.recordTask ClasS ...ccuiiiiiii e 225
(normative) EBNF Syntax Definitions ... 227
L A T0 T 01 VS 1= 0 227
DaAte&EIME SYNTAX ... et 227

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 8

D.3 Class NAME SYNTAX ciuuiiuiitiiiiiiieiiei et e e e e e e et e e e e e et et et e e e enaeaees 228
Annex E (informative) ScheduledRecording Service Relationship to

CONTENTDITECIONY SEIVICE tuiitiiii et e e e e eaeeas 229

Annex F (informative) ScheduledRecording Service Relationship to EPG.................. 230
Annex G (informative) AVDT EXAMPIES ..o 231
G.1 A ARG _TYPE RecordSchedule AVDT EXamplecccoviiiiiiiiiiiiee e, 231
G.2 A ARG TYPE RecordTask AVDT EXamPIle ..o 248
G.3 A ARG TYPE RecordScheduleParts AVDT EXampleccocovviviiiiiiiiiiiienceeeenn, 267
Annex H (informative) Bibliography ... 284

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 9

List of Tables

Table 1 — Propertie@s iN XML ... e e e e e e e e e e e aeeaas 20
IE= Lo TR A o AN | @ T o 1= = o 26
Table 3 — CSV EXAMPIES .ottt 28
Table 4 — Namespace DefiNitiONS e 30
Table 5 — Schema-related INformMationo 32
Table 6 — Default Namespaces for the AV Specifications..........ccooeviiiiiiiiiii i, 34
Table 7 — State Variables 40
Table 8 — Allowed values for the DataTypelD argument........cocueeiiniiiiiieiie e eeee e 41
Table 9 — Allowed Elements in <StateEvent> Elementcoooiiiiiiiiiiiiiii i 43
Table 10 — Eventing and MOOErationou.iiii e 48
BLIE= o] T I A AN o £ o - PP 49
Table 12 — Arguments for GetSortCapabilitieS(). ... eueeeeeeeiei e 49
Table 13 — Error Codes for GetSortCapabilitieS() ... cu eeieieieiiie e 50
Table 14 — Arguments for GetPropertyLiSt() «uuueeueeneeuieerie e e e e e e e enee e 51
Table 15 — Error Codes for GetPropertyLiSE() «ueeu i e eei et e ens 51
Table 16 — Arguments for GetAHOWEAVAlUES() «.ueuenieiiii e 52
Table 17 — Error Codes for GetAloWedValUBS() . cueuiuieiiaieeee e 53
Table 18 — Arguments for GetStateUpdatelD() vuueeuevereeeiieiei e e e e e e e eneeens 53
Table 19 — Error Codes for GetStateUpdatelD() ..vvuueeeneiin i e 53
Table 20 — Arguments for BrowseRecordSchedules() .. v 54
Table 21 — Error Codes for BrowseRecordSchedules() ... 58
Table 22 — Arguments for BrowSeRECOIATASKS() vvuvrrrieieneeneeneinieiieineieeeeneeneeaseaneaeaneeneenns 58
Table 23 — Error Codes for BrowSERECOrATASKS() vuuerniuniirnieiniiiiaeiieeiieeeieeei e et et e eineenes 60
Table 24 — Arguments for CreateRecordSCchedule() . . e 60
Table 25 — Error Codes for CreateRecordSchedule() .ovuu v 62
Table 26 — Arguments for DeleteRecordSchedule() v ee e 63
Table 27 — Error Codes for DeleteRecordSchedule() ... 63
Table 28 — Arguments for GetRecordSchedule() ... e e 63
Table 29 — Error Codes for GetRecordSchedule(). .. v 64
Table 30 — Arguments for EnableRecordSchedule() vvvvevveiieeieiieee e 65
Table 31 — Error Codes for EnableRecordSchedule() .. v 65
Table 32 — Arguments for DisableRecordSchedule() ..o 66
Table 33 — Error Codes for DisableRecordSchedule()ooouvieiiiiiiiiii e 66
Table 34 — Arguments for DeleteReCOrdTaSK() vuueuuiiuiieiiieiiei e e e e e e eeas 67
Table 35 — Error Codes for DeleteReCOrdTasK() «ouueueeiuiiaieiee e 67
Table 36 — Arguments for GetREeCOrdTasK() «ouueeueuieiiii e 68
Table 37 — Error Codes for GEtRECOrATASK() «uevruirniiiniiineii e et ens 68
Table 38 — Arguments for ENableReCOrdTasSK() «ueeueeereueeeeeiei e eeeere e e e e e eneeeas 69

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 10

Table 39 — Error Codes for ENableRecordTask() ... e 69
Table 40 — Arguments for DisableReCcOrdTask() «.uueeuveeiveieiieeei e 70
Table 41 — Error Codes for DisableReCOrdTask() «.uuveuueeuniieniiiiiieei e ens 71
Table 42 — Arguments for ReSEtRECOIATASK() «ovueuiuieiiiieie e 71
Table 43 — Error Codes for ReSEtRECOIATASK() «uueueueunieiiaiei e 72
Table 44 — Arguments for GetRecordScheduleConfliCtS() vuvveueerrrnrerieereiieiieei e eeean 72
Table 45 — Error Codes for GetRecordScheduleConflictS() vvuuuvvrneiiniiiiiiiiiieieeeeee e 73
Table 46 — Arguments for GetRecordTaskCoNfliCtS() «vvuvervenieneenieieieie e 73
Table 47 — Error Codes for GetRecordTaskCoONflCIS() .veuveuienienieniiiiiiiee e 74
Table 48 — ComMMON ErrOr COUBS . .uniiiiiiieiei et et et en e e 74
Table 49 — recordTask State TIMElNe e 85
Table 50 — Example 1: Fewer recordSchedule instances than the Number of

Y] o] 0T €= I =d 10 152 I =Y £ 86
Table 51 — Example 2: More recordSchedule instances than the Number of

Y] o] T €= I =d 0] 152 I ==Y £ 87
Table 52 — Existing recordSchedule PrioritieS.oi i 88
Table 53 — desiredPriority Property St t0 “RS-C” ... 88
Table 54 — desiredPriority Property Set to “HIGHEST”, “L1 HI”, or “RS-A" ... 89
Table 55 — desiredPriority Property Set to “LOWEST”, “L3_LOW?”, or “RS-B”.....ccceviiurinnannns 89
Table 56 — desiredPriority Property St t0 “RS-C” ... 89
Table B.1 — Base PropertieS OVEIVIEW ...t ee e 143
Table B.2 — Allowed values for the class Property ... 144
Table B.3 — Priority PrOPerties. i e e e e e 146
Table B.4 — Allowed values for the priority Propertyccvc e evee e e 146
Table B.5 — Primary allowed values for the desiredPriority Propertyccoooiiiiiiiinineanne. 147
Table B.6 — Additional allowed values for the desiredPriority Property........cccooeviviineeneanne. 148
Table B.7 — Allowed values for the desiredPriority@type Property.....cccccoeeeeeiiviieneineenennnns 149
Table B.8 — Output CoNntrol Properties e 149
Table B.9 — desiredRecordQuality EXample. ... 152
Table B.10 — Allowed values for the desiredRecordQuality Property.........ccooiiiiiiinineanne. 153
Table B.11 — Allowed values for the desiredRecordQuality@type Property........cccccevvunennnn. 154
Table B.12 — Content Identification Related Properties.........ccooiiiiiiiiiiieeeea 154
Table B.13 — Allowed values for the scheduledChannellD@type Propertycccccceeeuennee. 156
Table B.14 — Matching Content Criteria Propertiescovuveeiiiiiiiiieiiee e 159
Table B.15 — Allowed values for the matchingName@type Propertycoccoevvevviviineinennnns 160
Table B.16 — Allowed values for the matchingID@type Property......cccoevveiieiiiiiineineinennnns 161
Table B.17 — Matching Qualifying Criteria PropertieS.......ccovuiiiiiiiiiiiie e 161

Table B.18 — Allowed values for the matchingRatingLimit Property Using the
MPAA Rating System (matchingRatingLimit@type = “MPAA.ORG") ..oiuiiiiiiiiiiiiiiieiieeeeen 164

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 11

Table B.19 — Allowed values for the matchingRatingLimit Property Using the

RIAA Rating System (matchingRatingLimit@type = “RIAA.ORG”) c.oiuiiiiiiiiiiiiiieieeieeeen 164
Table B.20 — Allowed values for the matchingRatingLimit Property Using the
ESRB Rating System (matchingRatingLimit@type = “ESRB.ORG™) ...cvvviiiiiiniiieieineeeeneenn, 165

Table B.21 — Allowed values for the matchingRatingLimit Property Using the
TVGUIDELINES Rating System (matchingRatingLimit@type =

TV GUIDELINE S O R G) ittt ettt ettt e e ettt e e et e e e et et et et e e e e e enaaanas 165
Table B.22 — Allowed values for the matchingRatingLimit@type Property........ccccoeeveeneanees 166
Table B.23 — Allowed values for the matchingEpisodeType Property......c.ccoeveeveneineenennnns 167
Table B.24 — Content Control Properties 167
Table B.25 — Allowed values for the durationLimit@effect Propertycccooeiieiiiiiininaanne. 170
Table B.26 — Storage Related Properties. ..o i 171
Table B.27 — Schedule State Propertiesc. e 173
Table B.28 — Allowed values for the scheduleState Propertyc.coovevviiiiiiiiiiiiiiiiieneeens 174
Table B.29 — Allowed values for the scheduleState@currentErrors Propertycc.coeeenee. 174
Table B.30 — StatiStiCS PrOPertiES. .. it e r e e eas 175
Table B.31 — Task General Properties e 176
Table B.32 — Task Content Identification Properties ..o 177
Table B.33 — recordQuality EXAmMPIe ..o 181
Table B.34 — Allowed values for the recordQuality Propertycc.cooeiiiiiiiiiiiiiieeens 182
Table B.35 — Task Matched Content Criteria Propertiesccoooviiiiiiiiiiicceeeens 183
Table B.36 — Task Matched Qualifying Criteria Propertiescooooviiiiiiiiiiiiiiieeeeen 184
Table B.37 — Task Matched Content Control PropertieS........ccovvviiiiiiiici e 185
Table B.38 — State Related PropertieS. . ouu i e e 187
Table B.39 — Allowed values for the attributes of the taskState Propertyc.cooeveiieenennnns 188
Table B.40 — Allowed values for the taskState Property......ccccceeviiiiiiiiii i 189
Table B.41 — Allowed values for the taskState@phase Property......ccocooeieiiiiiiiiinineeneannns 190
Table B.42 — Allowed values for the taskState @xxx Propertiesccocooviiiiiiiiiiiiininineannes 193
Table C.1 — Class Properties Overview for recordScheduleParts usageccooeevvvneennnnns 203
Table C.2 — Class Properties Overview for recordSchedule usagecocovvvvviviiiininennnns 207
Table C.3 — Class Properties Overview for recordTask USAgec.vvuieniiniiniiniiiiiiaieeeennes 211
Table C.4 — object Base Class Properties. ... 214
Table C.5 — object.recordSchedule Base Class Propertiesccoovevvviiiiii i 215
Table C.6 — object.recordSchedule.direct Class Propertiesccocoveviieiiiiiiiiiiieineneeeens 216
Table C.7 — object.recordSchedule.direct.manual Class Propertiesccoeveiiiniiniineannes 217
Table C.8 — object.recordSchedule.direct.cdSEPG Class Propertiesccoevviiiniinieneanne. 218
Table C.9 — object.recordSchedule.direct.cdsNonEPG Class PropertieS.........cccovevveneenennnn. 220
Table C.10 — object.recordSchedule.direct.programCode Class Properties..........c.ccvevueenee. 221
Table C.11 — object.recordSchedule.query Class Propertiescoooviiiiiiiiiiiiiiiiiieen 222
Table C.12 — object.recordSchedule.query.contentName Class Properties.........cc.coeeueenee. 223

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 12

Table C.13 — object.recordSchedule.query.contentID Class Properties........cccocoveveineeneanne. 224

Table C.14 — object.recordTask Base Class Propertiesc.covvviiiiiniinei i eeeene e 226

List of Figures

Figure 1 — Creating a new recordSCheduleo 38
Figure 2 — Capability ChECK. ... e 39
Figure 3 — Browse reCOrdSCREAUIE. ...t e e e 39
Figure 4 — Delete a reCOrdSCREAUIE ..vvuiiiii e e e 39
Figure 5 — A Full-Featured State Diagramcccoviiiiiiieie e e e e e e 76
Figure 6 — A Minimal-Implementation State Diagramc.cooviiiiiiiieie e 82
Figure C.1 — Class hierarchy for the ScheduledRecording service.ccocooiiiiiiiinennen.. 201

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 13

1 Scope

This service definition is compliant with the UPnP Device Architecture version 1.0 [14]. It
defines a service type referred to herein as ScheduledRecording service.

The ScheduledRecording service is a UPnP service that allows control points to schedule
the recording of content. Generally, this content is broadcast content, but this
specification does not limit itself to broadcast content. This service type enables the
following functions:

e Create a recordSchedule so that it is added to the list of recordSchedule
instances. Each recordSchedule describes user-level recording instructions for
the ScheduledRecording service.

e Browse a list of recordSchedule instances stored by the ScheduledRecording
service.

e Delete arecordSchedule so that it is removed from the list of recordSchedule
instances.

e Browse a list of recordTask instances, stored by the ScheduledRecording service.
The ScheduledRecording service may create zero or more recordTask instances
for each recordSchedule. A recordTask represents a discrete recording operation
of a recordSchedule.

e Enable or disable individual recordTask instances.

e Enable or disable a recordSchedule.

e Receive notifications indicating change of recordSchedule or recordTask list.

The ScheduledRecording service does not require a dependency on any UPnP services
other than a co-located ContentDirectory service, which provides the following functions:
e A ContentDirectory service provides channel line-up to allow users to find
recordable channels. A control point may use this metadata when creating a
recordSchedule on a ScheduledRecording service.

e A ContentDirectory service may provide Electronic Program Guide (EPG) features
to allow users to find recordable content. A control point may use this metadata
when creating a recordSchedule on a ScheduledRecording service.

e Contents recorded by the ScheduledRecording service may be exposed by a
ContentDirectory service.

The architectural relationship among the different concepts, defined by the
ScheduledRecording service can be summarized as follows: A ScheduledRecording
service owns a flat (that is: non-nested) list of recordSchedule instances, meaning that
the ScheduledRecording service may create, destroy, or change recordSchedule
instances. A recordSchedule represents user-level instructions to perform recording
operations. Generally, a user constructs his instructions to a ScheduledRecording service
via a control point that invokes UPnP actions that affect the list of recordSchedule
instances. In all cases, the ScheduledRecording service shall be able to describe discrete
recording operations for a recordSchedule through a list of associated recordTask
instances. A recordTask can only exist with a recordSchedule (that is: never orphaned).
Thus when a recordTask is created by the ScheduledRecording service, its lifetime
depends on its parent recordSchedule. An individual recordTask can be selectively
enabled or disabled.

This service template does not address:

e Implementations where the ScheduledRecording service and its associated
ContentDirectory service are not co-located in the same device.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 14

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document
and are indispensable for its application. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

[1] = XML Schema for RenderingControl AllowedTransformSettings, UPnP Forum, March
31, 2013.

Available at: http://www.upnp.org/schemas/av/AllowedTransformSettings-v1-
20130331.xsd.

Latest version available at:
http://www.upnp.org/schemas/av/AllowedTransformSettings.xsd.

[2] — AV Datastructure Template:1, UPnP Forum, March 31, 2013.

Available at: http://www.upnp.org/specs/av/UPnP-av-AVDataStructureTemplate-v1-
20130331.pdf.

Latest version available at: http://www.upnp.org/specs/av/UPnP-av-
AVDataStructureTemplate-v1.pdf.

[3] — XML Schema for UPnP AV Common XML Data Types, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/schemas/av/av-v3-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/av.xsd.

[4] = XML Schema for UPnP AV Common XML Structures, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/schemas/av/avs-v3-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avs.xsd.

[5] — AVTransport:3, UPnP Forum, March 31, 2013.

Available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service-
20130331.pdf.

Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-
Service.pdf.

[6] — XML Schema for AVTransport LastChange Eventing, UPnP Forum, September 30,
2008.

Available at: http://www.upnp.org/schemas/av/avt-event-v2-20080930.xsd.

Latest version available at: http://www.upnp.org/schemas/av/avt-event.xsd.

[7] — ContentDirectory:4, UPnP Forum, March 31, 2013.

Available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service-
20130331.pdf.

Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-
Service.pdf.

[8] — XML Schema for ContentDirectory LastChange Eventing, UPnP Forum, September
30, 2008.

Available at: http://www.upnp.org/schemas/av/cds-event-v1-20080930.xsd.

Latest version available at: http://www.upnp.org/schemas/av/cds-event.xsd.

[9] — ConnectionManager:3, UPnP Forum, March 31, 2013.

Available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service-
20130331.pdf.

Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-
v3-Service.pdf.

© 2014, UPnP Forum. All rights Reserved.

http://www.upnp.org/schemas/av/AllowedTransformSettings-v1-20130331.xsd
http://www.upnp.org/schemas/av/AllowedTransformSettings-v1-20130331.xsd
http://www.upnp.org/schemas/av/AllowedTransformSettings.xsd
http://www.upnp.org/specs/av/UPnP-av-AVDataStructureTemplate-v1-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-AVDataStructureTemplate-v1-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1.pdf
http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1.pdf
http://www.upnp.org/schemas/av/av-v3-20130331.xsd
http://www.upnp.org/schemas/av/av.xsd
http://www.upnp.org/schemas/av/avs-v3-20130331.xsd
http://www.upnp.org/schemas/av/avs.xsd
http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service.pdf
http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service.pdf
http://www.upnp.org/schemas/av/avt-event-v2-20080930.xsd
http://www.upnp.org/schemas/av/avt-event.xsd
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service.pdf
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service.pdf
http://www.upnp.org/schemas/av/cds-event-v1-20080930.xsd
http://www.upnp.org/schemas/av/cds-event.xsd
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service.pdf
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service.pdf

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 15

[10] — XML Schema for ConnectionManager DeviceClocklinfoUpdates, UPnP Forum,
December 31, 2010.

Available at: http://www.upnp.org/schemas/av/cm-deviceClockinfoUpdates-v1-
20101231.xsd.

Latest version available at: http://www.upnp.org/schemas/av/cm-
deviceClocklinfoUpdates.xsd.

[11] — XML Schema for ConnectionManager Features, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/cm-featureList-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/cm-featureList.xsd.

[12] — XML Schema for UPnP AV Dublin Core.
Available at: http://www.dublincore.org/schemas/xmls/simpledc20020312.xsd.

[13] — DCMI term declarations represented in XML schema language.
Available at: http://www.dublincore.org/schemas/xmls.

[14] — UPNnP Device Architecture, version 1.0, UPnP Forum, October 15, 2008.
Available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-
20081015.pdf.

Latest version available at: http://www.upnp.org/specs/arch/UPnP-arch-
DeviceArchitecture-v1.0.pdf.

[15] — XML Schema for ContentDirectory Structure and Metadata (DIDL-Lite), UPnP
Forum, March 31, 2013.

Available at: http://www.upnp.org/schemas/av/didl-lite-v3-20130331.xsd.

Latest version available at: http://www.upnp.org/schemas/av/didl-lite.xsd.

[16] — XML Schema for ContentDirectory DeviceMode, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/schemas/av/dmo-v1-20101231.xsd.
Latest version available at: http://www.upnp.org/schemas/av/dmo.xsd.

[17] — XML Schema for ContentDirectory DeviceModeRequest, UPnP Forum, December
31, 2010.

Available at: http://www.upnp.org/schemas/av/dmor-v1-20101231.xsd.

Latest version available at: http://www.upnp.org/schemas/av/dmor.xsd.

[18] — XML Schema for ContentDirectory DeviceModeStatus, UPnP Forum, December 31,
2010.

Available at: http://www.upnp.org/schemas/av/dmos-v1-20101231.xsd.

Latest version available at: http://www.upnp.org/schemas/av/dmos.xsd.

[19] — ISO/IEC 14977, Information technology - Syntactic metalanguage - Extended BNF,
December 1996.

[20] — XML Schema for ContentDirectory Permissionsinfo, UPnP Forum, December 31,
2010.

Available at: http://www.upnp.org/schemas/av/pi-v1-20101231.xsd.

Latest version available at: http://www.upnp.org/schemas/av/pi.xsd.

[21] — RenderingControl:3, UPnP Forum, March 31, 2013.

Available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service-
20130331.pdf.

Latest version available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-
Service.pdf.

© 2014, UPnP Forum. All rights Reserved.

http://www.upnp.org/schemas/av/cm-deviceClockInfoUpdates-v1-20101231.xsd
http://www.upnp.org/schemas/av/cm-deviceClockInfoUpdates-v1-20101231.xsd
http://www.upnp.org/schemas/av/cm-deviceClockInfoUpdates.xsd
http://www.upnp.org/schemas/av/cm-deviceClockInfoUpdates.xsd
http://www.upnp.org/schemas/av/cm-featureList-v1-20101231.xsd
http://www.upnp.org/schemas/av/cm-featureList.xsd
http://www.dublincore.org/schemas/xmls/simpledc20020312.xsd
http://www.dublincore.org/schemas/xmls/
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20081015.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20081015.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.upnp.org/schemas/av/didl-lite-v3-20130331.xsd
http://www.upnp.org/schemas/av/didl-lite.xsd
http://www.upnp.org/schemas/av/dmo-v1-20101231.xsd
http://www.upnp.org/schemas/av/dmo.xsd
http://www.upnp.org/schemas/av/dmor-v1-20101231.xsd
http://www.upnp.org/schemas/av/dmor.xsd
http://www.upnp.org/schemas/av/dmos-v1-20101231.xsd
http://www.upnp.org/schemas/av/dmos.xsd
http://www.upnp.org/schemas/av/pi-v1-20101231.xsd
http://www.upnp.org/schemas/av/pi.xsd
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service.pdf
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service.pdf

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 16

[22] —=XML Schema for RenderingControl LastChange Eventing, UPnP Forum, December
31, 2010.

Available at: http://www.upnp.org/schemas/av/rcs-event-v3-20101231.xsd.

Latest version available at: http://www.upnp.org/schemas/av/rcs-event.xsd.

[23] — XML Schema for ConnectionManager Rendererinfo, UPnP Forum, December 31,
2010.

Available at: http://www.upnp.org/schemas/av/rii-v1-20101231.xsd.

Latest version available at: http://www.upnp.org/schemas/av/rii.xsd.

[24] — XML Schema for AVTransport Playlistinfo, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/schemas/av/rpl-v1-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/rpl.xsd.

[25] — ScheduledRecording:2, UPnP Forum, March 31, 2013.

Available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service-
20130331.pdf.

Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-
v2-Service.pdf.

[26] — XML Schema for ScheduledRecording Metadata and Structure, UPnP Forum,
March 31, 2013.

Available at: http://www.upnp.org/schemas/av/srs-v2-20130331.xsd.

Latest version available at: http://www.upnp.org/schemas/av/srs.xsd.

[27] — XML Schema for ScheduledRecording LastChange Eventing, UPnP Forum,
September 30, 2008.

Available at: http://www.upnp.org/schemas/av/srs-event-v1-20080930.xsd.

Latest version available at: http://www.upnp.org/schemas/av/srs-event.xsd.

[28] — XML Schema for RenderingControl TransformSettings, UPnP Forum, March 31,
2013.

Available at: http://www.upnp.org/schemas/av/TransformSettings-v1-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/TransformSettings.xsd.

[29] — XML Schema for ContentDirectory Metadata, UPnP Forum, March 31, 2013.
Available at: http://www.upnp.org/schemas/av/upnp-v4-20130331.xsd.
Latest version available at: http://www.upnp.org/schemas/av/upnp.xsd.

[30] — The “xml:” Namespace, November 3, 2004.
Available at: http://www.w3.0rg/XML/1998/namespace.

[31] = XML Schema for the “xml:” Namespace.
Available at: http://www.w3.0rg/2001/xml.xsd.

[32] — Namespaces in XML, Tim Bray, Dave Hollander, Andrew Layman, eds., W3C
Recommendation, January 14, 1999.
Available at: http://www.w3.0rg/TR/1999/REC-xml-names-19990114.

[33] — XML Schema Part 1: Structures, Second Edition, Henry S. Thompson, David Beech,
Murray Maloney, Noah Mendelsohn, W3C Recommendation, 28 October 2004.
Available at: http://www.w3.0rg/TR/2004/REC-xmlschema-1-20041028.

[34] — XML Schema Part 2: Data Types, Second Edition, Paul V. Biron, Ashok Malhotra,
W3C Recommendation, 28 October 2004.
Available at: http://www.w3.0rg/TR/2004/REC-xmlIschema-2-20041028.

© 2014, UPnP Forum. All rights Reserved.

http://www.upnp.org/schemas/av/rcs-event-v3-20101231.xsd
http://www.upnp.org/schemas/av/rcs-event.xsd
http://www.upnp.org/schemas/av/rii-v1-20101231.xsd
http://www.upnp.org/schemas/av/rii.xsd
http://www.upnp.org/schemas/av/rpl-v1-20130331.xsd
http://www.upnp.org/schemas/av/rpl.xsd
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service-20101231.pdf
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service.pdf
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service.pdf
http://www.upnp.org/schemas/av/srs-v2-20130331.xsd
http://www.upnp.org/schemas/av/srs.xsd
http://www.upnp.org/schemas/av/srs-event-v1-20080930.xsd
http://www.upnp.org/schemas/av/srs-event.xsd
http://www.upnp.org/schemas/av/TransformSettings-v1-20130331.xsd
http://www.upnp.org/schemas/av/TransformSettings.xsd
http://www.upnp.org/schemas/av/upnp-v4-20130331.xsd
http://www.upnp.org/schemas/av/upnp.xsd
http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/xml.xsd
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 17

[35] — XML Schema for XML Schema.
Available at: http://www.w3.0rg/2001/XMLSchema.xsd.

[36] — Unicode Technical Standard #10, Unicode Collation Algorithm, version 4.1.0,
revision 14, M. Davis, K. Whistler, May 5, 2005.
Available at: http://www.unicode.org/reports/tr10/tr10-14.html.

[37] — Unicode Standard Annex #15, Unicode Normalization Forms, version 4.1.0,
revision 25, M. Davis, M. Dirst, March 25, 2005.
Available at: http://www.unicode.org/reports/tr15/tr15-25.html.

[38] — Unicode Technical Standard #35, Locale Data Markup Language, version 1.3R1,
revision 5,.M. Davis, June 2, 2005.
Available at: http://www.unicode.org/reports/tr35/tr35-5.html.

[39] — Extensible Markup Language (XML) 1.0 (Third Edition), Francois Yergeau, Tim
Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, eds., W3C Recommendation,
February 4, 2004.

Available at: http://www.w3.0rg/TR/2004/REC-xmI-20040204.

3 Terms, definitions, symbols and abbreviations

For the purposes of this document, the terms and definitions given in [14] and the
following apply.

3.1 Provisioning terms

3.1.1

allowed

A

The definition or behavior is allowed.

3.1.2

conditionally allowed

CA

The definition or behavior depends on a condition. If the specified condition is met, then
the definition or behavior is allowed, otherwise it is not allowed.

3.1.3

conditionally required

CR

The definition or behavior depends on a condition. If the specified condition is met, then
the definition or behavior is required. Otherwise the definition or behavior is allowed as
default unless specifically defined as not allowed.

314

required

R

The definition or behavior is required.

3.1.5

R/A

Used in a table column heading to indicate that each abbreviated entry in the column
declares the provisioning status of the item named in the entry's row.

3.1.6
X
Vendor-defined, non-standard.

© 2014, UPnP Forum. All rights Reserved.

http://www.w3.org/2001/XMLSchema.xsd
http://www.unicode.org/reports/tr10/tr10-14.html
http://www.unicode.org/reports/tr15/tr15-25.html
http://www.unicode.org/reports/tr35/tr35-5.html
http://www.w3.org/TR/2004/REC-xml-20040204/

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 18

3.1.7

D

Declares that the item referred to is deprecated, when it is appended to any of the other
abbreviated provisioning terms.

3.1.8

CSV list (or CSV)

Comma separated value list. List—or one-dimensional array—of values contained in a
string and separated by commas

3.2 Terms specific to ScheduledRecording service
3.2.1 CDS
ContentDirectory service

3.2.2 EPG
Electronic Program Guide

3.2.3 SRS
ScheduledRecording service

3.24 CDS object
An object in a ContentDirectory service metadata hierarchy; that is: item or container.

3.25 User Channel

A User Channel is a ContentDirectory service object that exposes the (continuous)
content stream of a particular broadcast channel. Usually, the actual channel that the
User Channel exposes is determined by the user through some device-specific
interaction. Examples are: manual programming of a number of channel presets; invoking
of the auto-scan functionality of a device; predefined fixed channel assignments by the
device manufacturer.

3.2.6 Channel Group

A Channel Group is a ContentDirectory service container that holds a number of User
Channel items. Typically, a Channel Group contains User Channel items that are bound
to a particular hardware resource. Examples include: a single analog cable TV tuner, a
HDTV digital tuner, an AM/FM radio tuner, etc.

3.2.7 Channel Line-up

A service provider-generated list of channels with their associated content provider.

3.2.8 object

A recordSchedule or a recordTask (see definition of recordSchedule and recordTask
below).

3.2.9 class

As defined in the ContentDirectory service specification, a class is used to assign a type
to an object. It also identifies the minimum required set of properties that shall be present
on that object and the allowed properties that may be present. Classes are organized in a
hierarchy with certain classes being derived from others as in a typical object-oriented
system. This specification defines two base classes (recordSchedule and recordTask)
from which all other classes are derived.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 19

3.2.10 object Modification

An object is considered modified when one of its properties (or its list of properties) is
modified; that is: added, removed or changed in value (see definition of property below).

3.2.11 recordSchedule

A ScheduledRecording service construct that represents a complete set of recording
instructions to the service, which allows the service to generate recordTask objects as
necessary to record the desired content. The creator of the recordSchedule object
assigns it a specific class, based on the type and complexity of the instructions, used to
identify the content.

A recordSchedule is represented in XML as an <item>..</item> element.

3.2.12 Conflicting_recordSchedule

A conflicting recordSchedule exists when one or more of its associated recordTask
instances is in conflict with another recordTask instance.

3.2.13 recordTask

A ScheduledRecording service construct that represents a discrete recording operation of
the underlying recording system. A recordTask is created by its parent recordSchedule
and can not be directly created by the user. The parent-child relationship of
recordSchedule and recordTask can be 1-to-zero or more.

A recordTask is represented in XML as an <item>..</item> element.

3.2.14 Conflicting_recordTask

A conflicting recordTask exists when it overlaps in time with one or more other
recordTask instances and the ScheduledRecording service has insufficient resources to
record all of them. Existing pre-roll and post-roll adjustments (as defined by the
scheduledStartDateTimeAdjust and scheduledDurationAdjust properties) shall be taken
into account when determining conflicts.

3.2.15 recordScheduleParts

A ScheduledRecording service construct that represents user-level recording instructions
to the service, which provide a template to generate complete recordSchedule objects.
The creator of the recordScheduleParts object assigns it a specific class, based on the
type and complexity of the instructions, used to identify the content.

A recordScheduleParts is represented in XML as an <item>..</item> element.

3.2.16 Property-set Data Types

Certain ScheduledRecording service actions use property-set arguments that contain
information about a set of properties, typically expressed in the form of an srs XML
Document (for example, the Elements argument of the CreateRecordSchedule() action).
The set of properties that can exist in a property-set argument is implementation
dependent. Indeed, the set of allowed properties that a particular ScheduledRecording
service chooses to implement is vendor dependent.

This specification currently defines three different property-set data types:

e A ARG TYPE RecordSchedule
e A ARG TYPE RecordTask
e A ARG TYPE RecordScheduleParts

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 20

Although these three types are different, they are very similar in nature and are defined
using the same SRS schema [26], which defines all the properties that can ever occur in
any of the three property-set data types. They differ only in the set of properties that can
appear in them and in the values that are allowed for these properties.

3.2.17 Property

A property in the ScheduledRecording service represents a characteristic of an object.
Properties are distinguished by their names. The ScheduledRecording service defines
two kinds of properties — independent and dependent. Each independent property has
zero or more dependent properties associated with it. Independent property names
contain no “@” symbol; they could contain an XML namespace prefix (see below for an
explanation of the relationship between properties and XML). Each dependent property is
associated either with exactly one independent property or directly with a
ScheduledRecording service class. The name of a dependent property that is associated
with an independent property is the concatenation of three parts: its associated
independent property name, the “@” symbol, and a name for the relationship between the
two properties’ values. The name of a dependent property that is associated directly with
a class is just the “@” symbol followed by the relationship name. Their data types and
meanings are defined in Annex B.

Even though ScheduledRecording service properties are not XML objects, XML is used to
express them in all exchanges between a control point and a ScheduledRecording
service implementation. This creates an unavoidable relationship between XML syntax
and property names and values. In XML, an independent property is represented as an
element. The property name is used as the element name. The property value is the
element content. A dependent property is represented as an attribute in XML. The
dependent property’s relationship name is used as the attribute name. The dependent
property’s value is the attribute value. For dependent properties that are associated with
an independent property, the attribute appears in the start tag of the element that
represents its associated independent property. For dependent properties that are
associated directly with a class, the attribute appears in the top-level start tag for each
object of that class.

Examples:
Table 1 — Properties in XML
Property Name XML Representation (srs declared as default namespace)
title <title>.</title>
taskProgramCode <taskProgramCode>..</taskProgramCode>
taskProgramCode @type <taskProgramCode type=".">.</taskProgramCode>
@id <item id=".">.</item>

3.2.18 Member Property

A property is a member of a particular class when the property is declared to be either
required or allowed for that class.

3.2.19 Supported Member Property

A supported member property is a member property that is supported by a particular
ScheduledRecording service implementation, according to the information returned by the
GetPropertyList() action.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 21

3.2.20 Multi-valued property

Some independent properties are multi-valued. This means that the property may occur
more than once in an object.

3.2.21 Single-valued property

Most independent properties are single-valued. This means thatthe property shall occur
at most once in an object. Some single-valued properties can contain a CSV list of values.
A dependent property is always considered single-valued, because it can occur at most
once with each occurrence of its associated independent property, even though the
independent property could be multi-valued.

3.2.22 XML Document

A string that represents a valid XML 1.0 document according to a specific schema. Every
occurrence of the phrase “XML Document” is preceded by the appropriate root element
name, italicized, as listed in column 3, “Valid Root Element(s)” of Table 5.

For example, the phrase “srs XML Document” refers to an XML document based on the
SRS Schema as defined in [26]. Such a document comprises a single <srs ..> root
element, and it is allowed to be preceded by the XML declaration: <?xml
version="1_0" ..?7>.

Therefore, the string containing the srs XML Document will have one of the following two
forms:

“<srs .>..</srs>"
or
“<?xml ..?>

<srs ..>.</srs>"

3.2.23 XML Fragment

An XML Fragment is a sequence of XML elements that are valid direct or indirect child
elements of the root element according to a specific schema. Every occurrence of the
phrase “XML Fragment” is preceded by the appropriate root element name, italicized, as
listed in column 3, “Valid Root Element(s)” of Table 5.

For example, the phrase “srs XML Fragment” refers to a sequence of XML elements that
are defined in the SRS Schema as defined in [26]:

“<item 1d="." .>.</item>”
or
“<recordDestination mediaType=""." preference=".">

</recordDestination>"

or

“<title>.</title>
<class>..</class>
<.>.</.>

<.>.</.>"

3.2.24 actualScheduledStartDateTime
The actual scheduled start date&time of a program item is defined as:

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 22

actualScheduledEndDateTime = scheduledStartDateTime +
scheduledStartDateTimeAdjust

where_scheduledStartDateTime is the scheduled broadcast start date&time of the
program item and scheduledStartDateTimeAdjust is a user-supplied adjustment to that
date&time, for example for pre-roll purposes.

3.2.25 actualStartDateTime
The actual start date&time of a program item is defined as:

actualStartDateTime = actualScheduledStartDateTime + any device-specific record
startup latency.

3.2.26 actualScheduledEndDateTime
The actual scheduled end time of a program item is defined as:

actualScheduledEndDateTime = scheduledStartDateTime + scheduledDuration +
scheduledDurationAdjust

where_scheduledStartDateTime is the scheduled broadcast start date&time of the
program item, scheduledDuration is the scheduled broadcast duration of the program
item and scheduledDurationAdjust is a user-supplied adjustment to that duration, for
example to select just a part of the program for recording.

3.2.27 actualEndDateTime
The actual end date&time of a program item is defined as:

actualEndDateTime = actualScheduledEndDateTime + any device-specific record
teardown latency.

3.2.28 actualScheduledDuration
The actual scheduled duration of a program item is defined as:

actualScheduledDuration = actualScheduledEndDateTime —
actualScheduledStartDateTime

= scheduledDuration + scheduledDurationAdjust —
scheduledStartDateTimeAdjust

where_scheduledDuration is the scheduled broadcast duration of the program item,
scheduledDurationAdjust is a user-supplied adjustment to that duration, and
scheduledStartDateTimeAdjust is a user-supplied adjustment to the scheduled start
date&time.

3.2.29 Lexical Sort Order

Lexical sort order refers to string sorting — also called collation — based on language and
regional conventions. It is not based on the binary codes of the characters in strings.
Furthermore, lexical sorting is not based on character sets; a single character set may
have multiple sort orders, again according to language and regional conventions. It is
also possible to have lexical sorts that are further refined according to user preference.
For a complete discussion of this topic see [36], and the related standards [37] and [38].
The lexical sort algorithms are defined in [36]. It uses a secondary algorithm defined in
[37] and supporting data tables defined in [38]. These three references together — [37],
[36] and [38] — should be sufficient to implement a robust lexical sort.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 23

Simple example: one of the most familiar examples is case-insensitive sorting on the
ASCII subset of Unicode. In a binary ASCII sort, all lower case letters sort after the upper
case “Z” because “Z" has a character code of 0x5A, and all lower case character codes
are greater than or equal to Ox61.

wean [139s1] [y 1]

More complex example: the “6” character in German sorts between “n” and “p” characters
whereas in Swedish, it sorts after “z”".

3.2.30 Lexical Matching

Lexical matching compares two (sub)strings for equality under certain lexical sorting
conditions. It is important to note that equality in lexical matching is often less restrictive
than equality in lexical sorting. In other words, two strings that are equal under a lexical
sort will always be a lexical match. However, two strings that are a lexical match might
not be equal under a lexical sort for the same language and region. In some cases, an
implementation’s lexical sort might consider all alphabetic characters with diacritical
marks (accents, umlauts, circumflexes, etc.) to be distinct, yet the same implementation
might ignore diacritical marks in lexical matching. For example, the strings “resumé”,
“resume” and “résumé” might sort as “resume” < “resumé” < “résumé”, but when a lexical
match using the string “resume”, might find all three strings “resumé”, “resume” and
“résumé”. For implementation techniques, see clause 8 in [36].

3.2.31 Simple Non-case-sensitive Sort Order

A simple non-case-sensitive sort order applies only to Roman alphabetic characters. All
lower case ASCII alphabetic characters shall sort the same as their uppercase equivalent,
except when compared directly with their upper case equivalent, in which case the upper
case character should sort before its lower case equivalent. This means that of the
following three ordering relations, (1) shall be true, at least one of (2) and (3) shall be
true, and (2) should be true.

“A” S “a” < “B” S “b” <. .. < “Y” S “y” < “Z” S “Z” (1)
uAn < uan < “B" < ubn <..< “Y” < uyn < uzn < uzn (2)
“A" - uan < “B" - ubn <. < uYn - uyn < uzn - uzn (3)

Additionally, the same upper and lower case relationships should hold for non-ASCII
Roman alphabetic characters. That is, lower case alphabetic characters with diacritical
marks should sort as their upper case equivalent, except when compared directly with
their upper case equivalent, in which case the upper case character should sort before its
lower case equivalent. The ordering relation between ASCIlI and non-ASCIl alphabetic
characters is left unspecified. Also, the ordering relation between non-ASCIl alphabetic
characters that are not upper or lower case equivalents of each other is left unspecified.
This is summarized in the following relations, where ¢ represents any non-ASCIl Roman
alphabetic character. (4) should be true for all c. (5) should be true for all c. If (5) is false
for any c, it should be false for all ¢ and (6) should be true for all c.

upper(c) < lower(c) 4)
upper(c) < lower(c) ®)
upper(c) = lower(c) (6)

3.2.32 Simple Non-case-sensitive Matching

In a simple non-case-sensitive match, relation (1) above in subclause 3.2.31 shall be true,
and relation (6) above in subclause 3.2.31 should be true.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 24

3.2.33 Numeric Sort Order

A sort order in which values are compared numerically. If the type of an individual value
is numeric, the numeric value is used. If the type of an individual value is string, the
string is converted to a number and that numeric value is used.

3.2.34 Boolean Sort Order
Boolean values are sorted with “0” (false) being less than “1” (true).

3.2.35 Sequenced Sort

A sequenced sort is a sort applied to a set of values, each of which is composed of a
sequence of subvalues. The sequence is often in a CSV list, but there are other kinds of
sequences used for sorting in this specification. The sequenced sort starts by sorting
based on the first subvalue in the sequence. If all values differ in the first subvalue, the
sort is finished. Otherwise, each subset of equal subvalues is then sorted based on the
next subvalue in the sequence. This process repeats iteratively until there are no more
subsets of equal subvalues or the sequence is exhausted.

3.2.36 Sequenced Lexical Sort

A sequenced sort in which all subvalues are strings and the subvalues are compared
lexically.

3.2.37 Sequenced Numeric Sort

A sequenced sort in which each subvalue is either a number or the number represented
by a string.

3.2.38 Lexical Numeric Sort

A lexical numeric sort is one where one or more substrings are known to represent
numbers. The strings are then sorted using a sequenced sort, where the sequence is
composed of the sequence of non-numeric and numeric substrings from the larger string.

For example, assume a property has the form <letter>-<number>, where <number>
ranges from 1 to 10. In a straight ascending lexical sort, the values “A-10", “A-1", “A-2"
would sort as: “A-1", “A-10", “A-2". “A-10" sorts before “A-2" because they are equal in
the first two character positions, but in the third position, “1” < “2". However, in a lexical
numeric sort, each string is considered to be a sequence of a letter and number
separated by a hyphen. These values then sort as “A-1", “A-2", “A-10" because all three
are equal in the first subvalue, “A”, but the second subvalue sorts as 1, 2, 10 in numeric
order.

3.2.39 type Relationship Sort

This is a sort defined exclusively for independent properties that have a dependent
property relationship named “type”. These properties are sorted as a sequence of two
subvalues: the first subvalue is the value of the property’s xxx@type dependent property;
the second subvalue is the value of the independent property xxx itself. The xxx@type
subvalues are sorted as specified for the dependent xxx@type property in its own
subclause. The independent property subvalues are sorted according to the order
specified in its subclause. Sorting of the independent property may vary with the value of
the dependent property.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 25

3.3 Symbols
331

Signifies a hierarchical parent-child (parent::child) relationship between the two objects
separated by the double colon. This delimiter is used in multiple contexts, for example:
Service::Action(), Action()::Argument, parentProperty::childProperty.

4 Notations and Conventions

4.1 Notation

e UPnP interface names defined in the UPnP Device Architecture specification [14]
are styled in green bold underlined text.

e UPnP interface names defined outside of the UPnP Device Architecture
specification [14] are styled in red italic underlined text.

e Some additional non-interface names and terms are styled in italic text.

e Words that are emphasized are also styled in italic text. The difference between
italic terms and italics for emphasis will be apparent by context.

e Strings that are to be taken literally are enclosed in “double quotes”.
4.1.1 Data Types

Data type definitions come from three sources:

e All state variable and action argument data types are defined in [14].
e Basic data types for properties are defined in [34].

e Additional data types for properties are defined in the XML schema(s) (see [3])
associated with this service.

For UPnP Device Architecture defined boolean data types, it is strongly recommended to
use the value “0” for false, and the value “1” for true. However, when used as input
arguments, the values “false”, “no”, “true”, “ves” may also be encountered and shall be
accepted. Nevertheless, it is strongly recommended that all boolean state variables and

output arguments be represented as “0” and “1”".

For XML Schema defined Boolean data types, it is strongly recommended to use the
value “0” for false, and the value “1” for true. However, when used as input properties,

the values “false”, “true” may also be encountered and shall be accepted. Nevertheless, it
is strongly recommended that all Boolean properties be represented as “0” and “1".

41.2 Strings Embedded in Other Strings

Some string variables and arguments described in this document contain substrings that
shall be independently identifiable and extractable for other processing. This requires the
definition of appropriate substring delimiters and an escaping mechanism so that these
delimiters can also appear as ordinary characters in the string and/or its independent
substrings. This document uses embedded strings in two contexts — Comma Separated
Value (CSV) lists (see subclause 4.2.2) and property values in search criteria strings.
Escaping conventions use the backslash character, “\" (character code U+005C), as
follows:

a) Backslash (“\") is represented as “\\" in both contexts.

b) Comma (*,”) is
1) represented as “\,” in individual substring entries in CSV lists

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 26

2) not escaped in search strings

c) Double quote (“") is

1) not escaped in CSV lists

2) not escaped in search strings when it appears as the start or end delimiter of a
property value

3) represented as “\"” in search strings when it appears as a character that is part of
the property value

4.1.3 Extended Backus-Naur Form

Extended Backus-Naur Form is used in this document for a formal syntax description of
certain constructs. The usage here is according to the reference [19].

4.1.3.1 Typographic conventions for EBNF

Non-terminal symbols are unquoted sequences of characters from the set of English
upper and lower case letters, the digits “0” through “9”, and the hyphen (“-"). Character
sequences between "single quotes” are terminal strings and shall appear literally in
valid strings. Character sequences between (*comment delimiters*) are English
language definitions or supplementary explanations of their associated symbols. White
space in the EBNF is used to separate elements of the EBNF, not to represent white
space in valid strings. White space usage in valid strings is described explicitly in the
EBNF. Finally, the EBNF uses the following operators in Table 2:

Table 2 — EBNF Operators

Operator Semantics

tI= definition — the non-terminal symbol on the left is defined by one or more alternative
sequences of terminals and/or non-terminals to its right.

| alternative separator — separates sequences on the right that are independently allowed
definitions for the non-terminal on the left.

> null repetition — means the expression to its left may occur zero or more times.
+ non-null repetition — means the expression to its left shall occur at least once and may
occur more times.
[1 optional — the expression between the brackets is allowed.
) grouping — groups the expressions between the parentheses.

- character range — represents all characters between the left and right character operands
inclusively.

4.2 Derived Data Types
421 Summary

Subclause 4.2 defines a derived data type that is represented as a string data type with
special syntax. This specification uses string data type definitions that originate from two
different sources. The UPnP Device Architecture defined string data type is used to
define state variable and action argument string data types. The XML Schema
namespace is used to define property xsd:string data types. The following definition in
subclause 4.2.2 applies to both string data types.

4.2.2 CSV Lists

The UPnP AV services use state variables, action arguments and properties that
represent lists — or one-dimensional arrays — of values. The UPnP Device Architecture,
Version 1.0 [14], does not provide for either an array type or a list type, so a list type is
defined here. Lists may either be homogeneous (all values are the same type) or

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 27

heterogeneous (all values can be of different types). Lists may also consist of repeated
occurrences of homogeneous or heterogeneous subsequences, all of which have the
same syntax and semantics (same number of values, same value types and in the same
order). The data type of a homogeneous list is string or xsd:string and denoted by CSV
(x), where x is the type of the individual values. The data type of a heterogeneous list is
also string or xsd:string and denoted by CSV (x, vy, z), where x, y and z are the types of
the individual values. If the number of values in the heterogeneous list is too large to
show each type individually, that variable type is represented as CSV (heterogeneous),
and the variable description includes additional information as to the expected sequence
of values appearing in the list and their corresponding types. The data type of a repeated
subsequence list is string or xsd:string and denoted by CSV ({a,b,c},{x, y, z}), where a, b,
Cc, X, y and z are the types of the individual values in the subsequence and the
subsequences may be repeated zero or more times.

e Alistis represented as a string type (for state variables and action arguments) or
xsd:string type (for properties).
e Commas separate values within a list.

e Integer values are represented in CSVs with the same syntax as the integer data
type specified in [14] (that is: allowed leading sign, allowed leading zeroes,
numeric US-ASCII)

e Boolean values are represented in state variable and action argument CSVs as
either “0” for false or “1” for true. These values are a subset of the defined

e Boolean values are represented in property CSVs as either “0” for false or “1” for
true. These values are a subset of the defined Boolean data type values specified
in [34]: O, false, 1, true.

e Escaping conventions for the comma and backslash characters are defined in
4.1.2.

e White space before, after, or interior to any numeric data type is not allowed.

e White space before, after, or interior to any other data type is part of the value.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 28

Table 3 — CSV Examples

Type refinement of Value Comments
string
CSV (string) or “+artist,-date” List of 2 property sort
CSV (xsd:string) criteria.
CSV (int) or “1,-5,006,0,+7" List of 5 integers.
CSV (xsd:integer)
CSV (boolean) or “0,1,1,0” List of 4 booleans
CSV (xsd:Boolean)
CSV (string) or “Smith\, Fred,Jones\, Davey” List of 2 names,
CSV (xsd:string) “Smith, Fred” and
“Jones, Davey”
CSV (i4,string,ui2) or | “-29837, string with leading blanks,0” Note that the second value
CSV (xsd:int, is“ string with leading
xsd:string, blanks”
xsd:unsignedShort)
CSV (i4) or “3, 4” lllegal CSV. White space
CSV (xsd:int) is not allowed as part of
an integer value.
CSV (string) or List of 3 empty string
CSV (xsd:string) values
CSV (heterogeneous) “Alice,Marketing,5,Sue,R&D,21,Dave,Finance,7” List of unspecified number

of people and associated
attributes. Each person is
described by 3 elements: a
name string, a department
string and years-of-
service ui2 or a name
xsd:string, a department
xsd:string and years-of-
service

xsd:unsignedShort.

4.3 Management of XML Namespaces in Standardized DCPs

UPnP specifications make extensive use of XML namespaces. This enables separate
DCPs, and even separate components of an individual DCP, to be designed
independently and still avoid name collisions when they share XML documents. Every
name in an XML document belongs to exactly one namespace. In documents, XML
names appear in one of two forms: qualified or unqualified. An unqualified name (or no-
colon-name) contains no colon (“:") characters. An unqualified name belongs to the
document’s default namespace. A qualified name is two no-colon-names separated by
one colon character. The no-colon-name before the colon is the qualified name’s
namespace prefix, the no-colon-name after the colon is the qualified name’s “local” name
(meaning local to the namespace identified by the namespace prefix). Similarly, the
unqualified name is a local name in the default namespace.

The formal name of a namespace is a URI. The namespace prefix used in an XML
document is not the name of the namespace. The namespace name shall be globally
unique. It has a single definition that is accessible to anyone who uses the namespace. It
has the same meaning anywhere that it is used, both inside and outside XML documents.
The namespace prefix, however, in formal XML usage, is defined only in an XML
document. It shall be locally unique to the document. Any valid XML no-colon-name may
be used. And, in formal XML usage, different XML documents may use different
namespace prefixes to refer to the same namespace. The creation and use of the
namespace prefix was standardized by the W3C XML Committee in [32] strictly as a

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 29

convenient local shorthand replacement for the full URI name of a namespace in
individual documents.

All AV object properties are represented in XML by element and attribute names,
therefore, all property names belong to an XML namespace.

For the same reason that namespace prefixes are convenient in XML documents, it is
convenient in specification text to refer to namespaces using a namespace prefix.
Therefore, this specification declares a “standard” prefix for all XML namespaces used
herein. In addition, this specification expands the scope where these prefixes have
meaning, beyond a single XML document, to all of its text, XML examples, and certain
string-valued properties. This expansion of scope does not supersede XML rules for
usage in documents, it only augments and complements them in important contexts that
are out-of-scope for the XML specifications. For example, action arguments which refer to
CDS properties, such as the SearchCriteria argument of the Search() action or the Filter
argument of the Browse() action, shall use the predefined namespace prefixes when
referring to CDS properties (“upnp:”, “dc:”, etc).

All of the namespaces used in this specification are listed in Table 4 and Table 5. For
each such namespace, Table 4 gives a brief description of it, its name (a URI) and its
defined “standard” prefix name. Some namespaces included in these tables are not
directly used or referenced in this document. They are included for completeness to
accommodate those situations where this specification is used in conjunction with other
UPnP specifications to construct a complete system of devices and services. For
example, since the ScheduledRecording service depends on and refers to the
ContentDirectory service, the predefined “srs:” namespace prefix is included. The
individual specifications in such collections all use the same standard prefix. The
standard prefixes are also used in Table 5 to cross-reference additional namespace
information. Table 5 includes each namespace’s valid XML document root element(s) (if
any), its schema file name, versioning information (to be discussed in more detail below),
and a link to the entry in Clause 2 for its associated schema.

The normative definitions for these namespaces are the documents referenced in Table 4.
The schemas are designed to support these definitions for both human understanding
and as test tools. However, limitations of the XML Schema language itself make it difficult
for the UPnP-defined schemas to accurately represent all details of the namespace
definitions. As a result, the schemas will validate many XML documents that are not valid
according to the specifications.

The Working Committee expects to continue refining these schemas after specification
release to reduce the number of documents that are validated by the schemas while
violating the specifications, but the schemas will still be informative, supporting
documents. Some schemas might become normative in future versions of the
specifications.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013

Table 4 — Namespace Definitions

Standard Normative
Name- Definition
space Document
Prefix Namespace Name Namespace Description Reference

AV Working Committee defined namespaces
atrs urn:schemas-upnp- AllowedTransformSettings and [21]
org:av:AllowedTransformSettings AllowedDefaultTransformSettings
state variables for
RenderingControl

av urn:schemas-upnp-org:av:av Common data types for use in AV |[3]

schemas

avdt urn:schemas-upnp-org:av:avdt Datastructure Template [2]

avs urn:schemas-upnp-org:av:avs Common structures for use in AV | [4]

schemas

avt-event |urn:schemas-upnp-org:metadata-1- Evented LastChange state variable |[5]

0/AVT/ for AVTransport

cds-event |urn:schemas-upnp-org:av:cds-event |Evented LastChange state variable |[7]

for ContentDirectory

cm-dciu urn:schemas-upnp-org:av:cm- Evented DeviceClockIinfoUpdates |[9]

deviceClockinfoUpdates state variable for
ConnectionManager

cm-ftrist | urn:schemas-upnp-org:av:cm- FeaturelList state variable for [9]

featureList ConnectionManager

didl-lite urn:schemas-upnp-org:metadata-1- Structure and metadata for [7]

0/DIDL-Lite/ ContentDirectory

dmo urn:schemas-upnp.org:av:dmo Evented DeviceMode state [7]

variable for ContentDirectory

dmor urn:schemas-upnp.org:av:dmor A ARG TYPE DeviceModeReque |[[7]

st state variable for
ContentDirectory

dmos urn:schemas-upnp.org:av:dmos DeviceModeStatus state variable [7]

for ContentDirectory

pi urn:schemas-upnp.org:av:pi Permissionsinfo state variable for |[7]

ContentDirectory

rcs-event |urn:schemas-upnp-org:metadata-1- Evented LastChange state variable |[21]

0/RCS/ for RenderingControl

rii urn:schemas-upnp-org:av:rii A ARG _TYPE RenderinglnfolList |[9]

state variable for
ConnectionManager

rpl urn:schemas-upnp-org:av:rpl A ARG _TYPE Playlistinfo state [5]

variable for AVTransport

Srs urn:schemas-upnp-org:av:srs Metadata and structure for [25]

ScheduledRecording

srs-event |urn:schemas-upnp-org:av:srs-event Evented LastChange state variable | [25]

for ScheduledRecording

trs urn:schemas-upnp- TransformSettings and [21]

org:av:TransformSettings DefaultTransformSettings state
variables for RenderingControl

upnp urn:schemas-upnp-org:metadata-1- Metadata for ContentDirectory [7]

0/upnp/

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013

31

Standard Normative
Name- Definition
space Document
Prefix Namespace Name Namespace Description Reference

Externally defined namespaces

dc http://purl.org/dc/elements/1.1/ Dublin Core [13]

xsd http://www.w3.0rg/2001/XMLSchema |XML Schema Language 1.0 [33], [34]

Xsi http://www.w3.0rg/2001/XMLSchema- | XML Schema Instance Document |[33] 2.6 & 3.2.7

instance schema

xml http://www.w3.0rg/XML/1998/namesp | The “xml:” Namespace [30]

ace

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013

Table 5 — Schema-related Information

32

Standard
Name-
space
Prefix

Relative URI and
File Name @
e Form 1, Form 2,
Form3

Valid Root Element(s)

Schema Reference

AV Working Committee Defined Namespaces

atrs

AllowedTransformSetting
s-vn-yyyymmdd.xsd

AllowedTransformSetting
s-vn.xsd

AllowedTransformSetting
s.xsd

<TransformList>

(1]

av

av-vn-yyyymmdd.xsd
av-vn.xsd
av.xsd

n/a

(3]

avdt

avdt-vn-yyyymmdd.xsd
avdt-vn.xsd
avdt.xsd

<AVDT>

(2]

avs

avs-vn-yyyymmdd.xsd
avs-vn.xsd
avs.xsd

<Capabilities>
<Features>
<stateVariableValuePairs>

(4]

avt-event

avt-event-vn-
yyyymmdd.xsd

avt-event-vn.xsd
avt-event.xsd

<Event>

(6]

cds-event

cds-event-vn-
yyyymmdd.xsd

cds-event-vn.xsd
cds-event.xsd

<StateEvent>

(8l

cm-dciu

cm-
deviceClockinfoUpdates-
vn-yyyymmdd.xsd

cm-
deviceClocklnfoUpdates
-vn.xsd

cm-
deviceClockinfoUpdates.
xsd

<DeviceClockInfoUpdates>

[10]

cm-ftrist

cm-featureList-vn-
yyyymmdd.xsd

cm-featureList-vn.xsd
cm-featureList.xsd

<Features>

[11]

didl-lite

didl-lite-vn-
yyyymmdd.xsd
didl-lite-vn.xsd

didl-lite.xsd

<DIDL-Lite>

[15]

dmo

dmo-vn-yyyymmdd.xsd
dmo-vn.xsd
dmo.xsd

<DeviceMode>

[16]

dmor

dmor-vn-yyyymmdd.xsd
dmor-vn.xsd
dmor.xsd

<DeviceModeRequest>

[17]

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 33

Standard Relative URI and
Name- File Name @
space e Form 1, Form 2,
Prefix Form3 Valid Root Element(s) Schema Reference
dmos dmos-vn-yyyymmdd.xsd |<DeviceModeStatus> [18]
dmos-vn.xsd
dmos.xsd
pi pi-vn-yyyymmdd.xsd <Permissionsinfo> [20]
pi-vn.xsd
pi.xsd
rcs-event |rcs-event-vn- <Event> [22]

yyyymmdd.xsd
rcs-event-vn.xsd
rcs-event.xsd

rii rii-vn-yyyymmdd.xsd <rendererinfo> [23]
rii-vn.xsd
rii.xsd

rpl rpl-vn-yyyymmdd.xsd <Playlistinfo> [24]
rpl-vn.xsd
rpl.xsd

trs TransformSettings-vn- <TransformSettings> [28]
yyyymmdd.xsd

TransformSettings-
vn.xsd

TransformSettings.xsd

Srs srs-vn-yyyymmdd.xsd <srs> [26]
srs-vn.xsd
srs.xsd

srs-event |srs-event-vn- <StateEvent> [27]

yyyymmdd.xsd
srs-event-vn.xsd
srs-event.xsd

upnp upnp-vn-yyyymmdd.xsd |n/a [29]

upnp-vn.xsd

upnp.xsd

Externally Defined Namespaces

dc Absolute URL: http://dublincore.org/schemas/xmls/simpledc20021212.xsd |[12]
xsd n/a <schema> [35]
Xsi n/a n/a
xml n/a [31]

a Absolute URIs are generated by prefixing the relative URIs with "http://www.upnp.org/schemas/av/"

43.1 Namespace Prefix Requirements

There are many occurrences in this specification of string data types that contain XML
names (property names). These XML names in strings will not be processed under
namespace-aware conditions. Therefore, all occurrences in instance documents of XML
names in strings shall use the standard namespace prefixes as declared in Table 4. In
order to properly process the XML documents described herein, control points and
devices shall use namespace-aware XML processors [32] for both reading and writing. As
allowed by [32], the namespace prefixes used in an instance document are at the sole

© 2014, UPnP Forum. All rights Reserved.

http://www.upnp.org/schemas/av/

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 34

discretion of the document creator. Therefore, the declared prefix for a namespace in a
document may be different from the standard prefix. All devices shall be able to correctly
process any valid XML instance document, even when it uses a non-standard prefix for
ordinary XML names. However, it is strongly recommended that all devices use these
standard prefixes for all instance documents to avoid confusion on the part of both human
and machine readers. These standard prefixes are used in all descriptive text and all
XML examples in this and related UPnP specifications. However, each individual
specification may assume a default namespace for its descriptive text. In that case,
names from that namespace may appear with no prefix.

The assumed default namespace, if any, for each UPnP AV specification is given in Table
6.

Note: all UPnP AV schemas declare attributes to be “unqualified”, so namespace prefixes
are never used with AV Working Committee defined attribute names.

Table 6 — Default Namespaces for the AV Specifications

AV Specification Name Default Namespace Prefix

AVTransport avt-event

ConnectionManager n/a

ContentDirectory didl-lite

MediaRenderer n/a

MediaServer n/a

RenderingControl rcs-event

ScheduledRecording srs

4.3.2 Namespace Names, Namespace Versioning and Schema Versioning

The UPnP AV service specifications define several data structures (such as state
variables and action arguments) whose format is an XML instance document that
complies with one or more specific XML schemas, which define XML namespaces. Each
namespace is uniquely identified by an assigned namespace name. The namespace
names that are defined by the AV Working Committee are URNs. See Table 4 for a
current list of namespace names. Additionally, each namespace corresponds to an XML
schema document that provides a machine-readable representation of the associated
namespace to enable automated validation of the XML (state variable or action parameter)
instance documents.

Within an XML schema and XML instance document, the name of each corresponding
namespace appears as the value of an xmlns attribute within the root element. Each
xmlns attribute also includes a namespace prefix that is associated with that namespace
in order to qualify and disambiguate element and attribute names that are defined within
different namespaces. The schemas that correspond to the listed namespaces are
identified by URI values that are listed in the schemaLocation attribute also within the
root element (see subclause 4.3.3).

In order to enable both forward and backward compatibility, namespace names are
permanently assigned and shall not change even when a new version of a specification
changes the definition of a namespace. However, all changes to a namespace definition
shall be backward-compatible. In other words, the updated definition of a namespace
shall not invalidate any XML documents that comply with an earlier definition of that same
namespace. This means, for example, that a namespace shall not be changed so that a
new element or attribute becomes required in a conforming instance document. Although

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 35

namespace names shall not change, namespaces still have version numbers that reflect
a specific set of definitional changes. Each time the definition of a namespace is changed,
the namespace’s version number is incremented by one.

Whenever a new namespace version is created, a new XML schema document (.xsd) is
created and published so that the new namespace definition is represented in a machine-
readable form. Since a XML schema document is just a representation of a namespace
definition, translation errors can occur. Therefore, it is sometime necessary to re-release
a published schema in order to correct typos or other namespace representation errors.
In order to easily identify the potential multiplicity of schema releases for the same
namespace, the URI of each released schema shall conform to the following format
(called Form 1):

Form 1: "http://www.upnp.org/schemas/av/" schema-root-name "-v" ver

where

yyyymmdd

e schema-root-name is the name of the root element of the namespace that this
schema represents.

e ver corresponds to the version number of the namespace that is represented by
the schema.

e yyyymmdd is the year, month and day (in the Gregorian calendar) that this
schema was released.

Table 5 identifies the URI formats for each of the namespaces that are currently defined
by the UPnP AV Working Committee.

As an example, the original schema URI for the “rcs-event” namespace (that was
released with the original publication of the UPnP AV service specifications in the year
2002) was “http://www.upnp.org/schemas/av/rcs-event-v1-20020625.xsd”. When the
UPnP AV service specifications were subsequently updated in the year 2006, the URI for

the updated version of the “rcs-event” namespace was
“http://www.upnp.org/schemas/av/rcs-event-v2-20060531.xsd”. However, in 2006, the
schema URI for the newly created “srs-event” namespace was

“http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd”. Note the version field for
the “srs-event” schema is “v1” since it was first version of that namespace whereas the
version field for the “rcs-event” schema is “v2” since it was the second version of that
namespace.

In addition to the dated schema URIs that are associated with each namespace, each
namepace also has a set of undated schema URIs. These undated schema URIs have
two distinct formats with slightly different meanings:

Form 2: “http://www.upnp.org/schemas/av/” schema-root-name “-v” ver
where ver is described above.
Form 3: “http://www.upnp.org/schemas/av/” schema-root-name

Form 2 of the undated schema URI is always linked to the most recent release of the
schema that represents the version of the namespace indicated by ver. For example, the
undated URI “.../av/rcs-event-v2.xsd” is linked to the most recent schema release of
version 2 of the “rcs-event” namespace. Therefore, on May 31, 2006 (20060531), the
undated schema URI was linked to the schema that is otherwise known as “.../av/rcs-
event-v2-20060531.xsd”. Furthermore, if the schema for version 2 of the “rcs-event”
namespace was ever re-released, for example to fix a typo in the 20060531 schema, then
the same undated schema URI (“.../av/rcs-event-v2.xsd”) would automatically be updated
to link to the updated version 2 schema for the “rcs-event” namespace.

© 2014, UPnP Forum. All rights Reserved.

http://www.upnp.org/schemas/av/rcs-event-v1-20020625.xsd
http://www.upnp.org/schemas/av/rcs-event-v2-20060531.xsd
http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 36

Form 3 of the undated schema URI is always linked to the most recent release of the
schema that represents the highest version of the namespace that has been published.
For example, on June 25, 2002 (20020625), the undated schema URI *“.../av/rcs-
event.xsd” was linked to the schema that is otherwise known as “.../av/rcs-event-v1-
20020625.xsd”. However, on May 31, 2006 (20060531), that same undated schema URI
was linked to the schema that is otherwise known as “.../av/rcs-event-v2-20060531.xsd".

When referencing a schema URI within an XML instance document or a referencing XML
schema document, the following usage rules apply:

e All instance documents, whether generated by a service or a control point, shall
use Form 3.

e All UPnP AV published schemas that reference other UPnP AV schemas shall
also use Form 3.

Within an XML instance document, the definition for the schemalLocation attribute
comes from the XML Schema namespace “http://www.w3.0rg/2002/XMLSchema-
instance”. A single occurrence of the attribute can declare the location of one or more
schemas. The schemalLocation attribute value consists of a whitespace separated list
of values that is interpreted as a hamespace name followed by its schema location URL.
This pair-sequence is repeated as necessary for the schemas that need to be located for
this instance document.

In addition to the schema URI naming and usage rules described above, each released
schema shall contain a version attribute in the <schema> root element. Its value shall
correspond to the format:

ver “-” yyyymmdd where ver and yyyymmdd are described above.

The version attribute provides self-identification of the namespace version and release
date of the schema itself. For example, within the original schema released for the “rcs-
event” namespace (.../rcs-event-v2-20020625.xsd), the <schema> root element contains
the following attribute: version="2-20020625"".

433 Namespace Usage Examples

The schemaLocation attribute for XML instance documents comes from the XML
Schema instance namespace “http://www.w3.0rg/2002/XMLSchema-instance”. A single
occurrence of the attribute can declare the location of one or more schemas. The
schemalLocation attribute value consists of a whitespace separated list of values:
namespace name followed by its schema location URL. This pair-sequence is repeated
as necessary for the schemas that need to be located for this instance document.

Example 1:

Sample DIDL-Lite XML Instance Document. Note that the references to the UPnP AV
schemas do not contain any version or release date information. In other words, the
references follow Form 3 from above. Consequently, this example is valid for all releases
of the UPnP AV service specifications.

<?xml version="1.0" encoding="UTF-8"7?>

<DIDL-Lite
xmIns:dc="http://purl.org/dc/elements/1.1/"
xmIns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
xmIns:upnp=""urn:schemas-upnp-org:metadata-1-0/upnp/"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"’
Xsi:schemalLocation=""

urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 37

http://www.upnp.org/schemas/av/didl-lite.xsd
urn:schemas-upnp-org:metadata-1-0/upnp/
http://www.upnp.org/schemas/av/upnp.xsd">
<item id="18" parentlD="13" restricted="0">

</item>
</DIDL-Lite>

4.4 Vendor-defined Extensions

Whenever vendors create additional vendor-defined state variables, actions or properties,
their assigned names and XML representation shall follow the naming conventions and
XML rules as specified below in subclauses 4.4.1 to 4.4.4.

44.1 Vendor-defined Action Names

Vendor-defined action names shall begin with “X_". Additionally, it should be followed by
an ICANN assigned domain name owned by the vendor followed by the underscore
character (“_"). It shall then be followed by the vendor-assigned action name. The
vendor-assighed action name shall not contain a hyphen character (“-”, 2D Hex in UTF-8)
nor a hash character (“#”, 23 Hex in UTF-8). Vendor-assigned action names are case
sensitive. The first character of the name shall be a US-ASCII letter (*A”-*Z", “a”-“z"), US-
ASCII digit (“0"-“9"), an underscore (“_"), or a non-experimental Unicode letter or digit
greater than U+007F. Succeeding characters shall be a US-ASCII letter (“A”-“Z", “a"-"z"),
US-ASCII digit (“07-*9"), an underscore (“_"), a period (“.”), a Unicode combiningchar, an
extender, or a non-experimental Unicode letter or digit greater than U+007F. The first
three letters shall not be “XML" in any combination of case.

4.4.2 Vendor-defined State Variable Names

Vendor-defined state variable names shall begin with “X_". Additionally, it should be
followed by an ICANN assigned domain name owned by the vendor, followed by the
underscore character (*_"). It shall then be followed by the vendor-assigned state variable
name. The vendor-assigned state variable name shall not contain a hyphen character (“-”,
2D Hex in UTF-8). Vendor-assigned action names are case sensitive. The first character
of the name shall be a US-ASCII letter (“A”-"Z", “a"-“z"), US-ASCII digit (“0"-“9"), an
underscore (“_"), or a non-experimental Unicode letter or digit greater than U+007F.
Succeeding characters shall be a US-ASCII letter (*A”-“Z", “a”-“z"), US-ASCII digit (“0"-
“9"), an underscore (“_"), a period (“.”), a Unicode combiningchar, an extender, or a non-
experimental Unicode letter or digit greater than U+007F. The first three letters shall not
be “XML” in any combination of case.

4.4.3 Vendor-defined XML Elements and attributes

UPnP vendors may add non-standard elements and attributes to a UPnP standard XML
document, such as a device or service description. Each addition shall be scoped by a
vendor-owned XML namespace. Arbitrary XML shall be enclosed in an element that
begins with “X_,” and this element shall be a sub element of a standard complex type.
Non-standard attributes may be added to standard elements provided these attributes are
scoped by a vendor-owned XML namespace and begin with “X_".

4.4.4 Vendor-defined Property Names

UPnP vendors may add non-standard properties to the ContentDirectory service. Each
property addition shall be scoped by a vendor-owned namespace. The vendor-assigned
property name shall not contain a hyphen character (*-”, 2D Hex in UTF-8). Vendor-
assigned property names are case sensitive. The first character of the name shall be a
US-ASCII letter (*A”-"Z", “a”-“z"), US-ASCII digit (“0"-“9"), an underscore (“_"), or a non-
experimental Unicode letter or digit greater than U+007F. Succeeding characters shall be
a US-ASCII letter (“A"-"Z", “a"-“z"), US-ASCII digit (“0"-“9"), an underscore (*_"), a period

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 38

(“.™), a Unicode combiningchar, an extender, or a non-experimental Unicode letter or digit
greater than U+007F. The first three letters shall not be “XML” in any combination of case.

5 Service Modeling Definitions

5.1 ServiceType
The following service type identifies a service that is compliant with this template:

urn:schemas-upnp-org:service:ScheduledRecording:2

ScheduledRecording service is used herein to refer to this service type.
5.2 ScheduledRecording Service Architecture

5.2.1 recordSchedule

A ScheduledRecording service implementation has a single, flat list of recordSchedule
instances. A recordSchedule represents the user-level recording instructions to the
ScheduledRecording service. These user-level instructions have various levels of
complexity. For example, a simple instruction can state: “record channel 15 at 4PM on
March 19, 2004,” while a more complex instruction can state: “record all episodes of the
DIY Home Improvement Show on any channel that has the show for the next month.” The
behavior of a recordSchedule is described by one or more properties, and these
properties can be manipulated through several actions.

As shown in Figure 1, when a control point requests a new scheduled recording to the
ScheduledRecording service via the CreateRecordSchedule() action, the control point
sets a number of properties and passes them to the ScheduledRecording service to
express user-desired instructions to the scheduled recording. Then, as a response to the
CreateRecordSchedule() action, the ScheduledRecording service creates a
recordSchedule, assigns a unique ID to the recordSchedule and returns the
recordSchedule with the complete set of initial property settings. The
ScheduledRecording service shall add allowed properties to the recordSchedule when a
control point did not specify them. Additionally, the ScheduledRecording service may add
some informative properties.

If a control point specifies unsupported or unknown properties as input to the
CreateRecordSchedule() action, the ScheduledRecording service shall gracefully ignore
these. A control point can always parse the generated recordSchedule returned in the
Result argument of the CreateRecordSchedule action to verify whether certain properties
were rejected by the ScheduledRecording service. If unsupported values are set for
supported properties, the ScheduledRecording service shall return an error and the
recordSchedule shall not be created.

7 A
CreateRecordSchedule(e) >
e Properties with desired
values
Scheduled
Con_trol ° Recording
Point .
Service
L e RecordSchedulelD
e Properties with initially
assigned values
A Y

Figure 1 — Creating a new recordSchedule

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 39

Some properties are defined as allowed in the ScheduledRecording service. Therefore, a
control point needs to determine which properties a ScheduledRecording service
implementation actually supports. Since support levels and allowed values for properties
can be different for recordScheduleParts, recordSchedule or recordTask usage, a pair of
actions (GetPropertyList() and GetAllowedValues())) are provided to retrieve the relevant
information. Figure 2 illustrates the concept.

A A
GetPropertyList®)

o Property-set Datatype

[
L o List of property names
supported for the datatype
Control Scheduled
Point GetAllowedValues(e) Recording
"l Service
e List of property names
Q
L e Allowed values for the listed
properties
. .

Figure 2 — Capability check.

Figure 3 illustrates how recordSchedule instances can be browsed by the control point
after they have been created, to retrieve the updated/current values of the properties.

D a0

BrowseRecordSchedules()
<2
Control Scheduled
. e Current values of the Recording
Point . .
properties of the returned Service
recordSchedules
. .

Figure 3 — Browse recordSchedule.

Figure 4 illustrates how a control point can delete a recordSchedule from the
ScheduledRecording service.

DeleteRecordSchedule(e)
>

Scheduled
Recording
Service

Control e RecordSchedulelD
Point

Figure 4 — Delete arecordSchedule

5.2.2 recordTask

A recordSchedule will generate one recordTask for each recording operation that
matches the criteria of the recordSchedule. A recordTask also has properties indicating
its behavior. A recordTask is different from a recordSchedule in that it always represents

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 40

a single recording operation whereas a recordSchedule may actually represent multiple
recording operations. For example, a ScheduledRecording service that interprets a
recordSchedule to lead to three different recording operations could generate three
different recordTask instances over its lifetime. At a given time, a recordSchedule can
have zero (no recording operations currently scheduled) or more recordTask instances
associated with it. A ScheduledRecording service shall report at least one recordTask
when the underlying system is performing a recording operation for some recordSchedule.

When a recordSchedule is created, the ScheduledRecording service generates
necessary recordTask instances associated with each scheduled recording occurrence.
The ScheduledRecording service may also later add a new recordTask whenever a new
scheduled recording occurrence arrives. Similarly, a ScheduledRecording service may
delete recordTask instances when they are no longer needed. This may happen in a
device dependent manner. For example, some ScheduledRecording service
implementations delete a recordTask when the recording is finished while other
ScheduledRecording service implementations keep maintaining finished recordTask
instances. A recordTask can only be created by the ScheduledRecording service as a
result of a trigger from a recordSchedule. A control point can never create a recordTask
directly. Both a recordTask and a recordSchedule may be deleted by the
ScheduledRecording service or a control point.

The lifetime of a recordTask is determined in a vendor dependent way. Some
implementations maintain a recordTask even after it finishes its recording while others
may delete the recordTask once the recording finishes. However, in any implementation,
when a recordSchedule is deleted, the ScheduledRecording service shall delete all of its
associated recordTask instances.

5.3 State Variables

Like the ContentDirectory service, the ScheduledRecording service is primarily action-
based. The service state variables exist primarily to support argument passing within
service actions. Information is not exposed directly through explicit state variables.
Instead, a client retrieves ScheduledRecording service information via the return
arguments of the actions defined below. The majority of state variables defined below
exist simply to provide data type information for the arguments of the various actions of
this service.

Reader Note: For a first-time reader, it might be more helpful to read the action
definitions before reading the state variable definitions.

5.3.1 State Variable Overview

Table 7 — State Variables

Variable Name R/A @ Data Allowed Value Default Eng.
Type Value Units
SortCapabilities R string CSV (string)
See 5.3.2
SortLevelCapability R ui4 See 5.3.3
StateUpdatelD R ui4 See 5.3.4
LastChange R string See 5.3.5
A ARG TYPE PropertylList R string CSV (string)
See 5.3.6

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 41
Variable Name R/A @ Data Allowed Value Default Eng.
Type Value Units
A ARG _TYPE DataTypelD R string See Table 8 and 5.3.7
A ARG TYPE ObjectlD R string See 5.3.8
A ARG _TYPE_ObjectIDList CrRa | string CSV (string)
See 5.3.9
A ARG _TYPE Propertylnfo R string See 5.3.10
A ARG _TYPE Index R ui4 See 5.3.11
A ARG TYPE Count R uid See 5.3.12
A ARG TYPE SortCriteria R string CSV (string)
See 5.3.13
A ARG _TYPE RecordSchedule R string See 5.3.14
A ARG _TYPE RecordTask R string See 5.3.15
A ARG _TYPE RecordScheduleParts R string See 5.3.16
Non-standard state variables implemented | X TBD TBD TBD TBD
by an UPnP vendor go here.

& For a device this column indicates whether the state variable shall be implemented or not, where R =
required, A = allowed, CR = conditionally required, CA = conditionally allowed, X = non-standard, add -D
when deprecated (e.g., R-D, A-D).

Table 8 — Allowed values for the DataTypelD argument

Value R/A &
“A_ARG_TYPE RecordSchedule” R
“A_ARG_TYPE RecordTask” R
“A_ARG_TYPE RecordScheduleParts” R
Vendor-defined X

a8 For a device this column indicates whether the state variable shall be implemented or not, where R =
required, A = allowed, CR = conditionally required, CA = conditionally allowed, X = non-standard, add -
D when deprecated (e.g., R-D, A-D).

5.3.2 SortCapabilities

This required state variable contains a CSV list of property names that the
ScheduledRecording service can use to sort the information returned in the Result
argument of various actions, such as BrowseRecordSchedules() and
BrowseRecordTasks(). An empty string indicates that the device does not support any
kind of sorting. A wildcard “srs:*” indicates that any supported property within the srs
namespace can be used for sorting.

5.3.3 SortLevelCapability

This required state variable contains an integer that indicates the maximum number of
property names that can be specified in the SortCriteria argument at the same time.

5.3.4 StateUpdatelD

This required state variable is a ScheduledRecording service system-wide numeric value.
Its initial value is O.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 42

a) StateUpdatelD shall be incremented by 1 whenever any of 1) — 3) below occurs:

1) ArecordSchedule or recordTask is created or deleted.
2) A recordSchedule or recordTask is modified, which means that one or more
properties are added, deleted or had their value changed.

3) Any other change to the state of the ScheduledRecording service that could be
observed by a control point. This includes any vendor- or other future-defined
behavior.

b) When the value of StateUpdatelD is equal to the ui4 maximum value of 4294967295
(232-1), incrementing it causes it to roll over to the value 0.

c) The increment and the operation that caused it shall occur atomically relative to all
information visible to any control point — including both action out arguments and
evented variable values.

For example, consider the case where a control point invokes
CreateRecordSchedule() to create a new recordSchedule that also immediately
spawns exactly one recordTask. Assume that StateUpdatelD is 10 when the control
point invokes the action and that for a short time period around this invocation, no
other activity occurs that affects the value of StateUpdatelD. During this time period,
exactly one of 1) — 3) below shall be true as seen by all external observations
(including the returned values from this CreateRecordSchedule() invocation):

1) StateUpdatelD is 10; and the new recordSchedule has not been created; and the
new recordTask has not been created.

2) StateUpdatelD is 11; and the recordSchedule has been created; and the new
recordTask has not been created; and the recordSchedule’s value of
currentRecordTaskCount is 0, indicating that no recordTask has been created.

3) StateUpdatelD is 12; and the recordSchedule has been created; and the new
recordTask has been created; and the recordSchedule’s value of
currentRecordTaskCount is 1, indicating that the child recordTask has been
created.

ScheduledRecording service implementations should maintain the same value for
StateUpdatelD through power cycles and any other disappearance/reappearance of the
service on the network. Control points can use a change in the value of this variable to
determine if there has been a change in the ScheduledRecording service.

The value of the StateUpdatelD state variable, returned within events and returned as an
output argument of certain actions should be monitored very closely by control points.
Indeed, whenever an action returns with a StateUpdatelD value in its UpdatelD argument
that is less than the StateUpdatelD value received in the updatelD attribute from the most
recent LastChange event, the information returned by that action is potentially stale. A
control point might want to refresh that information for instance by invoking the
appropriate Browsexxx() or Getxxx() action. It is safe to use the information as long as
the StateUpdatelD value returned in the UpdatelD argument of the action is greater than
or equal to the StateUpdatelD value received in the updatelD attribute from the most
recent LastChange event.

5.3.5 LastChange

Note: It is assumed that the default namespace for this subclause 5.3.5 of the
specification is srs-Ic.

This required state variable is used for eventing purposes to allow clients to receive
meaningful event notifications whenever a recordSchedule or recordTask in the
ScheduledRecording service changes. The schema for the StateEvent XML Document
used in this state variable is defined in [27]. The XML header <?xml

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 43

version="1.0" ?>is allowed. One root element, <StateEvent> shall contain zero or
more elements, each of which represent one update to a recordSchedule or recordTask
instance. Six types of update elements are defined as shown in Table 9. Future
ScheduledRecording service specifications may add other types of update elements. A
vendor may add vendor-defined elements. The ScheduledRecording:1 service does not
define the value for these elements. Vendor-defined element names shall follow the rules
set forth in subclause 4.4. Note that future ScheduledRecording service specifications
may define sub-elements for the elements. Also note that this state variable shall be
properly escaped as defined in [39].

Table 9 — Allowed Elements in <StateEvent> Element

Element Name Description
RecordScheduleCreated A new recordSchedule is created.
RecordScheduleModified One or more properties of a recordSchedule are

modified (added, deleted or values are changed).
RecordScheduleDeleted A recordSchedule is deleted.
RecordTaskCreated A new recordTask is created.
RecordTaskModified One or more properties of a recordTask are modified
(added, deleted or values are changed).
RecordTaskDeleted A recordTask is deleted.
Vendor-defined See subclause 4.4.

Each element shall have one updatelD attribute, which is set to the value of the
StateUpdatelD state variable at the time of the update and one objectID attribute, whose
value is set to the value of the @id property of the updated recordSchedule or
recordTask instance. Future ScheduledRecording service specifications may add other
attributes to existing update elements. A vendor may add vendor-defined attributes for
existing update elements.

Example (before XML escaping)

<?xml version="1.0" encoding=""UTF-8"7?>
<StateEvent
xmIns="urn:schemas-upnp-org:av:srs-event"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation=""
urn:schemas-upnp-org:av:srs-event
http://www.upnp.org/schemas/av/srs-event.xsd">
<RecordScheduleCreated updatelD="213" objectlD="s001"/>
<RecordTaskCreated updatelD="214" objectlD="s001-001"/>
<RecordTaskModified updatelD="215" objectlD="s001-001"/>
</StateEvent>

The LastChange state variable is evented and moderated. When multiple updates
occurred within a LastChange moderation period, the new LastChange state variable
reports more than one update at the same time. A series of updates and the resulting
eventing activity are illustrated in their temporal order in the following example.

Example

0: ScheduledRecording service activity = Power-on.

StateUpdatelD =0

© 2014, UPnP Forum. All rights Reserved.

http://www.w3.org/2001/XMLSchema-instance

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013

LastChange (before XML escaping):

<?xml version="1.0" encoding=""UTF-8"7?>

<StateEvent

xmIns="urn:schemas-upnp-org:av:srs-event"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xsi:schemalLocation="
urn:schemas-upnp-org:av:srs-event
http://www.upnp.org/schemas/av/srs-event.xsd">

</StateEvent>

GENA behavior: None

1. ScheduledRecording service activity = a recordSchedule with @id = “s001” is

created.

StateUpdatelD =1
LastChange (before XML escaping):

<?xml version="1.0" encoding=""UTF-8"7?>

<StateEvent

xmIns="urn:schemas-upnp-org:av:srs-event"

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="
urn:schemas-upnp-org:av:srs-event

http://www.upnp.org/schemas/av/srs-event.xsd">

<RecordScheduleCreated updatelD="1" objectID="s001">
</RecordScheduleCreated>

</StateEvent>

GENA behavior: Nothing is evented since there are no current subscribers.

2: ScheduledRecording service activity = new control point signs up for events.

StateUpdatelD = 1
LastChange (before XML escaping):

<?xml version="1.0" encoding=""UTF-8"7?>

<StateEvent

xmIns="urn:schemas-upnp-org:av:srs-event"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs-event

http://www.upnp.org/schemas/av/srs-event.xsd">

<RecordScheduleCreated updatelD="1" objectID="s001">
</RecordScheduleCreated>

</StateEvent>

GENA behavior: Send initial Notify with the LastChange value above.

3: ScheduledRecording service activity = a recordTask with @id = “t001-000" is
created. Its associated recordSchedule with @id = “s001” is modified by the
ScheduledRecording service at the same time because its currentRecordTaskCount

property is updated to reflect the existence of the new recordTask.

StateUpdatelD = 3
LastChange (before XML escaping):

© 2014, UPnP Forum. All rights Reserved.

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 45

<?xml version="1.0" encoding=""UTF-8"7?>
<StateEvent
xmIns="urn:schemas-upnp-org:av:srs-event"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs-event
http://www.upnp.org/schemas/av/srs-event.xsd">
<RecordTaskCreated updatelD="2" objectID="t001-000">
</RecordTaskCreated>
<RecordScheduleModified updatelD="3" objectID="s001">
</RecordScheduleModified>
</StateEvent>

GENA behavior: Wait for the next moderation period to elapse and then send Notify
with the LastChange value above.

4: ScheduledRecording service activity = a recordTask with @id = “t001-001" is
created. Its associated recordSchedule with @id = “s001” is modified by the
ScheduledRecording service at the same time because its currentRecordTaskCount
property is updated to reflect the existence of the new recordTask. Within the same
moderation period, a recordTask with @id = “t001-002" is also created. Its associated
recordSchedule with @id = “s001” is modified by the ScheduledRecording service at
the same time because its currentRecordTaskCount property is updated to reflect the
existence of the new recordTask.

StateUpdatelD = 7
LastChange (before XML escaping):

<?xml version="1.0" encoding=""UTF-8"7?>
<StateEvent
xmIns="urn:schemas-upnp-org:av:srs-event"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation=""
urn:schemas-upnp-org:av:srs-event
http://www.upnp.org/schemas/av/srs-event.xsd">
<RecordTaskCreated updatelD="4" objectID="t001-001">
</RecordTaskCreated>
<RecordScheduleModified updatelD="5" objectID="s001">
</RecordScheduleModified>
<RecordTaskCreated updatelD="6" objectID="t001-002">
</RecordTaskCreated>
<RecordScheduleModified updatelD="7" objectID="s001">
</RecordScheduleModified>
</StateEvent>

GENA behavior: Wait for the next moderation period to elapse and then send Notify
with the LastChange value above.

5.3.6 A ARG TYPE PropertylList

This required state variable is introduced to provide type information for various action
arguments that contain a CSV list of property names. Namespace prefixes shall be
included with all property names (see subclause 4.3). The exact semantics of these
property names depend on the associated action.

© 2014, UPnP Forum. All rights Reserved.

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 46

537 A ARG TYPE DataTypelD

This required state variable is introduced to provide type information for various action
arguments that are used to identify a specific property-set data type (see subclause
3.2.16). An argument of type A_ ARG _TYPE DataTypelD can have the values listed in
Table 8.

538 A ARG TYPE ObjectID

This required state variable is introduced to provide type information for various action
arguments that uniquely identify an individual recordSchedule or a recordTask by their
object ID.

539 A ARG TYPE ObjectIDList

This conditionally required state variable shall be supported if the
GetRecordScheduleConflicts() or GetRecordTaskConflicts() actions are implemented.
The state variable is introduced to provide type information for various action arguments
that contain a CSV list of object IDs (@id) used to identify a collection of either
recordSchedule or recordTask instances (the list shall be homogeneous).

5.3.10 A ARG TYPE Propertyinfo

This required state variable is introduced to provide type information for various action
arguments that contain detailed XML-based information on supported properties and their
interdependencies for a particular ScheduledRecording service implementation. The
format of these arguments is similar to the XML Service Description (SCPD), but instead
of describing state variables and actions, they describe properties, their allowed values,
and interdependencies.

Refer to [2] for the definition of the AVDT Datastructure Template.

Note that since the format of these arguments is based on XML, it needs to be escaped
(using the normal XML rules: subclause 2.4 in [39]) before embedding in a SOAP
response message.

5311 A ARG TYPE Index

This required state variable is introduced to provide type information for various action
arguments that specify an offset into an arbitrary set of objects. A value of 0 represents
the first object in the set.

5312 A ARG TYPE Count

This required state variable is introduced to provide type information for various action
arguments that specify a number of arbitrary objects.

5.3.13 A ARG TYPE SortCriteria

This required state variable is introduced to provide type information for various action
arguments that contain a CSV list of property names prefixed by one or more sort
modifiers. Namespace prefixes shall be included with all property names that do not
belong to the srs namespace. Namespace prefixes may be included with property names
that belong to the srs namespace (see subclause 4.3). The “+” and “-” sort modifier
prefixes indicate that the sort is in ascending or descending order, respectively, with
regard to the value of the prefixed property name.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 47

5.3.14 A ARG TYPE RecordSchedule

This required state variable is introduced to provide type information for various action
arguments that contain a list of zero or more recordSchedule objects. All instances of this
data type shall comply with the SRS schema. See Annex A for details.

The structure of an argument of data type A_ ARG TYPE RecordSchedule is an srs XML
Document:

e Allowed XML declaration <?xml version="1.0" ?>

e <srs>is the root element.

e The <srs> element shall have zero or more <item> elements, each representing
a recordSchedule object.

e Each <item> element has a set of property values describing the recordSchedule
object. Each property is expressed either as the content of an XML element or as
the value of an XML attribute.

e See [26] for more details on the structure. The ScheduledRecording service-
defined names for metadata are described in Annex B.

Note that since the SRS format of an argument of data type
A ARG _TYPE RecordSchedule is XML, it needs to be escaped (using the normal XML
rules: subclause 2.4 in [39]) before embedding in a SOAP response message.

5.3.15 A ARG TYPE RecordTask

This required state variable is introduced to provide type information for various action
arguments that contain a list of zero or more recordTask objects. All instances of this
data type shall comply with the SRS schema. See Annex A for details.

The structure of an argument of data type A_ARG_TYPE RecordTask is an srs XML
Document:

e Allowed XML declaration <?xml version="1.0" ?>

e <srs> is the root element.

e The <srs> element shall have zero or more <item> elements, each representing
a recordTask object.

e Each <item> element has a set of property values describing the recordTask
object. Each property is expressed either as the content of an XML element or as
the value of an XML attribute.

e See [26] for more details on the structure. The ScheduledRecording service-
defined names for metadata are described in Annex B.

Note that since the SRS format of an argument of data type A_ ARG _TYPE RecordTask
is XML, it needs to be escaped (using the normal XML rules: subclause 2.4 in [39]) before
embedding in a SOAP response message.

5.3.16 A ARG TYPE RecordScheduleParts

This required state variable is introduced to provide type information for various action
arguments that contain a single recordScheduleParts object. A recordScheduleParts
object indicates the desired values for a subset of properties that provide a template for
other recordSchedule objects. Typically, a recordScheduleParts is used to create new
recordSchedule objects. All instances of this data type shall comply with the SRS schema.
See Annex A for details.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 48

The structure of an argument of data type A_ARG TYPE RecordScheduleParts is an srs
XML Document:

e Allowed XML declaration <?xml version="1.0" ?>

e <srs>is the root element.

e The <srs> element shall have a single <item> element, representing the
recordScheduleParts object.

e The <item> element has a set of property values describing the
recordScheduleParts object. Each property is expressed either as the content of
an XML element or as the value of an XML attribute.

e See [26] for more details on the structure. The ScheduledRecording service-
defined names for metadata are described in Annex B.

Note that since the SRS format of an argument of data type
A ARG _TYPE RecordScheduleParts is XML, it needs to be escaped (using the normal
XML rules: subclause 2.4 in [39]) before embedding in a SOAP response message.

5.4 Eventing and Moderation

Table 10 — Eventing and Moderation

Variable Name Evented Moderated Min Event Logical Min
Event Interval @ Combination | Delta per
(seconds) Event b
SortCapabilities NO NO
SortLevelCapability NO NO
StateUpdatelD NO NO
LastChange YES YES 0.2
A ARG _TYPE PropertyList NO NO
A_ARG_TYPE DataTypelD NO NO
A ARG TYPE ObjectlD NO NO
A ARG TYPE ObjectiDList NO NO
A _ARG_TYPE Propertylnfo NO NO
A ARG TYPE Index NO NO
A ARG _TYPE Count NO NO
A ARG _TYPE SortCriteria NO NO
A ARG _TYPE RecordSchedule NO NO
A ARG _TYPE RecordTask NO NO
A ARG _TYPE RecordScheduleParts NO NO
Non-standard state variables | TBD TBD TBD TBD TBD
implemented by an UPnP vendor go
here.

a Max event rate is determined by N, where Rate = 1/N, where N is the Min Event Interval in seconds.
b (N) * (allowedValueRange Step).

5.5 Actions

5.5.1 Action Overview

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 49

Table 11 — Actions

Name R/A a Control
Point R/A b
GetSortCapabilities() R A
GetPropertyList() R A
GetAllowedValues() R RC
GetStateUpdatelD() R A
BrowseRecordSchedules() R RC
BrowseRecordTasks() R RC
CreateRecordSchedule() R RC
DeleteRecordSchedule() R A
GetRecordSchedule() R A
EnableRecordSchedule() crd A
DisableRecordSchedule() crd | A
DeleteRecordTask() A A
GetRecordTask() R A
EnableRecordTask() crd A
DisableRecordTask() crd A
ResetRecordTask() crd | A
GetRecordScheduleConflicts() crd A
GetRecordTaskConflicts() crd A
Non-standard actions implemented by a UPnP vendor go here X X

a For a device this column indicates whether the action shall be implemented or not, where R = required, A
= allowed, CR = conditionally required, CA = conditionally allowed, X = non-standard, add -D when
deprecated (e.g., R-D, A-D).

b For a control point this column indicates whether a control point shall be capable of invoking this action,
where R = required, A = allowed, CR = conditionally required, CA = conditionally allowed, X = non-
standard, add -D when deprecated (e.g., R-D, A-D).

Required only if the control point implements interaction with the ScheduledRecording service.

d See action description for conditions under which implementation of this action is allowed. If the
condition is not met implementation of this action is not allowed.

5.5.2 GetSortCapabilities()

This required action returns a CSV list of property names that can be used in the
SortCriteria argument of various actions.

5.5.2.1 Arguments

Table 12 — Arguments for GetSortCapabilities()

Argument Direction relatedStateVariable
SortCaps ouT SortCapabilities
SortLevelCap ouT SortLevelCapability

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 50

55.2.1.1 SortCaps

This argument contains a CSV list of property names that the ScheduledRecording
service can use to sort the information returned in the Result argument of various actions,
such as BrowseRecordSchedules() and BrowseRecordTasks(). The appropriate
namespace prefixes (either “srs:” or “<vendor-defined namespace prefix>:")
shall be included with the returned property names (see subclause 4.3). An empty string
indicates that the device does not support any kind of sorting. A wildcard “srs:*”
indicates that any property within the srs namespace can be used for sorting. See also
subclause 5.3.2.

5.5.2.1.2 SortLevelCap

This argument contains an integer that indicates the maximum number of property names
that can be specified at the same time in the SortCriteria argument of various actions.
See also subclause 5.3.3.

5.5.2.2 Dependency on State
None.

5.5.2.3 Effect on State

None.

55.2.4 Errors

Table 13 — Error Codes for GetSortCapabilities()

ErrorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [14].
500-599 TBD See clause 3 in the UPnP Device Architecture [14].
600-699 TBD See clause 3 in the UPnP Device Architecture [14].

5.5.3 GetPropertyList()

The required_GetPropertyList() action provides a means to retrieve from a particular
ScheduledRecording service implementation which properties are actually supported for
a specific property-set data type. The GetPropertyList() action returns a CSV list of
property names that may appear in action arguments of the property-set data type,
specified in the DataTypelD input argument. This CSV list shall include property names of
imported properties from other namespaces as well as any vendor-defined property
names. For example, the ContentDirectory service imported properties (such as dc:title)
that are included as part of the value of the cdsReference property, shall be returned.

The appropriate namespace prefixes shall be included with all property names (see
subclause 4.3).

The set of allowed values for srs properties and vendor-defined properties (when used for
the specified property-set data type) can be obtained via the GetAllowedValues() action.
The set of allowed values for imported properties cannot be retrieved by the
GetAllowedValues() action.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 51

5.5.3.1 Arguments

Table 14 — Arguments for GetPropertyList()

Argument Direction relatedStateVariable
DataTypelD IN A ARG _TYPE DataTypelD
PropertyList ouT A ARG TYPE Propertylist

55.3.1.1 DataTypelD

The DataTypelD argument identifies the property-set data type for which the set of
property names is to be returned. See subclause 5.3.7 for details regarding its format.
The set of allowed values is listed in Table 8.

5.5.3.1.2 PropertylList

The PropertylList argument contains the set of property names (including their namespace
prefixes) that may appear in action arguments of the property-set data type, specified by
the DataTypelD input argument.

5.5.3.2 Dependency on State
None.

5.5.3.3 Effect on State

None.

5.5.34 Errors

Table 15 — Error Codes for GetPropertyList()

ErrorCode | errorDescription Description

400-499 TBD See clause 3 in the UPnP Device Architecture [14].

500-599 TBD See clause 3 in the UPnP Device Architecture [14].

600-699 TBD See clause 3 in the UPnP Device Architecture [14].

711 Invalid An invalid value has been specified in the DataTypelD input
DataTypelD argument.

5.5.4 GetAllowedValues()

This required action is used to determine the allowed values and dependencies for srs
properties that can appear within action arguments of the specified property-set data type.
The set of allowed values that are returned is static and does not depend on the current
state of the ScheduledRecording service. The property information is returned in an
AVDT XML Document as defined in [2]. The set of properties for which information is
returned is determined by the intersection of the property names in the Filter argument
and the names of the properties supported by the implementation for the specified
property-set data type in the DataTypelD argument. All property names shall belong
either to the srs namespace or a vendor-defined namespace.

The set of allowed values for imported properties cannot be retrieved by the
GetAllowedValues() action.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 52

554.1 Arguments

Table 16 — Arguments for GetAllowedValues()

Argument Direction relatedStateVariable
DataTypelD IN A ARG _TYPE DataTypelD
Filter IN A ARG _TYPE Propertylist
PropertyInfo ouT A _ARG_TYPE Propertylnfo

5.5.4.1.1 DataTypelD
See subclause 5.5.3.1.1.

5.5.4.1.2 Filter

The Filter argument contains a CSV list of property names that indicates for which
properties allowed value information is to be returned in the AVDT XML Document,
contained in the Propertylnfo output argument. The Filter argument should only include
property names that are returned in the PropertylList argument of the GetPropertyList()
action when specifying the same value in the DataTypelD argument. ScheduledRecording
service implementations shall gracefully ignore other property names. The “srs:”
namespace prefix shall be included with srs property names in the Filter argument.
Likewise, a namespace prefix shall be included with all vendor-defined property names in
the Filter argument (see subclause 4.3).

If the Filter argument is set to “*:*”, then allowed values for all supported properties
(including srs properties and vendor-defined properties, but excluding imported properties)
for the specified property-set data type shall be returned. If the Filter argument is set to
“srs:*”, then allowed values for all supported properties in the srs namespace shall be
returned. If the Filter argument is set to “<vendor-defined namespace prefix>:*",
then allowed values for all vendor-defined properties in that namespace shall be returned.
If the Filter argument is set to the empty string, no information is provided (an AVDT XML
Document with an empty root element is returned).

Examples of valid Filter argument values include:

e ‘“srs:@id,srs:priority@orderedValue”
e “srs:title,srs:class”

° e - *7

e ‘“srs:*

5.5.4.1.3 Propertylnfo

The Propertylnfo argument shall only include allowed value and dependency information
on properties that are specified in the Filter argument. The PropertyInfo argument shall
be properly escaped as defined in [39]. The particular AVDT XML Document that is
returned in the Propertylnfo argument depends on the property-set data type, specified in
the DataTypelD input argument. See Annex A for further details.

5.5.4.2 Dependency on State
None.
5.5.4.3 Effect on State

None.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 53

55.4.4 Errors

Table 17 — Error Codes for GetAllowedValues()

ErrorCode | errorDescription Description

400-499 TBD See clause 3 in the UPnP Device Architecture [14].

500-599 TBD See clause 3 in the UPnP Device Architecture [14].

600-699 TBD See clause 3 in the UPnP Device Architecture [14].

711 Invalid An invalid value has been specified in the DataTypelD input
DataTypelD argument.

5.5.5 GetStateUpdatelD()

This required action returns the current value of the StateUpdatelD state variable in the
Id output argument. This action can be used to poll the ScheduledRecording service for
any change in the service that might have occurred since the last time this action was
invoked. If the returned Id value is different from the value that was returned the last time
this action was invoked, then there has been a change in one or more recordSchedule or
recordTask objects in the ScheduledRecording service. See subclause 5.3.4 for more
information.

5551 Arguments

Table 18 — Arguments for GetStateUpdatelD()

Argument Direction Related State Variable
Id ouT StateUpdatelD

5.5.5.1.1 Id

The Id argument contains the current value of the StateUpdatelD state variable.
5.5.5.2 Dependency on State

None.

5.5.5.3 Effect on State

None.

5554 Errors

Table 19 — Error Codes for GetStateUpdatelD()

ErrorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [14].
500-599 TBD See clause 3 in the UPnP Device Architecture [14].
600-699 TBD See clause 3 in the UPnP Device Architecture [14].

5.5.6 BrowseRecordSchedules()

This required action is used to browse the set of recordSchedule objects in the
ScheduledRecording service.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 54

5.5.6.1 Arguments

Table 20 — Arguments for BrowseRecordSchedules()

Argument Direction relatedStateVariable
Filter IN A ARG _TYPE Propertylist
Startinglndex IN A ARG _TYPE Index
RequestedCount IN A ARG _TYPE Count
SortCriteria IN A _ARG_TYPE_ SortCriteria
Result ouT A ARG _TYPE RecordSchedule
NumberReturned ouT A ARG _TYPE Count
TotalMatches ouT A ARG _TYPE Count
UpdatelD ouT StateUpdatelD

55.6.1.1 Filter

The Filter argument contains a CSV list of property names that indicates which properties
are to be returned in the srs XML Document, contained in the Result output argument.
Namespace prefixes shall be included with all property names, specified in the Filter
argument (see subclause 4.3).

The Filter argument has no impact on the number of objects returned in the Result
argument. Instead, the Filter argument allows control points to control the complexity of
the object metadata that is returned in the srs XML Document for each object. It allows a
control point to specify a subset of the supported properties for inclusion in the srs XML
Document. Properties that are required by the SRS Schema shall always be returned.
Compliant ScheduledRecording service implementations shall not return allowed
properties unless they are explicitly requested in the Filter input argument or are needed
to create a valid XML document. For example, specifying a dependent property in the
Filter argument, such as priority@orderedValue, will cause its associated independent
property, priority, to be included in the srs XML Document.

In all cases, a compliant ScheduledRecording service implementation shall always
respond to query requests with the smallest, valid srs XML Document in the Result
argument that satisfies the Filter input argument. If the Filter argument is set to the empty
string (*"), then only the required properties are returned.

If the Filter argument is equal to “*:*", then all supported properties for all supported
namespaces shall be returned. If the Filter argument is equal to “<namespace
prefix>:*", then all of the required srs properties and all of the supported properties
within that single namespace shall be returned. For example, “srs:*” is equivalent to
listing all srs namespace properties supported by the device.

Properties defined in the ContentDirectory service shall only be imported through the
multi-valued cdsReference property. Therefore, if the Filter argument contains property
names from namespaces defined in the ContentDirectory service specification, the
appropriate cdsReference property values shall be included in the Result output
argument and those values shall be filtered, according to what is specified in the Filter
argument but also preserving the validity of the DIDL-Lite XML Document, returned in the
cdsReference property.

Examples of valid Filter argument values include:

e ‘“srs:@id,srs:priority@orderedValue”

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 55

e “srs:title,dc:title”

° [- *x

e ‘“upnp:*,dc:*,didl_lite:*"

A compliant ScheduledRecording service implementation shall also ignore allowed
properties requested in the Filter input argument which are not actually present in the
matching objects. For example, a BrowseRecordSchedules() Filter input argument of the
form “srs:activePeriod” is successful and returns a Result value that complies with
the other BrowseRecordSchedules() input arguments, even in the case where the objects
represented in the Result argument do not have an activePeriod property defined.

5.5.6.1.2 Startinglndex and RequestedCount

This action returns a specified number of recordSchedule objects from the list as
indicated by the RequestedCount argument and starting from a specified index in the list,
as indicated by the Startinglndex argument. The first recordSchedule in the list shall be
indexed by an index value of 0. Specifying 0 in the RequestedCount argument is not
allowed. If the range indicated by the Startingindex and RegquestedCount arguments
reaches beyond the end of the list, then the ScheduledRecording service shall return all
recordSchedule objects up to the end of the list and starting from the specified

Startinglndex.
5.5.6.1.3 SortCriteria

The order of the recordSchedule objects in the Result argument is determined by the
SortCriteria argument. When an empty string is specified in the SortCriteria argument,
then the order is device dependent. Additionally, this device dependent ordering shall
remain constant unless the UpdatelD argument value has changed since the last
BrowseRecordSchedules() action. In other words, any two objects that appear in a Result
argument shall always appear in the same relative order as long as the UpdatelD
argument value (and therefore the StateUpdatelD state variable) did not change.

The SortCriteria argument contains a CSV list of property names (namespace prefixes
shall always be included). Each property name shall be prefixed by either a “+” or a “-"
sort modifier. The “+” and “-” modifiers indicate that the sort is in ascending or
descending order, respectively, with regard to the value of its associated property.

The ScheduledRecording service shall not accept any property name in the SortCriteria
argument that is not included in the SortCapabilities state variable.

The objects are first sorted on the value of the first property in the SortCriteria argument.
If all values differ in the first property, the sort is finished. If any values of the first
property are equal, each subset of equal values is then sorted based on the next property
in the SortCriteria argument. This process repeats iteratively until there are no more
subsets of equal values or the SortCriteria argument list is exhausted.

For example, a value for the SortCriteria argument of the BrowseRecordSchedules()
action of:

“+srs:scheduledStartDateTime, -
srs:scheduledChannelID,+srs:matchingName”

would sort the returned recordSchedule instances first by start date&time in ascending
order, then for each date&time, the instances would be sorted by descending channel ID
and finally, for each channel ID, the instances would be sorted by ascending program
name.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 56

Sorting rules for each property depend on that property’s semantics. Sorts for individual
properties can be any of: numeric sort, lexical sort, lexical numeric sort, Boolean sort,
sequenced sort, type relationship sort, or property specific, according to an explicit
ordering of values defined individually for that property. The definition of each kind of sort
can be found in subclause 3.2.29. The specific sort order rules that shall be used for
each property are given in Annex B.

When a SortCriteria argument contains property names of allowed and/or multi-valued
properties, the rules a) and b) below apply:
a) If the property is prefixed by “+” then:

e Objects that do not have a value for the property are returned first in their group.

e Objects that have at least one value for the property are returned next in their
group. Objects that have multiple values for the property (either multi-valued or
CSV list) are sorted based on the property value that would cause the object to
appear earliest in the list.

b) If the property is prefixed by “-” then:

o Objects that have at least one value for the property are returned first in their
group. Objects that have multiple values (either multi-valued or CSV list) for the
property are sorted based on the property value that would cause the object to
appear earliest in the list.

e Objects that do not have a value for the property are returned last in their group.
Example:

Assume a ScheduledRecording service contains the following items and the current date
is Tuesday, June 21, 2005:

<item id="1">

;scheduIedStartDateTime>2006—02—
07T15:30:00</ScheduledStartDateTime>

</item>
<item id="2">

<scheduledStartDateTime>MONT15:30:00</ScheduledStartDateTime>
<scheduledStartDateTime>WEDT15:30:00</ScheduledStartDateTime>

</item>
<item i1d=""3">

<mschedu ledStartDateTime>MON-FRIT16:00:00</ScheduledStartDateTime>

</item>
<item i1d=""4">

No <scheduledStartDateTime> property

</item>

A value for the SortCriteria argument of the BrowseRecordSchedules() action of:

“+srs:scheduledStartDateTime”

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 57

would sort the returned recordSchedule instances on Tuesday, June 21, 2005 as follows:

<item i1d="4"/>
<item id="2"/>
<item id="3"/>
<item id="1"/>

because:

e <item 1d="4"/> has no srs:scheduledStartDateTime property, it therefore
appears first.

e <item 1d="2"/> srs:scheduledStartDateTime property resolves to
Wednesday, 2005-06-22T15:30:00 since this is the earliest date&time in the list. It
therefore appears second.

e <item 1d="3"/> srs:scheduledStartDateTime property resolves to
Wednesday, 2005-06-22T16:00:00. It therefore appears third.

e <item 1d="1"/> srs:scheduledStartDateTime property resolves to
Tuesday, 2006-02-07T15:30:00. It therefore appears last.

Sorting on ContentDirectory service imported properties is not supported.

5.5.6.1.4 Result

The Result output argument contains an XML escaped srs XML Document (see [26]).
This document contains a set of zero or more recordSchedule objects as described in
Annex A. Each of the returned recordSchedule objects shall not have properties other
than those specified in the Filter argument unless they are needed to create a valid srs
XML Document. The ScheduledRecording service implementation shall ignore unknown
properties specified in the Filter argument. If “*:*" is specified in the Filter argument, then
all supported properties for which the ScheduledRecording service has meaningful values
shall be returned. The required properties (for example,_@id, title, class, ...) shall always
be included even if not specified in the Filter argument (the srs XML Document shall be
valid). The ScheduledRecording service implementation shall ensure that the information
returned in this argument is always consistent. In other words, if during the information
gathering process, certain updates occur, the ScheduledRecording service
implementation shall re-examine the already gathered information to verify that this
information is still accurate before returning from the action invocation.

5.5.6.1.5 NumberReturned

The NumberReturned argument shall indicate the actual number of returned objects.

5.5.6.1.6 TotalMatches

The TotalMatches argument shall indicate the total number of recordSchedule objects
that exist in the ScheduledRecording service.

5.5.6.1.7 UpdatelD

The returned UpdatelD argument shall be the value of the StateUpdatelD state variable
at the time the returned data has been completely and consistently collected. In other
words, if during the information gathering process, certain updates occur, the
ScheduledRecording service implementation shall re-examine the already gathered
information to verify that this information is still accurate before returning from the action
invocation. Refer to subclause 5.3.4 for additional information.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 58

The UpdatelD argument is used to verify whether the returned information in the Result
argument has not become stale. After the action completes, if the value of the
StateUpdatelD state variable is different from the value returned in the UpdatelD
argument, then the information returned in the Result argument might be stale. In this
case, the control point should invoke the appropriate action to refresh its copy of the
desired information (for example, via the BrowseRecordSchedules() or
GetRecordSchedule() action).

5.5.6.2 Dependency on State
None.

5.5.6.3 Effect on State

None.

5.5.6.4 Errors

Table 21 — Error Codes for BrowseRecordSchedules()

ErrorCode errorDescription Description

400-499 TBD See clause 3 in the UPnP Device Architecture [14].

500-599 TBD See clause 3 in the UPnP Device Architecture [14].

600-699 TBD See clause 3 in the UPnP Device Architecture [14].

709 Unsupported or | The sort criteria specified are not supported or are invalid.
invalid sort criteria

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

5.5.7 BrowseRecordTasks()

This required action is used to browse the list of recordTask objects associated with a
single recordSchedule. In addition, it can be used to browse the entire list of all
recordTask objects available in the entire ScheduledRecording service, independent of
their parent recordSchedule.

The Result argument contains an XML escaped srs XML Document that contains a set of
recordTask objects. When the RecordSchedulelD input argument contains the @id value
of an existing recordSchedule, then the Result argument returns an XML escaped srs
XML Document that contains the set of recordTask objects associated with that particular
recordSchedule. When the RecordSchedulelD input argument is set to the empty string
(*M), then the Result argument returns an XML escaped srs XML Document that contains
a list of all available recordTask objects in the entire ScheduledRecording service.

5.5.7.1 Arguments

Table 22 — Arguments for BrowseRecordTasks()

Argument Direction relatedStateVariable
RecordSchedulelD IN A ARG _TYPE ObjectID
Filter IN A ARG _TYPE Propertylist
Startinglndex IN A ARG _TYPE Index
RequestedCount IN A ARG _TYPE Count
SortCriteria IN A ARG _TYPE_ SortCriteria

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 59

Argument Direction relatedStateVariable
Result ouT A ARG _TYPE RecordTask
NumberReturned ouT A ARG _TYPE Count
TotalMatches ouT A ARG _TYPE Count
UpdatelD ouT StateUpdatelD

The syntax and semantics of the arguments (the RecordSchedulelD argument not
included) of the BrowseRecordTasks() action are identical to those of the
BrowseRecordSchedules() action, except that the objects returned by this action are
recordTask objects instead of recordSchedule objects.

5.5.7.1.1 RecordSchedulelD

The RecordSchedulelD input argument contains the object ID of the recordSchedule for
which all associated recordTask instances are returned in the Result argument. If the
RecordSchedulelD input argument contains the empty string (*"), then all available
recordTask instances in the entire ScheduledRecording service are returned.

5.5.7.1.2 Filter

See subclause 5.5.6.1.1.

5.5.7.1.3 Startinglndex and RequestedCount

See subclause 5.5.6.1.2.
5.5.7.1.4 SortCriteria
See subclause 5.5.6.1.3.
5.5.7.1.5 Result

See subclause 5.5.6.1.4. However, the returned objects are recordTask objects instead
of recordSchedule objects.

5.5.7.1.6 NumberReturned

See subclause 5.5.6.1.5.
5.5.7.1.7 TotalMatches

When the RecordSchedulelD input argument contains the @id value of an existing
recordSchedule, then the TotalMatches argument shall indicate the total number of
recordTask objects that exist in the ScheduledRecording service for the indicated
recordSchedule. When the RecordSchedulelD input argument is set to the empty string
("M, then the TotalMatches argument shall indicate the total number of recordTask
objects that exist in the entire ScheduledRecording service, independent of their parent
recordSchedule.

5.5.7.1.8 UpdatelD
See subclause 5.5.6.1.7.

5.5.7.2 Dependency on State

None.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 60

5.5.7.3 Effect on State
None.
55.7.4 Errors

Table 23 — Error Codes for BrowseRecordTasks()

ErrorCode errorDescription Description

400-499 TBD See clause 3 in the UPnP Device Architecture [14].

500-599 TBD See clause 3 in the UPnP Device Architecture [14].

600-699 TBD See clause 3 in the UPnP Device Architecture [14].

704 No such The specified recordSchedule does not exist.
recordSchedule ID

709 Unsupported or The sort criteria specified is not supported or is invalid.
invalid sort criteria

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

5.5.8 CreateRecordSchedule()

This required action creates a recordSchedule (that is: a scheduled recording list entry)
for some media content (for example, broadcast content, analog input content, etc). This
action creates a new object of a class, derived from the recordSchedule class. Control
points that want to schedule a recording invoke the CreateRecordSchedule() action.

If the CreateRecordSchedule() action returns successfully, then a new recordSchedule
object is added to the list of Record Schedules maintained by the ScheduledRecording
service. This list can be consulted through the BrowseRecordSchedules() action. The
ScheduledRecording service may also instantiate one or more recordTask objects to
represent the discrete recording tasks that are associated with the high level schedule,
defined by the recordSchedule. The instantiation of recordTask objects may happen after
the CreateRecordSchedule() action returns successfully. However, if the created
recordSchedule would lead to the instantiation of one or more recordTask objects, these
recordTask objects shall be created by the ScheduledRecording service as soon as
possible and within a reasonable amount of time. If any of these spawned recordTask
objects end up in a state that indicates that these recordTask objects are already
supposed to be recording, then the ScheduledRecording service shall ensure that these
recordings start as soon as possible and within a reasonable amount of time (this will
most likely result in a partial recording). If a ScheduledRecording service implementation
can not ensure that these recordings start as soon as possible, then the
CreateRecordSchedule() action shall return with error code 720 without any change.

5.5.8.1 Arguments

Table 24 — Arguments for CreateRecordSchedule()

Argument Direction relatedStateVariable
Elements IN A ARG _TYPE RecordScheduleParts
RecordSchedulelD ouT A_ARG_TYPE ObijectlD
Result ouT A _ARG_TYPE RecordSchedule
UpdatelD ouT StateUpdatelD

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 61

5.5.8.1.1 Elements

The Elements input argument contains an XML escaped srs XML Document (see [26]).
This document contains a single recordScheduleParts. The recordScheduleParts object
identifies the desired property values for the recordSchedule object to be created. The
new recordSchedule will be an instance of a specific recordSchedule class. Each class
defines its set of member properties, some of which are required, and some of which are
allowed. See Annex C for details. All required member properties shall be specified. If a
control point omits supported allowed member properties from the Elements argument,
then the ScheduledRecording service shall create the recordSchedule with the
appropriate default value for those omitted member properties. If unsupported properties
or unknown properties are specified in the Elements argument, the ScheduledRecording
service shall gracefully accept these. If an unsupported value is specified for a supported
member property, the ScheduledRecording service shall detect this and return error code
703.

5.5.8.1.2 RecordSchedulelD

If the ScheduledRecording service accepts the recordSchedule in the Elements input
argument, then the ScheduledRecording service shall provide a value in this output
argument. The returned RecordSchedulelD value shall be a unique value within the
ScheduledRecording service. RecordSchedulelD values are assumed to be opaque
values without special meaning. Although a ScheduledRecording service may choose to
use a RecordSchedulelD value that was previously assigned (and later removed from the
active list of recordSchedule instances), this specification recommends that the
RecordSchedulelD value be unique in time as well.

5.5.8.1.3 Result

The Result output argument contains an XML escaped srs XML Document (see [26]).
This document contains the newly created recordSchedule object as described in Annex
A. Any properties specified in the input Elements argument shall have the same values in
the output recordSchedule. The ScheduledRecording service shall return all supported
member properties for which it has meaningful values. This complete set allows a control
point to see the default values of those properties that it did not specify in the input
Elements argument. Note that some properties such as scheduleState are defined as
required for an output recordSchedule and shall be included in the returned document.
Refer to Annex C.1.1 for the support level of each property.

The ScheduledRecording service implementation shall ensure that the information
returned in this argument is always consistent. In other words, if during the information
gathering process, certain updates occur, the ScheduledRecording service
implementation shall re-examine the already gathered information to verify that this
information is still accurate before returning from the action invocation.

5.5.8.1.4 UpdatelD

See subcluase 5.5.6.1.7.

5.5.8.2 Dependency on State
None.

5.5.8.3 Effect on State

The value of the StateUpdatelD state variable is changed and the LastChange state
variable is updated.

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 62

5.5.8.4 Errors
Table 25 — Error Codes for CreateRecordSchedule()
ErrorCode errorDescription Description

400-499 TBD See clause 3 in the UPnP Device Architecture [14].

500-599 TBD See clause 3 in the UPnP Device Architecture [14].

600-699 TBD See clause 3 in the UPnP Device Architecture [14].

701 Invalid Syntax The recordSchedule in the Elements argument has invalid syntax.
This includes malformed XML in the Elements input argument or a
general schema violation.

703 Invalid Value One or more properties in the input recordSchedule (in the
Elements argument) have an invalid value.

707 Read only Property Specifying a read only property is not allowed.

708 Required Property Omitting a required property is not allowed

720 Cannot Process the | Cannot process the request in a reasonable amount of time.

Request

730 Conflict The specified recordSchedule is conflicting with one or more
existing recordSchedule objects.

The ScheduledRecording service may reject a conflicting
recordSchedule and return with this error code.

731 Protected Contents | The specified contents are copy protected.

The ScheduledRecording service may reject a recordSchedule that
specifies copy protected contents and return with this error code.

732 No Media The specified removable media is not inserted.

733 Media Write Protect | The specified removable media is write-protected.

734 Media No Space The specified media does not have sufficient capacity.

735 Media Error Error related to the specified destination media.

736 Too Many The maximum number of recordSchedule objects is reached.

recordSchedules

737 Resource Error Error related to an application resource.

5.5.9 DeleteRecordSchedule()

The required DeleteRecordSchedule() action is used to delete a specific recordSchedule.
When the recordSchedule is deleted, all of the associated recordTask objects shall also
be deleted. The list of Record Schedules and their associated recordSchedulelD currently
maintained by the ScheduledRecording service can be retrieved through the
BrowseRecordSchedules() action.

A recordSchedule can only be deleted when all of its associated recordTask objects are
in the “IDLE” or the “DONE” phase. If any of the associated recordTask objects are in the
“ACTIVE” phase, then the ScheduledRecording service shall return with error code 705
(active recordTask) without any change. A control point that wants to recover from this
error scenario can first delete the associated active recordTask objects by invoking the
DeleteRecordTask() action on these objects and then delete the recordSchedule. The
active recordTask objects can be retrieved by properly invoking the BrowseRecordTasks()

action.

Note that a ScheduledRecording service can delete a recordSchedule without control
point intervention. For example, a non-recurring recordSchedule that has completed its
last recordTask may (allowedly) be automatically deleted along with its associated

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013

63

recordTask objects. However, it is recommended that a ScheduledRecording service
implementation retains completed recordSchedule instances and their associated
recordTask instances for a reasonable amount of time so that the user can examine

potential error information after recording is completed.
5.5.9.1 Arguments

Table 26 — Arguments for DeleteRecordSchedule()

Argument Direction relatedStateVariable

RecordSchedulelD IN A _ARG_TYPE ObjectID

5.5.9.1.1 RecordSchedulelD

The RecordSchedulelD argument contains the object ID of the recordSchedule to be

deleted.
5.5.9.2 Dependency on State
None.

5.5.9.3 Effect on State

The value of the StateUpdatelD state variable is changed and the LastChange state

variable is updated.
55,94 Errors

Table 27 — Error Codes for DeleteRecordSchedule()

ErrorCode errorDescription Description

400-499 TBD See clause 3 in the UPnP Device Architecture [14].

500-599 TBD See clause 3 in the UPnP Device Architecture [14].

600-699 TBD See clause 3 in the UPnP Device Architecture [14].

704 No such The specified recordSchedule does not exist.
recordSchedule ID

705 Active recordTask One or more recordTask instances are actively recording.

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

5.5.10 GetRecordSchedule()

This required action is used to retrieve a single recordSchedule from
ScheduledRecording service.

5.5.10.1 Arguments

Table 28 — Arguments for GetRecordSchedule()

the

Argument Direction relatedStateVariable
RecordSchedulelD IN A _ARG_TYPE ObjectID
Filter IN A ARG TYPE PropertyList

A_ARG_TYPE RecordSchedule

‘;U
@
12
1=
(]
C
|

© 2014, UPnP Forum. All rights Reserved.

ScheduledRecording:2 — Standardized DCP (SDCP) — March 31, 2013 64

Argument Direction relatedStateVariable
UpdatelD ouT StateUpdatelD

5.5.10.1.1 RecordSchedulelD

The RecordSchedulelD contains the object ID of the recordSchedule for which
information is to be returned.

5.5.10.1.2 Filter
See subclause 5.5.6.1.1.
5.5.10.1.3 Result

The Result output argument contains an XML escaped srs XML Document that contains a
single recordSchedule identified by the @id value specified in the RecordSchedulelD
argument. For further details, see subclause 5.5.6.1.4.

5.5.10.1.4 UpdatelD

See subclause 5.5.6.1.7.

5.5.10.2 Dependency on State
None.

5.5.10.3 Effect on State

None.

5.5.10.4 Errors

Table 29 — Error Codes for GetRecordSchedule()

ErrorCode errorDescription Description

400-499 TBD See clause 3 in the UPnP Device Architecture [14].

500-599 TBD See clause 3 in the UPnP Device Architecture [14].

600-699 TBD See clause 3 in the UPnP Device Architecture [14].

704 No such The specified recordSchedule does not exist.
recordSchedule ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

5.5.11 EnableRecordSchedule()

This conditionally required action shall be implemented if the DisableRecordSchedule()
action is implemented, that is, these two actions shall be implemented as a combination.
The action is used to enable a previously disabled recordSchedule. Enabling a
recordSchedule is allowed in any state except for the “COMPLETED?” state. In this case,
the action shall return with error code 740.

The invocation of the EnableRecordSchedule() action enables all the associated
recordTask objects in the “IDLE” or “ACTIVE” phase (see