

BasicManagement:1
Service Template Version 1.01
For UPnP Version 1.0
Status: Standardized DCP (SDCP)
Date: July 20, 2010

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee of the UPnP
Forum, pursuant to Section 2.1(c)(ii) of the UPnP Forum Membership Agreement. UPnP Forum Members
have rights and licenses defined by Section 3 of the UPnP Forum Membership Agreement to use and
reproduce the Standardized DCP in UPnP Compliant Devices. All such use is subject to all of the
provisions of the UPnP Forum Membership Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL PROPERTY
RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS ARE PROVIDED
"AS IS" AND "WITH ALL FAULTS". THE UPNP FORUM MAKES NO WARRANTIES, EXPRESS,
IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE STANDARDIZED DCPS,
INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, OF REASONABLE CARE
OR WORKMANLIKE EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE.

© 2010 UPnP Forum. All Rights Reserved.

Authors Company

William Lupton (Editor) 2Wire

Francois-Gaël Ottogalli France Telecom Group

Kiran Vedula Samsung Electronics

Davide Moreo Telecom Italia

The UPnP Forum in no way guarantees the accuracy or completeness of this author list and in no way
implies any rights for or support from those members listed. This list is not the specifications’ contributor
list that is kept on the UPnP Forum’s website.

BasicManagement:1 Service Template Version 1.01 2

Copyright © 2010 UPnP Forum. All Rights Reserved.

Contents

1. OVERVIEW AND SCOPE .. 6

1.1. INTRODUCTION ... 6
1.2. REFERENCES ... 6
1.3. GLOSSARY .. 7
1.4. NOTATION... 7

1.4.1. Data Types ... 8
1.4.2. Strings Embedded in Other Strings .. 9

1.5. DERIVED DATA TYPES ... 9
1.5.1. Comma Separated Value (CSV) Lists .. 9
1.5.2. Embedded XML Documents ... 11

1.6. MANAGEMENT OF XML NAMESPACES IN STANDARDIZED DCPS ... 11
1.6.1. Namespace Names, Namespace Versioning and Schema Versioning 13
1.6.2. Namespace Usage Examples .. 15

1.7. VENDOR-DEFINED EXTENSIONS .. 15

2. SERVICE MODELING DEFINITIONS ... 15

2.1. SERVICETYPE ... 15
2.2. KEY CONCEPTS .. 15
2.3. STATE VARIABLES ... 17

2.3.1. DeviceStatus .. 19
2.3.2. SequenceMode ... 19
2.3.3. ActiveTestIDs ... 20
2.3.4. LogURIs ... 20
2.3.5. A_ARG_TYPE_Boolean.. 20
2.3.6. A_ARG_TYPE_String ... 20
2.3.7. A_ARG_TYPE_UShort ... 20
2.3.8. A_ARG_TYPE_UInt .. 21
2.3.9. A_ARG_TYPE_DateTime ... 21
2.3.10. A_ARG_TYPE_MSecs... 21
2.3.11. A_ARG_TYPE_RebootStatus ... 21
2.3.12. A_ARG_TYPE_TestID .. 21
2.3.13. A_ARG_TYPE_TestType .. 21
2.3.14. A_ARG_TYPE_TestState .. 22
2.3.15. A_ARG_TYPE_DSCP ... 22
2.3.16. A_ARG_TYPE_Host.. 22
2.3.17. A_ARG_TYPE_Hosts .. 23
2.3.18. A_ARG_TYPE_HostName .. 23
2.3.19. A_ARG_TYPE_PingStatus ... 23
2.3.20. A_ARG_TYPE_NSLookupStatus .. 23
2.3.21. A_ARG_TYPE_NSLookupResult .. 23
2.3.22. A_ARG_TYPE_TracerouteStatus ... 26
2.3.23. A_ARG_TYPE_Interfaces ... 27
2.3.24. A_ARG_TYPE_InterfaceResetStatus ... 27
2.3.25. A_ARG_TYPE_LogURI .. 27
2.3.26. A_ARG_TYPE_LogURL ... 28
2.3.27. A_ARG_TYPE_LogLevel .. 28
2.3.28. A_ARG_TYPE_LogMaxSize ... 28

2.4. EVENTING AND MODERATION ... 28
2.4.1. SSDP Announcement Mechanism .. 29

2.5. ACTIONS ... 30
2.5.1. Reboot() ... 31
2.5.2. BaselineReset() .. 32
2.5.3. GetDeviceStatus().. 33

BasicManagement:1 Service Template Version 1.01 3

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.5.4. SetSequenceMode() ... 33
2.5.5. GetSequenceMode() .. 34
2.5.6. Ping() ... 34
2.5.7. GetPingResult() ... 35
2.5.8. NSLookup() .. 37
2.5.9. GetNSLookupResult() ... 38
2.5.10. Traceroute() ... 39
2.5.11. GetTracerouteResult() .. 40
2.5.12. InterfaceReset() ... 41
2.5.13. GetInterfaceResetResult() ... 42
2.5.14. SelfTest() .. 43
2.5.15. GetSelfTestResult() .. 44
2.5.16. GetActiveTestIDs() .. 44
2.5.17. GetTestInfo() .. 45
2.5.18. CancelTest()... 45
2.5.19. GetLogURIs() .. 46
2.5.20. SetLogInfo() ... 47
2.5.21. GetLogInfo() .. 47
2.5.22. Common Error Codes ... 48

2.6. THEORY OF OPERATION ... 50
2.6.1. Assumptions ... 50
2.6.2. Rebooting the Parent Device .. 51
2.6.3. Resetting the Parent Device ... 53
2.6.4. Using Sequence Mode ... 54
2.6.5. Running a Ping Test .. 57
2.6.6. Running an NSLookup Test .. 57
2.6.7. Running a Traceroute Test ... 58
2.6.8. Running an InterfaceReset Test .. 59
2.6.9. Running a Self Test.. 59
2.6.10. Manipulating Logs .. 60

3. XML SERVICE DESCRIPTION ... 61

List of Tables
Table 1-1: CSV Examples ... 10

Table 1-2: Namespace Definitions .. 12

Table 1-3: Schema-related Information .. 12

Table 2-1: State Variables ... 17

Table 2-2: allowedValueList for A_ARG_TYPE_RebootStatus .. 21

Table 2-3: allowedValueList for A_ARG_TYPE_TestType... 21

Table 2-4: allowedValueList for A_ARG_TYPE_TestState .. 22

Table 2-5: allowedValueList for A_ARG_TYPE_PingStatus.. 23

Table 2-6: allowedValueList for A_ARG_TYPE_NSLookupStatus .. 23

Table 2-7: allowedValueList for A_ARG_TYPE_TracerouteStatus ... 26

Table 2-8: allowedValueList for A_ARG_TYPE_Interfaces ... 27

BasicManagement:1 Service Template Version 1.01 4

Copyright © 2010 UPnP Forum. All Rights Reserved.

Table 2-9: allowedValueList for A_ARG_TYPE_InterfaceResetStatus ... 27

Table 2-10: allowedValueList for A_ARG_TYPE_LogLevel1 ... 28

Table 2-11: Event Moderation .. 28

Table 2-12: Allowed Values for Announcement.dm.upnp.org field-value ... 29

Table 2-13: Actions .. 30

Table 2-14: Arguments for Reboot() ... 31

Table 2-15: Error Codes for Reboot() ... 32

Table 2-16: Error Codes for BaselineReset() ... 33

Table 2-17: Arguments for GetDeviceStatus() ... 33

Table 2-18: Error Codes for GetDeviceStatus() ... 33

Table 2-19: Arguments for SetSequenceMode() .. 33

Table 2-20: Error Codes for SetSequenceMode() .. 34

Table 2-21: Arguments for GetSequenceMode() ... 34

Table 2-22: Error Codes for GetSequenceMode() ... 34

Table 2-23: Arguments for Ping()... 35

Table 2-24: Error Codes for Ping() ... 35

Table 2-25: Arguments for GetPingResult() .. 36

Table 2-26: Error Codes for GetPingResult() .. 36

Table 2-27: Arguments for NSLookup() ... 37

Table 2-28: Error Codes for NSLookup() ... 37

Table 2-29: Arguments for GetNSLookupResult() ... 38

Table 2-30: Error Codes for GetNSLookupResult() ... 38

Table 2-31: Arguments for Traceroute() .. 39

Table 2-32: Error Codes for Traceroute() .. 39

Table 2-33: Arguments for GetTracerouteResult().. 40

Table 2-34: Error Codes for GetTracerouteResult() .. 40

Table 2-35: Arguments for InterfaceReset() .. 41

Table 2-36: Error Codes for InterfaceReset() ... 41

Table 2-37: Arguments for GetInterfaceResetResult() .. 42

Table 2-38: Error Codes for GetInterfaceResetResult() .. 43

Table 2-39: Arguments for SelfTest() ... 43

Table 2-40: Error Codes for SelfTest().. 43

BasicManagement:1 Service Template Version 1.01 5

Copyright © 2010 UPnP Forum. All Rights Reserved.

Table 2-41: Arguments for GetSelfTestResult() ... 44

Table 2-42: Error Codes for GetSelfTestResult() ... 44

Table 2-43: Arguments for GetActiveTestIDs() ... 44

Table 2-44: Error Codes for GetActiveTestIIDs() .. 45

Table 2-45: Arguments for GetTestInfo() ... 45

Table 2-46: Error Codes for GetTestInfo() ... 45

Table 2-47: Arguments for CancelTest() .. 46

Table 2-48: Error Codes for CancelTest() .. 46

Table 2-49: Arguments for GetLogURIs() ... 46

Table 2-50: Error Codes for GetLogURIs() .. 46

Table 2-51: Arguments for SetLogInfo() .. 47

Table 2-52: Error Codes for SetLogInfo() .. 47

Table 2-53: Arguments for GetLogInfo() ... 47

Table 2-54: Error Codes for GetLogInfo().. 48

Table 2-55: Common Error Codes .. 48

List of Figures
Figure 2-1: Test State Transition Diagram ... 22

Figure 2-2: NSLookupResult XML Schema Diagram .. 24

Figure 2-3: Example Parent Devices .. 50

Figure 2-4: RebootNow Example .. 52

Figure 2-5: RebootLater Example ... 53

Figure 2-6: SequenceMode Example .. 56

BasicManagement:1 Service Template Version 1.01 6

Copyright © 2010 UPnP Forum. All Rights Reserved.

1. Overview and Scope
This service definition is compliant with the UPnP Device Architecture version 1.0 [UDA1.0]. It defines a
service type referred to herein as BasicManagement:1 service.

1.1. Introduction
This service provides basic management operations. It enables the following functions:

 Indication of overall device status.

 Performing maintenance actions such as rebooting.

 Running diagnostic tests such as an IP ping test or self test.

 Enabling / disabling logging and retrieving log files.

Most of the service’s features are optional: only the DeviceStatus state variable and the GetDeviceStatus()
action are mandatory. This means that only a very small amount of effort is necessary in order to add basic
management capability to a UPnP device.

This specification frequently uses the term Parent Device. This refers to UPnP device/service sub-tree
whose root is the UPnP device that contains the BasicManagement:1 service instance. UPnP actions or
other operations on a Parent Device SHOULD apply to all levels of this sub-tree, but SHOULD NOT apply
to an embedded device that itself contains a BasicManagement:1 service instance.

There are references to Parent Device start, stop, restart and/or reboot in several places. These mean the
following:

 “Parent Device start” refers to Parent Device startup, including the sending out of ssdp:alive
messages.

 “Parent Device stop” refers to Parent Device shutdown, including (if possible) the sending out of
ssdp:byebye messages.

 “Parent Device restart” refers to “Parent Device stop” followed by “Parent Device start”.

 “Parent Device reboot” refers to “Parent Device stop” followed by a reboot of the targeted
Execution Environment and/or the Operating System, followed by “Parent Device start”. For
discussion of whether the targeted Execution Environment and/or the Operating System will be
rebooted, see the description of the Reboot() action in section 2.5.1.

1.2. References
This section lists the normative references used in the UPnP DM specifications and includes the tag inside
square brackets that is used for each such reference:

[CMS] UPnP ConfigurationManagement:1 Service Document, UPnP Forum, July 20,
2010, http://www.upnp.org/specs/dm/UPnP-dm-ConfigurationManagement-v1.0-
Service.pdf.

[CMS-XSD] XML Schema for ConfigurationManagement:1, UPnP Forum, July 5, 2010,
http://www.upnp.org/schemas/dm/cms-v1.xsd.

[DEVICE] UPnP ManageableDevice:1 Device Document, UPnP Forum, July 20, 2010,
http://www.upnp.org/specs/dm/UPnP-dm-ManageableDevice-v1.0-Device.pdf.

BasicManagement:1 Service Template Version 1.01 7

Copyright © 2010 UPnP Forum. All Rights Reserved.

[DNS] RFC 1035, Domain Names - Implementation and Specification, IETF, November
1987, http://tools.ietf.org/html/rfc1035

[DSCP] RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4
and IPv6 Headers, IETF, December 1988, http://tools.ietf.org/html/rfc2474

[HTTP] RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, IETF, June 1999,
http://tools.ietf.org/html/rfc2616

[ICMP] RFC 792, Internet Control Message Protocol, IETF, September 1981,
http://tools.ietf.org/html/rfc792

[REQLEV] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, IETF,
March 1997, http://tools.ietf.org/html/rfc2119

[SYSLOG] RFC 3164, The BSD syslog Protocol, IETF, August 2001,
http://tools.ietf.org/html/rfc3164

[UDA1.0] UPnP Device Architecture version 1.0, UPnP Forum, October 2008,
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf

[URI] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, IETF, January
2005, http://tools.ietf.org/html/rfc3986

[XML] Extensible Markup Language (XML) 1.0 (Third Edition), W3C, February 2004,
http://www.w3.org/TR/2004/REC-xml-20040204

[XML-NS] The “xml:” Namespace, W3C, April 2006,
http://www.w3.org/XML/1998/namespace

[XML-NMSP] Namespaces in XML, W3C, August 2006, http://www.w3.org/TR/REC-xml-names

[XML-SCHEMA-1] XML Schema Part 1: Structures Second Edition, W3C, October 2004,
http://www.w3.org/TR/xmlschema-1

[XML-SCHEMA-2] XML Schema Part 2: Datatypes Second Edition, W3C, October 2004,
http://www.w3.org/TR/xmlschema-2

1.3. Glossary
BMS BasicManagement Service

CMS ConfigurationManagement Service

SMS SoftwareManagement Service

CSV Comma Separated Value

DM Device Management

XSD XML Schema Definition

1.4. Notation
 In this document, features are described as Required, Recommended, or Optional as follows:

BasicManagement:1 Service Template Version 1.01 8

Copyright © 2010 UPnP Forum. All Rights Reserved.

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this
specification are to be interpreted as described in [REQLEV].

In addition, the following keywords are used in this specification:

PROHIBITED – The definition or behavior is an absolute prohibition of this specification.
Opposite of REQUIRED.

CONDITIONALLY REQUIRED – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is REQUIRED, otherwise it is
PROHIBITED.

CONDITIONALLY OPTIONAL – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is OPTIONAL, otherwise it is
PROHIBITED.

These keywords are thus capitalized when used to unambiguously specify requirements over
protocol and application features and behavior that affect the interoperability and security of
implementations. When these words are not capitalized, they are meant in their natural-language
sense.

 Strings that are to be taken literally are enclosed in “double quotes.”

 Words that are emphasized are printed in italic.

 Data model names and values, and literal XML, are printed using the data character style.

 Keywords that are defined by the UPnP DM Working Committee are printed using the forum
character style.

 Keywords that are defined by the UPnP Device Architecture are printed using the arch character
style.

 A double colon delimiter, “::”, signifies a hierarchical parent-child (parent::child) relationship
between the two objects separated by the double colon. This delimiter is used in multiple contexts,
for example: Service::Action(), Action()::Argument.

1.4.1. Data Types
This specification uses data type definitions from two different sources. The UPnP Device Architecture
defined data types are used to define state variable and action argument data types [UDA1.0]. The XML
Schema namespace is used to define XML-valued action arguments [XML-SCHEMA-2] (including [CMS]
data model parameter values).

For UPnP Device Architecture defined Boolean data types, it is strongly RECOMMENDED to use the
value “0” for false, and the value “1” for true. However, when used as input arguments, the values “false”,
“no”, “true”, “yes” may also be encountered and MUST be accepted. Nevertheless, it is strongly
RECOMMENDED that all state variables and output arguments be represented as “0” and “1”.

For XML Schema defined Boolean data types, it is strongly RECOMMENDED to use the value “0” for
false, and the value “1” for true. However, when used within input arguments, the values “false”, “true”
may also be encountered and MUST be accepted. Nevertheless, it is strongly RECOMMENDED that all
XML Boolean values be represented as “0” and “1”.

XML elements that are of type xsd:anySimpleType (for example [CMS] data model parameter
values) MUST include an xsi:type attribute that indicates the actual data type of the element value.
This is a SOAP requirement.

BasicManagement:1 Service Template Version 1.01 9

Copyright © 2010 UPnP Forum. All Rights Reserved.

1.4.2. Strings Embedded in Other Strings
Some string variables, arguments and other XML elements and attributes (including [CMS] data model
parameter values) described in this document contain substrings that MUST be independently identifiable
and extractable for other processing. This requires the definition of appropriate substring delimiters and an
escaping mechanism so that these delimiters can also appear as ordinary characters in the string and/or its
independent substrings.

This document uses such embedded strings in Comma Separated Value (CSV) lists (see section 1.5.1).
Escaping conventions use the backslash character, “\” (character code U+005C), as follows:

a) Backslash (“\”) is represented as “\\”.

b) Comma (“,”) is represented as “\,” in individual substring entries.

c) Double quote (“””) is not escaped.

This document also uses such embedded strings to represent XML documents (see section 1.5.2). Escaping
conventions use XML entity references as specified in [XML] Section 2.4. For example:

a) Ampersand (“&”) is represented as “&” or via a numeric character reference.

b) Left angle bracket (“<”) is represented as “<” or via a numeric character reference.

c) Right angle bracket (“>”) usually doesn’t have to be escaped, but often is, in which case it is
represented as “>” or via a numeric character reference.

1.5. Derived Data Types
This section defines a derived data type that is represented as a string data type with special syntax. This
specification uses string data type definitions that originate from two different sources. The UPnP Device
Architecture defined string data type is used to define state variable and action argument string data types.
The XML Schema namespace is used to define xsd:string data types. The following definition applies
to both string data types.

1.5.1. Comma Separated Value (CSV) Lists
The UPnP DM services use state variables, action arguments and other XML elements and attributes that
represent lists – or one-dimensional arrays – of values. [UDA1.0] does not provide for either an array type
or a list type, so a list type is defined here. Lists MAY either be homogeneous (all values are the same
type) or heterogeneous (values of different types are allowed). Lists MAY also consist of repeated
occurrences of homogeneous or heterogeneous subsequences, all of which have the same syntax and
semantics (same number of values, same value types and in the same order).

 The data type of a homogeneous list is string or xsd:string and denoted by CSV (x), where x
is the type of the individual values.

 The data type of a heterogeneous list is also string or xsd:string and denoted by CSV (w, x [,
y, z]), where w, x, y and z are the types of the individual values, and the square brackets indicate
that y and z (and the preceding comma) are optional. If the number of values in the heterogeneous
list is too large to show each type individually, that variable type is represented as CSV
(heterogeneous), and the variable description includes additional information as to the expected
sequence of values appearing in the list and their corresponding types. The data type of a repeated
subsequence list is string or xsd:string and denoted by CSV ({w, x, y, z}), where w, x, y and
z are the types of the individual values in the subsequence and the subsequence MAY be repeated
zero or more times (in this case none of the values are optional).

BasicManagement:1 Service Template Version 1.01 10

Copyright © 2010 UPnP Forum. All Rights Reserved.

The individual value types are specified as [UDA1.0] data types or A_ARG_TYPE data types for string
lists, and as [XML-SCHEMA-2] data types for xsd:string lists.

 A list is represented as a string type (for state variables and action arguments) or xsd:string
type (within other XML elements and attributes).

 Commas separate values within a list.

 Integer values are represented in CSVs with the same syntax as the integer data type specified in
[UDA1.0] (that is: optional leading sign, optional leading zeroes, numeric ASCII).

 Boolean values are represented in state variable and action argument CSVs as either “0” for false
or “1” for true. These values are a subset of the defined Boolean data type values specified in
[UDA1.0]: 0, false, no, 1, true, yes.

 Boolean values are represented in other XML element CSVs as either “0” for false or “1” for true.
These values are a subset of the defined Boolean data type values specified in [XML-SCHEMA-
2]: 0, false, 1, true.

 Escaping conventions for the comma and backslash characters are defined in section 1.4.2.

 The number of values in a list is the number of unescaped commas, plus one. The one exception
to this rule is that an empty string represents an empty list. This means that there is no way to
represent a list consisting of a single empty string value.

 White space before, after, or interior to any numeric data type is not allowed.

 White space before, after, or interior to any other data type is part of the value.

Table 1-1: CSV Examples

Type refinement of
string

Value Comments

CSV (string) “first,second” List of 2 strings used as state variable or
action argument value.

CSV (xsd:string) “first,second” List of 2 strings used within an XML
element

CSV (xsd:token) “first, second ” List of 2 strings used within an XML
element. Each element is of type
xsd:token so, even though the second
value is “ second ” and has leading and
trailing spaces, the value seen by the
application will be “second” because
xsd:token collapses whitespace.

CSV (string, date-
Time.tz [, string])

“Warning,2009-07-
07T13:22:41, third\,value”

List of string, dateTime.tz and (optional)
string used as state variable or action
argument value. Note the leading space and
escaped comma in the third value, which is “
third,value”.

CSV (string, date-
Time.tz [, string])

“Warning,2009-07-
07T13:22:41,”

As above but third value is empty.

BasicManagement:1 Service Template Version 1.01 11

Copyright © 2010 UPnP Forum. All Rights Reserved.

Type refinement of
string

Value Comments

CSV (string, date-
Time.tz [, string])

“Warning,2009-07-
07T13:22:41”

As above but third value is omitted.

CSV (A_ARG_TYPE_-
Host)

“grumpy,sleepy” List of data items used as action argument
value, each of which obeys the rules
governing A_ARG_TYPE_Host. Any
comma or backslash characters within a data
item would have been escaped.

CSV (i4) “1, 2” Illegal CSV. White space is not allowed as
part of an integer value.

CSV (string) “a,,c,” List of 4 strings “a”, “”, “c” and “”.

CSV (string) “” Empty list. It is not possible to create a list
containing a single empty string.

1.5.2. Embedded XML Documents
An XML document is a string that represents a valid XML 1.0 document according to a specific schema.
Every occurrence of the phrase “XML Document” is italicized and preceded by the document’s root
element name (also italicized), as listed in column 3, “Valid Root Element(s)” of Table 1-3, “Schema-
related Information”. For example, the phrase SupportedDataModels XML Document refers to a valid
XML 1.0 document according to the CMS schema [CMS-XSD]. Such a document comprises a single
<SupportedDataModels …> root element, optionally preceded by the XML declaration <?xml
version="1.0" …?>.

This string will therefore be of one of the following two forms:

“<SupportedDataModels …>…</SupportedDataModels>”

or

“<?xml …?><SupportedDataModels …>…</SupportedDataModels>”

Escaping conventions for the ampersand, left angle bracket and right angle bracket characters are defined in
section 1.4.2.

1.6. Management of XML Namespaces in Standardized DCPs
UPnP specifications make extensive use of XML namespaces. This allows separate DCPs, and even
separate components of an individual DCP, to be designed independently and still avoid name collisions
when they share XML documents. Every name in an XML document belongs to exactly one namespace. In
documents, XML names appear in one of two forms: qualified or unqualified. An unqualified name (or no-
colon-name) contains no colon (“:”) characters. An unqualified name belongs to the document’s default
namespace. A qualified name is two no-colon-names separated by one colon character. The no-colon-name
before the colon is the qualified name’s namespace prefix, the no-colon-name after the colon is the
qualified name’s “local” name (meaning local to the namespace identified by the namespace prefix).
Similarly, the unqualified name is a local name in the default namespace.

The formal name of a namespace is a URI. The namespace prefix used in an XML document is not the
name of the namespace. The namespace name is, or should be, globally unique. It has a single definition

BasicManagement:1 Service Template Version 1.01 12

Copyright © 2010 UPnP Forum. All Rights Reserved.

that is accessible to anyone who uses the namespace. It has the same meaning anywhere that it is used, both
inside and outside XML documents. The namespace prefix, however, in formal XML usage, is defined only
in an XML document. It must be locally unique to the document. Any valid XML no-colon-name may be
used. And, in formal XML usage, no two XML documents are ever required to use the same namespace
prefix to refer to the same namespace. The creation and use of the namespace prefix was standardized by
the W3C XML Committee in [XML-NMSP] strictly as a convenient local shorthand replacement for the
full URI name of a namespace in individual documents.

All of the namespaces used in this specification are listed in the Tables “Namespace Definitions” and
“Schema-related Information”. For each such namespace, Table 1-2, “Namespace Definitions” gives a brief
description of it, its name (a URI) and its defined “standard” prefix name. Some namespaces included in
these tables are not directly used or referenced in this document. They are included for completeness to
accommodate those situations where this specification is used in conjunction with other UPnP
specifications to construct a complete system of devices and services. The individual specifications in such
collections all use the same standard prefix. The standard prefixes are also used in Table 1-3, “Schema-
related Information”, to cross-reference additional namespace information. This second table includes each
namespace’s valid XML document root element(s) (if any), its schema file name, versioning information
(to be discussed in more detail below), and a link to the entry in Section 1.2, “References” for its associated
schema.

The normative definitions for these namespaces are the documents referenced in Table 1-3. The schemas
are designed to support these definitions for both human understanding and as test tools. However,
limitations of the XML Schema language itself make it difficult for the UPnP-defined schemas to
accurately represent all details of the namespace definitions. As a result, the schemas will validate many
XML documents that are not valid according to the specifications.

Table 1-2: Namespace Definitions

Standard
Name-
space
Prefix

Namespace Name Namespace
Description

Normative
Definition
Document
Reference

DM Working Committee defined namespaces

cms urn:schemas-upnp-org:dm:cms CMS data structures [CMS]

bmsnsl urn:schemas-upnp-org:dm:bms:nsl BMS NSLookupResult [BMS]

Externally defined namespaces

xsd http://www.w3.org/2001/XMLSchema XML Schema
Language 1.0

[XML-SCHEMA-1]
[XML-SCHEMA-2]

xsi http://www.w3.org/2001/XMLSchema-
instance

XML Schema Instance
Document schema

Sections 2.6 & 3.2.7
of
[XML-SCHEMA-1]

xml http://www.w3.org/XML/1998/namespace The “xml:” Namespace [XML-NS]

Table 1-3: Schema-related Information

Standard
Name-
space
Prefix

Relative URI and File
Name1
 Form 1, 2, 3

Valid Root Element(s) Schema
Reference

DM Working Committee defined namespaces

BasicManagement:1 Service Template Version 1.01 13

Copyright © 2010 UPnP Forum. All Rights Reserved.

Standard
Name-
space
Prefix

Relative URI and File
Name1
 Form 1, 2, 3

Valid Root Element(s) Schema
Reference

cms cms-vn-yyyymmdd.xsd
 cms-vn.xsd
 cms.xsd

<StructurePathList>
<ParameterPathList>
<ParameterAttributeList>
<InstanceValueList>
<SupportedDataModels>
<InstancePathList>
<ContentPathList>
<AttributePathList>

[CMS]

bmsnsl bmsnsl-vn-yyyymmdd.xsd
 bmsnsl-vn.xsd
 bmsnsl.xsd

<NSLookupResult> [BMS]

1 Absolute URIs are generated by prefixing the relative URIs with “http://www.upnp.org/schemas/dm/”.

1.6.1. Namespace Names, Namespace Versioning and Schema Versioning
The UPnP DM service specifications define several data structures (such as state variables and action
arguments) whose format is an XML instance document that must comply with one or more specific XML
namespaces. Each namespace is uniquely identified by an assigned namespace name. The namespaces that
are defined by the DM Working Committee MUST be named by a URN. See Table 1-2 “Namespace
Definitions” for a current list of namespace names. Additionally, each namespace corresponds to an XML
schema document that provides a machine-readable representation of the associated namespace to enable
automated validation of the XML (state variable or action parameter) instance documents.

Within an XML schema and XML instance document, the name of each corresponding namespace appears
as the value of an xmlns attribute within the root element. Each xmlns attribute also includes a
namespace prefix that is associated with that namespace in order to disambiguate (a.k.a. qualify) element
and attribute names that are defined within different namespaces. The schemas that correspond to the listed
namespaces are identified by URI values that are listed in the schemaLocation attribute also within the
root element. (See Section 1.6.2)

In order to enable both forward and backward compatibility, namespace names are permanently assigned
and MUST NOT change even when a new version of a specification changes the definition of a namespace.
However, all changes to a namespace definition MUST be backward-compatible. In other words, the
updated definition of a namespace MUST NOT invalidate any XML documents that comply with an earlier
definition of that same namespace. This means, for example, that a namespace MUST NOT be changed so
that a new element or attribute is required. Although namespace names MUST NOT change, namespaces
still have version numbers that reflect a specific set of definitional changes. Each time the definition of a
namespace is changed, the namespace’s version number is incremented by one.

Each time a new namespace version is created, a new XML schema document (.xsd) is created and
published so that the new namespace definition is represented in a machine-readable form. Since an XML
schema document is just a representation of a namespace definition, translation errors can occur.
Therefore, it is sometime necessary to re-release a published schema in order to correct typos or other
namespace representation errors. In order to easily identify the potential multiplicity of schema releases for
the same namespace, the URI of each released schema MUST conform to the following format (called
Form 1):

Form 1: "http://www.upnp.org/schemas/dm/" schema-root-name "-v" ver "-" yyyymmdd

BasicManagement:1 Service Template Version 1.01 14

Copyright © 2010 UPnP Forum. All Rights Reserved.

where

 schema-root-name is the name of the root element of the namespace that this schema represents.

 ver corresponds to the version number of the namespace that is represented by the schema.

 yyyymmdd is the year, month and day (in the Gregorian calendar) that this schema was released.

Table 1-3 “Schema-related Information” identifies the URI formats for each of the namespaces that are
currently defined by the UPnP DM Working Committee.

As an example, the original schema URI for the “cms” namespace might be “http://www.upnp.org/sche-
mas/dm/cms-v1-20091231.xsd”. If the UPnP DM service specifications were subsequently updated in the
year 2010, the URI for the updated version of the “cms” namespace might be “http://www.upnp.org/sche-
mas/dm/cms-v2-20100906.xsd”.

In addition to the dated schema URIs that are associated with each namespace, each namespace also has a
set of undated schema URIs. These undated schema URIs have two distinct formats with slightly different
meanings:

Form 2: “http://www.upnp.org/schemas/dm/” schema-root-name “-v” ver

Form 3: “http://www.upnp.org/schemas/dm/” schema-root-name

Form 2 of the undated schema URI is always linked to the most recent release of the schema that represents
the version of the namespace indicated by ver. For example, the undated URI “…/dm/cms-v2.xsd” is linked
to the most recent schema release of version 2 of the “cms” namespace. Therefore, on September 06, 2010
(20100906), the undated schema URI might be linked to the schema that is otherwise known as
“…/dm/cms-v2-20100906.xsd”. Furthermore, if the schema for version 2 of the “cms” namespace was
ever re-released, for example to fix a typo in the 20100906 schema, then the same undated schema URI
(“…/dm/cms-v2.xsd”) would automatically be updated to link to the updated version 2 schema for the
“cms” namespace.

Form 3 of the undated schema URI is always linked to the most recent release of the schema that represents
the highest version of the namespace that has been published. For example, on December 31, 2009
(20091231), the undated schema URI “…/dm/cms.xsd” might be linked to the schema that is otherwise
known as “…/dm/cms-v1-20091231.xsd”. However, on September 06, 2010 (20100906), that same
undated schema URI might be linked to the schema that is otherwise known as “…/dm/cms-v2-
20100906.xsd”. When referencing a schema URI within an XML instance document or a referencing XML
schema document, the following usage rules apply:

 All instance documents, whether generated by a service or a control point, MUST use Form 3.

 All UPnP DM published schemas that reference other UPnP DM schemas MUST also use Form 3.

Within an XML instance document, the definition for the schemaLocation attribute comes from the
XML Schema namespace “http://www.w3.org/2002/XMLSchema-instance”. A single occurrence of the
attribute can declare the location of one or more schemas. The schemaLocation attribute value consists
of a whitespace separated list of values that is interpreted as a namespace name followed by its schema
location URL. This pair-sequence is repeated as necessary for the schemas that need to be located for this
instance document.

In addition to the schema URI naming and usage rules described above, each released schema MUST
contain a version attribute in the <schema> root element. Its value MUST correspond to the format:

ver “-” yyyymmdd where ver and yyyymmdd are described above.

BasicManagement:1 Service Template Version 1.01 15

Copyright © 2010 UPnP Forum. All Rights Reserved.

The version attribute provides self-identification of the namespace version and release date of the
schema itself. For example, within the original schema released for the “cms” namespace (…/cms-v1-
20091231.xsd), the <schema> root element might contain the following attribute: version="1-
20091231".

1.6.2. Namespace Usage Examples
The schemaLocation attribute for XML instance documents comes from the XML Schema instance
namespace “http:://www.w3.org/2001/XMLSchema-instance”. A single occurrence of the attribute can
declare the location of one or more schemas. The schemaLocation attribute value consists of a
whitespace separated list of values: namespace name followed by its schema location URL. This pair-
sequence is repeated as necessary for the schemas that need to be located for this instance document.

Example 1:

Sample CMS XML Instance Document. Note that the references to the UPnP DM schemas do not contain
any version or release date information. In other words, the references follow Form 3 from above.
Consequently, this example is valid for all releases of the UPnP DM service specifications.

<?xml version="1.0" encoding="UTF-8"?>
<cms:ParameterValueList
 xmlns:cms="urn:schemas-upnp-org:dm:cms"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:dm:cms
 http://www.upnp.org/schemas/dm/cms.xsd">
 <Parameter>
 <Path>...</Path>
 <Value>...</Value>
 </Parameter>
 ...
</cms:ParameterValueList>

1.7. Vendor-defined Extensions
Whenever vendors create additional vendor-defined state variables, actions or other XML elements and
attributes, their assigned names and XML representation MUST follow the naming conventions and XML
rules as specified in [UDA1.0], Section 2.5, “Description: Non-standard vendor extensions”.

2. Service Modeling Definitions

2.1. ServiceType
The following service type identifies a service that is compliant with this template:

 urn:schemas-upnp-org:service:BasicManagement:1

2.2. Key Concepts
Basic management operations fall into three categories: maintenance, diagnostic tests, and logging.

Maintenance:

 Two actions allow reboot and baseline reset of a Parent Device (see section 1.1) and possibly of
the targeted Execution Environment and/or Operating System.

BasicManagement:1 Service Template Version 1.01 16

Copyright © 2010 UPnP Forum. All Rights Reserved.

 A third action can be used to indicate that a control point is planning to perform a sequence of
actions, and requests a Parent Device to perform them as efficiently as possible.

Diagnostic tests:

 Diagnostic tests are expected to take a significant length of time to execute. In particular, it cannot
be assumed that a given test will complete within the 30 second response time allowed by
[UDA1.0]. Therefore there is a pair of actions for each diagnostic test, one to request the test and
one to return the test result. Test request actions all return a unique test ID that can be used to
determine the state of, or to cancel, the corresponding test.

 Tests SHOULD be performed as soon as possible after they are successfully requested. However,
it is up to the service implementation to decide when a given test can be performed. If a test has
been successfully requested but cannot currently be performed, e.g. because it requires a resource
that is currently in use, the test will remain in the Requested state until it can be performed or is
canceled.

 Once a given test has been performed, the test ID MUST remain valid, and the test results MUST
remain available, at least until another test of the same type is successfully requested, or until a
Parent Device restart, e.g. as a result of a power cycle or use of the Reboot() action. An
implementation MAY retain test IDs and test results across a Parent Device restart, or retain more
than one set of results per test type. Test IDs MUST become invalid when the corresponding test
results are discarded. Individual tests MAY state more stringent test ID retention requirements.

 Each invocation of a diagnostic test action requests a new test, regardless of whether the test
arguments are the same as those for an earlier successfully requested test.

Logging:

 A Parent Device can support multiple logs, and the list of logs can change at run-time. Each log is
identified by a URI. Each log can be independently enabled / disabled, has an associated log level,
and has a URL via which it can be retrieved.

 The list of logs, log enable/disable status and log level MUST persist across a Parent Device
restart. Log contents and URL MAY persist across a Parent Device restart.

 Logs are of limited size and SHOULD behave as FIFOs. The maximum size of a given log is
determined by the implementation and/or the UPnP working committee that specified it. As a
guideline, it SHOULD be possible to log several hundreds of UPnP actions.

 The UPnP Device Management working committee defines only a generic log configuration and
retrieval mechanism. It does not define log formats. Other working committees MAY define
DCP-specific logs, which MAY include format requirements. Each such DCP-specific log MUST
be identified by a DCP-specified URN that is used as the URI in the log-related actions.

 The first entry in the list of supported logs SHOULD be a Parent Device’s default (or primary)
log.

 Unless otherwise specified by a UPnP working committee, UPnP actions invoked on a Parent
Device SHOULD be logged to the primary (or default) log. UPnP action-related log entries
SHOULD identify the control point, the action and the action’s outcome (success / failure).

 The list of log URIs, and related information such as enable/disable status, log level and URL, is
not regarded as sensitive information. Any security requirements pertain to the out-of-band
protocol via which the logs are retrieved. This out-of-band protocol is implied by the log’s URL.

BasicManagement:1 Service Template Version 1.01 17

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.3. State Variables
Table 2-1: State Variables

Variable Name Req. or
Opt.1

Data
Type

Allowed
Value

Default
Value

Eng.
Units

DeviceStatus R string CSV2 (string,
dateTime.tz [,
string]), where
first string is:
OK, Warning,
Error, Fatal
(section 2.3.1)

SequenceMode O boolean (section 2.3.2) “0”

ActiveTestIDs O string CSV (A_ARG-
_TYPE_TestID)
(section 2.3.3)

“”

LogURIs O string CSV (A_ARG-
_TYPE_Log-
URI)
(section 2.3.4)

A_ARG_TYPE_Boolean O boolean (section 2.3.4)

A_ARG_TYPE_String O string (section 2.3.6)

A_ARG_TYPE_UShort O ui2 (section 2.3.7)

A_ARG_TYPE_UInt O ui4 (section 2.3.8)

A_ARG_TYPE_DateTime O dateTime
.tz

(section 2.3.9)

A_ARG_TYPE_MSecs O ui4 (section 2.3.10) Millise
conds

A_ARG_TYPE_RebootStatus O string RebootNow,
RebootLater
(section 2.3.11)

A_ARG_TYPE_TestID O ui4 (section 2.3.12)

A_ARG_TYPE_TestType O string NSLookup,
Ping, SelfTest,
Traceroute
(section 2.3.13)

A_ARG_TYPE_TestState O string Requested,
InProgress,
Canceled,
Completed
(section 2.3.14)

A_ARG_TYPE_DSCP O ui1 Between 0 and
63 inclusive
(section 2.3.15)

BasicManagement:1 Service Template Version 1.01 18

Copyright © 2010 UPnP Forum. All Rights Reserved.

Variable Name Req. or
Opt.1

Data
Type

Allowed
Value

Default
Value

Eng.
Units

A_ARG_TYPE_Host O string (section 2.3.16)

A_ARG_TYPE_Hosts O string CSV (A_ARG-
_TYPE_Host)
(section 2.3.17)

A_ARG_TYPE_HostName O string (section 2.3.18)

A_ARG_TYPE_PingStatus O string Success,
Error_Can-
notResolve-
HostName
(section 2.3.19)

A_ARG_TYPE_NSLookupStatus O string Success,
Error_DNS-
ServerNot-
Resolved
(section 2.3.20)

A_ARG_TYPE_NSLookupResult O string (section 2.3.21)

A_ARG_TYPE_TracerouteStatus O string Success,
Error_Can-
notResolve-
HostName,
Error_Max-
HopCount-
Exceeded
(section 2.3.22)

A_ARG_TYPE_Interfaces O string AllInterfaces,
RequestInter-
face
(section 2.3.23)

A_ARG_TYPE_InterfaceResetStatus O string Success, Error
(section 2.3.24)

A_ARG_TYPE_LogURI O uri (section 2.3.25)

A_ARG_TYPE_LogURL O uri (section 2.3.26)

A_ARG_TYPE_LogLevel O string Emergency,
Alert, Critical,
Error, Warning,
Notice,
Informational,
Debug
(section 2.3.26)

A_ARG_TYPE_LogMaxSize O ui4 (section 2.3.28) Bytes

Non-standard state variables implemented
by an UPnP vendor go here.

X TBD TBD TBD TBD

1 R = REQUIRED, O = OPTIONAL, X = Non-standard.

BasicManagement:1 Service Template Version 1.01 19

Copyright © 2010 UPnP Forum. All Rights Reserved.

2
CSV stands for Comma-Separated Value list. The type between brackets denotes the UPnP data type used

for the elements inside the list (section 1.5.1).

2.3.1. DeviceStatus
Indicates the Parent Device status, the date/time at which it last changed, and additional optional
information.

This is a CSV (string, dateTime.tz [, string]) list (section 1.5.1):

 The first value is the Parent Device status and MUST be one of OK, Warning, Error or Fatal.

 The second value is the date/time at which the Parent Device started up or its status last changed
(whichever occurred most recently). This value MUST obey the rules specified for
A_ARG_TYPE_DateTime (section 2.3.9).

 The optional third value is a vendor-specific string that can give additional information about the
Parent Device status.

For example:

 OK,2009-06-15T12:00:00

 Warning,2009-06-15T13:00:00,More hints\, info etc about this warning

In the second example, if the final comma had not been escaped the CSV list would have been illegal
because it would have had four (rather than three) values, and the third value would have been “More
hints” rather than “More hints, info etc about this warning”.

2.3.2. SequenceMode
Indicates whether a control point is currently executing a sequence of actions. The value of SequenceMode
MAY persist across Parent Device restarts.

A SequenceMode “0” “1” transition (via SetSequenceMode(“1”)):

 Indicates that a control point is planning to execute a sequence of actions, and requests the Parent
Device to perform them as efficiently as possible.

 Initializes a conceptual countdown timer to 60 seconds. This timer can be re-initialized to 60
seconds at any time by again invoking SetSequenceMode(“1”) or by invoking any action whose
behavior can be affected by SequenceMode. When the timer expires, SequenceMode is
automatically set to “0”.

 If an action’s behavior can be affected by SequenceMode, this MUST be specified in the action
description. Therefore, if an action’s description makes no mention of SequenceMode, then that
action’s behavior is not affected by SequenceMode.

 If an action’s behavior can be affected by SequenceMode, this special behavior occurs only if
SequenceMode is “1” when the action is invoked.

A SequenceMode “1” “0” transition (either via SetSequenceMode(“0”) or via timer expiry as described
above):

 Indicates that all the actions of a sequence executed while SequenceMode was “1” have now been
invoked.

BasicManagement:1 Service Template Version 1.01 20

Copyright © 2010 UPnP Forum. All Rights Reserved.

 Requests that the Parent Device MUST as soon as possible apply any changes that were not
applied while SequenceMode was “1”, and complete any operations that were not performed while
SequenceMode was “1”.

A SequenceMode value of “1” also serves to inform control points whether another control point is
currently executing a sequence of actions.

For example, a given platform might behave as follows:

 Configure parameters: commits changes to a “pending” configuration, which has to be copied to
the “running” configuration in order to be applied. The copy to the “running” configuration could
require a reboot.

o SequenceMode = “1” would allow a set of changes spanning multiple actions to be
applied all at once. In other words, the device would wait until all the requested changes
had been received before attempting to copy them from “pending” to “running” and
performing the reboot.

 Install deployment unit: disables UPnP control interface before downloading file, then reboots.

o SequenceMode = “1” would allow multiple deployment units to be installed before
rebooting.

The Parent Device SHOULD if at all possible honor the above SequenceMode behavior, but it is
understood that there might be exceptional circumstances under which it is unable to do so.

2.3.3. ActiveTestIDs
Comma-separated list of the test IDs for all active tests. This is a CSV (A_ARG_TYPE_TestID) list.

A test is active if it has been successfully requested and has not yet completed or been canceled. Therefore,
a test ID MUST be added to ActiveTestIDs when its test is successfully requested, and it MUST be
removed from ActiveTestIDs when its test completes, whether successfully or unsuccessfully, or is
canceled.

See section 2.3.12 for a general description of test IDs. See Figure 2-1 for the test state transition diagram.

2.3.4. LogURIs
A comma-separated list of the URIs of the currently supported logs. This is a CSV (A_ARG_TYPE_Log-
URI).

All the URIs in the list MUST be different and MUST reference different logs, i.e. the URI is a unique key
for a conceptual table of logs.

See section 2.3.25 for a description of log URIs.

2.3.5. A_ARG_TYPE_Boolean
A boolean argument.

2.3.6. A_ARG_TYPE_String
A string argument.

2.3.7. A_ARG_TYPE_UShort
An unsigned short (ui2) argument.

BasicManagement:1 Service Template Version 1.01 21

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.3.8. A_ARG_TYPE_UInt
An unsigned int (ui4) argument.

2.3.9. A_ARG_TYPE_DateTime
A date and time with optional time zone, plus additional conventions that apply when absolute time is not
available or when the date and time are unknown.

If absolute time is not available, this SHOULD indicate the relative time since the most recent Parent
Device restart, where the restart time is assumed to be the beginning of the first day of January of year 1, or
0001-01-01T00:00:00. For example, 2 days, 3 hours, 4 minutes and 5 seconds since restart would be
expressed as 0001-01-03T03:04:05. Any value with a year value less than 1000 MUST be interpreted as a
relative time since restart.

If the date and time are unknown, the following value, representing “Unknown Time”, MUST be used:
0001-01-01T00:00:00.

2.3.10. A_ARG_TYPE_MSecs
A time interval measured in milliseconds.

2.3.11. A_ARG_TYPE_RebootStatus
An output argument that indicates, for a successful Reboot() request, whether the Parent Device will be
rebooting now or later. Allowed values are listed in Table 2-2.

Table 2-2: allowedValueList for A_ARG_TYPE_RebootStatus

Value Req. or Opt. Description

RebootNow R The Reboot() request was accepted, nothing in
the current Parent Device state precludes an
immediate reboot, and the Parent Device will
initiate the reboot immediately.

RebootLater R The Reboot() request was accepted, but the
Parent Device is unable to reboot now, e.g.
because it is currently providing an important
service, and will reboot as soon as possible.

2.3.12. A_ARG_TYPE_TestID
A test ID. A new test ID is allocated each time a test is successfully requested. This ID is returned to the
control point in the action response. Once a test ID has been allocated, the same test ID MUST NOT be re-
used until the next time the Parent Device restarts. Test IDs MAY persist across such Parent Device
restarts. Individual tests MAY state more stringent test ID retention requirements. The test state transition
diagram is shown in Figure 2-1.

2.3.13. A_ARG_TYPE_TestType
Identifies the type of a given test, e.g. the test that is associated with a specified test ID. Allowed values are
listed in Table 2-3.

Table 2-3: allowedValueList for A_ARG_TYPE_TestType

Value Req. or Opt. Description

NSLookup R

BasicManagement:1 Service Template Version 1.01 22

Copyright © 2010 UPnP Forum. All Rights Reserved.

Value Req. or Opt. Description

Ping R

SelfTest R

Traceroute R

Vendor-defined X1
1 For every vendor-defined diagnostic test, there MUST be a corresponding A_ARG_TYPE_TestType
allowed value.

2.3.14. A_ARG_TYPE_TestState
Indicates the state of a given test, e.g. the test that is associated with a specified test ID. Allowed values are
listed in Table 2-4. The test state transition diagram is shown in Figure 2-1.

Table 2-4: allowedValueList for A_ARG_TYPE_TestState

Value Req. or Opt. Description

Requested R

InProgress R

Canceled R

Completed R

Requested

InProgress

CanceledCompleted

Successful request

CancelTest()

Completion

Test ID is in the ActiveTestIDs list while the
test is in the Requested or InProgress state

Figure 2-1: Test State Transition Diagram

2.3.15. A_ARG_TYPE_DSCP
The DiffServ Code Point [DSCP] to be used in packets that are sent during the execution of a test. The
value MUST be in the range 0 to 63.

2.3.16. A_ARG_TYPE_Host
An IPv4/IPv6 address, DNS name, or empty string.

BasicManagement:1 Service Template Version 1.01 23

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.3.17. A_ARG_TYPE_Hosts
A comma-separated list of IPv4/IPv6 addresses, DNS names or empty strings. This is a CSV
(A_ARG_TYPE_Host).

2.3.18. A_ARG_TYPE_HostName
A DNS name (cannot be an IP address). It MUST NOT be an empty string.

2.3.19. A_ARG_TYPE_PingStatus
Indicates whether a ping test succeeded or, if it was not possible to complete the test, the reason for its
failure. Allowed values are listed in Table 2-5.

Table 2-5: allowedValueList for A_ARG_TYPE_PingStatus

Value Req. or Opt. Description

Success R

Error_CannotResolveHostName R

Error_Internal O

Error_Other O

Vendor-defined X1
1 Any vendor-defined values MUST indicate failure, i.e. they will define additional error conditions. Only
Success indicates success.

2.3.20. A_ARG_TYPE_NSLookupStatus
Indicates whether a DNS lookup test succeeded or, if it was not possible to complete the test, the reason for
its failure. Allowed values are listed in Table 2-6.

Note that Error_DNSServerNotResolved indicates that the DNS server was specified by name and could
not be looked up, so the test could not be performed at all. Contrast this with A_ARG_TYPE_NSLookup-
Result Status, which indicates the success or failure of a given repetition of the test.

Table 2-6: allowedValueList for A_ARG_TYPE_NSLookupStatus

Value Req. or Opt. Description

Success R

Error_DNSServerNotResolved R

Error_Internal O

Error_Other O

Vendor-defined X1
1 Any vendor-defined values MUST indicate failure, i.e. they will define additional error conditions. Only
Success indicates success.

2.3.21. A_ARG_TYPE_NSLookupResult
An XML document containing the result of a DNS lookup test. Figure 2-2 illustrates the XML Schema
definition, which is given below, followed by an example XML document.

BasicManagement:1 Service Template Version 1.01 24

Copyright © 2010 UPnP Forum. All Rights Reserved.

Figure 2-2: NSLookupResult XML Schema Diagram

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:bmsnsl="urn:schemas-upnp-org:dm:bms:nsl"
targetNamespace="urn:schemas-upnp-org:dm:bms:nsl"
elementFormDefault="unqualified" attributeFormDefault="unqualified"
version="1-yyyymmdd">
 <xs:simpleType name="IPAddress">
 <xs:annotation>
 <xs:documentation>IPv4/IPv6 address (currently just a
placeholder).</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:element name="NSLookupResult">
 <xs:annotation>
 <xs:documentation>Result of a DNS lookup test.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Result" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>Results from the most recent invocation
of the test, one instance per repetition.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Status">
 <xs:annotation>
 <xs:documentation>Result Parameter to represent
whether the NS Lookup was successful or not.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:token">

BasicManagement:1 Service Template Version 1.01 25

Copyright © 2010 UPnP Forum. All Rights Reserved.

 <xs:enumeration value="Success"/>
 <xs:enumeration
value="Error_DNSServerNotAvailable"/>
 <xs:enumeration value="Error_HostNameNotResolved"/>
 <xs:enumeration value="Error_Timeout"/>
 <xs:enumeration value="Error_Other"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="AnswerType">
 <xs:annotation>
 <xs:documentation>Result parameter to represent
whether the answer is Authoritative or not.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="None"/>
 <xs:enumeration value="Authoritative"/>
 <xs:enumeration value="NonAuthoritative"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="HostNameReturned">
 <xs:annotation>
 <xs:documentation>Result parameter to represent the
fully qualified name for the Host Name in the calling parameter (e.g.
HostName.DomainName); if no response was provided, then this parameter
is an empty string.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="IPAddresses">
 <xs:annotation>
 <xs:documentation>Result parameter to represent the
list of one or more comma-separated IPv4/IPv6 addresses returned by the
NS Lookup; if no response was provided, then this parameter is an empty
string.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="DNSServerIP" type="bmsnsl:IPAddress">
 <xs:annotation>
 <xs:documentation>Result parameter to represent the
actual DNS Server IPv4/IPv6 address that the NS Lookup
used.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="ResponseTime" type="xs:unsignedInt">
 <xs:annotation>

BasicManagement:1 Service Template Version 1.01 26

Copyright © 2010 UPnP Forum. All Rights Reserved.

 <xs:documentation>Response time (for the first
response packet) in milliseconds, or 0 if no response was
received.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

<?xml version="1.0" encoding="UTF-8"?>
<bmsnsl:NSLookupResult xmlns:bmsnsl="urn:schemas-upnp-org:dm:bms:nsl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:dm:bms:nsl bmsnsl.xsd">
 <Result>
 <Status>Success</Status>
 <AnswerType>Authoritative</AnswerType>
 <HostNameReturned>a.b.c.d</HostNameReturned>
 <IPAddresses>1.2.3.4,2.3.4.5</IPAddresses>
 <DNSServerIP>33.44.55.66</DNSServerIP>
 <ResponseTime>255</ResponseTime>
 </Result>
 <Result>
 <Status>Success</Status>
 <AnswerType>Authoritative</AnswerType>
 <HostNameReturned>a.b.c.d</HostNameReturned>
 <IPAddresses>1.2.3.4,2.3.4.5</IPAddresses>
 <DNSServerIP>33.44.55.66</DNSServerIP>
 <ResponseTime>255</ResponseTime>
 </Result>
</bmsnsl:NSLookupResult>

2.3.22. A_ARG_TYPE_TracerouteStatus
Indicates whether a trace-route test succeeded or, if it was not possible to complete the test, the reason for
its failure. Allowed values are listed in Table 2-7.

Table 2-7: allowedValueList for A_ARG_TYPE_TracerouteStatus

Value Req. or Opt. Description

Success R

Error_CannotResolveHostName R

Error_MaxHopCountExceeded R

Error_Internal O

Error_Other O

Vendor-defined X1
1 Any vendor-defined values MUST indicate failure, i.e. they will define additional error conditions. Only
Success indicates success.

BasicManagement:1 Service Template Version 1.01 27

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.3.23. A_ARG_TYPE_Interfaces
Indicates which IP interfaces should be reset by an interface reset test. Allowed values are listed in
Table 2-8

Table 2-8: allowedValueList for A_ARG_TYPE_Interfaces

Value Req. or Opt. Description

AllInterfaces R All IP interfaces

RequestInterface R The IP interface on which the action request
was received is to be reset.

NorthboundInterfaces O Relevant only to an Internet Gateway Device
(a router that is connected to the Internet); the
IP interface or interfaces via which traffic can
be sent to or received from the Internet.

Vendor-defined X1 MUST be the string “X_UPNP_ORG_” foll-
owed by the name by which an IP interface is
known in the [CMS] data model, i.e. the value
of the corresponding /UPnP/DM/Config-
uration/Network/IPInterface/-
#/SystemName parameter.

1 Any vendor-defined value MUST be the name by which an IP interface is known in the [CMS] data
model.

2.3.24. A_ARG_TYPE_InterfaceResetStatus
Indicates whether an interface reset test succeeded or, if it was not possible to complete the test, the reason
for its failure. Allowed values are listed in Table 2-9.

Table 2-9: allowedValueList for A_ARG_TYPE_InterfaceResetStatus

Value Req. or Opt. Description

Success R

Error_Other R

Vendor-defined X1
1 Any vendor-defined values MUST indicate failure, i.e. they will define error conditions. Only Success
indicates success.

2.3.25. A_ARG_TYPE_LogURI
A URN or URL that identifies one of the logs exposed by the Parent Device.

Logs that are specified by UPnP Forum working committees MUST always be identified via a URN of a
specified format and meaning, e.g. “urn:upnp-org:committee:mylog”.

Vendor-specific logs MAY be specified via either a URN or a URL. If a vendor-specific log is specified
via a URL, the URL MUST be relative to the URL from which the Parent Device description was
retrieved, e.g. “mylog.xml”. A relative URL is required so that it can be used across a population of
devices (because it is independent of protocol, credentials, IP address and port number).

The reason that logs that are specified by UPnP Forum working committees have to be identified by a URN
(rather than a URL) is that working committees can define URN formats but could not reasonably specify
URLs because this would constrain the implementation.

BasicManagement:1 Service Template Version 1.01 28

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.3.26. A_ARG_TYPE_LogURL
A log URL via which one of the logs exposed by the Parent Device can be retrieved.

 The URL SHOULD be relative to the URL from which the Parent Device description was
retrieved, e.g. “mylog.xml”. A relative URL is preferred because the same value can be used
across multiple control interfaces, e.g. an IPv4 and an IPv6 interface.

 The URL MUST NOT include a “userinfo” component, as defined in [URI]. This is to avoid
conflict with any log security access mechanism.

2.3.27. A_ARG_TYPE_LogLevel
Indicates the lowest logging level that is included in a given log. Allowed values are listed in Table 2-10.
These values are in decreasing order of severity (most severe first, least severe last). When the logging
level is set to a given value, items at that level and all higher severity levels (i.e. levels defined earlier in the
table) are logged. For example, if it is set to Error, items at level Error, Critical, Alert and Emergency will
be logged.

Logs can contain lists of UPnP actions invoked on the Parent Device. The implementation MAY choose to
use different logging levels to record actions that do and do not affect the Parent Device state, e.g. Notice
for actions that affect state and Informational for actions that do not affect state.

Table 2-10: allowedValueList for A_ARG_TYPE_LogLevel1

Value Req. or Opt. Description

Emergency R

Alert R

Critical R

Error R

Warning R

Notice R

Informational R

Debug R

Vendor-defined X2
1 These are the syslog message severities that are defined in [SYSLOG] section 4.1.1.
2 Because log levels are ordered, the definitions of any vendor-defined values MUST indicate where they
are to be inserted in the list of log levels.

2.3.28. A_ARG_TYPE_LogMaxSize
Indicates the maximum possible size (in bytes) of a given log. A value of zero indicates that the maximum
possible size is not fixed or is not known. Note that this is a fixed capability, not a “high water mark”.

2.4. Eventing and Moderation
Table 2-11: Event Moderation

Variable Name Evented Moderated
Event

Max Event
Rate1

Logical
Combination

Min Delta
per Event2

DeviceStatus Yes Yes 1.0 second

BasicManagement:1 Service Template Version 1.01 29

Copyright © 2010 UPnP Forum. All Rights Reserved.

Variable Name Evented Moderated
Event

Max Event
Rate1

Logical
Combination

Min Delta
per Event2

SequenceMode Yes No

ActiveTestIDs Yes Yes 0.2 seconds

LogURIs Yes No

Non-standard state variables
implemented by an UPnP
vendor go here.

TBD TBD TBD TBD TBD

1 Determined by N, where Rate = (Event)/(N secs).
2 (N) * (allowedValueRange Step).

2.4.1. SSDP Announcement Mechanism
In addition to [UDA1.0] GENA eventing, a Parent Device can use a new Announcement.dm.upnp.org
SSDP header to announce important Parent Device state information to control points and other UPnP
controlled devices. The new header takes the following form, where field-value identifies the state
information (Table 2-12).

Announcement.dm.upnp.org: field-value

Table 2-12: Allowed Values for Announcement.dm.upnp.org field-value

Value Req. or Opt. Description

AboutToReboot R Indicates that the Parent Device and/or the
targeted Execution Environment and/or the
Operating System are about to reboot. The
corresponding internal state can be set to “1”
for various reasons, including autonomous
reboots and Reboot() requests.

AboutToBaselineReset R Indicates that the Parent Device and/or the
targeted Execution Environment and/or the
Operating System are about to return to their
baseline reset state. The corresponding
internal state can be set to “1” for various
reasons, including autonomous baseline resets
and BaselineReset() requests.

Vendor-defined X1
1 Any vendor-defined values MUST obey the usual naming rules for vendor extensions, as defined in
[UDA1.0].

The usual [HTTP] header rules apply, e.g. with regard to case-dependence (the header name is case-
independent and field-value is case-dependent), quoting (field-value can be quoted) and provision of
multiple values (two headers with field-values of A and B are equivalent to a single header with a field-
value of A,B).

The following additional requirements relate to the Announcement.dm.upnp.org mechanism:

 The mechanism MUST only be used to announce important Parent Device state information that
cannot reasonably be sent using GENA eventing.

 Each field-value corresponds to a piece of Boolean internal state information. It MUST be includ-
ed in every Parent Device SSDP message (and SHOULD be included in every SSDP message for

BasicManagement:1 Service Template Version 1.01 30

Copyright © 2010 UPnP Forum. All Rights Reserved.

devices / services embedded within the Parent Device) if and only if the corresponding internal
state is “1” when the SSDP message is sent.

 The above requirement SHOULD apply to every SSDP message for devices / services embedded
within the Parent Device. This is an application of the requirement, in section 1.1, that actions or
other operations on a Parent Device should apply to all levels of its sub-tree.

Note that it is unlikely that either the AboutToReboot or the AboutToBaselineReset internal state will be “1”
when ssdp:alive messages are sent, so Announcement.dm.upnp.org: AboutToReboot and
Announcement.dm.upnp.org: AboutToBaselineReset headers are likely to be present only in ssdp:byebye
messages. However, the use of the Announcement.dm.upnp.org mechanism with ssdp:alive messages is
not specifically forbidden.

2.5. Actions
Table 2-13: Actions

Name Req. or Opt. 1 Control
Point R/O

Reboot() O O

BaselineReset() O O

GetDeviceStatus() R R

SetSequenceMode() O O

GetSequenceMode() O O

Ping() O O

GetPingResult() O O

NSLookup() O O

GetNSLookupResult() O O

Traceroute() O O

GetTracerouteResult() O O

InterfaceReset() O O

GetInterfaceResetResult() O O

SelfTest() O O

GetSelfTestResult() O O

GetActiveTestIDs() O O

GetTestInfo() O O

CancelTest() O O

GetLogURIs() O O

SetLogInfo() O O

GetLogInfo() O O

Non-standard actions implemented by an UPnP vendor go here. X X
1 R = REQUIRED, O = OPTIONAL, X = Non-standard.

BasicManagement:1 Service Template Version 1.01 31

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.5.1. Reboot()
The Reboot() action reboots the Parent Device and possibly (see section 2.5.1.2) the targeted Execution
Environment and/or the Operating System. The Parent Device SHOULD send out the appropriate
ssdp:byebye messages before rebooting.

The Parent Device might be doing something, e.g. providing a service, that means that an immediate reboot
is not desirable. The implementation MUST NOT reject a Reboot() request for this reason, but can choose
to defer the reboot and to indicate this via a RebootStatus value of RebootLater.

2.5.1.1. Arguments
Table 2-14: Arguments for Reboot()

Argument Direction relatedStateVariable
RebootStatus OUT A_ARG_TYPE_RebootStatus

2.5.1.2. Dependency on State
The Parent Device MAY indicate, via the following [CMS] parameters, whether the Reboot() action will
reboot the targeted Execution Environment and/or the Operating System:

 If the /UPnP/DM/DeviceInfo/ExecutionEnvironment/WillReboot [CMS]
parameter is present and has the value “1”, the Reboot() action MUST reboot the targeted
Execution Environment. If [CMS] is not supported, the parameter is absent, or it has the value
“0”, control points cannot determine whether or not the Reboot() action will reboot the targeted
Execution Environment.

 If the /UPnP/DM/DeviceInfo/OperatingSystem/WillReboot [CMS] parameter is
present and has the value “1”, the Reboot() action MUST reboot the Operating System. If [CMS]
is not supported, the parameter is absent, or it has the value “0”, control points cannot determine
whether or not the Reboot() action will reboot the Operating System.

2.5.1.3. Effect on State
On successful completion of a Reboot() request, the Parent Device AboutToReboot internal state is set to
“1” (section 2.4.1), meaning that each ssdp:byebye message will include an Announcement.dm.upnp.org: -
AboutToReboot header.

Once the Parent Device AboutToReboot internal state has been set to “1”:

 If RebootStatus is RebootNow, the Parent Device MUST immediately initiate the reboot
procedure.

 If RebootStatus is RebootLater, the Parent Device MUST initiate the reboot procedure as soon as
it can, consistent with its responsibility to provide normal service.

 On reboot, all Reboot() requests are considered to have been satisfied, i.e. Reboot() requests don’t
stack up.

Any action requests received after the successful completion of a Reboot() request but before the reboot has
occurred SHOULD be rejected with a 501 (Action Failed) error code. This requirement applies to any of
the Parent Device’s services, including any services within its embedded devices. This is an application of
the requirement, in section 1.1, that actions or other operations on a Parent Device should apply to all
levels of its sub-tree.

BasicManagement:1 Service Template Version 1.01 32

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.5.1.4. Errors
Table 2-15: Error Codes for Reboot()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.5.2. BaselineReset()
The BaselineReset() action returns the Parent Device, and possibly (see section 2.5.2.2) the targeted
Execution Environment and/or the Operating System, to their baseline states. The Parent Device
SHOULD send out the appropriate ssdp:byebye messages before restoring the baseline settings.

Note that the action is called BaselineReset() rather than the more common FactoryReset(). This is to
emphasize that the baseline state does not need to be the factory state. For example, the baseline state
might use a stable version of the firmware that is more recent that the factory firmware.

BaselineReset() SHOULD apply to all devices / services embedded within the Parent Device. This is an
application of the requirement, in section 1.1, that actions or other operations on a Parent Device should
apply to all levels of its sub-tree.

2.5.2.1. Arguments
None.

2.5.2.2. Dependency on State
The Parent Device MAY indicate, via the following [CMS] parameters, whether the BaselineReset() action
will return the targeted Execution Environment and/or the Operating System to their baseline states:

 If the /UPnP/DM/DeviceInfo/ExecutionEnvironment/WillBaselineReset
[CMS] parameter is present and has the value “1”, the BaselineReset() action MUST return the
targeted Execution Environment to its baseline state. If [CMS] is not supported, the parameter is
absent, or it has the value “0”, control points cannot determine whether or not the BaselineReset()
action will return the targeted Execution Environment to its baseline state.

 If the /UPnP/DM/DeviceInfo/OperatingSystem/WillBaselineReset [CMS]
parameter is present and has the value “1”, the BaselineReset() action MUST return the Operating
System to its baseline state. If [CMS] is not supported, the parameter is absent, or it has the value
“0”, control points cannot determine whether or not the BaselineReset() action will return the
Operating System to its baseline state.

2.5.2.3. Effect on State
On successful completion of a BaselineReset() request, the Parent Device AboutToBaselineReset internal
state is set to “1” (section 2.4.1), meaning that each ssdp:byebye message will include an
Announcement.dm.upnp.org: AboutToBaselineReset header.

Any action requests received after the successful completion of a BaselineReset() request but before the
baseline reset has occurred SHOULD be rejected with a 501 (Action Failed) error code. This requirement
applies to any of the Parent Device’s services, including any services within its embedded devices. This is
an application of the requirement, in section 1.1, that actions or other operations on a Parent Device should
apply to all levels of its sub-tree.

BasicManagement:1 Service Template Version 1.01 33

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.5.2.4. Errors
Table 2-16: Error Codes for BaselineReset()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.5.3. GetDeviceStatus()
The GetDeviceStatus() action returns the current value of the DeviceStatus state variable.

2.5.3.1. Arguments
Table 2-17: Arguments for GetDeviceStatus()

Argument Direction relatedStateVariable

DeviceStatus OUT DeviceStatus

2.5.3.2. Dependency on State
None.

2.5.3.3. Effect on State
None.

2.5.3.4. Errors
Table 2-18: Error Codes for GetDeviceStatus()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.5.4. SetSequenceMode()
The SetSequenceMode() action sets the value of the SequenceMode state variable. The arguments are used
as follows:

 NewSequenceMode: is the new value of the SequenceMode state variable.

 OldSequenceMode: returns the previous value of the SequenceMode state variable, so a control
point that sets SequenceMode to “1” will know whether another control point had already set it to
“1”.

2.5.4.1. Arguments
Table 2-19: Arguments for SetSequenceMode()

Argument Direction relatedStateVariable

NewSequenceMode IN SequenceMode

BasicManagement:1 Service Template Version 1.01 34

Copyright © 2010 UPnP Forum. All Rights Reserved.

Argument Direction relatedStateVariable

OldSequenceMode OUT SequenceMode

2.5.4.2. Dependency on State
None.

2.5.4.3. Effect on State
The SequenceMode state variable is set to the requested value.

2.5.4.4. Errors
Table 2-20: Error Codes for SetSequenceMode()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.5.5. GetSequenceMode()
The GetSequenceMode() action returns the current value of the SequenceMode state variable.

2.5.5.1. Arguments
Table 2-21: Arguments for GetSequenceMode()

Argument Direction relatedStateVariable
SequenceMode OUT SequenceMode

2.5.5.2. Dependency on State
None.

2.5.5.3. Effect on State
None.

2.5.5.4. Errors
Table 2-22: Error Codes for GetSequenceMode()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.5.6. Ping()
The Ping() action requests an IP-layer ping test. If a ping test is already active, the service MAY reject the
request.

The ping test involves sending ICMP echo packets to the specified host, as specified in [ICMP]. The input
arguments are used as follows:

BasicManagement:1 Service Template Version 1.01 35

Copyright © 2010 UPnP Forum. All Rights Reserved.

 Host: is the name or address of the ICMP echo packet destination. It MUST NOT be an empty string.
 NumberOfRepetitions: is the number of packets to send. A value of zero requests use of an

implementation-chosen default number of repetitions.
 Timeout: is the maximum length of time (in milliseconds) to wait for each response before sending the

next packet. A value of zero requests use of an implementation-chosen timeout.
 DataBlockSize: is the size of each packet’s data block (the data block’s contents are implementation-

specific). A value of zero requests use of an implementation-chosen default data block size.
 DSCP: is the DiffServ Code Point [DSCP] value in each packet’s IP header. A value of zero implies

default (best effort) treatment.

2.5.6.1. Arguments
Table 2-23: Arguments for Ping()

Argument Direction relatedStateVariable

Host IN A_ARG_TYPE_Host

NumberOfRepetitions IN A_ARG_TYPE_UInt

Timeout IN A_ARG_TYPE_MSecs

DataBlockSize IN A_ARG_TYPE_UShort

DSCP IN A_ARG_TYPE_DSCP

TestID OUT A_ARG_TYPE_TestID

2.5.6.2. Dependency on State
None.

2.5.6.3. Effect on State
When a ping test is successfully requested, the TestID MUST be added to the ActiveTestIDs state variable.

2.5.6.4. Errors
Table 2-24: Error Codes for Ping()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

703 Test Already
Active

A test of this type is already active (and the implementation
doesn’t support multiple active instances of a given test type).

704 Capabilities
Preclude Test

Test arguments are individually valid but, taken together, describe
a test that is beyond the service’s capabilities.

705 State Precludes
Test

Service state precludes performing this test.

2.5.7. GetPingResult()
The GetPingResult() action returns the results of a completed IP-layer ping test. The output arguments are
defined as follows:

BasicManagement:1 Service Template Version 1.01 36

Copyright © 2010 UPnP Forum. All Rights Reserved.

 Status: indicates the overall success or failure of the test (if the test failed, the values of the remaining
output arguments are not specified, and MUST be ignored).

 AdditionalInfo: a free-format string that can contain additional information about the test result.
 SuccessCount: is the number of successful pings (those for which a successful response was received

prior to the timeout).
 FailureCount: is the number of failed pings (SuccessCount + FailureCount MUST equal NumberOf-

Repetitions).
 AverageResponseTime: is the average response time (in milliseconds) over all successful pings, or

zero if there were none.
 MinimumResponseTime: is the minimum response time (in milliseconds) over all successful pings,

or zero if there were none.
 MaximumResponseTime: is the maximum response time (in milliseconds) over all successful pings,

or zero if there were none.

2.5.7.1. Arguments
Table 2-25: Arguments for GetPingResult()

Argument Direction relatedStateVariable
TestID IN A_ARG_TYPE_TestID

Status OUT A_ARG_TYPE_PingStatus

AdditionalInfo OUT A_ARG_TYPE_String

SuccessCount OUT A_ARG_TYPE_UInt

FailureCount OUT A_ARG_TYPE_UInt

AverageResponseTime OUT A_ARG_TYPE_MSecs

MinimumResponseTime OUT A_ARG_TYPE_MSecs

MaximumResponseTime OUT A_ARG_TYPE_MSecs

2.5.7.2. Dependency on State
A test with the specified TestID needs previously to have been successfully requested, and to have
completed.

2.5.7.3. Effect on State
None.

2.5.7.4. Errors
Table 2-26: Error Codes for GetPingResult()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

706 No Such Test No test with the specified TestID was found.

707 Wrong Test Type TestID is valid but refers to a different test type.

BasicManagement:1 Service Template Version 1.01 37

Copyright © 2010 UPnP Forum. All Rights Reserved.

errorCode errorDescription Description

708 Invalid Test State The TestID is valid but test results are not available.

2.5.8. NSLookup()
The NSLookup() action requests an IP-layer DNS lookup. If a lookup test is already active, the service
MAY reject the request.

The lookup test involves contacting and querying a DNS server as specified in [DNS]. The input
arguments are used as follows:

 HostName: is the name of the host to look up. The current domain name MUST be used unless the
name is a fully qualified name.

 DNSServer: is the name or address of the DNS server. The name of this server will be resolved using
the default DNS server unless an IP address is provided. If an empty string is specified, the default
DNS server will be used.

 NumberOfRepetitions: is the number of lookups to perform. If a lookup fails the test MAY be
terminated without completing the full number of repetitions. A value of zero requests use of an
implementation-chosen default number of repetitions.

 Timeout: is the length of time (in milliseconds) to wait for each response before sending the next
request. A value of zero requests use of an implementation-chosen timeout.

2.5.8.1. Arguments
Table 2-27: Arguments for NSLookup()

Argument Direction relatedStateVariable
HostName IN A_ARG_TYPE_HostName

DNSServer IN A_ARG_TYPE_Host

NumberOfRepetitions IN A_ARG_TYPE_UInt

Timeout IN A_ARG_TYPE_MSecs

TestID OUT A_ARG_TYPE_TestID

2.5.8.2. Dependency on State
None.

2.5.8.3. Effect on State
When a DNS lookup test is successfully requested, the TestID MUST be added to the ActiveTestIDs state
variable.

2.5.8.4. Errors
Table 2-28: Error Codes for NSLookup()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

BasicManagement:1 Service Template Version 1.01 38

Copyright © 2010 UPnP Forum. All Rights Reserved.

errorCode errorDescription Description

703 Test Already
Active

A test of this type is already active (and the implementation
doesn’t support multiple active instances of a given test type).

704 Capabilities
Preclude Test

Test arguments are individually valid but, taken together, describe
a test that is beyond the service’s capabilities.

705 State Precludes
Test

Service state precludes performing this test.

2.5.9. GetNSLookupResult()
The GetNSLookupResult() action returns the results of a completed IP-layer DNS lookup test. The output
arguments are defined as follows:

 Status: indicates the overall success or failure of the test (if the test failed, the values of the remaining
output arguments are not specified, and MUST be ignored).

 AdditionalInfo: a free-format string that can contain additional information about the test result.
 SuccessCount: is the number of successful DNS lookups (those for which a successful response was

received prior to the timeout).
 Result: is an XML document containing the result of the DNS lookup test.

2.5.9.1. Arguments
Table 2-29: Arguments for GetNSLookupResult()

Argument Direction relatedStateVariable

TestID IN A_ARG_TYPE_TestID

Status OUT A_ARG_TYPE_NSLookup-
Status

AdditionalInfo OUT A_ARG_TYPE_String

SuccessCount OUT A_ARG_TYPE_UInt

Result OUT A_ARG_TYPE_NSLookup-
Result

2.5.9.2. Dependency on State
A test with the specified TestID needs previously to have been successfully requested, and to have
completed.

2.5.9.3. Effect on State
None.

2.5.9.4. Errors
Table 2-30: Error Codes for GetNSLookupResult()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

BasicManagement:1 Service Template Version 1.01 39

Copyright © 2010 UPnP Forum. All Rights Reserved.

errorCode errorDescription Description

706 No Such Test No test with the specified TestID was found.

707 Wrong Test Type TestID is valid but refers to a different test type.

708 Invalid Test State The TestID is valid but test results are not available.

2.5.10. Traceroute()
The Traceroute() action requests an IP-layer trace-route test. If a trace-route test is already active, the
service MAY reject the request.

Traceroute implementations vary, but all send probe packets to the specified host, increasing the time-to-
live (TTL) value from an initial value of 1, and relying on receiving ICMP time exceeded messages, as
specified in [ICMP]. The input arguments are used as follows:

 Host: is the name or address of the host to find a route to. It MUST NOT be an empty string.
 Timeout: is the length of time (in milliseconds) to wait for each reply. A value of zero requests use of

an implementation-chosen timeout.
 DataBlockSize: is the size of each probe packet’s data block (the data block’s contents are

implementation-specific). A value of zero requests use of an implementation-chosen default data
block size.

 MaxHopCount: is the maximum number of hops used in probe packets, i.e. the maximum time-to-live
(TTL). A value of zero requests use of an implementation-chosen default maximum hop count.

 DSCP: is the DiffServ Code Point value in each probe packet’s IP header. A value of zero implies
default (best effort) treatment.

2.5.10.1. Arguments
Table 2-31: Arguments for Traceroute()

Argument Direction relatedStateVariable

Host IN A_ARG_TYPE_Host

Timeout IN A_ARG_TYPE_MSecs

DataBlockSize IN A_ARG_TYPE_UShort

MaxHopCount IN A_ARG_TYPE_UInt

DSCP IN A_ARG_TYPE_DSCP

TestID OUT A_ARG_TYPE_TestID

2.5.10.2.Dependency on State
None.

2.5.10.3.Effect on State
When a trace-route test is successfully requested, the TestID MUST be added to the ActiveTestIDs state
variable.

2.5.10.4.Errors
Table 2-32: Error Codes for Traceroute()

BasicManagement:1 Service Template Version 1.01 40

Copyright © 2010 UPnP Forum. All Rights Reserved.

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

703 Test Already
Active

A test of this type is already active (and the implementation
doesn’t support multiple active instances of a given test type).

704 Capabilities
Preclude Test

Test arguments are individually valid but, taken together, describe
a test that is beyond the service’s capabilities.

705 State Precludes
Test

Service state precludes performing this test.

2.5.11. GetTracerouteResult()
The GetTracerouteResult() action returns the results of a completed IP-layer trace-route test. The output
arguments are defined as follows:

 Status: indicates the overall success or failure of the test (if the test failed, the values of the remaining
output arguments are not specified, and MUST be ignored).

 AdditionalInfo: a free-format string that can contain additional information about the test result.
 ResponseTime: is the average response time (in milliseconds) for the most recent probe, i.e. for the

messages that actually reached the host.
 HopHosts: is a comma-separated list of the hosts along the discovered route. Each host SHOULD be

an IP address (not a DNS name). If a host could not be contacted, the corresponding entry in the list is
empty, i.e. there will be two consecutive commas in the list, as in “host1,,host3”.

2.5.11.1. Arguments
Table 2-33: Arguments for GetTracerouteResult()

Argument Direction relatedStateVariable
TestID IN A_ARG_TYPE_TestID

Status OUT A_ARG_TYPE_Traceroute-
Status

AdditionalInfo OUT A_ARG_TYPE_String

ResponseTime OUT A_ARG_TYPE_MSecs

HopHosts OUT A_ARG_TYPE_Hosts

2.5.11.2.Dependency on State
A test with the specified TestID needs previously to have been successfully requested, and to have
completed.

2.5.11.3.Effect on State
None.

2.5.11.4.Errors
Table 2-34: Error Codes for GetTracerouteResult()

BasicManagement:1 Service Template Version 1.01 41

Copyright © 2010 UPnP Forum. All Rights Reserved.

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

706 No Such Test No test with the specified TestID was found.

707 Wrong Test Type TestID is valid but refers to a different test type.

708 Invalid Test State The TestID is valid but test results are not available.

2.5.12. InterfaceReset()
The InterfaceReset() action requests that one or more IP interfaces should be reset. If an interface reset test
is already active, the service MAY reject the request. If the test will reset the interface on which the
request was received, the Parent Device MUST send the action response before initiating the test.

The input arguments are used as follows:

 Interfaces: the IP interface or interfaces that are to be reset.

It is up to the implementation to decide what needs to be done in order to reset an IP interface. For
example, if the interface’s IP address was assigned via DHCP, it is almost certainly appropriate to release
and renew the IP address. It might also be appropriate to reset the physical interface, clear out the DNS
cache etc.

2.5.12.1.Arguments
Table 2-35: Arguments for InterfaceReset()

Argument Direction relatedStateVariable

Interfaces IN A_ARG_TYPE_Interfaces

TestID OUT A_ARG_TYPE_TestID

2.5.12.2.Dependency on State
None.

2.5.12.3.Effect on State
When an IP interface reset test is successfully requested, the TestID MUST be added to the ActiveTestIDs
state variable.

Because an IP interface reset test can reset the interface on which the request was received, it might not be
possible to read the test results until after a Parent Device restart. For this reason, IP interface reset test IDs
MUST persist across such restarts.

Note that, regardless of the possibility of Parent Device restart, an event-driven control point will always
discover that the test ID has been removed from ActiveTestIDs, either via an event generated when it is
removed, or via the initial event when the control point subscribes after a Parent Device restart.

2.5.12.4.Errors
Table 2-36: Error Codes for InterfaceReset()

BasicManagement:1 Service Template Version 1.01 42

Copyright © 2010 UPnP Forum. All Rights Reserved.

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 Interface Not
Found

The requested IP interface was not found.

702 Interface Not
Resettable

One or more of the requested IP interfaces has a static address and
cannot be reset.

703 Test Already
Active

A test of this type is already active (and the implementation
doesn’t support multiple active instances of a given test type).

704 Capabilities
Preclude Test

Test arguments are individually valid but, taken together, describe
a test that is beyond the service’s capabilities.

705 State Precludes
Test

Service state precludes performing this test.

2.5.13. GetInterfaceResetResult()
The GetInterfaceResetResult() action returns the results of a completed IP interface reset test. The output
arguments are defined as follows:

 Status: indicates the overall success or failure of the test (if the test failed, the values of the remaining
output arguments are not specified, and MUST be ignored).

 AdditionalInfo: a free-format string that can contain additional information about the test result.
 NumberOfSuccesses: The number of IP interfaces that were successfully reset.
 NumberOfFailures: The number of IP interfaces that could not be reset.

Note that, provided that the test did not fail, NumberOfSuccesses plus NumberOfFailures will always be the
number of interfaces that InterfaceReset() requested to be reset.

2.5.13.1. Arguments
Table 2-37: Arguments for GetInterfaceResetResult()

Argument Direction relatedStateVariable
TestID IN A_ARG_TYPE_TestID

Status OUT A_ARG_TYPE_Interface-
ResetStatus

AdditionalInfo OUT A_ARG_TYPE_String

NumberOfSuccesses OUT A_ARG_TYPE_UShort

NumberOfFailures OUT A_ARG_TYPE_UShort

2.5.13.2.Dependency on State
A test with the specified TestID needs previously to have been successfully requested, and to have
completed.

BasicManagement:1 Service Template Version 1.01 43

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.5.13.3.Effect on State
None.

2.5.13.4.Errors
Table 2-38: Error Codes for GetInterfaceResetResult()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

706 No Such Test No test with the specified TestID was found.

707 Wrong Test Type TestID is valid but refers to a different test type.

708 Invalid Test State The TestID is valid but test results are not available.

2.5.14. SelfTest()
The SelfTest() action requests an implementation-specific self-test. If a self-test is already active, the
service MAY reject the request.

2.5.14.1.Arguments
Table 2-39: Arguments for SelfTest()

Argument Direction relatedStateVariable

TestID OUT A_ARG_TYPE_TestID

2.5.14.2.Dependency on State
None.

2.5.14.3.Effect on State
When a self-test is successfully requested, the TestID MUST be added to the ActiveTestIDs state variable.

2.5.14.4.Errors
Table 2-40: Error Codes for SelfTest()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

703 Test Already
Active

A test of this type is already active (and the implementation
doesn’t support multiple active instances of a given test type).

705 State Precludes
Test

Service state precludes performing this test.

BasicManagement:1 Service Template Version 1.01 44

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.5.15. GetSelfTestResult()
 The GetSelfTestResult() action returns the results of a completed self-test. The output arguments are
defined as follows:

 Status: indicates whether the test succeeded (1) or failed (0).
 AdditionalInfo: a free-format string that can contain additional information about the test result.

2.5.15.1.Arguments
Table 2-41: Arguments for GetSelfTestResult()

Argument Direction relatedStateVariable
TestID IN A_ARG_TYPE_TestID

Status OUT A_ARG_TYPE_Boolean

AdditionalInfo OUT A_ARG_TYPE_String

2.5.15.2.Dependency on State
A test with the specified TestID needs previously to have been successfully requested, and to have
completed.

2.5.15.3.Effect on State
None.

2.5.15.4.Errors
Table 2-42: Error Codes for GetSelfTestResult()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

706 No Such Test No test with the specified TestID was found.

707 Wrong Test Type TestID is valid but refers to a different test type.

708 Invalid Test State The TestID is valid but test results are not available.

2.5.16. GetActiveTestIDs()
The GetActiveTestIDs() action returns a list of the test IDs associated with active tests. A test ID is added
to the list when a test is successfully requested, and is removed from the list when the test completes,
whether successfully or unsuccessfully, or is canceled.

2.5.16.1.Arguments
Table 2-43: Arguments for GetActiveTestIDs()

Argument Direction relatedStateVariable
TestIDs OUT ActiveTestIDs

BasicManagement:1 Service Template Version 1.01 45

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.5.16.2.Dependency on State
None.

2.5.16.3.Effect on State
None.

2.5.16.4.Errors
Table 2-44: Error Codes for GetActiveTestIIDs()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.5.17. GetTestInfo()
The GetTestInfo() action returns the type and state of a successfully requested test.

2.5.17.1. Arguments
Table 2-45: Arguments for GetTestInfo()

Argument Direction relatedStateVariable
TestID IN A_ARG_TYPE_TestID

Type OUT A_ARG_TYPE_TestType

State OUT A_ARG_TYPE_TestState

2.5.17.2.Dependency on State
A test with the specified TestID needs previously to have been successfully requested.

2.5.17.3.Effect on State
None.

2.5.17.4.Errors
Table 2-46: Error Codes for GetTestInfo()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

706 No Such Test No test with the specified TestID was found.

2.5.18. CancelTest()
The CancelState() action cancels a successfully requested test.

BasicManagement:1 Service Template Version 1.01 46

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.5.18.1. Arguments
Table 2-47: Arguments for CancelTest()

Argument Direction relatedStateVariable

TestID IN A_ARG_TYPE_TestID

2.5.18.2.Dependency on State
A test with the specified TestID needs previously to have been successfully requested, and not to have
completed.

2.5.18.3.Effect on State
When a test is successfully canceled, the TestID MUST be removed from the ActiveTestIDs state variable.

2.5.18.4.Errors
Table 2-48: Error Codes for CancelTest()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

706 No Such Test No test with the specified TestID was found.

709 State Precludes
Cancel

The TestID is valid but the test can’t be canceled.

2.5.19. GetLogURIs()
The GetLogURIs() action retrieves a list of URIs for the logs currently supported by the Parent Device.
Logs can potentially be added to or removed from this list at run-time, although the mechanism via which
this might happen is implementation-specific.

2.5.19.1. Arguments
Table 2-49: Arguments for GetLogURIs()

Argument Direction relatedStateVariable

LogURIs OUT LogURIs

2.5.19.2.Dependency on State
None.

2.5.19.3.Effect on State
None.

2.5.19.4.Errors
Table 2-50: Error Codes for GetLogURIs()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

BasicManagement:1 Service Template Version 1.01 47

Copyright © 2010 UPnP Forum. All Rights Reserved.

errorCode errorDescription Description

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.5.20. SetLogInfo()
The SetLogInfo() action enables / disables the specified log and sets its log level.

2.5.20.1.Arguments
Table 2-51: Arguments for SetLogInfo()

Argument Direction relatedStateVariable

LogURI IN A_ARG_TYPE_LogURI

Enabled IN A_ARG_TYPE_Boolean

LogLevel IN A_ARG_TYPE_LogLevel

2.5.20.2.Dependency on State
LogURI needs to identify one of the logs currently supported by the Parent Device.

2.5.20.3.Effect on State
The enable/disable and level settings associated with the log identified by LogURI are changed. These
values MUST persist across Parent Device restarts. Entries will no longer be written to a disabled log. It is
up to the implementation to decide whether disabling a log will clear out any existing entries.

2.5.20.4.Errors
Table 2-52: Error Codes for SetLogInfo()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

710 No Such Log No log with the specified LogURI was found.

711 Log Not
Configurable

Log doesn’t permit enable/disable and/or log level to be changed.

2.5.21. GetLogInfo()
The GetLogInfo() action returns information about the specified log.

 Configurable indicates whether the log is configurable. A log is configurable if it can be enabled/-
disabled and/or if its log level can be changed.

 A MaxSize of 0 indicates that the maximum possible size is not fixed or is not known (section 2.3.28).

2.5.21.1.Arguments
Table 2-53: Arguments for GetLogInfo()

BasicManagement:1 Service Template Version 1.01 48

Copyright © 2010 UPnP Forum. All Rights Reserved.

Argument Direction relatedStateVariable

LogURI IN A_ARG_TYPE_LogURI

Configurable OUT A_ARG_TYPE_Boolean

Enabled OUT A_ARG_TYPE_Boolean

LogLevel OUT A_ARG_TYPE_LogLevel

LogURL OUT A_ARG_TYPE_LogURL

MaxSize OUT A_ARG_TYPE_LogMaxSize

LastChange OUT A_ARG_TYPE_DateTime

2.5.21.2.Dependency on State
LogURI needs to identify one of the logs currently supported by the Parent Device.

2.5.21.3.Effect on State
None.

2.5.21.4.Errors
Table 2-54: Error Codes for GetLogInfo()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

710 No Such Log No log with the specified LogURI was found.

2.5.22. Common Error Codes
The following table lists error codes common to actions for this service type. If an action results in multiple
errors, the most specific error MUST be returned.

Table 2-55: Common Error Codes

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

700 Reserved for future extensions.

701 Interface Not
Found

The requested IP interface was not found.

702 Interface Not
Resettable

One or more of the requested IP interfaces has a static address and
cannot be reset (InterfaceReset).

703 Test Already
Active

A test of this type is already active (and the implementation
doesn’t support multiple active instances of a given test type).

BasicManagement:1 Service Template Version 1.01 49

Copyright © 2010 UPnP Forum. All Rights Reserved.

errorCode errorDescription Description

704 Capabilities
Preclude Test

Test arguments are individually valid but, taken together, describe
a test that is beyond the service’s capabilities.

705 State Precludes
Test

Service state precludes performing this test.

706 No Such Test No test with the specified TestID was found.

707 Wrong Test Type TestID is valid but refers to a different test type.

708 Invalid Test State The TestID is valid but test results are not available.

709 State Precludes
Cancel

The TestID is valid but the test can’t be canceled.

710 No Such Log No log with the specified LogURI was found.

711 Log Not
Configurable

Log doesn’t permit enable/disable and/or log level to be changed.

800-899 TBD (Specified by UPnP vendor.)

BasicManagement:1 Service Template Version 1.01 50

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.6. Theory of Operation
This non-normative (informative) section walks through several scenarios to illustrate the various actions
supported by the BasicManagement:1 service.

2.6.1. Assumptions
Figure 2-3 illustrates a physical device that hosts two Execution Environments (EE) and three Parent
Devices (2a and 2b are alternatives).

Physical Device

Execution Environment (EE) is Operating System (OS)

UPnP manageable device #1

•Implemented using OS
services

•Targeted EE is the OS
•Can reboot the OS

EE is JVM

UPnP manageable device #2a

•Implemented using OS services
•Targeted EE is the JVM
•Cannot reboot the OS

UPnP manageable device #2b

•Implemented using JVM services
•Targeted EE is the JVM
•Cannot reboot the OS

CMSBMS SMS CMSBMS SMS

CMSBMS SMS
OS

JVM

JVMJVMOS OS

JVM

Figure 2-3: Example Parent Devices

2.6.1.1. Parent Device #1
Most examples in this section use the simple Parent Device #1:

 It is implemented using Operating System (OS) services.

 The targeted EE is the OS, so any EE-related actions and data model apply to the OS.

 In addition, it is assumed that:

o Both /UPnP/DM/DeviceInfo/OperatingSystem/WillReboot and /UPnP/DM/-
DeviceInfo/OperatingSystem/WillBaselineReset are “1”, so the Reboot() and
BaselineReset() actions apply to the OS. Therefore:

 Rebooting the Parent Device involves an OS reboot.

BasicManagement:1 Service Template Version 1.01 51

Copyright © 2010 UPnP Forum. All Rights Reserved.

 Resetting the Parent Device to its baseline state involves an OS reboot. Persistent settings
revert to their baseline values.

o There is a single IP interface which (obviously) is used for UPnP management.

o The implementation can execute a maximum of one test of each type at a time.

o There is a single log file, which includes OS-level messages and UPnP action-oriented messages.

2.6.1.2. Parent Device #2a
Some of the examples also consider the more complicated Parent Device #2a, which differs from Parent
Device #1 in the following respects:

 The targeted EE is the JVM, so any EE-related actions and data model apply to the JVM.

 Both /UPnP/DM/DeviceInfo/ExecutionEnvironment/WillReboot and
/UPnP/DM/DeviceInfo/ExecutionEnvironment/WillBaselineReset are “1”, and
both /UPnP/DM/DeviceInfo/OperatingSystem/WillReboot and
/UPnP/DM/DeviceInfo/OperatingSystem/WillBaselineReset are “0”, so the
Reboot() and BaselineReset() actions apply to the targeted EE (JVM) but not to the OS. Therefore:

o Rebooting the Parent Device causes a complete restart of the Parent Device, its embedded devices
/ services, and the targeted EE (JVM).

o Resetting the Parent Device to its baseline state causes a complete restart of the Parent Device, its
embedded devices / services, and the targeted EE (JVM). Persistent settings revert to their original
values.

2.6.1.3. Parent Device #2b
Some of the examples also consider Parent Device #2b, which is an alternative to Parent Device #2a and
differs from it in the following respects:

 It is implemented using JVM services and doesn’t have access to anything outside the JVM.

 Rebooting the Parent Device causes a complete restart of the EE (JVM).

 Resetting the Parent Device to its baseline state causes a complete restart of the EE (JVM). Persistent
settings revert to their baseline values.

 There are two log files, one which includes UPnP action-oriented messages and another which
contains EE (JVM) messages.

2.6.2. Rebooting the Parent Device
The Reboot() action (section 2.5.1) is required, but the implementation has some leeway in deciding
whether to accept the request.

Consider several scenarios:

 The device implementation is able to reboot immediately, in which case the action completes
successfully and returns a RebootStatus value of RebootNow.

 The device implementation is not able to reboot immediately, in which case the action completes
successfully and returns a RebootStatus value of RebootLater. The device will reboot as soon as
possible. For example, the device might currently be providing a service such as playing a video,
printing a document or hosting a phone call.

BasicManagement:1 Service Template Version 1.01 52

Copyright © 2010 UPnP Forum. All Rights Reserved.

On successful completion of a Reboot() request, the Parent Device AboutToReboot internal state is set to
“1” and any subsequent action requests are expected to be rejected with a 501 (Action Failed) error code.

When the Parent Device is ready to reboot (which could, if RebootLater was returned, be some time later),
each ssdp:byebye message (if sent) will include an Announcement.dm.upnp.org: AboutToReboot header.
The usual [HTTP] header rules apply, so both of the following are valid:

Announcement.dm.upnp.org: AboutToReboot
ANNOUNCEMENT.DM.UPNP.ORG: AboutToReboot

The actual reboot behavior depends on the Parent Device configuration:

 For Parent Device #1, the OS is rebooted.

 For Parent Device #2a, the Parent Device, its embedded devices / services, and the targeted EE
(JVM) are restarted.

 For Parent Device #2b, the targeted EE (JVM) is restarted.

The Figures below illustrate the use of RebootNow and RebootLater.

Figure 2-4: RebootNow Example

BasicManagement:1 Service Template Version 1.01 53

Copyright © 2010 UPnP Forum. All Rights Reserved.

Figure 2-5: RebootLater Example

2.6.3. Resetting the Parent Device
The BaselineReset() action (section 2.5.2) is optional. If supported, it resets the following to their baseline
state:

 The UPnP Parent Device, including any embedded devices / services.

 The associated device-level entities that are managed via the above devices and services:

o For the Parent Device, this means the targeted EE and potentially the OS.

o For any embedded devices, this will depend on the embedded device type.

For a Parent Device that has access to the OS, the baseline state is usually referred to as the factory default
state. It’s up to the implementation to decide exactly what this means.

On successful completion of a BaselineReset() request, the Parent Device AboutToBaselineReset internal
state is set to “1” and any subsequent action requests are expected to be rejected with a 501 (Action Failed)
error code. When the device is ready to be reset to its baseline state, each ssdp:byebye message (if sent)
will include an Announcement.dm.upnp.org: AboutToBaselineReset header.

In many cases, a baseline reset will involve a reboot. If so, the the Parent Device AboutToReboot internal
state will be set to “1” and each ssdp:byebye message (if sent) will include an Announcement.dm.upnp.-
org: AboutToReboot header. The usual [HTTP] header rules apply, so all of the following are valid:

Announcement.dm.upnp.org: AboutToBaselineReset, AboutToReboot
Announcement.dm.upnp.org: AboutToReboot, AboutToBaselineReset

BasicManagement:1 Service Template Version 1.01 54

Copyright © 2010 UPnP Forum. All Rights Reserved.

ANNOUNCEMENT.DM.UPNP.ORG: AboutToReboot, AboutToBaselineReset

ANNOUNCEMENT.DM.UPNP.ORG: AboutToReboot
ANNOUNCEMENT.DM.UPNP.ORG: AboutToBaselineReset

The actual baseline reset behavior depends on the Parent Device configuration. In the cases that we are
considering here, baseline reset consists of the following:

 Reboot, as described in section 2.6.2.

 Persistent settings revert to their baseline values.

2.6.4. Using Sequence Mode
The SetSequenceMode() and GetSequenceMode() actions (Sections 2.5.4 and 2.5.5) control the value of
the SequenceMode state variable (section 2.3.2). SequenceMode can be used to indicate that:

 A control point is planning to execute a sequence of actions.

 A control point is currently executing a sequence of actions.

SequenceMode provides an informal locking mechanism that can affect the behavior of control points and
the Parent Device implementation. This is not a guaranteed mechanism (the associated requirements are
never stronger than “SHOULD”) and the Parent Device will still behave properly if SequenceMode is
ignored by all parties. However, if the mechanism is honored then device management can in many cases
proceed more efficiently.

The following example assumes that control points A and B both wish to make some configuration
changes. Firstly assume that the Parent Device can commit and apply each change immediately, without
needing to reboot:

 Initially SequenceMode is “0”.

 Control point A calls SetSequenceMode(“1”) , discovering that it was previously “0”, and therefore
knowing that it can proceed to make its changes.

 Control point B calls SetSequenceMode(“1”) , discovering that it was previously “1”, and therefore
knowing that it can’t proceed to make its changes.

 Control point A makes its changes, each of which is committed and applied immediately.

 Control point A calls SetSequenceMode(“0”) , indicating that it has finished making its changes.

 Control point B discovers (via polling or eventing) that SequenceMode is now “0”, so proceeds to set
it to “1”, make its changes, and set it back to “0”.

This would clearly work just as well if there had also been a control point C. When control point A had
finished its changes and called SetSequenceMode(“0”), either control point B or control point C would
have managed to set SequenceMode to “1” and the other one would have had to wait.

In the above example, use of SequenceMode was not necessary, because control point A’s changes could
have been interleaved with control point B’s changes, and the end result would have been the same. Indeed
for this Parent Device, CMS::SetValues() can ignore the value of SequenceMode.

What if the Parent Device needs to reboot in order to apply changes? This doesn’t change the control point
logic:

 Initially SequenceMode is “0”.

BasicManagement:1 Service Template Version 1.01 55

Copyright © 2010 UPnP Forum. All Rights Reserved.

 Control point A calls SetSequenceMode(“1”) , discovering that it was previously “0”, and therefore
knowing that it can proceed to make its changes.

 Control point B calls SetSequenceMode(“1”) , discovering that it was previously “1”, and therefore
knowing that it can’t proceed to make its changes.

 Control point A makes its changes. SequenceMode is “1”, so the Parent Device commits changes but
doesn’t attempt to apply them (which would require a reboot for each change).

 Control point A calls SetSequenceMode(“0”) , indicating that it has finished making its changes. The
Parent Device now applies the previously-committed changes, resulting in a reboot.

 Control point B discovers (via polling or eventing) that SequenceMode is now “0”, so proceeds to set
it to “1”, make its changes, and set it back to “0”.

Figure 2-6 below illustrates the use of SequenceMode.

BasicManagement:1 Service Template Version 1.01 56

Copyright © 2010 UPnP Forum. All Rights Reserved.

Figure 2-6: SequenceMode Example

BasicManagement:1 Service Template Version 1.01 57

Copyright © 2010 UPnP Forum. All Rights Reserved.

2.6.5. Running a Ping Test
Suppose that a control point wishes to check that a Parent Device can ping www.myserver.com. This
example illustrates the interactions with the Parent Device:

 Control point subscribes to BasicManagement:1 events and discovers that ActiveTestIDs is “”,
indicating that no tests are currently active.

 Control point calls Ping(). For example:

o Ping(“www.google.com”, 0, 0, 0, 0) : the four zeroes are (respectively) the number of repetitions
(defaulted), the timeout (defaulted), the data block size (defaulted) and the DSCP value (best
effort). The defaults are implementation-dependent.

o Ping(“www.google.com”, 10, 1000, 32, 16) : 10 repetitions, 1000 millisecond timeout, 32 byte
data block, DSCP of 16.

 Control point receives test ID (42 for example) in the Ping() response. It also discovers, via an event,
that ActiveTestIDs is now “42”.

 Parent Device performs the test and, on completion, removes test ID 42 from ActiveTestIDs.

 Control point discovers, via an event, that ActiveTestIDs is “” and knows that the test is complete.

 Control point calls GetPingResult(42) to retrieve the test results. For example:

o GetPingResult(42) (“Success”, “”, 9, 1, 45, 40, 50) indicates that the ping test was successful,
no additional information string was returned, and 9/10 pings succeeded with a mean/min/max
response times (for the successful pings) of 45ms/40ms/50ms.

o GetPingResult(42 (“Error_CannotResolveHostName”, “Timeout”, 0, 0, 0, 0, 0) indicates that
the ping test failed because the host name couldn’t be resolved. The free-format additional info
indicates a timeout, and the values of the remaining output arguments are irrelevant (because the
test failed).

Alternatively, if the control point doesn’t want to use events, once it knows the test ID it can call
GetTestInfo(42), which returns the test type (Ping) and the test state (Requested, InProgress, Canceled,
Completed). Once it changes to Completed, GetPingResult(42) can be called to return the results.

2.6.6. Running an NSLookup Test
Suppose that a control point wishes to check that a Parent Device can look up the DNS name
www.myserver.com. This example illustrates the interactions with the Parent Device:

 Control point subscribes to BasicManagement:1 events and discovers that ActiveTestIDs is “”,
indicating that no tests are currently active.

 Control point calls NSLookup(). For example:

o NSLookup(“www.myserver.com”, “”, 0, 0) : the empty string indicates that the default DNS
server will be used, and the two zeroes are (respectively) the number of repetitions (defaulted) and
the timeout (defaulted). The defaults are implementation-dependent.

o Ping(“www.myserver.com”, “mydnsserver.com”, 10, 1000) : DNS server mydnsserver.com, 10
repetitions, 1000 millisecond timeout.

 Control point receives test ID (43 for example) in the NSLookup() response. It also discovers, via an
event, that ActiveTestIDs is now “43”.

 Parent Device performs the test and, on completion, removes test ID 43 from ActiveTestIDs.

BasicManagement:1 Service Template Version 1.01 58

Copyright © 2010 UPnP Forum. All Rights Reserved.

 Control point discovers, via an event, that ActiveTestIDs is “” and knows that the test is complete.

 Control point calls GetNSLookupResult(43) to retrieve the test results. For example:

o GetNSLookupResult(43) (“Success”, “”, 9, “<?xml…>…”) indicates that the DNS lookup test
was successful, no additional information string was returned, and 9/10 lookups succeeded, and
the detailed results are returned in the XML document (see section 2.3.21 for an example XML
document).

o GetNSLookupResult(43 (“Error_DNSServerNotResolved”, “Timeout”, 0, “”) indicates that the
DNS lookup test failed because the DNS server couldn’t be resolved. The free-format additional
info indicates a timeout, and the values of the remaining output arguments are irrelevant (because
the test failed).

Alternatively, if the control point doesn’t want to use events, once it knows the test ID it can call
GetTestInfo(43), which returns the test type (NSLookup) and the test state (Requested, InProgress,
Canceled, Completed). Once it changes to Completed, GetNSLookupResult(43) can be called to return the
results.

2.6.7. Running a Traceroute Test
Suppose that a control point wishes to trace the route from a Parent Device to www.myserver.com. This
example illustrates the interactions with the Parent Device:

 Control point subscribes to BasicManagement:1 events and discovers that ActiveTestIDs is “”,
indicating that no tests are currently active.

 Control point calls Traceroute(). For example:

o Traceroute(“www.myserver.com”, 0, 0, 0, 0) : the four zeroes are (respectively) the timeout
(defaulted), the data block size (defaulted), the maximum hop count (defaulted) and the DSCP
value (best effort). The defaults are implementation-dependent.

o Traceroute(“www.myserver.com”, 1000, 32, 20, 16) : 1000 millisecond timeout, 32 byte data
block, maximum hop count of 20, DSCP of 16.

 Control point receives test ID (44 for example) in the Traceroute() response. It also discovers, via an
event, that ActiveTestIDs is now “44”.

 Parent Device performs the test and, on completion, removes test ID 44 from ActiveTestIDs.

 Control point discovers, via an event, that ActiveTestIDs is “” and knows that the test is complete.

 Control point calls GetTracerouteResult(44) to retrieve the test results. For example:

o GetTracerouteResult(44) (“Success”, “”, 888, “1.2.3.4,2.3.4.5,,4.5.6.7”) indicates that the
trace-route test was successful, no additional information string was returned, the average round-
trip time to www.myserver.com was 888 milliseconds, and there were four hops to
www.myserver.com. The third entry in the list of hops is empty, indicating that no replies were
received from it. The final entry will be www.myserver.com’s IP address.

o GetTracerouteResult(44) (“Error_MaxHopCountExceeded”, “Timeout”, 0, “”) indicates that
the trace-route test failed because the number of hops to www.mysever.com is more than the
supplied hop count. The free-format additional info indicates a timeout, and the values of the
remaining output arguments are irrelevant (because the test failed).

Alternatively, if the control point doesn’t want to use events, once it knows the test ID it can call
GetTestInfo(44), which returns the test type (Traceroute) and the test state (Requested, InProgress,

BasicManagement:1 Service Template Version 1.01 59

Copyright © 2010 UPnP Forum. All Rights Reserved.

Canceled, Completed). Once it changes to Completed, GetTracerouteResult(44) can be called to return the
results.

2.6.8. Running an InterfaceReset Test
Suppose that a control point wishes to reset an IP interface. This example illustrates the interactions with
the Parent Device:

 Control point subscribes to BasicManagement:1 events and discovers that ActiveTestIDs is “”,
indicating that no tests are currently active.

 Control point calls InterfaceReset(). For example:

o InterfaceReset(“AllInterfaces”) : reset all IP interfaces.

o InterfaceReset(“RequestInterface”) : reset the IP interface on which the action request was
received.

o InterfaceReset(“X_UPNP_ORG_lan”) : reset the IP interface whose system name is lan. If no
such interface exists, the request will be rejected with a 701 (Interface Not Found) error.

 Control point receives test ID (45 for example) in the InterfaceReset() response. It also discovers, via
an event, that ActiveTestIDs is “45”.

 Parent Device performs the test. If the UPnP management interface needs to be reset, this will force
the Parent Device also to be reset, in which case test ID 45 needs to persist across this reset. On
completion, test ID 45 is removed from ActiveTestIDs.

 Control point discovers, via an event, that ActiveTestIDs is “” and knows that the test is complete, i.e.,
test ID 45 has been removed because of the test completion.

 Control point calls GetInterfaceResetResult(45) and retrieves the test results. For example:

o GetInterfaceResetResult(45) (“Success”, “”, 1, 0) indicates that the interface reset test was
successful, no additional information string was returned, one IP interface was successfully reset,
and no IP interfaces could not be reset.

o GetInterfaceResetResult(45) (“Error_Other”, “Timeout”, 0, 0) indicates that the interface reset
test failed. The free-format additional info indicates a timeout, and the values of the remaining
output arguments are irrelevant (because the test failed).

Alternatively, if the control point doesn’t want to use events, once it knows the test ID it can call
GetTestInfo(45), which returns the test type (InterfaceReset) and the test state (Requested, InProgress,
Canceled, Completed). Once it changes to Completed, GetInterfaceResetResult(45) can be called to return
the results.

2.6.9. Running a Self Test
Suppose that a control point wishes to run a self test. This example illustrates the interactions with the
Parent Device:

 Control point subscribes to BasicManagement:1 events and discovers that ActiveTestIDs is “”,
indicating that no tests are currently active.

 Control point calls SelfTest().

 Control point receives test ID (46 for example) in the SelfTest() response. It also discovers, via an
event, that ActiveTestIDs is “46”.

 Parent Device performs the test and, on completion, removes test ID 46 from ActiveTestIDs.

BasicManagement:1 Service Template Version 1.01 60

Copyright © 2010 UPnP Forum. All Rights Reserved.

 Control point discovers, via an event, that ActiveTestIDs is “” and knows that the test is complete, i.e.,
test ID 46 has been removed because of the test completion.

 Control point calls GetSelfTestResult(46) and retrieves the test results. For example:

o GetSelfTestResult(46) (1, “”) indicates that the self test was successful, but no additional
information string was returned.

o GetSelfTestResult(46) (0, “Timeout”) indicates that the self test failed. The free-format
additional info indicates a timeout.

Alternatively, if the control point doesn’t want to use events, once it knows the test ID it can call
GetTestInfo(46), which returns the test type (SelfTest) and the test state (Requested, InProgress, Canceled,
Completed). Once it changes to Completed, GetSelfTestResult(46) can be called to return the results.

2.6.10. Manipulating Logs
The evented LogURIs state variable contains a list of the URIs of each log that is currently supported by
the Parent Device. This list can also be retrieved via the GetLogURIs() action. For example:

 GetLogURIs() (“urn:example-com:device-log”) : a single log for Parent Device #1 and #2a.

 GetLogURIs() (“urn:example-com:device-log,urn:example-com:jvm-log”) : two logs for Parent
Device #2b.

Each log URI uniquely identifies a log and is used as an argument to the remaining log-related actions. For
example:

 GetLogInfo(“urn:example-com:device-log”) (1, 1, “Error”, “http://192.168.1.254/device-log”, 0,
2009-06-15T14:00:00) indicates that the specified log is configurable, is enabled, its current log level
(Error), its log URL (http://192.168.1.254/device-log), its maximum size (0 means unknown), and the
time at which it last changed.

 GetLogInfo(“urn:example-com:jvm-log”) (0, 1, “Info”, “http://192.168.1.254/jvm-log”, 100000,
2009-06-15T14:00:00) indicates that the specified log is not configurable, is enabled, its current log
level (Info), its log URL (http://192.168.1.254/jvm-log), its maximum size (100000 bytes), and the
time at which it last changed.

 SetLogInfo(“urn:example-com:device-log”, 1, Info) changes the log level from Error to Info.

 SetLogInfo(“urn:example-com:jvm-log”, 1, Info) fails with a 711 (Log Not Configurable) error.

BasicManagement:1 Service Template Version 1.01 61

Copyright © 2010 UPnP Forum. All Rights Reserved.

3. XML Service Description
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>Reboot</name>
 <argumentList>
 <argument>
 <name>RebootStatus</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_RebootStatus</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>BaselineReset</name>
 </action>
 <action>
 <name>GetDeviceStatus</name>
 <argumentList>
 <argument>
 <name>DeviceStatus</name>
 <direction>out</direction>
 <relatedStateVariable>DeviceStatus</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>SetSequenceMode</name>
 <argumentList>
 <argument>
 <name>NewSequenceMode</name>
 <direction>in</direction>
 <relatedStateVariable>SequenceMode</relatedStateVariable>
 </argument>
 <argument>
 <name>OldSequenceMode</name>
 <direction>out</direction>
 <relatedStateVariable>SequenceMode</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetSequenceMode</name>
 <argumentList>
 <argument>
 <name>SequenceMode</name>
 <direction>out</direction>
 <relatedStateVariable>SequenceMode</relatedStateVariable>
 </argument>
 </argumentList>

BasicManagement:1 Service Template Version 1.01 62

Copyright © 2010 UPnP Forum. All Rights Reserved.

 </action>
 <action>
 <name>Ping</name>
 <argumentList>
 <argument>
 <name>Host</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_Host</relatedStateVariable>
 </argument>
 <argument>
 <name>NumberOfRepetitions</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_UInt</relatedStateVariable>
 </argument>
 <argument>
 <name>Timeout</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_MSecs</relatedStateVariable>
 </argument>
 <argument>
 <name>DataBlockSize</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_UShort</relatedStateVariable>
 </argument>
 <argument>
 <name>DSCP</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_DSCP</relatedStateVariable>
 </argument>
 <argument>
 <name>TestID</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_TestID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetPingResult</name>
 <argumentList>
 <argument>
 <name>TestID</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_TestID</relatedStateVariable>
 </argument>
 <argument>
 <name>Status</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_PingStatus</relatedStateVariable>
 </argument>
 <argument>
 <name>AdditionalInfo</name>
 <direction>out</direction>

BasicManagement:1 Service Template Version 1.01 63

Copyright © 2010 UPnP Forum. All Rights Reserved.

<relatedStateVariable>A_ARG_TYPE_String</relatedStateVariable>
 </argument>
 <argument>
 <name>SuccessCount</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_UInt</relatedStateVariable>
 </argument>
 <argument>
 <name>FailureCount</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_UInt</relatedStateVariable>
 </argument>
 <argument>
 <name>AverageResponseTime</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_MSecs</relatedStateVariable>
 </argument>
 <argument>
 <name>MinimumResponseTime</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_MSecs</relatedStateVariable>
 </argument>
 <argument>
 <name>MaximumResponseTime</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_MSecs</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>NSLookup</name>
 <argumentList>
 <argument>
 <name>HostName</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_HostName</relatedStateVariable>
 </argument>
 <argument>
 <name>DNSServer</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_Host</relatedStateVariable>
 </argument>
 <argument>
 <name>NumberOfRepetitions</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_UInt</relatedStateVariable>
 </argument>
 <argument>
 <name>Timeout</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_MSecs</relatedStateVariable>
 </argument>
 <argument>
 <name>TestID</name>
 <direction>out</direction>

BasicManagement:1 Service Template Version 1.01 64

Copyright © 2010 UPnP Forum. All Rights Reserved.

<relatedStateVariable>A_ARG_TYPE_TestID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetNSLookupResult</name>
 <argumentList>
 <argument>
 <name>TestID</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_TestID</relatedStateVariable>
 </argument>
 <argument>
 <name>Status</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_NSLookupStatus</relatedStateVariable>
 </argument>
 <argument>
 <name>AdditionalInfo</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_String</relatedStateVariable>
 </argument>
 <argument>
 <name>SuccessCount</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_UInt</relatedStateVariable>
 </argument>
 <argument>
 <name>Result</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_NSLookupResult</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>Traceroute</name>
 <argumentList>
 <argument>
 <name>Host</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_Host</relatedStateVariable>
 </argument>
 <argument>
 <name>Timeout</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_MSecs</relatedStateVariable>
 </argument>
 <argument>
 <name>DataBlockSize</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_UShort</relatedStateVariable>

BasicManagement:1 Service Template Version 1.01 65

Copyright © 2010 UPnP Forum. All Rights Reserved.

 </argument>
 <argument>
 <name>MaxHopCount</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_UInt</relatedStateVariable>
 </argument>
 <argument>
 <name>DSCP</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_DSCP</relatedStateVariable>
 </argument>
 <argument>
 <name>TestID</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_TestID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetTracerouteResult</name>
 <argumentList>
 <argument>
 <name>TestID</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_TestID</relatedStateVariable>
 </argument>
 <argument>
 <name>Status</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_TracerouteStatus</relatedStateVariable
>
 </argument>
 <argument>
 <name>AdditionalInfo</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_String</relatedStateVariable>
 </argument>
 <argument>
 <name>ResponseTime</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_MSecs</relatedStateVariable>
 </argument>
 <argument>
 <name>HopHosts</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_Hosts</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>InterfaceReset</name>
 <argumentList>
 <argument>

BasicManagement:1 Service Template Version 1.01 66

Copyright © 2010 UPnP Forum. All Rights Reserved.

 <name>Interfaces</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_Interfaces</relatedStateVariable>
 </argument>
 <argument>
 <name>TestID</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_TestID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetInterfaceResetResult</name>
 <argumentList>
 <argument>
 <name>TestID</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_TestID</relatedStateVariable>
 </argument>
 <argument>
 <name>Status</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_InterfaceResetStatus</relatedStateVari
able>
 </argument>
 <argument>
 <name>AdditionalInfo</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_String</relatedStateVariable>
 </argument>
 <argument>
 <name>NumberOfSuccesses</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_UShort</relatedStateVariable>
 </argument>
 <argument>
 <name>NumberOfFailures</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_UShort</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>SelfTest</name>
 <argumentList>
 <argument>
 <name>TestID</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_TestID</relatedStateVariable>

BasicManagement:1 Service Template Version 1.01 67

Copyright © 2010 UPnP Forum. All Rights Reserved.

 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetSelfTestResult</name>
 <argumentList>
 <argument>
 <name>TestID</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_TestID</relatedStateVariable>
 </argument>
 <argument>
 <name>Status</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_Boolean</relatedStateVariable>
 </argument>
 <argument>
 <name>AdditionalInfo</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_String</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetActiveTestIDs</name>
 <argumentList>
 <argument>
 <name>TestIDs</name>
 <direction>out</direction>
 <relatedStateVariable>ActiveTestIDs</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetTestInfo</name>
 <argumentList>
 <argument>
 <name>TestID</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_TestID</relatedStateVariable>
 </argument>
 <argument>
 <name>Type</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_TestType</relatedStateVariable>
 </argument>
 <argument>
 <name>State</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_TestState</relatedStateVariable>
 </argument>

BasicManagement:1 Service Template Version 1.01 68

Copyright © 2010 UPnP Forum. All Rights Reserved.

 </argumentList>
 </action>
 <action>
 <name>CancelTest</name>
 <argumentList>
 <argument>
 <name>TestID</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_TestID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetLogURIs</name>
 <argumentList>
 <argument>
 <name>LogURIs</name>
 <direction>out</direction>
 <relatedStateVariable>LogURIs</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>SetLogInfo</name>
 <argumentList>
 <argument>
 <name>LogURI</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_LogURI</relatedStateVariable>
 </argument>
 <argument>
 <name>Enabled</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_Boolean</relatedStateVariable>
 </argument>
 <argument>
 <name>LogLevel</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_LogLevel</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetLogInfo</name>
 <argumentList>
 <argument>
 <name>LogURI</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_LogURI</relatedStateVariable>
 </argument>
 <argument>
 <name>Configurable</name>

BasicManagement:1 Service Template Version 1.01 69

Copyright © 2010 UPnP Forum. All Rights Reserved.

 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_Boolean</relatedStateVariable>
 </argument>
 <argument>
 <name>Enabled</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_Boolean</relatedStateVariable>
 </argument>
 <argument>
 <name>LogLevel</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_LogLevel</relatedStateVariable>
 </argument>
 <argument>
 <name>LogURL</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_LogURL</relatedStateVariable>
 </argument>
 <argument>
 <name>MaxSize</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_LogMaxSize</relatedStateVariable>
 </argument>
 <argument>
 <name>LastChange</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_DateTime</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="yes">
 <name>DeviceStatus</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>SequenceMode</name>
 <dataType>boolean</dataType>
 <defaultValue>0</defaultValue>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>ActiveTestIDs</name>
 <dataType>string</dataType>
 <defaultValue></defaultValue>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>LogURIs</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">

BasicManagement:1 Service Template Version 1.01 70

Copyright © 2010 UPnP Forum. All Rights Reserved.

 <name>A_ARG_TYPE_Boolean</name>
 <dataType>boolean</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_String</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_UShort</name>
 <dataType>ui2</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_UInt</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_DateTime</name>
 <dataType>dateTime.tz</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_MSecs</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_RebootStatus</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>RebootNow</allowedValue>
 <allowedValue>RebootLater</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_TestID</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_TestType</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>NSLookup</allowedValue>
 <allowedValue>Ping</allowedValue>
 <allowedValue>SelfTest</allowedValue>
 <allowedValue>Traceroute</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_TestState</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Requested</allowedValue>
 <allowedValue>InProgress</allowedValue>
 <allowedValue>Canceled</allowedValue>
 <allowedValue>Completed</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_DSCP</name>

BasicManagement:1 Service Template Version 1.01 71

Copyright © 2010 UPnP Forum. All Rights Reserved.

 <dataType>ui1</dataType>
 <allowedValueRange>
 <minimum>0</minimum>
 <maximum>63</maximum>
 </allowedValueRange>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Host</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Hosts</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_HostName</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_PingStatus</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Success</allowedValue>
 <allowedValue>Error_CannotResolveHostName</allowedValue>
 <allowedValue>Error_Internal</allowedValue>
 <allowedValue>Error_Other</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_NSLookupStatus</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Success</allowedValue>
 <allowedValue>Error_DNSServerNotResolved</allowedValue>
 <allowedValue>Error_Internal</allowedValue>
 <allowedValue>Error_Other</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_NSLookupResult</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_TracerouteStatus</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Success</allowedValue>
 <allowedValue>Error_CannotResolveHostName</allowedValue>
 <allowedValue>Error_MaxHopCountExceeded</allowedValue>
 <allowedValue>Error_Internal</allowedValue>
 <allowedValue>Error_Other</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Interfaces</name>
 <dataType>string</dataType>
 <allowedValueList>

BasicManagement:1 Service Template Version 1.01 72

Copyright © 2010 UPnP Forum. All Rights Reserved.

 <allowedValue>AllInterfaces</allowedValue>
 <allowedValue>RequestInterface</allowedValue>
 <allowedValue>NorthboundInterfaces</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_InterfaceResetStatus</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Success</allowedValue>
 <allowedValue>Error</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_LogURI</name>
 <dataType>uri</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_LogURL</name>
 <dataType>uri</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_LogLevel</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Emergency</allowedValue>
 <allowedValue>Alert</allowedValue>
 <allowedValue>Critical</allowedValue>
 <allowedValue>Error</allowedValue>
 <allowedValue>Warning</allowedValue>
 <allowedValue>Notice</allowedValue>
 <allowedValue>Informational</allowedValue>
 <allowedValue>Debug</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_LogMaxSize</name>
 <dataType>ui4</dataType>
 </stateVariable>
 </serviceStateTable>
</scpd>

