

SoftwareManagement:2
Service Template Version 1.01
For UPnP Version 1.0
Status: Standardized DCP (SDCP)
Date: February 16th, 2012

This Standardized DCP has been adopted as a Standardized DCP by the Steering
Committee of the UPnP Forum, pursuant to Section 2.1(c)(ii) of the UPnP Forum
Membership Agreement. UPnP Forum Members have rights and licenses defined by
Section 3 of the UPnP Forum Membership Agreement to use and reproduce the
Standardized DCP in UPnP Compliant Devices. All such use is subject to all of the
provisions of the UPnP Forum Membership Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY
INTELLECTUAL PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS.
THE STANDARDIZED DCPS ARE PROVIDED "AS IS" AND "WITH ALL
FAULTS". THE UPNP FORUM MAKES NO WARRANTIES, EXPRESS, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE STANDARDIZED DCPS,
INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A
PARTICULAR PURPOSE, OF REASONABLE CARE OR WORKMANLIKE
EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE.

© 2012 UPnP Forum. All Rights Reserved.

Authors Company

André Bottaro France Telecom Group

Nicolas Chabanoles France Telecom Group

Levent Gurgen France Telecom Group

Jooyeol Lee Samsung Electronics

William Lupton 2Wire / Pace

Davide Moreo Telecom Italia

Francois-Gaël Ottogalli France Telecom Group

Xavier Roubaud France Telecom Group

Kiran Vedula (Editor) Samsung Electronics

SoftwareManagement: 2 Service Template Version 1.01 2

 * Note: The UPnP Forum in no way guarantees the accuracy or completeness of this author list and in no
way implies any rights for or support from those members listed. This list is not the specifications’
contributor list that is kept on the UPnP Forum’s website.

Contents

LIST OF TABLES ... 4

LIST OF FIGURES ... 6

1 OVERVIEW AND SCOPE .. 7

1.1 INTRODUCTION ... 7
1.2 REFERENCES... 7
1.3 GLOSSARY .. 8
1.4 NOTATION .. 9

1.4.1 Data Types ... 9
1.4.2 Strings Embedded in Other Strings ... 10

1.5 DERIVED DATA TYPES ... 10
1.5.1 Comma Separated Value (CSV) Lists .. 10
1.5.2 Embedded XML Documents .. 12

1.6 MANAGEMENT OF XML NAMESPACES IN STANDARDIZED DCPS ... 13
1.6.1 Namespace Names, Namespace Versioning and Schema Versioning 15
1.6.2 Namespace Usage Examples ... 17

1.7 VENDOR-DEFINED EXTENSIONS ... 17

2 SERVICE MODELING DEFINITIONS .. 18

2.1 SERVICE TYPE .. 18
2.2 KEY CONCEPTS .. 18

2.2.1 Software entities .. 18
2.2.2 Software Data Model ... 18
2.2.3 Lifecycle Management ... 18
2.2.4 Firmware ... 21
2.2.5 Asynchronous actions .. 21
2.2.6 Software entity dependency management .. 22
2.2.7 Security .. 22

2.3 STATE VARIABLES ... 25
2.3.1 OperationIDs ... 26
2.3.2 DUIDs ... 27
2.3.3 EUIDs .. 27
2.3.4 ActiveEUIDs .. 27
2.3.5 RunningEUIDs .. 27
2.3.6 ErrorEUIDs ... 27
2.3.7 A_ARG_TYPE_Boolean .. 27
2.3.8 A_ARG_TYPE_String .. 28
2.3.9 A_ARG_TYPE_ID ... 28
2.3.10 A_ARG_TYPE_IDs .. 28
2.3.11 A_ARG_TYPE_OperationState ... 28
2.3.12 A_ARG_TYPE_URI ... 29
2.3.13 A_ARG_TYPE_Action ... 29

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 3

2.3.14 A_ARG_TYPE_ErrorDescription .. 30
2.3.15 A_ARG_TYPE_DUType .. 30
2.3.16 A_ARG_TYPE_Name .. 31
2.3.17 A_ARG_TYPE_Version ... 31
2.3.18 A_ARG_TYPE_DUState .. 31
2.3.19 A_ARG_TYPE_EURequestedState .. 31
2.3.20 A_ARG_TYPE_EURunningState ... 31
2.3.21 A_ARG_TYPE_ACL .. 32

2.4 EVENTING AND MODERATION .. 35
2.5 ACTIONS ... 36

2.5.1 Install() .. 37
2.5.2 Update() ... 39
2.5.3 Uninstall() .. 42
2.5.4 Start() ... 44
2.5.5 Stop() ... 46
2.5.6 GetDUIDs() ... 47
2.5.7 GetEUIDs() .. 48
2.5.8 GetActiveEUIDs() .. 49
2.5.9 GetRunningEUIDs() .. 50
2.5.10 GetOperationInfo() .. 50
2.5.11 GetOperationIDs()... 52
2.5.12 GetErrorEUIDs()... 53
2.5.13 GetDUInfo() .. 53
2.5.14 GetEUInfo() ... 55
2.5.15 GetACLData() ... 56
2.5.16 Common Error Codes .. 57

2.6 THEORY OF OPERATION ... 59
2.6.1 Scenarios ... 59

3 XML SERVICE DESCRIPTION (NORMATIVE) ... 67

4 XML SCHEMA (NORMATIVE) .. 75

5 EXECUTION PLATFORM TECHNOLOGIES (INFORMATIVE) ... 77

EXECUTION PLATFORM TECHNOLOGIES ... 77
Definitions ... 77
Linux Packages .. 78
OSGi bundles ... 79
Java MIDlets ... 81
.NET Assemblies .. 82
SCOMO Components: a attempt of generalization ... 83

6 SOFTWARE DATA MODEL (NORMATIVE) ... 85

7 CHANGES IN NEWER VERSION (INFORMATIVE) .. 88

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 4

List of Tables
Table 1-1: CSV Examples ... 11

Table 1-2: Namespace Definitions .. 14

Table 1-3: Schema-related Information ... 14

Table 2-1: State Variables ... 25

Table 2-2: AllowedValueList for A_ARG_TYPE_OperationState .. 28

Table 2-3: AllowedValueList for A_ARG_TYPE_Action ... 29

Table 2-4: AllowedValueList for A_ARG_TYPE_ErrorDescription .. 30

Table 2-5: AllowedValueList for A_ARG_TYPE_DUType .. 30

Table 2-6: AllowedValueList for A_ARG_TYPE_DUState .. 31

Table 2-7: AllowedValueList for A_ARG_TYPE_EURequestedState .. 31

Table 2-8: AllowedValueList for A_ARG_TYPE_EURunningState ... 32

Table 2-9: Event Moderation .. 35

Table 2-10: Actions ... 36

Table 2-11: Arguments for Install() .. 37

Table 2-12: Error Codes for Install()... 39

Table 2-13: Arguments for Update() ... 40

Table 2-14: Error Codes for Update() ... 41

Table 2-15: Arguments for Uninstall() .. 42

Table 2-16: Error Codes for Uninstall() .. 43

Table 2-17: Arguments for Start() ... 44

Table 2-18: Error Codes for Start() ... 45

Table 2-19: Arguments for Stop() ... 46

Table 2-20: Error Codes for Stop () ... 47

Table 2-21: Arguments for GetDUIDs() ... 48

Table 2-22: Error Codes for GetDUIDs() ... 48

Table 2-23: Arguments for GetEUIDs() .. 48

Table 2-24: Error Codes for GetEUIDs() .. 49

Table 2-25: Arguments for GetActiveEUIDs() .. 49

Table 2-26: Error Codes for GetActiveEUIDs() .. 49

Table 2-27: Arguments for GetRunningEUIDs() .. 50

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 5

Table 2-28: Error Codes for GetRunningEUIDs() .. 50

Table 2-29: Arguments for GetOperationInfo() .. 51

Table 2-30: Error Codes for GetOperationInfo() .. 51

Table 2-31: Arguments for GetOperationIDs()... 52

Table 2-32: Error Codes for GetOperationIDs() ... 52

Table 2-33: Arguments for GetErrorEUIDs()... 53

Table 2-34: Error Codes for GetErrorEUIDs() ... 53

Table 2-35: Arguments for GetDUInfo() .. 54

Table 2-36: Error Codes for GetDUInfo() ... 54

Table 2-37: Arguments for GetEUInfo() ... 55

Table 2-38: Error Codes for GetEUInfo() ... 56

Table 2-39: Arguments for GetACLData() ... 56

Table 2-40: Error Codes for GetACLData() .. 57

Table 2-41: Common Error Codes .. 57

Table 5-1: Execution platform technology comparisons ... 78

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 6

List of Figures
Figure 2-1: DU state diagram .. 19

Figure 2-2: EUs’ Requested State ... 20

Figure 2-3: EUs’ Running State .. 20

Figure 2-4 Software management operation state diagram ... 29

Figure 2-5 Installing a software entity successfully without dependency ... 60

Figure 2-6 Update of Primary Firmware ... 65

Figure 55-1 A general vision of Linux software entities and their state diagrams .. 79

Figure 5-2 The OSGi bundle lifecycle .. 81

Figure 5-3 The lifecycle of MIDlet Suites and the one of their MIDlets .. 82

Figure 5-4 The state diagram of a .NET assembly .. 83

Figure 5-5 SCOMO Delivery Package State Diagram .. 85

Figure 5-6 SCOMO Deployment Component State Diagram ... 85

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 7

1 Overview and Scope
This service definition is compliant with the UPnP Device Architecture version 1.0 [UDA1.0]. It defines a
service type referred to herein as SoftwareManagement:2 service or, where the version number is not
significant, SoftwareManagement service.

1.1 Introduction
Many devices in the home network (for example, TV, Camera, Media Server etc.) have embedded software
or firmware that needs to be managed. The SoftwareManagemen service is intended to provide control
points with the ability to manage this embedded software or firmware.

The SoftwareManagement service enables a control point to:
• Install or Update software entities on a targeted Execution Environment.
• Uninstall software entities on a targeted Execution Environment.
• Start software entities on a targeted Execution Environment.
• Stop software entities on a targeted Execution Environment.
• Update device firmware.

The SoftwareManagement service does not:
• Mandate the protocol used for downloading the software entities
• Provide details of any particular Execution Environment

These operations can be protected by an OPTIONAL Security feature based on DeviceProtection:1 [DPS].
Actions that do not return sensitive information, change the device configuration, or affect normal device
operation can always be invoked by all control points. If the Security feature is supported, other actions
can only be invoked if the control point is appropriately authorized.

This specification frequently uses the term Parent Device. This refers to UPnP device/service sub-tree
whose root is the UPnP device that contains the SoftwareManagement service instance. UPnP actions or
other operations on a Parent Device SHOULD apply to all levels of this sub-tree, but SHOULD NOT
apply to an embedded device that itself contains a SoftwareManagement service instance.

1.2 References
This section lists the references used in the UPnP DM specifications and includes the tag inside square
brackets that is used for each such reference:

[BMS] UPnP BasicManagement:2 Service Document, UPnP Forum, Feb 16, 2012.
Available at: www.upnp.org/specs/dm/UPnP-dm-BasicManagement-v2-Service.pdf

[CMS] UPnP ConfigurationManagement:2 Service Document, UPnP Forum, Feb 16, 2012.
Available at: http://www.upnp.org/specs/dm/UPnP-dm-ConfigurationManagement-v2-
Service.pdf

[CMS-XSD] XML Schema for ConfigurationManagement:2, UPnP Forum, Feb 16, 2012.
http://www.upnp.org/schemas/dm/cms-v2.xsd

[DEVICE] UPnP ManageableDevice:2 Device Document, UPnP Forum, Feb 16, 2012.
Available at: http://www.upnp.org/specs/dm/UPnP-dm-ManageableDevice-v2-Device.pdf

[DPS] UPnP DeviceProtection:1 Service Document, UPnP Forum, Feb 24, 2011.
Available at: http://upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf

Copyright UPnP Forum © 2012. All rights reserved.

http://www.upnp.org/specs/dm/UPnP-dm-BasicManagement-v2-Service.pdf
http://www.upnp.org/specs/dm/UPnP-dm-ConfigurationManagement-v2-Service.pdf
http://www.upnp.org/specs/dm/UPnP-dm-ConfigurationManagement-v2-Service.pdf
http://www.upnp.org/schemas/dm/cms-v2.xsd
http://www.upnp.org/specs/dm/UPnP-dm-ManageableDevice-v2-Device.pdf
http://upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf

SoftwareManagement: 2 Service Template Version 1.01 8

[MIDP] Mobile Information Device Profile for Java™ 2 Micro Edition Version 2.0, Java
Community Process, November 2002.

[OSGi] OSGi Core Specification and Service Compendium, Release 4 Version 4.1, OSGi Alliance,
April 2007.

[RF07] A Survey of Unix Init Schemes, Yvan Royon, Stéphane Frénot, Technical Report, Inria RT-
0338, June 2007.

[REQLEV] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, S.Bradner, 1997.
Available at: http://www.ietf.org/rfc/rfc2119.txt

[SCOMO] Software Component Management Object, Open Mobile Alliance (OMA), Draft Version
1.0, June 2008.

[UDA1.0] UPnP Device Architecture, version1.0, UPnP Forum, July 20, 2006.
Available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf

[XML] Extensible Markup Language (XML) 1.0 (Third Edition), W3C, February 2004,
http://www.w3.org/TR/2004/REC-xml-20040204

[XML-NS] The “xml:” Namespace, W3C, April 2006, http://www.w3.org/XML/1998/namespace

[XML-NMSP] Namespaces in XML, W3C, August 2006, http://www.w3.org/TR/REC-xml-names

[XML-
SCHEMA-1]

XML Schema Part 1: Structures Second Edition, W3C, October 2004,
http://www.w3.org/TR/xmlschema-1

[XML-
SCHEMA-2]

XML Schema Part 2: Datatypes Second Edition, W3C, October 2004,
http://www.w3.org/TR/xmlschema-2

[XPATH-1.0] XML Path Language (XPath) Version 1.0, W3C, November 1999,
http://www.w3.org/TR/xpath

1.3 Glossary

ACL Access Control List

BMS BasicManagement Service

CMS ConfigurationManagement Service

CSD Configuration State Diagram

CSV Comma-Separated Value

DU Deployment Unit

DUID Deployment Unit identifier

EE Execution Environment

EU Execution Unit

EUID Execution Unit identifier

RSD Running State Diagram

SMS SoftwareManagement Service

Copyright UPnP Forum © 2012. All rights reserved.

http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/XML/1998/namespace
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xpath

SoftwareManagement: 2 Service Template Version 1.01 9

1.4 Notation
• In this document, features are described as Required, Recommended, or Optional as follows:

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this
specification are to be interpreted as described in [REQLEV].

In addition, the following keywords are used in this specification:

PROHIBITED – The definition or behavior is an absolute prohibition of this specification.
Opposite of REQUIRED.

CONDITIONALLY REQUIRED – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is REQUIRED, otherwise it is
PROHIBITED.

CONDITIONALLY OPTIONAL – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is OPTIONAL, otherwise it is
PROHIBITED.

These keywords are thus capitalized when used to unambiguously specify requirements over
protocol and application features and behavior that affect the interoperability and security of
implementations. When these words are not capitalized, they are meant in their natural-language
sense.

• Strings that are to be taken literally are enclosed in “double quotes.”

• Words that are emphasized are printed in italic.

• Data model names and values, and literal XML, are printed using the data character style.

• Keywords that are defined by the UPnP DM Working Committee are printed using the forum
character style.

• Keywords that are defined by the UPnP Device Architecture are printed using the arch character
style.

• A double colon delimiter, “::”, signifies a hierarchical parent-child (parent::child) relationship
between the two objects separated by the double colon. This delimiter is used in multiple contexts,
for example: Service::Action(), Action()::Argument.

1.4.1 Data Types
This specification uses data type definitions from two different sources. The UPnP Device Architecture
defined data types are used to define state variable and action argument data types [UDA1.0]. The XML
Schema namespace is used to define XML-valued action arguments [XML-SCHEMA-2] (including [CMS]
data model parameter values).

For UPnP Device Architecture defined Boolean data types, it is strongly RECOMMENDED to use the
value “0” for false, and the value “1” for true. However, when used as input arguments, the values “false”,
“no”, “true”, “yes” may also be encountered and MUST be accepted. Nevertheless, it is strongly
RECOMMENDED that all state variables and output arguments be represented as “0” and “1”.

For XML Schema defined Boolean data types, it is strongly RECOMMENDED to use the value “0” for
false, and the value “1” for true. However, when used within input arguments, the values “false”, “true”

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 10

may also be encountered and MUST be accepted. Nevertheless, it is strongly RECOMMENDED that all
XML Boolean values be represented as “0” and “1”.

XML elements that are of type xsd:anySimpleType (for example [CMS] data model parameter
values) MUST include an xsi:type attribute that indicates the actual data type of the element value.
This is a SOAP requirement.

1.4.2 Strings Embedded in Other Strings
Some string variables, arguments and other XML elements and attributes (including [CMS] data model
parameter values) described in this document contain substrings that MUST be independently identifiable
and extractable for other processing. This requires the definition of appropriate substring delimiters and an
escaping mechanism so that these delimiters can also appear as ordinary characters in the string and/or its
independent substrings.

This document uses such embedded strings in Comma Separated Value (CSV) lists (see section 1.5.1).
Escaping conventions use the backslash character, “\” (character code U+005C), as follows:

a) Backslash (“\”) is represented as “\\”.

b) Comma (“,”) is represented as “\,” in individual substring entries.

c) Double quote (“””) is not escaped.

This document also uses such embedded strings to represent XML documents (see section 1.5.2).
Escaping conventions use XML entity references as specified in [XML] Section 2.4. For example:

a) Ampersand (“&”) is represented as “&” or via a numeric character reference.

b) Left angle bracket (“<”) is represented as “<” or via a numeric character reference.

c) Right angle bracket (“>”) usually doesn’t have to be escaped, but often is, in which case it is
represented as “>” or via a numeric character reference.

1.5 Derived Data Types
This section defines a derived data type that is represented as a string data type with special syntax. This
specification uses string data type definitions that originate from two different sources. The UPnP Device
Architecture defined string data type is used to define state variable and action argument string data types.
The XML Schema namespace is used to define xsd:string data types. The following definition applies
to both string data types.

1.5.1 Comma Separated Value (CSV) Lists
The UPnP DM services use state variables, action arguments and other XML elements and attributes that
represent lists – or one-dimensional arrays – of values. [UDA1.0] does not provide for either an array type
or a list type, so a list type is defined here. Lists MAY either be homogeneous (all values are the same
type) or heterogeneous (values of different types are allowed). Lists MAY also consist of repeated
occurrences of homogeneous or heterogeneous subsequences, all of which have the same syntax and
semantics (same number of values, same value types and in the same order).

• The data type of a homogeneous list is string or xsd:string and denoted by CSV (x), where x
is the type of the individual values.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 11

• The data type of a heterogeneous list is also string or xsd:string and denoted by CSV (w, x [,
y, z]), where w, x, y and z are the types of the individual values, and the square brackets indicate
that y and z (and the preceding comma) are optional. If the number of values in the heterogeneous
list is too large to show each type individually, that variable type is represented as CSV
(heterogeneous), and the variable description includes additional information as to the expected
sequence of values appearing in the list and their corresponding types. The data type of a repeated
subsequence list is string or xsd:string and denoted by CSV ({w, x, y, z}), where w, x, y and
z are the types of the individual values in the subsequence and the subsequence MAY be repeated
zero or more times (in this case none of the values are optional).

The individual value types are specified as [UDA1.0] data types or A_ARG_TYPE data types for string
lists, and as [XML-SCHEMA-2] data types for xsd:string lists.

• A list is represented as a string type (for state variables and action arguments) or xsd:string
type (within other XML elements and attributes).

• Commas separate values within a list.

• Integer values are represented in CSVs with the same syntax as the integer data type specified in
[UDA1.0] (that is: optional leading sign, optional leading zeroes, numeric ASCII).

• Boolean values are represented in state variable and action argument CSVs as either “0” for false
or “1” for true. These values are a subset of the defined Boolean data type values specified in
[UDA1.0] : 0, false, no, 1, true, yes.

• Boolean values are represented in other XML element CSVs as either “0” for false or “1” for true.
These values are a subset of the defined Boolean data type values specified in [XML-SCHEMA-
2]: 0, false, 1, true.

• Escaping conventions for the comma and backslash characters are defined in section 1.4.2.

• The number of values in a list is the number of unescaped commas, plus one. The one exception
to this rule is that an empty string represents an empty list. This means that there is no way to
represent a list consisting of a single empty string value.

• White space before, after, or interior to any numeric data type is not allowed.

• White space before, after, or interior to any other data type is part of the value.

Table 1-1: CSV Examples

Type refinement of
string

Value Comments

CSV (string) “first,second” List of 2 strings used as state variable or
action argument value.

CSV (xsd:string) “first,second” List of 2 strings used within an XML
element

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 12

Type refinement of Value Comments
string

CSV (xsd:token) “first, second ” List of 2 strings used within an XML
element. Each element is of type
xsd:token so, even though the second
value is “ second ” and has leading and
trailing spaces, the value seen by the
application will be “second” because
xsd:token collapses whitespace.

CSV (string, date-
Time.tz [, string])

“Warning,2009-07-
07T13:22:41, third\,value”

List of string, dateTime.tz and (optional)
string used as state variable or action
argument value. Note the leading space and
escaped comma in the third value, which is “
third,value”.

CSV (string, date-
Time.tz [, string])

“Warning,2009-07-
07T13:22:41,”

As above but third value is empty.

CSV (string, date-
Time.tz [, string])

“Warning,2009-07-
07T13:22:41”

As above but third value is omitted.

CSV (A_ARG_TYPE_-
Host)

“grumpy,sleepy” List of data items used as action argument
value, each of which obeys the rules
governing A_ARG_TYPE_Host. Any
comma or backslash characters within a data
item would have been escaped.

CSV (i4) “1, 2” Illegal CSV. White space is not allowed as
part of an integer value.

CSV (string) “a,,c,” List of 4 strings “a”, “”, “c” and “”.

CSV (string) “” Empty list. It is not possible to create a list
containing a single empty string.

1.5.2 Embedded XML Documents
An XML document is a string that represents a valid XML 1.0 document according to a specific schema.
Every occurrence of the phrase “XML Document” is italicized and preceded by the document’s root
element name (also italicized), as listed in column 3, “Valid Root Element(s)” of Table 1-3, “Schema-
related Information”. For example, the phrase SupportedDataModels XML Document refers to a valid
XML 1.0 document according to the CMS schema [CMS-XSD]. Such a document comprises a single
<SupportedDataModels …> root element, optionally preceded by the XML declaration <?xml
version="1.0" …?>.

This string will therefore be of one of the following two forms:

“<SupportedDataModels …>…</SupportedDataModels>”

or

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 13

“<?xml …?><SupportedDataModels …>…</SupportedDataModels>”

Escaping conventions for the ampersand, left angle bracket and right angle bracket characters are defined
in section 1.4.2.

For consistency with [UDA1.0] and for future extensibility, devices and control points MUST ignore the
following in embedded XML documents:

• Any unknown XML elements and their sub elements or content,

• Any unknown attributes and their values,

• Any XML comments that they do not understand, and

• Any XML processing instructions that they do not understand.

1.6 Management of XML Namespaces in Standardized DCPs
UPnP specifications make extensive use of XML namespaces. This allows separate DCPs, and even
separate components of an individual DCP, to be designed independently and still avoid name collisions
when they share XML documents. Every name in an XML document belongs to exactly one namespace. In
documents, XML names appear in one of two forms: qualified or unqualified. An unqualified name (or no-
colon-name) contains no colon (“:”) characters. An unqualified name belongs to the document’s default
namespace. A qualified name is two no-colon-names separated by one colon character. The no-colon-name
before the colon is the qualified name’s namespace prefix, the no-colon-name after the colon is the
qualified name’s “local” name (meaning local to the namespace identified by the namespace prefix).
Similarly, the unqualified name is a local name in the default namespace.

The formal name of a namespace is a URI. The namespace prefix used in an XML document is not the
name of the namespace. The namespace name is globally unique. It has a single definition that is accessible
to anyone who uses the namespace. It has the same meaning anywhere that it is used, both inside and
outside XML documents. The namespace prefix, however, in formal XML usage, is defined only in an
XML document. It must be locally unique to the document. Any valid XML no-colon-name may be used.
And, in formal XML usage, no two XML documents are ever required to use the same namespace prefix to
refer to the same namespace. The creation and use of the namespace prefix was standardized by the W3C
XML Committee in [XML-NMSP] strictly as a convenient local shorthand replacement for the full URI
name of a namespace in individual documents.

All of the namespaces used in this specification are listed in the Tables “Namespace Definitions” and
“Schema-related Information”. For each such namespace, Table 1-2, “Namespace Definitions” gives a
brief description of it, its name (a URI) and its defined “standard” prefix name. Some namespaces included
in these tables are not directly used or referenced in this document. They are included for completeness to
accommodate those situations where this specification is used in conjunction with other UPnP
specifications to construct a complete system of devices and services. The individual specifications in such
collections all use the same standard prefix. The standard prefixes are also used in Table 1-3, “Schema-
related Information”, to cross-reference additional namespace information. This second table includes each
namespace’s valid XML document root element(s) (if any), its schema file name, versioning information
(to be discussed in more detail below), and a link to the entry in Section 1.2, “References” for its associated
schema.

The normative definitions for these namespaces are the documents referenced in Table 1-3. The schemas
are designed to support these definitions for both human understanding and as test tools. However,
limitations of the XML Schema language itself make it difficult for the UPnP-defined schemas to
accurately represent all details of the namespace definitions. As a result, the schemas will validate many
XML documents that are not valid according to the specifications.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 14

Table 1-2: Namespace Definitions

Standard
Name-
space
Prefix

Namespace Name Namespace
Description

Normative
Definition
Document
Reference

DM Working Committee defined namespaces

bms urn:schemas-upnp-org:dm:bms BMS data structures [BMS]

cms urn:schemas-upnp-org:dm:cms CMS data structures [CMS]

sms urn:schemas-upnp-org:dm:sms SMS data structures [SMS]

bmsnsl1 urn:schemas-upnp-org:dm:bms:nsl BMS NSLookupResult [BMS]

Externally defined namespaces

xsd http://www.w3.org/2001/XMLSchema XML Schema
Language 1.0

[XML-SCHEMA-1]
[XML-SCHEMA-2]

xsi http://www.w3.org/2001/XMLSchema-

instance

XML Schema Instance
Document schema

Sections 2.6 & 3.2.7
of
[XML-SCHEMA-1]

xml http://www.w3.org/XML/1998/namespace The “xml:” Namespace [XML-NS]

1 bmsnsl was defined in BasicManagement:1 and remains valid. Its definitions are also present in the
bms namespace, which is where any future enhancements will be made.

Table 1-3: Schema-related Information

Standard
Name-
space
Prefix

Relative URI and File
Name1

• Form 1, 2, 3

Valid Root Element(s) Schema
Reference

DM Working Committee defined namespaces

bms • bms-vn-yyyymmdd.xsd

• bms-vn.xsd

• bms.xsd

<NSLookupResult>

<BandwidthTestInfo>

<BandwidthTest>

<BandwidthTestResult>

<ACL>

[BMS]

Copyright UPnP Forum © 2012. All rights reserved.

http://www/
http://www/
http://www/

SoftwareManagement: 2 Service Template Version 1.01 15

Standard Relative URI and File Valid Root Element(s) Schema
Name-
space
Prefix

Name1 Reference

• Form 1, 2, 3

cms • cms-vn-yyyymmdd.xsd

• cms-vn.xsd

• cms.xsd

<StructurePathList>

<ParameterPathList>

<ParameterAttributeList>

<InstanceValueList>

<SupportedDataModels>

<InstancePathList>

<ContentPathList>

<AttributePathList>

<ACL>

[CMS]

sms • sms-vn-yyyymmdd.xsd

• sms-vn.xsd

• sms.xsd

<ACL> [SMS]

bmsnsl2 • bmsnsl-vn-yyyymmdd.xsd

• bmsnsl-vn.xsd

• bmsnsl.xsd

<NSLookupResult> [BMS]

1 Absolute URIs are generated by prefixing the relative URIs with “http://www.upnp.org/schemas/dm/”.
2 bmsnsl was defined in BasicManagement:1 and remains valid. Its definitions are also present in the
bms namespace, which is where any future enhancements will be made.

1.6.1 Namespace Names, Namespace Versioning and Schema Versioning
The UPnP DM service specifications define several data structures (such as state variables and action
arguments) whose format is an XML instance document that must comply with one or more specific XML
namespaces. Each namespace is uniquely identified by an assigned namespace name. The namespaces that
are defined by the DM Working Committee MUST be named by a URN. See Table 1-2 “Namespace
Definitions” for a current list of namespace names. Additionally, each namespace corresponds to an XML
schema document that provides a machine-readable representation of the associated namespace to enable
automated validation of the XML (state variable or action parameter) instance documents.

Within an XML schema and XML instance document, the name of each corresponding namespace appears
as the value of an xmlns attribute within the root element. Each xmlns attribute also includes a
namespace prefix that is associated with that namespace in order to disambiguate (a.k.a. qualify) element
and attribute names that are defined within different namespaces. The schemas that correspond to the listed
namespaces are identified by URI values that are listed in the schemaLocation attribute also within the
root element. (See Section 1.6.2)

In order to enable both forward and backward compatibility, namespace names are permanently assigned
and MUST NOT change even when a new version of a specification changes the definition of a
namespace. However, all changes to a namespace definition MUST be backward-compatible. In other
words, the updated definition of a namespace MUST NOT invalidate any XML documents that comply
with an earlier definition of that same namespace. This means, for example, that a namespace MUST NOT

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 16

be changed so that a new element or attribute is required. Although namespace names MUST NOT change,
namespaces still have version numbers that reflect a specific set of definitional changes. Each time the
definition of a namespace is changed, the namespace’s version number is incremented by one.

Each time a new namespace version is created, a new XML schema document (.xsd) is created and
published so that the new namespace definition is represented in a machine-readable form. Since an XML
schema document is just a representation of a namespace definition, translation errors can occur.
Therefore, it is sometime necessary to re-release a published schema in order to correct typos or other
namespace representation errors. In order to easily identify the potential multiplicity of schema releases for
the same namespace, the URI of each released schema MUST conform to the following format (called
Form 1):

Form 1: "http://www.upnp.org/schemas/dm/" schema-root-name "-v" ver "-" yyyymmdd ”.xsd”

where

• schema-root-name is the name of the root element of the namespace that this schema represents.

• ver corresponds to the version number of the namespace that is represented by the schema.

• yyyymmdd is the year, month and day (in the Gregorian calendar) that this schema was released.

Table 1-3 “Schema-related Information” identifies the URI formats for each of the namespaces that are
currently defined by the UPnP DM Working Committee.

As an example, the original schema URI for the “cms” namespace might be “http://www.upnp.org/sche-
mas/dm/cms-v1-20091231.xsd”. If the UPnP DM service specifications were subsequently updated in the
year 2010, the URI for the updated version of the “cms” namespace might be “http://www.upnp.org/sche-
mas/dm/cms-v2-20100906.xsd”.

In addition to the dated schema URIs that are associated with each namespace, each namespace also has a
set of undated schema URIs. These undated schema URIs have two distinct formats with slightly different
meanings:

Form 2: “http://www.upnp.org/schemas/dm/” schema-root-name “-v” ver “.xsd“

Form 3: “http://www.upnp.org/schemas/dm/” schema-root-name “.xsd“

Form 2 of the undated schema URI is always linked to the most recent release of the schema that represents
the version of the namespace indicated by ver. For example, the undated URI “…/dm/cms-v2.xsd” is
linked to the most recent schema release of version 2 of the “cms” namespace. Therefore, on September
06, 2010 (20100906), the undated schema URI might be linked to the schema that is otherwise known as
“…/dm/cms-v2-20100906.xsd”. Furthermore, if the schema for version 2 of the “cms” namespace was
ever re-released, for example to fix a typo in the 20100906 schema, then the same undated schema URI
(“…/dm/cms-v2.xsd”) would automatically be updated to link to the updated version 2 schema for the
“cms” namespace.

Form 3 of the undated schema URI is always linked to the most recent release of the schema that represents
the highest version of the namespace that has been published. For example, on December 31, 2009
(20091231), the undated schema URI “…/dm/cms.xsd” might be linked to the schema that is otherwise
known as “…/dm/cms-v1-20091231.xsd”. However, on September 06, 2010 (20100906), that same
undated schema URI might be linked to the schema that is otherwise known as “…/dm/cms-v2-
20100906.xsd”. When referencing a schema URI within an XML instance document or a referencing XML
schema document, the following usage rules apply:

• All instance documents, whether generated by a service or a control point, MUST use Form 3.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 17

• All UPnP DM published schemas that reference other UPnP DM schemas MUST also use Form
3.

Within an XML instance document, the definition for the schemaLocation attribute comes from the
XML Schema namespace “http://www.w3.org/2002/XMLSchema-instance”. A single occurrence of the
attribute can declare the location of one or more schemas. The schemaLocation attribute value consists
of a whitespace separated list of values that is interpreted as a namespace name followed by its schema
location URL. This pair-sequence is repeated as necessary for the schemas that need to be located for this
instance document.

In addition to the schema URI naming and usage rules described above, each released schema MUST
contain a version attribute in the <schema> root element. Its value MUST correspond to the format:

ver “-” yyyymmdd where ver and yyyymmdd are described above.

The version attribute provides self-identification of the namespace version and release date of the
schema itself. For example, within the original schema released for the “cms” namespace (…/cms-v1-
20091231.xsd), the <schema> root element might contain the following attribute: version="1-
20091231".

1.6.2 Namespace Usage Examples
The schemaLocation attribute for XML instance documents comes from the XML Schema instance
namespace “http:://www.w3.org/2001/XMLSchema-instance”. A single occurrence of the attribute can
declare the location of one or more schemas. The schemaLocation attribute value consists of a
whitespace separated list of values: namespace name followed by its schema location URL. This pair-
sequence is repeated as necessary for the schemas that need to be located for this instance document.

Example 1:

Sample CMS XML Instance Document. Note that the references to the UPnP DM schemas do not contain
any version or release date information. In other words, the references follow Form 3 from above.
Consequently, this example is valid for all releases of the UPnP DM service specifications.

<?xml version="1.0" encoding="UTF-8"?>
<cms:ParameterValueList
 xmlns:cms="urn:schemas-upnp-org:dm:cms"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:dm:cms
 http://www.upnp.org/schemas/dm/cms.xsd">
 <Parameter>
 <Path>...</Path>
 <Value>...</Value>
 </Parameter>
 ...
</cms:ParameterValueList>

1.7 Vendor-defined Extensions
Whenever vendors create additional vendor-defined state variables, actions or other XML elements and
attributes, their assigned names and XML representation MUST follow the naming conventions and XML
rules as specified in [UDA1.0] , Section 2.5, “Description: Non-standard vendor extensions”.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 18

2 Service Modeling Definitions

2.1 Service Type
The following service type identifies a service that is compliant with this template:

 urn:schemas-upnp-org:service:SoftwareManagement:2.

2.2 Key Concepts
This section is added to describe some normative requirements for the SoftwareManagement Service.

2.2.1 Software entities
Two software entities are defined by the SoftwareManagement service:

• Deployment Unit (DU): A DU is an entity which packages resources such as library files,
executable files, configuration files, jar files, bundles or assemblies. This entity can be
individually installed, uninstalled and updated. Each DU is identified using a unique
identifier DUID.

• Execution Unit (EU): A EU is an entity such as a service, script, software component or
MIDlet. It can individually be started or stopped. Once started an EU becomes active, e.g.,
provides services, until it is stopped. EUs only appear after the installation or update of DUs.
Each EU is linked to a unique DU. A DU can embed multiple EUs. Each EU is identified
using a unique identifier EUID.

Actions pertain to one of these two entities, e.g., Install(), Update() and Uninstall() pertain only to DUs.

2.2.2 Software Data Model
SMS defines an OPTIONAL Software Data Model. This is defined in /UPnP/DM/Software/ data
model sub-tree which contains details of DUs and EUs. Implementations which choose to provide
additional details to the control point will do so by implementing the Software Data Model and a CMS to
provide access to the data model. Alternatively some implementations use getDUInfo() and getEUInfo()
actions instead of implementing Software Data Model. More details about the supported Parameters for
the DU and EU are presented in Section 6.

2.2.3 Lifecycle Management

2.2.3.1 Deployment Unit lifecycle management
A DU can be installed, updated and uninstalled using the Install(), Update() and the Uninstall()

actions respectively.

The allowed values for DU state are (see Figure 2-1):

• Installing: represents a transitory state while the DU is being installed.

• Unresolved: represents a stable state in which the DU is installed but some of its dependencies are
missing.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 19

• Installed: represents a stable state in which the DU is currently installed and all the needed
dependencies, if any, are resolved.

• Uninstalling: represents the transitory state while the DU is being uninstalled.

• Uninstalled: represents a stable state in which the DU has been uninstalled.

Figure 2-1: DU state diagram

If the Software Data Model is implemented, the new DU state (a result of the execution of those actions)
MAY be reflected into the data model as a read-only parameter (see Section 6: Software Data Model):

/UPnP/DM/Software/DU/#/State

Two types of transitions are depicted in Figure 2-1, i.e., explicit transitions and automatic transitions.
Explicit transitions are triggered by the request of a software management action. Such a request can be
made by invoking a SMS action or any external API. The remainder of this section only describes the
explicit transitions triggered by the call of SMS actions.

The Installing state can be reached by calling the Install() or the Update() action.

The Installed state is reached as an automatic transition from the Installing or the Unresolved state when
the installation succeeds.

The Unresolved state is reached as an automatic transition from the Installing state when the operation
completes but some dependencies are not currently resolved.

The Uninstalling state can be reached by calling the Uninstall() action on a DU which is in Unresolved or
Installed state.

The Uninstalled state can be reached as an automatic transition from the Uninstalling state when the
Uninstall () action completes.

2.2.3.2 Execution Unit lifecycle management
For an EU there is need for two distinct states called the Requested State and Running State.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 20

Figure 2-2: EUs’ Requested State

When a control point requests an EU to Start(), it will expect the EU to be Active. Similarly when a control
point requests an EU to Stop(), it will expect the EU to be Inactive. These two states “Active” and
“Inactive” are called the Requested states from a control points view. But as per Parent Device, the actual
EU state can be Starting, Running, Stopping and Stopped. These are called the Running States.

Figure 2-3: EUs’ Running State

The Requested State is defined according to what action is called on the EU.

The allowed values for Requested State are:

• Active: The value is set to Active when the Start() action is called.

• Inactive: The value is set to Inactive when the Stop() action is called.

If Software Data Model is implemented, the EU's Requested State MAY be reflected by the read-only
Parameter named (see Section 6 Software Data Model):
/UPnP/DM/Software/DU/#/EU/#/RequestedState

If the Software Data Model is implemented, the EU behaviour MAY be managed by two optional
Parameters (see Section 6 Software Data Model):

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 21

/UPnP/DM/Software/DU/#/EU/#/AutoStart

/UPnP/DM/Software/DU/#/EU/#/AutoRestart

AutoStart: When set to 1 and if the Start() action is called at least once i.e. when the EU’s Requested State
is Active, this indicates that the EU MUST be automatically started when the Parent Device boots.The
AutoStart Parameter relies on the Execution Environment (EE) ability
/UPnP/DM/Software/Capabilities/AbleToAutoStart to autonomously start EUs at boot
time. When the Requested State of EU is Inactive, the AutoStart MUST be ignored.

AutoRestart: When set to 1 and if the EU’s Requested State is Active, this indicates that the EU will be
restarted each time it is stopped by any other means than the Stop() action. The AutoRestart Parameter
relies on the EE's ablility /UPnP/DM/Software/Capabilities/AbleToAutoRestart to
implement a mechanism such as a watchdog. AutoRestart Parameter has no effect at boot time.

The initial value for both the parameters is provided by the DU. Both Parameters are only relevant when
the Requested State value is Active.

The Running State is defined according to what is currently happening on the targeted EE .

Running State allowed values are:

• Stopped: the EU is observed as stopped on the EE.

• Stopping: represents the transitory state while the EU is being stopped.

• Running: the EU is observed as running on the EE.

• Starting: represents the transitory state while the EU is being started.

If Software Data Model is implemented, the EU's Running State MAY be reflected by the read-only
Parameter named (see Section 6 Software Data Model):

/UPnP/DM/Software/DU/#/EU/#/RunningState

2.2.4 Firmware
Some specific EEs define the notion of firmware. Firmware corresponds to a basic piece of software
including a bootloader; without the baseline firmware installed, the device might not function. Several
firmware images could be present at the same time, but only one is used at boot time. This one is called the
primary firmware. DUID and EUID 0 are reserved for identifying this primary firmware.

2.2.5 Asynchronous actions
Software management operations (e.g., the start of an EU) are expected to take a significant length of time
to execute. In particular, it cannot be assumed that a given operation will complete within the 30 seconds
allowed by the [UDA1.0]. Therefore, every operation is done asynchronously: an action initiates the
operation and an OperationID is immediately returned. Events associated with the OperationIDs state
variable indicate the end of the operation to the service subscribers. Other related information SHOULD be
notified in the same event message, i.e., the modified DUIDs, EUIDs, ActiveEUIDs lists.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 22

2.2.6 Software entity dependency management
Software entities on a particular EE MAY have dependencies on each other; the ability for an EE to
intelligently manage these dependencies is implementation (or EE) specific.

A control point can know about the dependency handling capability of a Parent Device in two ways:

• either by calling any action like Install()/Start() and checking its response or

• by retrieving the value of the
/UPnP/DM/Software/Capabilities/AbleToHandleDUDependency and
/UPnP/DM/Software/Capabilities/AbleToHandleEUDependency Parameters in the
Software Data Model (if it is supported).

SMS actions have a Boolean argument called HandleDependencies which a control point uses to indicate
to the device if it wants the device to handle dependencies automatically or if the control point itself will
take care of the dependency handling. If an implementation can not honor HandleDependencies request, it
MUST return an error. If a device does not return any error for HandleDependencies, the device MUST
honor the HandleDependencies request and accordingly MUST either handle dependencies on its own
when HandleDependencies is 1 and MUST NOT handle dependencies on its own when
HandleDependencies is 0.

Alternatively a control point can check the dependency handling capability
“/UPnP/DM/Software/Capabilities/AbleToHandleDUDependency” and
“/UPnP/DM/Software/Capabilities/AbleToHandleEUDependency “Parameters of a
device in the Software Data Model. If the capability is 0 and a control point invokes an action with
HandleDependencies argument equal to 1, then the device MUST return an error. In other words if the
capability is 0 then a control point cannot control the dependency handling of this device. In that case a
control point MUST handle the dependencies on its own. But if the capability is 1 and a control point
invokes an action with HandleDependencies as 0, then the device, despite having the ability to handle
dependencies, it MUST NOT try to handle dependencies on its own. If, however the capability is 1 and a
control point invokes an action with HandleDependencies as 1, then the device MUST try to handle
dependencies.

All the actions that have “HandleDependencies” as an argument MUST comply with the above
requirements. The exact details of what a dependency is and how and what are the requirements to handle
the dependencies are implementation (or EE) specific. The DU dependencies and EU dependencies could
have different semantics in different implementations.

If some dependencies of a DU are not satisfied for whatever reason, the DU MUST be assigned the
Unresolved state (see Figure 2-1). If all the dependencies are successfully installed, the DU state is set to
Installed. In both scenarios, all the EUs will be in the Inactive state.

2.2.7 Security
Actions that do not return sensitive information, change the device configuration, or affect normal device
operation are referred to as Non-Restrictable actions and can always be invoked by all control points.

All other actions are referred to as Restrictable actions. If the OPTIONAL Security feature (based on
DeviceProtection:1 [DPS]) is not supported, all actions can be invoked by all control points. If the
Security feature is supported, Restrictable actions can only be invoked if the control point is appropriately
authorized. Table 2-10 specifies which actions are Non-Restrictable and Restrictable.

The terms Role List and Restricted Role List are defined by DeviceProtection:1. Each action has an
the associated Role List; a control point that possesses a Role in the Role List can unconditionally invoke

action. Some actions also have a Restricted Role List; a control point that does not possess a Role in the

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 23

Role List but does possess a Role in the Restricted Role List might be able to invoke the action (it’s up to
the action definition to specify this).

The Public Role is defined by DeviceProtection:1. All control points automatically possess the Public
Role, and all control points can unconditionally invoke all actions that have a Role List of “Public”.
Therefore:

• If the Security feature is not supported, behavior is the same as if the feature was supported and all
actions had a Role List of “Public” and an empty Restricted Role List.

• Regardless of whether or not the Security feature is supported, all Non-Restrictable actions have a
Role List of “Public” and an empty Restricted Role List.

For Restrictable actions, this specification defines RECOMMENDED values for the Role Lists and
Restricted Role Lists. Device manufacturers are permitted to choose different values.

2.2.7.1 SoftwareManagement:2 access control data
The previous section explained that, when the Security feature is supported, Restrictable actions can have
Restricted Role Lists and that, for such actions, a control point that does not possess a Role in the Role List
but does possess a Role in the Restricted Role List might be able to invoke the action. This decision is
made by consulting the SoftwareManagement:2 access control data.

Section 2.3.21 specifies SoftwareManagement:2 access control data syntax. To re-iterate, this access
control data is relevant only for Restrictable actions, and only for control points that do not possess Roles
in the Role List but do possess Roles in the Restricted Role List.

• If there is no access control entry for a given action, the access control decision is made as
described in the description of the action in question. For example, the description of the Stop()
action states that the control point which started a particular EU can always stop it, and this rule
applies regardless of whether the access control data contains an entry for Stop().

• If there are one or more access control entries for a given action, access is permitted if the
conditions stated in the action description are met, and if any of the action’s filters match (and the
control point possesses a Role in the corresponding Role List).

An example access control data is as below:

<?xml version="1.0" encoding="UTF-8"?>
<sms:ACL xmlns:sms="urn:schemas-upnp-org:dm:sms"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:dm:sms
 http://www.upnp.org/schemas/dm/sms.xsd">
 <ACLEntry>
 <Action>Install</Action>
 <Filter>DUType="Application"</Filter>
 <Roles>Basic</Roles>
</ACLEntry>
<ACLEntry>
 <Action>Start</Action>
 <EUID>5</EUID>
 <Roles>Basic</Roles>
</ACLEntry>

 <ACLEntry>
 <Action>Update</Action>

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 24

 <Filter>DUType="Firmware" and M_DUOwner="TI"</Filter>
 <Roles>Basic</Roles>
 </ACLEntry>
</sms:ACL>

Given the example as above and the action Role Lists and Restricted Role Lists have the values as
recommended in Table 2-10, the following access control decisions would be made:

• A control point possessing the Admin Role will be unconditionally permitted to invoke all actions

• A control point possessing the Basic

(because the Role List permits this).

 Role will be permitted to invoke the Install() action only if
the DUType argument has the value “Application” (because the access control data specifies this).

• A control point possessing the Basic Role will be permitted to invoke the Start() action only if the
EUID value is “5” (because the access control data specifies this).

• A control point possessing the Basic Role will be permitted to invoke the Update() action only if
the filter criteria (Type argument value is “Firmware” and DUOwner is “TI”) is satisfied (because
the access control data specifies this).

• A control point possessing the Public Role (but not the Basic or Admin Role) will be permitted to
invoke the GetDUIDs() action without any restriction.

• A control point which installed a DU MUST be unconditionally permitted to uninstall that
particular DU (because the Uninstall() action description states this). In a similar way a con
point which started an EU MUST be unconditionally permitted to stop that particular EU (becau
the

trol
se

Stop() action description states this).

Note that it is never necessary for an access control data entry to include the Admin Role in its Role List,
because, as stated in [DEVICE] section 2.4.4, the Admin Role always grants full access to all actions.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 25

2.3 State Variables

Table 2-1: State Variables

Variable Name Req. or
Opt.1

Data
Type

Allowed Value Default
Value 2

Eng.
Units

OperationIDs R string CSV2 (A_ARG_TYPE_ID)
See section 2.3.1

""

DUIDs R string CSV(A_ARG_TYPE_ID)
See section 2.3.2

EUIDs R string CSV(A_ARG_TYPE_ID)
See section 2.3.3

ActiveEUIDs R string CSV(A_ARG_TYPE_ID)
See section 2.3.4

RunningEUIDs R string CSV(A_ARG_TYPE_ID)
See section 2.3.5

ErrorEUIDs R string CSV(A_ARG_TYPE_ID)

See section 2.3.6

A_ARG_TYPE_Boolean O boolea
n

(section 2.3.7)

A_ARG_TYPE_String O string (section 2.3.8)

A_ARG_TYPE_ID R ui4 See section 2.3.9

A_ARG_TYPE_IDs R string CSV(ui4)
See section 2.3.10

A_ARG_TYPE_ OperationState R string Requested,
InProgress,
Completed,
Error
See section 2.3.11

A_ARG_TYPE_URI R uri See section 2.3.12

A_ARG_TYPE_Action R string Install,
Update,
Uninstall,
 Start,
Stop
See section 2.3.13

A_ARG_TYPE_ErrorDescription R string Error_None,
Error_ConcurrentAccess,
Error_MissingDependency,
Error_Network,
Error_CorruptedFile,
Error_DiskFull,
Error_Other
See section 2.3.14

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 26

Variable Name Req. or Data Allowed Value Default Eng.
Opt.1 Type Value 2 Units

A_ARG_TYPE_DUType R string Firmware,
Application,
Configuration,
Other
See section 2.3.15

A_ARG_TYPE_Name O string See section 2.3.16

A_ARG_TYPE_Version O string See section 2.3.17

A_ARG_TYPE_DUState O string Installing,
Unresolved,
Installed,
Uninstalling,
Uninstalled
See section 2.3.18

A_ARG_TYPE_EURequestedState O string Active,
Inactive
See section 2.3.19

A_ARG_TYPE_EURunningState O string Running,
Stopped,
Starting,
Stopping
See section 2.3.20

A_ARG_TYPE_ACL CR string (section 2.3.20)

Non-standard state variables
implemented by an UPnP vendor
go here.

X TBD TBD TBD TBD

1 R = REQUIRED, O = OPTIONAL, CR = CONDITIONALLY REQUIRED, X = Non-standard.
2
CSV stands for Comma-Separated Value list. The type between brackets denotes the UPnP data type used

for the elements inside the list (section 1.5.1).
3
REQUIRED if the Security feature is supported.

2.3.1 OperationIDs
Comma-separated list of operation identifiers. It stores the OperationID list of Requested and InProgress
operations.

This state variable is evented to notify control points when software management operations are requested
or finished. When a software management operation is requested, its OperationID is added to the
OperationIDs list. An operation is in the Requested state when an asynchronous action is successfully
called. When the operation ends, its OperationID is removed from the OperationIDs list. An operation
ends in the Completed or Error state when all the managed software entities reach a stable state.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 27

2.3.2 DUIDs
Comma-separated list of the DUIDs for all unresolved or installed DUs.

This state variable is evented to notify control points when new DUs enter the Unresolved or Installed or
Uninstalled states. When an install operation is successfully completed, every new DUID that appears is
added to the DUIDs list. When an Uninstall() operation is successfully completed, every associated DUID
is removed from the DUIDs list. The DUID 0 is reserved to identify the primary firmware, i.e., a firmware
the physical device is booting on.

2.3.3 EUIDs
Comma-separated list of the EUIDs for all EUs.

This state variable is evented to notify control points when new EUs appear with the installation of DUs
and when they disappear with the uninstallation of related DUs. When an Install() operation is successfully
completed, every new EUID that comes into existence is added to the EUIDs list. When an Uninstall()
operation is successfully completed, every associated EUID is removed from the EUIDs list. The EUID 0
is reserved to identify the primary firmware, i.e., the firmware the physical device is booting on.

2.3.4 ActiveEUIDs
Comma-separated list of the EUIDs for all EUs that have explicitly been requested to start using the Start()
action.

This state variable stores the EUID list of Active EUs. The elements in this list are contained in EUIDs list.
It is evented to notify control points when EUs become Active and when they become Inactive. A EUID
enters in the ActiveEUIDs list when the EU is successfully requested to start using the Start() action. A
EUID leaves the ActiveEUIDs list when the EU is successfully requested to stop by the Stop() action.

2.3.5 RunningEUIDs
Comma-separated list of the EUIDs for all EUs that are currently running.

This state variable stores the EUID list of Running EUs. The elements in this list are contained in EUIDs
list. It is evented to notify control points when EUs become Running and when they become Stopped. A
EUID enters in the RunningEUIDs list when it is observed as running, i.e., is currently running whatever
the means used to start it, i.e., by an explicit call of the Start() action or any other EE specific means. A
EUID leaves the RunningEUIDs list when the EU is no more observed as running, i.e., is NOT currently
running.

2.3.6 ErrorEUIDs
Comma-separated list of the EUIDs which are currently in an error state.

This state variable stores the EUID list of Error EUs. The elements in this list are contained in EUIDs list.
It is evented to notify control points when EUs enter and leave Error state. The detailed error information
MAY be retrieved by a control point from the Software Data Model Section 6 Software Data Model.

2.3.7 A_ARG_TYPE_Boolean
A boolean argument.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 28

2.3.8 A_ARG_TYPE_String
A string argument.

2.3.9 A_ARG_TYPE_ID
This state variable is introduced to provide type information for OperationID, DUID and EUID arguments
in various actions. It is an unsigned integer.

2.3.10 A_ARG_TYPE_IDs
Comma-separated list of the IDs.

This state variable is introduced to provide type information for TargetedIDs argument in the
GetOperationInfo() action.

2.3.11 A_ARG_TYPE_OperationState
This state variable is introduced to provide type information for the OperationState argument in the
GetOperationInfo() action. Allowed values are: Requested, InProgress, Completed, Error (see Figure
2-4).

The Requested state is reached when an operation is created. The operation stays in this state until the
Parent Device is able to process it. One reason an operation could be delayed is the execution of a
previously requested operation.

Once the Parent Device is able to process the operation the operation state is set to InProgress. It will stay
in this state until the operation completes successfully or fails.

All the time an operation is in Requested or InProgress state, its OperationID is stored in the OperationIDs
list (see 2.3.1).

Table 2-2: AllowedValueList for A_ARG_TYPE_OperationState

Value Description Req. or Opt.
Requested, R
InProgress, R
Completed, R

Error R

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 29

S ucces s ful software management action reques t

C ompletion E rror

R equested

InP rogress

C ompleted E rror

The ID of the operation belongs to
the OperationIDs list.

Figure 2-4 Software management operation state diagram

2.3.12 A_ARG_TYPE_URI
This state variable is introduced to provide type information for URI argument in various actions. The
value of a URI can also be an empty string (“”) and actions describe it.

2.3.13 A_ARG_TYPE_Action
This state variable is introduced to provide type information for the Action argument in the
GetOperationInfo() action. Allowed values are names of defined software management actions: Install,
Update, Uninstall, Start, Stop and the names of any vendor-specific asynchronous actions (see Section
2.2.5).

Table 2-3: AllowedValueList for A_ARG_TYPE_Action

Value Req. or Opt.

Install R
Update R
Uninstall R
Start R

Stop R

Vendor-defined X

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 30

2.3.14 A_ARG_TYPE_ErrorDescription
This state variable is introduced to provide type information for the ErrorDescription argument in the
GetOperationInfo() action. Allowed values are names describing the source of the failure of an operation:

- Error_None: no error to be described.
- Error_ConcurrentAccess: multiple concurrent accesses to the same resource.
- Error_MissingDependency: some dependency related error
- Error_Network: communication failed because of a network failure.
- Error_CorruptedFile: the file currently accessed is invalid for reading.
- Error_StorageFull: no space available on the persistent storage.
- Error_Other: all other specific errors.
- Vendor-specific values that have to be considered as an error case

Table 2-4: AllowedValueList for A_ARG_TYPE_ErrorDescription

Value Req. or Opt.
Error_None R
Error_ConcurrentAccess R
Error_MissingDependency R
Error_Network R
Error_CorruptedFile R
Error_DiskFull R

Error Other R

Vendor-defined X

2.3.15 A_ARG_TYPE_DUType
This state variable is introduced to provide type information for DUType arguments in various actions.
SMS actions use input argument of type A_ARG_TYPE_DUType to indicate the type of the targeted DU.

Allowed types for a DU:
- Firmware: a DU which is a firmware
- Application: a DU which is an application for the targeted EE
- Configuration: a DU which contains configuration data
- Other: a DU which is of any other type
- Vendor-specific values

Table 2-5: AllowedValueList for A_ARG_TYPE_DUType

Value Req. or Opt.

Firmware R
Application R

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 31

Value Req. or Opt.
Configuration R

Other R

Vendor-defined X

2.3.16 A_ARG_TYPE_Name
This state variable is introduced to provide type information for DUName and EUName arguments in
various actions. The format of this value is EE specific.

2.3.17 A_ARG_TYPE_Version
This state variable is introduced to provide type information for DUVersion and EUVersion arguments in
various actions. The format of this value is EE specific.

2.3.18 A_ARG_TYPE_DUState
This state variable is introduced to provide type information for the DUState argument in the GetDUInfo()
action. See section 2.2.3.1.

Table 2-6: AllowedValueList for A_ARG_TYPE_DUState

Value Req. or Opt.

Installing R

Unresolved R

Installed R

Uninstalling R

Uninstalled R

2.3.19 A_ARG_TYPE_EURequestedState
This state variable is introduced to provide type information for EURequestedState argument in the
GetEUInfo() action. See section 2.2.3.2.

Table 2-7: AllowedValueList for A_ARG_TYPE_EURequestedState

Value Req. or Opt.

Active R

Inactive R

2.3.20 A_ARG_TYPE_EURunningState
This state variable is introduced to provide type information for EURunningState argument in the
GetEUInfo() action. See section 2.2.3.2.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 32

Table 2-8: AllowedValueList for A_ARG_TYPE_EURunningState

Value Req. or Opt.

Running R

Stopped R

Starting R

Stopping R

2.3.21 A_ARG_TYPE_ACL
The XML document containing SoftwareManagement:2 access control data. This is a list of zero or more
action ACLs, each of which specifies a filter expression and a set of associated Roles. See section 2.2.7.1
for an explanation on how the ACL Data is used for making access control decisions.

Note that ACLs are only provided for actions that have non-empty Restricted Role Lists. For such actions,

 for the first time when a DU is
e

• M_DUType: Type of DU as defined in Software Data Model

odel

g

 M_EUName: Name of EU as defined in a Model

el

actions can use both DUMetadata

for a DU operation is implementation dependent. But

e done

f a filter expression for Install()

the ACL filter expressions determine, for control points that possess a given Role, which action argument,
DUID/ EUID, DUMetadata/ EUMetadata values will permit the action to be invoked.

The normative XML Schema definition is illustrated in Section 4.

A DU comes into existence in a device by the virtue of installing it. So
getting installed there is no DUID to identify it. The following are the list of DUMetadata that MUST b
supported:

• M_DUVersion: Version of DU as defined in Software Data M

• M_DUName: Name of DU as defined in Software Data Model

• M_DUCreator: Creator of a particular DU represented as a strin

• M_DUOwner: Owner of a particular DU represented as a string

The EU MAY support the following list of EUMetadata:

• Software Dat

• M_EUVersion: Version of EU as defined in Software Data Mod

• M_EUCreator: Creator of a particular EU represented as a string

• M_EUOwner: Owner of a particular EU represented as a string

The filter for DU actions can use only DUMetadata. But the filter for EU
and EUMetadata.

The decision on when to do the access control check
some of these checks can be done before downloading the DU and some can be done only after
downloading the DU. For example, the access control checks based on the argument values can b
before downloading the DU and the access control checks based on DUMetadata can be done after
downloading the DU. An EU comes into existence in a device by the virtue of corresponding DU
installation.

An example o action is as below:

Filter> <Filter>DUType="Firmware" and M_DUOwner="TI"</

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 33

The above expression uses both argument and metadata based filter expression. It is used to identify all the

 [XPATH-1.0]. All the lexical rules, operator
 with the

tyExpr

3. EqualityExpr ::= DUMetadata | EUMetadata

4. Constant ::= in double quotes)
r)

5. FunctionCall ::= ”

his is sufficient to support the requirements of the current version of this specification, but it is possible
e

erators MAY be supported by extending the supported XPath 1.0 subset.

s etc.

_.

ta and EUMetadata.

nction
 able

rence more than one argument, check for
c

UTF-8"?>

upnp-dm-sms">

Example_Clean</Action>
,"https") and

 <Roles>Public</Roles>

DUs of type “firmware” and owned by “TI”. This filter expression when used in an ACL means that it will
apply over all firmware which are owned by TI.

The filter expression syntax is based on XPath 1.0
precedence, type conversions etc are as specified by XPath, but the concept of “path” is replaced
much simpler concept of “action argument or DU/EU metadata”.

The following EBNF-style syntax [EBNF] MUST be supported:

1. Filter ::= Expr

2. Expr ::= Equali
| FunctionCall

| ArgumentName |
“=” Constant
| ArgumentName | DUMetadata | EUMetadata
“!=” Constant

Literal (string
| Number (signed or unsigned intege

“contains(” ArgumentName “,” Literal “)

T
that a vendor will need to support more complicated filters. In this case, the filter expression syntax can b
extended as follows:

• Additional op

• All extensions MUST use XPath 1.0 lexical rules, operator precedence, type conversion

• Vendor-specific function names MUST be namespace-qualified.

• Vendor-specific DUMetadata and EUMetadata MUST start with X

• Vendors MUST make sure that there is no conflict between DUMetada

• Vendor-specific namespaces MUST be declared using the usual XML mechanisms.

• Vendor-specific functions SHOULD be defined only where no standard XPath 1.0 fu
provides a reasonable alternative. This is to maximize the chance that a control point will be
to parse and understand such a vendor extension.

For example, a vendor who needed a filter to be able to refe
argument values beginning with a specified substring, check for DU metadata and call a vendor-specifi
function might support the following ACL:

<?xml version="1.0" encoding="
<ACL xmlns="urn:schemas-upnp-org:dm:sms"
 xmlns:ex="http://www.example.com/
 …

CLEntry> <A
 <Action>X_
 <Filter>ex:urlSchemeIs(DownloadURL
M_DUVersion=1.0</Filter>

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 34

 </ACLEntry>
</ACL>

A control point that understood XPath 1.0 expression syntax would be able to parse the filter expression

ave no way of knowing what the ex:urlSchemaIs() function did.

but would h

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 35

2.4 Eventing and Moderation

Table 2-9: Event Moderation

Variable Name Evente Moderated Max Event Logical Min Delta
d Event Rate1 Combination per Event2

OperationIDs Yes Yes 0.2

DUIDs Yes Yes 1

EUIDs Yes Yes 1

ActiveEUIDs Yes Yes 1

RunningEUIDs Yes Yes 0.2

ErrorEUIDs Yes Yes 0.2

Non-standard state variables
y an UPnP vendor

 BD BD
implemented b
go here.

TBD TBD TBD T T

1 Determined by N, where Rate = (
2 (N) * (allowedValueRange Step)

E (N sec
.

vent)/ s).

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 36

2.5 Actions
The following Sections contain detailed information about these actions, including short descriptions of the
actions, the effects of the actions on state variables, and error codes defined by the actions.

Table 2-10 lists actions, their device and control point support requirements, and their recommended Role
Lists and Restricted Role Lists. Only the standard DeviceProtection:1 Admin, Basic and Public Roles are
mentioned, because the device manufacturer is free to choose how the dm:3PartyAdmin and
dm:UserAdmin Roles (defined in [DEVICE]) relate to the Admin and Basic Roles, and it would therefore
be impossible to include them in the table.

Section 2.2.7 defined Non-Restrictable and Restrictable actions and pointed out that all Non-Restrictable
actions have a Role List of “Public” and an empty Restricted Role List. Table 2-10 explicitly indicates
which actions are Non-Restrictable.

Table 2-10: Actions

Name Device R/O1 Control Point
R/O

Recommended
Role List2

Recommended
Restricted Role List3

Install() R O Admin Public

Basic
Update() R R Admin Public

Basic
Uninstall() R O Admin Public

Basic

Start() R O Admin Public

Basic

Stop() R O Admin Public

Basic

GetDUIDs() R O Public4

GetEUIDs() R O Public4

GetActiveEUIDs() R O Public4

GetRunningEUIDs() R O Public4

GetOperationInfo() R O Public4

GetOperationIDs() R O Public4

GetErrorEUIDs() R O Public4

GetDUInfo() O O Admin Public

Basic

GetEUInfo() O O Admin Public

Basic

GetACLData() CR
5
 O Admin

Basic

Public

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 37

Device R/O1 Name Control Point Recommended Recommended
R/O Role List2 Restricted Role List3

Non-standard actions
implemented by an UPnP
vendor go here.

X X

1 R = Required, O = Optional, X = Non-standard.
2 The Role List contains Roles that are authorized to invoke the corresponding action in all contexts.
3 The Restricted Role List contains Roles that are authorized to invoke the corresponding action only in
certain contexts. See the individual action definitions for details. For Restrictable actions, the device
manufacturer can choose different values for the Restricted Role List.
4 This action is Non-Restrictable. For Non-Restrictable actions, the Role List MUST be “Public” and the
Restricted Role List MUST be empty, i.e. the device manufacturer can not choose different values for the
Role List or for the Restricted Role List.
5
REQUIRED if the Security feature is supported.

2.5.1 Install()
The Install() action installs a DU. As a result of this action invocation a new OperationID is generated by
the device and is returned. As it is an asynchronous action, details on this ongoing operation can be
retrieved using the GetOperationInfo() action using the returned OperationID.

After successful installation, at least one DUID is generated and is returned to the control point using the
DUIDs evented state variable. DUIDs MAY also be polled from the Software Data Model (see Section 6
Software Data Model)

Depending on the targeted EE, the DU MAY reach the Unresolved state. This state corresponds to the
successful installation of the DU with some of its dependencies unresolved. So after the successful
completion of the install operation, the state of the DU will be either Unresolved or Installed (see Figure
2-4). Also on some EEs a DU MAY pass through a transitory state named Installing (see Figure 2-1).

2.5.1.1 Arguments
The input arguments are used as follows:

- DUURI: the URI of the DU that needs to be installed. The value MUST NOT be empty.
- DUType: the type of the DU provided by the control point as a hint to help in installation process.

This is only a hint and need not match the actual DU type.
- HandleDependencies: boolean to trigger the dependency handling mechanism

The output arguments are defined as follows:
- OperationID: the identifier of the operation linked to the action call.

Table 2-11: Arguments for Install()

Argument Direction relatedStateVariable

DUURI IN A_ARG_TYPE_URI

DUType IN A_ARG_TYPE_DUType

HandleDependencies IN A_ARG_TYPE_Boolean

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 38

Argument Direction relatedStateVariable

OperationID OUT A_ARG_TYPE_ID

2.5.1.2 Device Requirements
As specified by DeviceProtection:1, any control point that possesses any of the Roles in the action’s Role
List MUST be permitted to invoke this action regardless of the values of any action input arguments. If the
Security feature is not supported, all actions are permitted, i.e. behavior is the same as if the action had a
Role List of “Public”.

Otherwise, if all of the following conditions are met, any control point that possesses any of the Roles in
the action’s Restricted Role List MUST be permitted to invoke the action:

• The action was invoked over a TLS connection.

• The control point Identity is present in the DeviceProtection:1 ACL.

• The control point possesses a Role that authorizes use of the specified value of the DUType
argument.

During the action execution, after the DU gets downloaded the following additional check is done:

• The control point possesses a Role that satisfies the filter criteria (if it exists).

2.5.1.3 Dependency on State
None.

2.5.1.4 Effect on State
When the Install() is called, a new OperationID is assigned to the Operation, which will be in the
Requested state. The action returns with the OperationID output argument, and the OperationID is added to
the OperationIDs list.

When the Parent Device is able to process the operation, the OperationState will be assigned the
InProgress state.

A DUID is created and a new instance with the Installing state MUST be added into the Software Data
Model, if the data model is supported. If the HandleDependencies is "0", only the DU matching the
DUURI MUST be targeted by the operation. If it is set to "1" and the device can handle dependencies, then
all the dependent DUs also MUST be targeted by this operation. Each of the targeted DUs will be assigned
a new DUID. As a side effect of the installation of a DU, a new DU instance sub-tree MAY be created for
the DU in the Software Data Model with the DU state as Installing. The sub-tree MUST store information
such as the URI of the DU. If any EU is associated to the DU, its corresponding sub-tree MUST also be
created.

The operation is considered finished when all the targeted DUs are effectively installed or if any of
installation fails. Only when the operation is successful, all the targeted DUs are assigned the Installed or
Unresolved state. At this point the DUID of each Installed or Unresolved DU is added to the DUIDs list.
Each related EU appears with the Inactive state. The IDs of these EUs are added to the EUIDs list. Finally,
the OperationID is removed from the OperationIDs list in the Completed state. Only one event message
SHOULD be sent with the value of the three involved lists.

If the operation fails, all previously successfully installed DUs, i.e., DU in Unresolved or Installed state,
remain in their state. The OperationID is removed from the OperationIDs list. The operation state is set to
Error (see 2.3.14).

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 39

For some DUs, once the operation is Completed a reboot could be necessary. If the BMS::SequenceMode
value is set to "1", the reboot SHOULD be avoided until BMS::SequenceMode value is set to "0".

2.5.1.5 Errors

Table 2-12: Error Codes for Install()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

606 Action not
authorized

The action requested requires authorization and the sender was not
authorized.

701 Invalid URI The Install() action failed because the DUURI argument is not
valid, i.e., syntax base checking. For instance an empty value is
not a valid DUURI for the Install() action.

702 HandleDependenci
es request not
honored

The Install() action failed because HandleDependencies is set to
"1" and the device is unable to handle the software entity
dependencies or HandleDependencies is set to “0” and the device
is handling software entity dependencies.

703

Already Installed,
multiple Instances
not allowed

The Install() action failed because an identical DU is already
Installed or Unresolved.

704 Already in a
transitory state

The action failed because the software entity is already in a
transitory state.

2.5.2 Update()
The Update() action updates a DU that was already installed and is either in Unresolved or Installed state.
As a result of this action invocation a new OperationID is generated by the device and is returned. As it is
an asynchronous action, details on the ongoing operation can be retrieved using the GetOperationInfo()
action and the OperationID.

The action takes an optional URI input argument from which to update this particular DU. Here optional
means that the value MAY be empty. If the NewDUURI is an empty string then the URI used during
installation time or during the last successful update, will be used.

On successful update the DUID MUST NOT change and hence the old DUID is still maintained. The state
of the DU may be either Installed or Unresolved.

2.5.2.1 Arguments
The input arguments are used as follows:

- DUID: the identifier of the DU that needs to be updated.
- NewDUURI: the URI of the DU that needs to be used to update the DU instead of the one used

for the initial installation or the previous update. The value can be empty.
- HandleDependencies: boolean to trigger the dependency handling mechanism of the EE.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 40

The output argument is defined as follows:
- OperationID: the identifier of the Operation linked to the action call.

Table 2-13: Arguments for Update()

Argument Direction relatedStateVariable

DUID IN A_ARG_TYPE_ID

NewDUURI IN A_ARG_TYPE_URI

HandleDependencies IN A_ARG_TYPE_Boolean

OperationID OUT A_ARG_TYPE_ID

2.5.2.2 Device Requirements
As specified by DeviceProtection:1, any control point that possesses any of the Roles in the action’s Role
List MUST be permitted to invoke this action regardless of the values of any action input arguments. If the
Security feature is not supported, all actions are permitted, i.e. behavior is the same as if the action had a
Role List of “Public”.

Otherwise, if all of the following conditions are met, any control point that possesses any of the Roles in
the action’s Restricted Role List MUST be permitted to invoke the action:

• The action was invoked over a TLS connection.

• The control point Identity is present in the DeviceProtection:1 ACL.

• The control point possesses a Role that authorizes this action on DU with specified DUID.

2.5.2.3 Dependency on State
The DU with given DUID MUST exist and be assigned the Installed or the Unresolved state.

2.5.2.4 Effect on State
A new OperationID is assigned to the Operation, which will be in the Requested state. The action returns
with the OperationID output argument and the OperationID is also added to the OperationIDs list.

If HandleDependencies is set to "0", only the DU matching the DUID is targeted by the operation. If it is
set to "1", and the device can handle dependencies then, all the dependent DUs also must be targeted by
this operation. The details of how a device decides which dependent DUs to be targeted for updating is
implementation dependent.

A new URI MAY be given as the NewDUURI input argument. In that case, the DU is updated from this
location. If the argument is set with an empty string, the device updates the DU from a location that is
already known by the device, e.g., the URI argument provided to Install() action.

The operation is considered Completed when:

- all the related EUs which were running are effectively stopped

- all the targeted DUs are effectively updated, i.e., updated, installed or uninstalled

- all the related EUs which were Active have been requested to start.

The operation is considered in Error state when:

- any of the conditions to reach the Completed state is not satisfied.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 41

Final stable state reached by the Parent Device MUST reflect the following:

• all the targeted DUs are assigned the appropriate Installed or Uninstalled state,

• new DUIDs, if any, are added to the DUIDs list,

• new EUs, if any, appear in the Inactive state (A control point expects all the EUs to be in
their same state as before the update, but in certain circumstances because of for eg:
security issues or because of EE behavior the previously running EUs may not be running),

• the IDs of the new EUs are added to the EUIDs list,

• the IDs of the EUs that were successfully started are added to the RunningEUIDs list,

• uninstalled DUIDs, if any, are removed from the DUIDs list,

• EUIDs related to any uninstalled DUs are removed from the EUIDs, the ActiveEUIDs and
the RunningEUIDs lists,

• the value of the URI Parameter available in the Software Data Model MUST be updated
with the value of the NewDUURI argument if it was specified, i.e., not empty and if the
software data model is supported.

• the OperationID is removed from the OperationIDs list in the Completed or Error state.

• only one event message SHOULD be sent with the value of the five involved lists.

If HandleDependencies is set to "0" or if no new DU is installed or removed, the DUIDs list is not
modified which means no install or uninstall of DUs.

For some DUs, once the operation is Completed a reboot could be needed. If the BMS::SequenceMode
value is set to "1", the reboot SHOULD be avoided until BMS::SequenceMode value is set to "0".

As a side effect of this action the SMS data model MAY need to be updated. If so, this update MUST be
done before any of the related state variables are updated.

2.5.2.5 Errors

Table 2-14: Error Codes for Update()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

606 Action not
authorized

The action requested requires authorization and the sender was not
authorized.

701 Invalid URI The Update() action failed because the NewDUURI argument is
not valid i.e., syntax base checking. For instance the empty value
is not a valid DUURI for the Update() action if no alternative
valid URI is known by the device.

702 HandleDependenci
es request not
honored

The Update() action failed because HandleDependencies is set to
"1" and the device is unable to handle the software entity
dependencies or HandleDependencies is set to “0” and the device
is handling software entity dependencies.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 42

errorCode errorDescription Description

704 Already in a
transitory state

The action failed because the software entity is already in a
transitory state.

705 Invalid DUID The Update() action failed because the DUID argument is not
valid.

710 NewDUURI not
supported

The update() action failed because the NewDUURI is not
supported by the EE.

2.5.3 Uninstall()
The Uninstall() action uninstalls any DU that is already installed. As a result of this action invocation a
new OperationID is generated by the device and is returned. As it is an asynchronous action, details on the
ongoing operation can be retrieved using the GetOperationInfo() action and the OperationID.

Upon successful uninstall the state of the DU becomes Uninstalled. This state of the DU MAY be
maintained in the device for an implementation-specific amount of time to enable a control point to read
this state. After a while, the DUID MAY be removed and become invalid.

2.5.3.1 Arguments
The input arguments are used as follows:

- DUID: the identifier of the DU that needs to be uninstalled.
- HandleDependencies: boolean to trigger the dependency handling mechanism of the EE.

The output argument is defined as follows:
- OperationID: the identifier of the operation linked to the action call.

Table 2-15: Arguments for Uninstall()

Argument Direction relatedStateVariable

DUID IN A_ARG_TYPE_ID

HandleDependencies IN A_ARG_TYPE_Boolean

OperationID OUT A_ARG_TYPE_ID

2.5.3.2 Device Requirements
As specified by DeviceProtection:1, any control point that possesses any of the Roles in the action’s Role
List MUST be permitted to invoke this action regardless of the values of any action input arguments. If the
Security feature is not supported, all actions are permitted, i.e. behavior is the same as if the action had a
Role List of “Public”.

Otherwise, if all of the following conditions are met, any control point that possesses any of the Roles in
the action’s Restricted Role List MUST be permitted to invoke the action:

• The action was invoked over a TLS connection.

• The control point Identity is present in the DeviceProtection:1 ACL.

• The control point possesses a Role that authorizes this action on DU with specified DUID.

• The control point installed this DU.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 43

2.5.3.3 Dependency on State
The given DUID MUST exist and identify a DU in the Installed or the Unresolved state.

2.5.3.4 Effect on State
A new OperationID is assigned to the Operation, which will be in the Requested state. The action returns
with the OperationID output argument and the OperationID is also added to the OperationIDs list.

If the HandleDependencies is set to "0", only the DU matching the DUID is targeted by the operation. If it
is set to "1", and the device can handle dependencies then, all the dependent DUs also must be targeted by
this operation. The details of how a device decides which dependent DUs to be targeted for uninstalling is
implementation dependent. Each of the targeted DUs is assigned the Uninstalling state. Running EUs
which are related to the targeted DUs are assigned the Stopping state.

The operation is considered Completed when:

- all the targeted EUs which were Running are stopped,

- all the targeted DUs are effectively uninstalled

The operation is considered Error when:

- one of the conditions to reach the Completed state is not satisfied.

The DUID of each Uninstalled DU is removed from the DUIDs list. Related EUs are removed from the
EUIDs, ActiveEUIDs, and RunningEUIDs lists. Finally, the OperationID is removed from the
OperationIDs list in the Completed or Error state. Only one event message SHOULD be sent with the
value of all involved lists.

For some DUs, once the operation is Completed a reboot could be needed. If the BMS::SequenceMode
value is set to "1", the reboot SHOULD be avoided until BMS::SequenceMode value is set to 0.

As a side effect of this action the SMS data model MAY be updated. If so, this update MUST be done
before any of the above mentioned state variables are updated.

2.5.3.5 Errors

Table 2-16: Error Codes for Uninstall()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

606 Action not
authorized

The action requested requires authorization and the sender was not
authorized.

702 HandleDependenci
es request not
honored

The Uninstall() action failed because HandleDependencies is set
to "1" and the device is unable to handle the software entity
dependencies or HandleDependencies is set to “0” and the device
is handling software entity dependencies.

704 Already in a
transitory state

The action failed because the software entity is already in a
transitory state.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 44

errorCode errorDescription Description

705 Invalid DUID The Uninstall() action failed because the DUID argument is not
valid.

2.5.4 Start()
The Start() action starts an EU. As it is an asynchronous action, details on the ongoing operation can be
retrieved using the GetOperationInfo() action and the OperationID.

When a DU is installed a set of EUs will appear in Inactive state. By invoking a Start() action on these
EUs, a control point makes them Active, i.e., asks the EUs to be started. Hence started EUs will be
observed as Running.

2.5.4.1 Arguments
The input arguments are used as follows:

- EUID: the identifier of the EU to be started.
- HandleDependencies: boolean to trigger the dependency handling mechanism of the EE.

The output argument is defined as follows:
- OperationID: the identifier of the operation linked to the action call.

Table 2-17: Arguments for Start()

Argument Direction relatedStateVariable

EUID IN A_ARG_TYPE_ID

HandleDependencies IN A_ARG_TYPE_Boolean

OperationID OUT A_ARG_TYPE_ID

2.5.4.2 Device Requirements
As specified by DeviceProtection:1, any control point that possesses any of the Roles in the action’s Role
List MUST be permitted to invoke this action regardless of the values of any action input arguments. If the
Security feature is not supported, all actions are permitted, i.e. behavior is the same as if the action had a
Role List of “Public”.

Otherwise, if all of the following conditions are met, any control point that possesses any of the Roles in
the action’s Restricted Role List MUST be permitted to invoke the action:

• The action was invoked over a TLS connection.

• The control point Identity is present in the DeviceProtection:1 ACL.

• The control point possesses a Role that authorizes this action on EU with specified EUID.

2.5.4.3 Dependency on State
The given EUID MUST exist.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 45

2.5.4.4 Effect on State
A new OperationID is assigned the Requested value and enters the OperationIDs list. The action returns
with the OperationID output argument.

When Software Data Model is implemented, this action sets the
/UPnP/DM/Software/DU/#/EU/#/RequestedState to reflect that an EU is Active.

If the HandleDependencies is set to "0", only the EU matching the EUID is targeted by the operation. If it
is set to "1", and the device can handle dependencies then, all the dependent EUs also must be targeted by
this operation. The details of how a device decides which dependent EUs to be targeted for starting is
implementation dependent. Each of the targeted EUs is assigned the Active state.

The operation is considered finished when all the targeted EUs are Active and were requested to start. If the
operation is successful, all the targeted EUs are observed in the Running state.

The EUID of each Active EU is added to the ActiveEUIDs list. The EUID of each EU running is added to
the RunningEUIDs list.

If the operation is successful, the OperationID is removed from the OperationIDs list in the Completed
state.

If the operation fails the OperationID removed from the OperationIDs list in the Error state.

Only one event message SHOULD be sent with the value of all involved lists.

For some EUs, once the operation is Completed a reboot could be needed. If the BMS::SequenceMode
value is set to 1, the reboot SHOULD be avoided until BMS::SequenceMode value is set to 0.

As a side effect of this action the SMS data model MAY be updated. If so, this update MUST be done
before any of the above mentioned state variables are updated.

2.5.4.5 Errors

Table 2-18: Error Codes for Start()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

606 Action not
authorized

The action requested requires authorization and the sender was not
authorized.

702 HandleDependenci
es request not
honored

The Start() action failed because HandleDependencies is set to "1"
and the device is unable to handle the software entity
dependencies or HandleDependencies is set to “0” and the device
is handling software entity dependencies.

704 Already in a
transitory state

The action failed because the software entity is already in a
transitory state.

706 Invalid EUID The Start() action failed because the EUID argument is not valid.

709 DU is unresolved The Start() action failed because the DU related to this EU is still
Unresolved.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 46

2.5.5 Stop()
The Stop() action stops an EU that was already running. As it is an asynchronous action, details on the
ongoing operation can be retrieved using the GetOperationInfo() action and the OperationID.

By invoking the stop action, the state of an Active EU will be changed to Inactive, i.e., asked to be stopped.
Hence the EUID of all the EUs successfully Stopped will leave the RunningEUIDs list.

2.5.5.1 Arguments
The input arguments are used as follows:

- EUID: the identifier of the EU to be stopped.
- HandleDependencies: boolean to trigger the dependency handling mechanism of the EE.

The output argument is defined as follows:
- OperationID: the identifier of the operation linked to the action call.

Table 2-19: Arguments for Stop()

Argument Direction relatedStateVariable

EUID IN A_ARG_TYPE_ID

HandleDependencies IN A_ARG_TYPE_Boolean

OperationID OUT A_ARG_TYPE_ID

2.5.5.2 Device Requirements
As specified by DeviceProtection:1, any control point that possesses any of the Roles in the action’s Role
List MUST be permitted to invoke this action regardless of the values of any action input arguments. If the
Security feature is not supported, all actions are permitted, i.e. behavior is the same as if the action had a
Role List of “Public”.

Otherwise, if all of the following conditions are met, any control point that possesses any of the Roles in
the action’s Restricted Role List MUST be permitted to invoke the action:

• The action was invoked over a TLS connection.

• The control point Identity is present in the DeviceProtection:1 ACL.

• The control point possesses a Role that authorizes this action on EU with specified EUID.

• The control point started this EU.

2.5.5.3 Dependency on State
The given EUID MUST exist.

2.5.5.4 Effect on State
A new OperationID is assigned the Requested value and enters the OperationIDs list. The action returns
with the OperationID output argument.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 47

When Software Data Model is implemented, this action sets the
/UPnP/DM/Software/DU/#/EU/#/RequestedState to reflect that an EU is Inactive.

If the HandleDependencies is set to "0", only the EU matching the EUID is targeted by the operation. If it
is set to "1", and the device can handle dependencies then, all the dependent EUs also must be targeted by
this operation. The details of how a device decides which dependent EUs to be targeted for stopping is
implementation dependent. Each of the targeted EUs is assigned the Inactive state.

The action is considered finished when all the targeted EUs are Inactive and were requested to stop.

If the operation is successful, all the targeted EUs are assigned the Inactive state and cease to be running.
The EUID of each Inactive EU is removed from the ActiveEUIDs list. The EUID of each Stopped EU is
removed from the RunningEUIDs list. Finally, the OperationID is removed from the OperationIDs list in
the Completed or Error state. Only one event message SHOULD be sent with the value of all involved
lists.

For some EUs once the operation is Completed a reboot could be needed. If the BMS::SequenceMode
value is set to 1, the reboot SHOULD be avoided until BMS::SequenceMode value is set to 0.

As a side effect of this action the SMS data model MAY be updated. If so, this update MUST be done
before any of the related state variables are updated.

2.5.5.5 Errors

Table 2-20: Error Codes for Stop ()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

606 Action not
authorized

The action requested requires authorization and the sender was not
authorized.

702 HandleDependenci
es request not
honored

The Stop() action failed because HandleDependencies is set to "1"
and the device is unable to handle the software entity
dependencies or HandleDependencies is set to “0” and the device
is handling software entity dependencies.

704 Already in a
transitory state

The action failed because the software entity is already in a
transitory state.

706 Invalid EUID The Stop() action failed because the EUID argument is not valid.

2.5.6 GetDUIDs()
The GetDUIDs() action return the current value of the DUIDs state variable.

2.5.6.1 Arguments
The output argument is defined as follows:

- DUIDs: the identifiers of the installed DUs. If no DU is in Installed or Unresolved state the
returned value is an empty string.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 48

Table 2-21: Arguments for GetDUIDs()

Argument Direction relatedStateVariable

DUIDs OUT DUIDs

2.5.6.2 Device Requirements
This action returns the value of an evented state variable. This value is freely available to all control
points, so the Parent Device MUST permit all control points to invoke the action regardless of which Roles
they possess.

2.5.6.3 Dependency on State
None.

2.5.6.4 Effect on State
None.

2.5.6.5 Errors

Table 2-22: Error Codes for GetDUIDs()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.5.7 GetEUIDs()
The GetEUIDs() action returns the current value of the EUIDs state variable.

2.5.7.1 Arguments
The output argument is defined as follows:

- EUIDs: the identifiers of all the installed EUs.

Table 2-23: Arguments for GetEUIDs()

Argument Direction relatedStateVariable

EUIDs OUT EUIDs

2.5.7.2 Device Requirements
This action returns the value of an evented state variable. This value is freely available to all control
points, so the Parent Device MUST permit all control points to invoke the action regardless of which Roles
they possess.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 49

2.5.7.3 Dependency on State
None.

2.5.7.4 Effect on State
None.

2.5.7.5 Errors

Table 2-24: Error Codes for GetEUIDs()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.5.8 GetActiveEUIDs()
The GetActiveEUIDs() action returns the current value of the ActiveEUIDs state variable.

2.5.8.1 Arguments
The output argument is defined as follows:

- ActiveEUIDs: the identifiers of all the EUs that are in Active state.

Table 2-25: Arguments for GetActiveEUIDs()

Argument Direction relatedStateVariable

ActiveEUIDs OUT ActiveEUIDs

2.5.8.2 Device Requirements
This action returns the value of an evented state variable. This value is freely available to all control
points, so the Parent Device MUST permit all control points to invoke the action regardless of which Roles
they possess.

2.5.8.3 Dependency on State
None.

2.5.8.4 Effect on State
None.

2.5.8.5 Errors

Table 2-26: Error Codes for GetActiveEUIDs()

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 50

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.5.9 GetRunningEUIDs()
The GetRunningEUIDs() action returns the current value of the RunningEUIDs state variable.

2.5.9.1 Arguments
The output argument is defined as follows:

- RunningEUIDs: the identifiers of all the EUs that are in Running state.

Table 2-27: Arguments for GetRunningEUIDs()

Argument Direction relatedStateVariable

RunningEUIDs OUT RunningEUIDs

2.5.9.2 Device Requirements
This action returns the value of an evented state variable. This value is freely available to all control
points, so the Parent Device MUST permit all control points to invoke the action regardless of which Roles
they possess.

2.5.9.3 Dependency on State
None.

2.5.9.4 Effect on State
None.

2.5.9.5 Errors

Table 2-28: Error Codes for GetRunningEUIDs()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.5.10 GetOperationInfo()
The GetOperationInfo() action gets the information about an operation identified by an OperationID.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 51

Once an operation has been successfully requested, the operation info SHOULD remain available at least
until a disappearance / reappearance of the SoftwareManagement service on the network, e.g., as a result of
a power cycle. An implementation MAY drop the oldest OperationIDs from the list because of memory
constraint. An implementation MAY retain operation info across a service restart.

2.5.10.1 Arguments
The input argument is used as follows:

- OperationID: the identifier of the targeted operation.

The output arguments are defines as follows:
- OperationState: the state of the operation.
- TargetedIDs: the IDs of the DUs or the EUs targeted by the operation. The first ID MUST

identify the software entity explicitly targeted by the operation, e.g., the EUID passed in to the
Start() action. If the operation state is Requested, InProgress or Error the TargetedIDs list MAY
be incomplete and possibly empty. When the operation is Completed, the list MUST be
exhaustive.

- Action: the action that has initiated the operation.
- ErrorDescription: detailed description of error state. In case of completion without error,

Error_None MUST be returned.
- AdditionalInfo: an informative description of the result of the operation.

Table 2-29: Arguments for GetOperationInfo()

Argument Direction relatedStateVariable

OperationID IN A_ARG_TYPE_ID

OperationState OUT A_ARG_TYPE_OperationState

TargetedIDs OUT A_ARG_TYPE_IDs

Action OUT A_ARG_TYPE_Action

ErrorDescription OUT A_ARG_TYPE_ErrorDescription

AdditionalInfo OUT A_ARG_TYPE_String

2.5.10.2 Device Requirements
This action is Non-Restrictable and all control points MUST be permitted to invoke the action regardless of
which Roles they possess.

2.5.10.3 Dependency on State
The given OperationID MUST exist.

2.5.10.4 Effect on State
None.

2.5.10.5 Errors

Table 2-30: Error Codes for GetOperationInfo()

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 52

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

708 Invalid Operation
ID

The GetOperationInfo() action failed because the OperationID
argument is not valid.

2.5.11 GetOperationIDs()
The GetOperationIDs() action returns the current value of the OperationIDs state variable.

2.5.11.1 Arguments
The output argument is defined as follows:

- OperationIDs: the identifiers of all the on going Operations i.e., Operations in either Requested
or InProgress state.

Table 2-31: Arguments for GetOperationIDs()

Argument Direction relatedStateVariable

OperationIDs OUT OperationIDs

2.5.11.2 Device Requirements
This action returns the value of an evented state variable. This value is freely available to all control
points, so the Parent Device MUST permit all control points to invoke the action regardless of which Roles
they possess.

2.5.11.3 Dependency on State
None.

2.5.11.4 Effect on State
None.

2.5.11.5 Errors

Table 2-32: Error Codes for GetOperationIDs()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 53

2.5.12 GetErrorEUIDs()
The GetErrorEUIDs() action returns the current value of the ErrorEUIDs state variable.

2.5.12.1 Arguments
The output argument is defined as follows:

- ErrorEUIDs: a comma-separated list of EUIDs in an error state. This MAY be empty if and only
if there are no EUs currently in error state.

Table 2-33: Arguments for GetErrorEUIDs()

Argument Direction relatedStateVariable

ErrorEUIDs OUT ErrorEUIDs

2.5.12.2 Device Requirements
This action returns the value of an evented state variable. This value is freely available to all control
points, so the Parent Device MUST permit all control points to invoke the action regardless of which Roles
they possess.

2.5.12.3 Dependency on State
None.

2.5.12.4 Effect on State
None.

2.5.12.5 Errors

Table 2-34: Error Codes for GetErrorEUIDs()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.5.13 GetDUInfo()
The GetDUInfo() action gets the information about a DU identified by its DUID.

Information about a DU MUST be available as soon as the DU is Installed. Information about the DU is
removed as soon as the DU is Uninstalled.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 54

2.5.13.1 Arguments
The input argument is used as follows:

- DUID: the identifier of the DU.
The output arguments are defined as follows:

- DUName: the name of the DU.
- DUVersion: the version of the DU.
- DUType: the type of the DU.
- DUState: the state of the DU.
- DUURI: the URI of the DU from where it is installed or updated. The value MUST NOT be

empty.

Table 2-35: Arguments for GetDUInfo()

Argument Direction relatedStateVariable

DUID IN A_ARG_TYPE_ID

DUName OUT A_ARG_TYPE_Name

DUVersion OUT A_ARG_TYPE_Version

DUType OUT A_ARG_TYPE_DUType

DUState OUT A_ARG_TYPE_DUState

DUURI OUT A_ARG_TYPE_URI

2.5.13.2 Device Requirements
As specified by DeviceProtection:1, any control point that possesses any of the Roles in the action’s Role
List MUST be permitted to invoke this action regardless of the values of any action input arguments. If the
Security feature is not supported, all actions are permitted, i.e. behavior is the same as if the action had a
Role List of “Public”.

Otherwise, if all of the following conditions are met, any control point that possesses any of the Roles in
the action’s Restricted Role List MUST be permitted to invoke the action:

• The action was invoked over a TLS connection.

• The control point Identity is present in the DeviceProtection:1 ACL.

• The control point possesses a Role that authorizes this action on DU with specified DUID.

2.5.13.3 Dependency on State
The given DUID MUST exist.

2.5.13.4 Effect on State
None.

2.5.13.5 Errors

Table 2-36: Error Codes for GetDUInfo()

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 55

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

606 Action not
authorized

The action requested requires authorization and the sender was not
authorized.

705 Invalid DUID The GetDUInfo() action failed because the DUID argument is not
valid.

2.5.14 GetEUInfo()
The GetEUInfo() action gets the information about an EU identified by its EUID.

Information about an EU MUST be available as soon as the related DU is installed successfully because
EUs appear on successful installation of DUs. Information about the EU will be removed as soon as the
corresponding DU is uninstalled.

2.5.14.1 Arguments
The input argument is used as follows:

- EUID: the identifier of the EU.
The output arguments are defined as follows:

- EUName: the name of the EU.
- EUVersion: the version of the EU.
- EURequestedState: the requested state of the EU.
- EURunningState: the running state of the EU.

Table 2-37: Arguments for GetEUInfo()

Argument Direction relatedStateVariable

EUID IN A_ARG_TYPE_ID

EUName OUT A_ARG_TYPE_Name

EUVersion OUT A_ARG_TYPE_Version

EURequestedState OUT A_ARG_TYPE_EURequestedState

EURunningState OUT A_ARG_TYPE_EURunningState

2.5.14.2 Device Requirements
As specified by DeviceProtection:1, any control point that possesses any of the Roles in the action’s Role
List MUST be permitted to invoke this action regardless of the values of any action input arguments. If the
Security feature is not supported, all actions are permitted, i.e. behavior is the same as if the action had a
Role List of “Public”.

Otherwise, if all of the following conditions are met, any control point that possesses any of the Roles in
the action’s Restricted Role List MUST be permitted to invoke the action:

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 56

• The action was invoked over a TLS connection.

• The control point Identity is present in the DeviceProtection:1 ACL.

• The control point possesses a Role that authorizes this action on EU with specified EUID.

2.5.14.3 Dependency on State
The given EUID MUST exist.

2.5.14.4 Effect on State
None.

2.5.14.5 Errors

Table 2-38: Error Codes for GetEUInfo()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

606 Action not
authorized

The action requested requires authorization and the sender was not
authorized.

706 Invalid EUID The GetEUInfo() action failed because the EUID argument is not
valid.

2.5.15 GetACLData()
The GetACLData() action returns the SoftwareManagement:2 access control data for the Parent Device.
This access control data gives the control point information about how the device will make access control
decisions. The syntax of the access control data is described in section 2.3.21.

2.5.15.1 Arguments

Table 2-39: Arguments for GetACLData()

Argument Direction relatedStateVariable

ACL OUT A_ARG_TYPE_ACL

2.5.15.2 Device Requirements
As specified by DeviceProtection:1, any control point that possesses any of the Roles in the action’s Role
List MUST be permitted to invoke this action regardless of the values of any action input arguments. If the
Security feature is not supported, all actions are permitted, i.e. behavior is the same as if the action had a
Role List of “Public”.

Otherwise, if all of the following conditions are met, any control point that possesses any of the Roles in
the action’s Restricted Role List MUST be permitted to invoke the action:

• The action was invoked over a TLS connection.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 57

• The control point Identity is present in the DeviceProtection:1 ACL.

2.5.15.3 Dependency on State
None.

2.5.15.4 Effect on State
None.

2.5.15.5 Errors

Table 2-40: Error Codes for GetACLData()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

606 Action not
authorized

The action requested requires authorization and the sender was not
authorized.

2.5.16 Common Error Codes
The following table lists error codes common to actions for this service type. If an action results in multiple
errors, the most specific error must be returned.

Table 2-41: Common Error Codes

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD Common action errors. Defined by UPnP Forum Technical
Committee.

606 Action not
authorized

The action requested requires authorization and the sender was not
authorized.

700 Reserved for future extensions.

701 Invalid URI The action failed because the given URI argument is not valid,
i.e., syntax base checking

702 HandleDependenci
es request not
honored

The action failed because HandleDependencies is set to "1" and
the device is unable to handle the software entity dependencies or
HandleDependencies is set to “0” and the device is handling
software entity dependencies.

703

Already Installed,
multiple Instances
not allowed

The Install() action failed because an identical DU is already
Installed or Unresolved.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 58

errorCode errorDescription Description

704 Already in a
transitory state

The action failed because the software entity is already in a
transitory state.

705 Invalid DUID The action failed because the given DUID value is not valid.

706 Invalid EUID The action failed because the given EUID value is not valid.

707 Already in the
targeted state

The action failed because the software entity is already in the
targeted state.

708 Invalid Operation
ID

The action failed because the given OperationID value is not
valid.

709 DU is unresolved The Start() action failed because the DU related to this EU is still
Unresolved.

710 NewDUURI not
supported

The Update() action failed because the NewDUURI is not
supported by the EE.

800-899 TBD (Specified by UPnP vendor.)

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 59

2.6 Theory of Operation
This informative section explains various scenarios to illustrate the actions that are supported by
SoftwareManagement Service. The SoftwareManagement Service will support the following actions:
Install(), Update(), Uninstall(), Start() and Stop() on software entities.

2.6.1 Scenarios

2.6.1.1 Dependency Handling
Dependency handling means one software entity being dependent on another software entity. For example
a DU may be dependent on other DUs and an EU may be dependent on other EUs. Dependency handling is
a capability of the EE. For example, an OSGi EE is able to handle dependencies. The properties
/UPnP/DM/Software/Capabilities/AbleToHandleDUDependency and
/UPnP/DM/Software/Capabilities/AbleToHandleEUDependency are used to indicate the
capabilities. How SMS handles the dependencies is implementation specific. Below are some possible
outcomes (Note: first DU is the DU on which the action is invoked):

1) During installation of a first DU, dependency handling may install other DUs as well. If
dependent DUs are not installed, the first DU will be in Unresolved state else it will be in Installed
state.

2) During update of a first DU, dependency handling may uninstall some DUs which are not in use
currently and were installed because of dependency during installation and install some more new
DUs. The running EUs corresponding to the updated DUs are stopped and restarted.

3) During uninstall of a first DU, dependency handling may uninstall some DUs which are not in
use currently and were installed because of dependency during installation of first DU. EUs
corresponding to the uninstalled DUs are stopped.

4) During start of a first EU, dependency handling may start some EUs on which the first EU is
dependent upon.

5) During stop of a first EU, dependency handling may stop some EUs which are not in use
currently and were started because of dependency handling during start of first EU.

2.6.1.2 Installing a Software entity successfully

The Install () action is required. Its Role List is “Admin” and Restricted Role List is “Public, Basic”. This
means that control points that possess “Admin” role are permitted to invoke this action unrestrictively. Also
control points which possess “Public” or “Basic” role are permitted to invoke this action if they satisfy
other criteria as mentioned in the action description (Section 2.5.1.2).

1. Without dependency

A control point invokes the install () action giving the URI of a first DU to be installed on to an
EE. A URI is most probably a URL for practical purposes. After receiving the install action, the
Parent Device will create an operation and return the OperationID. This OperationID is added to
the OperationIDs state variable and is evented. Once the operation is successfully executed, the
first DU appears in Installed state (assuming no dependency). A new DUID is assigned to this
DU, data model MAY be updated and this is added to the DUIDs state variable. All the EUs
associated to this first DU appear in the Inactive state and their IDs are added to EUIDs state

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 60

variable. The operation is successful and the OperationID is removed from the OperationIDs list.
All the state variables are evented in a single event.

Figure 2-5 Installing a software entity successfully without dependency

2. With Dependency

A control point invokes the install action giving the URI of a first DU to be installed on to an EE
along with dependency handling. With dependency handling on successful completion of an
install operation all dependent DUs will be either installed or unresolved in addition to the first
DU which will also be either in the installed or unresolved state. All EUs corresponding to the
DUs will appear in the Inactive state. Other flow remains the same as above.

2.6.1.3 Installing a software entity (failure case)

The Install () action is required. Its Role List is “Admin” and Restricted Role List is “Public, Basic”. This
means that control points that possess “Admin” role are permitted to invoke this action unrestrictively. Also
control points which possess “Public” or “Basic” role are permitted to invoke this action if they satisfy
other criteria as mentioned in the action description (Section 2.5.1.2).

A control point invokes the install action giving the URI of a first DU to be installed on to an EE along
with dependency handling. If an Error occurs because of a dependent DU, the installation proceeds with
other DUs without effecting the operation. But if an Error occurs because of the first DU and some of its

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 61

dependent DUs are already installed, in that case implementations may choose to rollback and hence
uninstall the dependent DUs installed in this operation. Note that the order of installation of DUs is
implementation dependent. In any case control points depend on the evented state variables DUIDs,
EUIDs, ActiveEUIDs and OperationIDs. Even in the failure case these state variables will be updated and
control points will be in sync with the Parent Device.

2.6.1.4 Update a Software entity successfully

The Update () action is required. Its Role List is “Admin” and Restricted Role List is “Public, Basic”. This
means that control points that possess “Admin” role are permitted to invoke this action unrestrictively. Also
control points which possess “Public” or “Basic” role are permitted to invoke this action if they satisfy
other criteria as mentioned in the action description (Section 2.5.2.2).

A software entity can be a piece of software or firmware represented as a DU. For update a firmware is
treated as a special kind of software. A firmware can be envisioned in terms of DU and EU. The primary
firmware is identified using the ID “0” for both DUID and EUID. So updating a primary firmware is done
by calling the Update() action on DUID “0”.

Treating firmware as a common software entity gives the flexibility of designing a monolithic firmware as
well as a modular firmware. An implementation is free to choose a set of DUs and EUs as firmwares. In
any case DUID and EUID “0” are reserved for the primary firmware, i.e., the firmware the physical device
is booting on.

Below are two scenarios with dependency and without dependency for updating a software entity.

1. Without Dependency

A control point invokes the Update() action by optionally giving the new URI from where to update an
already installed/ unresolved DU on to an EE. After receiving the Update()action, the SMS will create
an operation and return the OperationID. This OperationID is added to the OperationIDs state
variable and is evented. The already installed or unresolved DU will be uninstalled and a new DU will
be installed from the new location or from a previously stored location. The previous DUID is
retained. After a successful update the DU can be either unresolved or installed. Any related EUs
which are running will be stopped. After update of a DU all the related EUs will appear in Inactive
state irrespective of their previous state. These EUs will be treated as new EUs and are having new
EUIDs. The OperationID is removed from the OperationIDs list. The data model MAY be updated
and the related state variables are updated for eventing.

2. With Dependency

A control point invokes the Update() action optionally giving the new URI from where to update an
already installed/unresolved DU on to an EE along with dependency handling. After receiving the
Update() action, the SMS will create an operation and return the OperationID. This OperationID is
added to the OperationIDs state variable and is evented. The already installed or unresolved DU will
be uninstalled and a new DU will be installed from the new location or from a previously stored
location. The previous DUID is retained. The same is repeated for all dependent DUs. With
dependency handling, on successful completion of an update operation, all dependent DUs will be
either installed or unresolved in addition to the first DU which will also be either in the installed or
unresolved state. All the related EUs which are running will be stopped. After update all the related
EUs will appear in Inactive state irrespective of their previous state. These EUs will be treated as new
EUs and are having new EUIDs. The OperationID is removed from the OperationIDs list. The data
model MAY be updated and the related state variables are updated for eventing.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 62

2.6.1.5 Updating a software entity (failure case)
The Update () action is required. Its Role List is “Admin” and Restricted Role List is “Public, Basic”. This
means that control points that possess “Admin” role are permitted to invoke this action unrestrictively. Also
control points which possess “Public” or “Basic” role are permitted to invoke this action if they satisfy
other criteria as mentioned in the action description (Section 2.5.2.2).

A control point invokes the Update() action by optionally giving the new URI from where to update an
already installed/unresolved DU on to an EE along with dependency handling. If during update an Error
occurs because of a dependent DU, the update proceeds with other DUs without effecting the operation.
But if an Error occurs because of the first DU and some of its dependent DUs are already updated, in that
case implementations may choose to rollback and hence uninstall those dependent DUs installed in this
operation. Note that the order of installation of DUs is implementation dependent. In any case control
points depend on the evented state variables DUIDs, EUIDs, ActiveEUIDs and OperationIDs. Even in the
failure case these state variables will be updated and control points will be in sync with the Parent Device.

2.6.1.6 Uninstall a Software entity successfully
The Uninstall () action is required. Its Role List is “Admin” and Restricted Role List is “Public, Basic”.
This means that control points that possess “Admin” role are permitted to invoke this action unrestrictively.
Also control points which possess “Public” or “Basic” role are permitted to invoke this action if they
satisfy other criteria as mentioned in the action description (Section 2.5.3.2).

1. Without Dependency

A control point invokes the Uninstall() action giving the DUID of a DU to be uninstalled from an
EE. After receiving the Uninstall() action, the Parent Device will create an operation and return
the OperationID. This OperationID is added to the OperationIDs state variable and is evented.
The operation is successfully completed once the DU corresponding to the DUID is uninstalled
and that DU is removed from the DUIDs list. The EUs corresponding to the DU are stopped and
removed from the EUIDs and RunningEUIDs list. The data model MAY be updated and
OperationID is removed from OperationIDs list. All the state variables are evented.

2. With Dependency

A control point invokes the Uninstall() action giving the DUID of a first DU to be uninstalled
from an EE along with dependency handling. After receiving the Uninstall() action, the Parent
Device will create an operation and return the OperationID. This OperationID is added to the
OperationIDs state variable and is evented. The operation is successfully completed once all the
DUs which are installed because of dependency handling will be uninstalled along with the first
DU. A dependent DU will be uninstalled if and only if no more dependencies exist on it. All DUs
are removed from the DUIDs list. All the EUs corresponding to the DUs are stopped and removed
from the EUIDs and RunningEUIDs list. The OperationID is removed from OperationIDs list.
The data model MAY be updated and state variables are evented.

2.6.1.7 Uninstall a software entity (failure case)
The Update () action is required. Its Role List is “Admin” and Restricted Role List is “Public, Basic”. This
means that control points that possess “Admin” role are permitted to invoke this action unrestrictively. Also
control points which possess “Public” or “Basic” role are permitted to invoke this action if they satisfy
other criteria as mentioned in the action description (Section 2.5.3.2).

A control point invokes the Uninstall() action giving the DUID of a first DU to be uninstalled from an EE
along with dependency handling. After receiving the uninstall action, the Parent Device will create an
operation and return the OperationID. This OperationID is added to the OperationIDs state variable and is
evented. If during uninstall an Error occurs because of a dependent DU, the uninstall proceeds with other

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 63

DUs without effecting the operation. But if an Error occurs because of the first DU and some of its
dependent DUs are already uninstalled, in that case implementations may choose to rollback and hence
install those dependent DUs uninstalled in this operation. Note that the order of uninstall of DUs is
implementation dependent. In any case control points depend on the evented state variables DUIDs, EUIDs
and OperationIDs. Even in the failure case these state variables will be updated and control points will be
in sync with the Parent Device.

2.6.1.8 Start a Software entity successfully
The Start () action is required. Its Role List is “Admin” and Restricted Role List is “Public, Basic”. This
means that control points that possess “Admin” role are permitted to invoke this action unrestrictively. Also
control points which possess “Public” or “Basic” role are permitted to invoke this action if they satisfy
other criteria as mentioned in the action description (Section 2.5.4.2).

1. Without Dependency

A control point invokes the Start() action giving the EUID of an EU to be started on an EE. After
receiving the Start() action, the Parent Device will create an operation and return the
OperationID. This OperationID is added to the OperationIDs state variable and is evented. The
operation is successfully completed once the EU corresponding to the EUID is started. The EUID
is then added to the ActiveEUIDs list and the RunningEUIDs list if observed as running. The
OperationID is removed from OperationIDs list. The data model MAY be updated and state
variables are evented.

2. With Dependency

A control point invokes the Start() action giving the EUID of an EU to be started on an EE along
with dependency handling. After receiving the Start() action, the Parent Device will create an
operation and return the OperationID. This OperationID is added to the OperationIDs state
variable and is evented. The operation is successfully completed once the EU corresponding to the
EUID and its dependent EUs are started. The EUIDs are added to the ActiveEUIDs and
RunningEUIDs list if observed as running. The OperationID is removed from OperationIDs list.
The data model MAY be updated and state variables are evented.

2.6.1.9 Start a Software entity (failure case)
The Start () action is required. Its Role List is “Admin” and Restricted Role List is “Public, Basic”. This
means that control points that possess “Admin” role are permitted to invoke this action unrestrictively. Also
control points which possess “Public” or “Basic” role are permitted to invoke this action if they satisfy
other criteria as mentioned in the action description (Section 2.5.4.2).

A control point invokes the Start() action giving the EUID of a first EU to be started on an EE along with
dependency handling. After receiving the Start() action, the Parent Device will create an operation and
return the OperationID. This OperationID is added to the OperationIDs state variable and is evented. If
during start an Error occurs because of a dependent EU, the start proceeds with other EUs without
effecting the operation. But if an Error occurs because of the first EU and some of its dependent EUs are
already started, in that case implementations may choose to rollback and hence stop those dependent EUs
started in this operation. Note that the order of start of EUs is implementation dependent. The EUID is
added to the ErrorEUIDs list. In any case control points depend on the evented state variables EUIDs,
AciveEUIDs, RunningEUIDs, ErrorEUIDs and OperationIDs. Even in the failure case these state variables
will be updated and control points will be in sync with the Parent Device.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 64

2.6.1.10 Stop a Software entity successfully
The Stop () action is required. Its Role List is “Admin” and Restricted Role List is “Public, Basic”. This
means that control points that possess “Admin” role are permitted to invoke this action unrestrictively. Also
control points which possess “Public” or “Basic” role are permitted to invoke this action if they satisfy
other criteria as mentioned in the action description (Section 2.5.5.2).

1. Without Dependency

A control point invokes the Stop() action giving the EUID of an EU to be stopped on an EE. After
receiving the Stop() action, the Parent Device will create an operation and return the OperationID.
This OperationID is added to the OperationIDs state variable and is evented. The operation is
successfully completed once the EU corresponding to the EUID is stopped. The EUID is then
removed from the ActiveEUIDs list and the RunningEUIDs list if observed as no more running.
The OperationID is removed from OperationIDs list. The data model MAY be updated and state
variables are evented.

2. With Dependency

A control point invokes the Stop() action giving the EUID of an EU to be stopped on an EE along
with dependency handling. After receiving the Stop() action, the Parent Device will create an
operation and return the OperationID. This OperationID is added to the OperationIDs state
variable and is evented. The operation is successfully completed once the EU corresponding to the
EUID along with its dependent EUs are stopped. A dependent EU will be stopped if and only if
no more dependencies exist on it. The EUIDs are then removed from the ActiveEUIDs list and the
RunningEUIDs list if they are no more observed as running. The OperationID is removed from
OperationIDs list. The data model MAY be updated and state variables are evented.

2.6.1.11 Stop a Software entity (failure case)
The Stop () action is required. Its Role List is “Admin” and Restricted Role List is “Public, Basic”. This
means that control points that possess “Admin” role are permitted to invoke this action unrestrictively. Also
control points which possess “Public” or “Basic” role are permitted to invoke this action if they satisfy
other criteria as mentioned in the action description (Section 2.5.5.2).

A control point invokes the Stop() action giving the EUID of a first EU to be stopped on an EE along with
dependency handling. After receiving the stop action, the Parent Device will create an Operation and
return the OperationID. This OperationID is added to the OperationIDs state variable and is evented. If
during stop an Error occurs because of a dependent EU, the stop proceeds with other EUs without
effecting the operation. But if an Error occurs because of the first EU and some of its dependent EUs are
already stopped, in that case implementations may choose to rollback and hence start those dependent EUs
stopped in this operation. Note that the order of stop of EUs is implementation dependent. The EUID is
added to the ErrorEUIDs list. In any case control points depend on the evented state variables EUIDs,
AciveEUIDs, RunningEUIDs, ErrorEUIDs and OperationIDs. Even in the failure case these state variables
will be updated and control points will be in sync with the Parent Device.

2.6.1.12 Firmware update
The Update () action is required. Its Role List is “Admin” and Restricted Role List is “Public, Basic”. This
means that control points that possess “Admin” role are permitted to invoke this action unrestrictively. Also
control points which possess “Public” or “Basic” role are permitted to invoke this action if they satisfy
other criteria as mentioned in the action description (Section 2.5.2.2).

Firmware is envisioned to be a modular firmware in the context of Software Management. There are two
kinds of firmware; one is the primary firmware (identified using the DUID 0 and EUID 0) and another is a
normal firmware treated as any other software. The update of primary firmware is same as updating the

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 65

operating system itself. The Firmware update is performed using the same Update() action which is used
for software update. There are two scenarios here; one is update of primary firmware and another is update
of normal firmware.

1. Update of Primary Firmware

A firmware with DUID 0 is already installed in the device. The corresponding EU with EUID 0 is
already active. To update this primary firmware a control point will invoke Update(0,
NewDUURI, 0). The following steps take place on this action invocation (see Figure 2-6):

Figure 2-6 Update of Primary Firmware

DUID 0 and EUID 0 are removed from the DUIDs and EUIDs list respectively which is then
evented. This is an indication to the control point that the primary firmware is getting updated.

EU 0 is stopped

DU 0 is updated

EU 0 is requested to start again

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 66

DUID 0 and EUID 0 is again added to the DUIDs and EUIDs list respectively which is then
evented. This is an indication to the control point that the primary firmware is successfully
updated.

Note: A Primary firmware MUST NOT be dependent on any other DU or EU. Hence
HandleDependencies is always 0.

2. Update of Normal Firmware

Normal firmware is treated as any other software and the update procedures that are followed are
similar to that of the normal software. See sections 2.6.1.4 and 2.6.1.5.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 67

3 XML Service Description (Normative)
<?xml version="1.0" encoding="UTF-8"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
<actionList>
 <action>
 <name>Install</name>
 <argumentList>
 <argument>
 <name>DUURI</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_URI</relatedStateVariable>
 </argument>
 <argument>
 <name>DUType</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_DUType</relatedStateVariable>
 </argument>
 <argument>
 <name>HandleDependencies</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_Boolean</relatedStateVariable>
 </argument>
 <argument>
 <name>OperationID</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_ID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>Update</name>
 <argumentList>
 <argument>
 <name>DUID</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_ID</relatedStateVariable>
 </argument>
 <argument>
 <name>NewDUURI</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_URI</relatedStateVariable>
 </argument>
 <argument>
 <name>HandleDependencies</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_Boolean</relatedStateVariable>
 </argument>
 <argument>
 <name>OperationID</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_ID</relatedStateVariable>
 </argument>

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 68

 </argumentList>
 </action>
 <action>
 <name>Uninstall</name>
 <argumentList>
 <argument>
 <name>DUID</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_ID</relatedStateVariable>
 </argument>
 <argument>
 <name>HandleDependencies</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_Boolean</relatedStateVariable>
 </argument>
 <argument>
 <name>OperationID</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_ID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>Start</name>
 <argumentList>
 <argument>
 <name>EUID</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_ID</relatedStateVariable>
 </argument>
 <argument>
 <name>HandleDependencies</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_Boolean</relatedStateVariable>
 </argument>
 <argument>
 <name>OperationID</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_ID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>Stop</name>
 <argumentList>
 <argument>
 <name>EUID</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_ID</relatedStateVariable>
 </argument>
 <argument>
 <name>HandleDependencies</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_Boolean</relatedStateVariable>
 </argument>
 <argument>
 <name>OperationID</name>
 <direction>out</direction>

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 69

 <relatedStateVariable>A_ARG_TYPE_ID</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetDUIDs</name>
 <argumentList>
 <argument>
 <name>DUIDs</name>
 <direction>out</direction>
 <relatedStateVariable>DUIDs</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetEUIDs</name>
 <argumentList>
 <argument>
 <name>EUIDs</name>
 <direction>out</direction>
 <relatedStateVariable>EUIDs</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetActiveEUIDs</name>
 <argumentList>
 <argument>
 <name>ActiveEUIDs</name>
 <direction>out</direction>
 <relatedStateVariable>ActiveEUIDs</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetRunningEUIDs</name>
 <argumentList>
 <argument>
 <name>RunningEUIDs</name>
 <direction>out</direction>
 <relatedStateVariable>RunningEUIDs</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetOperationInfo</name>
 <argumentList>
 <argument>
 <name>OperationID</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_ID</relatedStateVariable>
 </argument>
 <argument>
 <name>OperationState</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_OperationState</relatedStateVariable>
 </argument>
 <argument>
 <name>TargetedIDs</name>

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 70

 <direction>out</direction>

 <relatedStateVariable>A_ARG_TYPE_IDs</relatedStateVariable>
 </argument>
 <argument>
 <name>Action</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_Action</relatedStateVariable>
 </argument>
 <argument>
 <name>ErrorDescription</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_ErrorDescription</relatedStateVariable>
 </argument>
 <argument>
 <name>AdditionalInfo</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_String</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetOperationIDs</name>
 <argumentList>
 <argument>
 <name>OperationIDs</name>
 <direction>out</direction>
 <relatedStateVariable>OperationIDs</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetErrorEUIDs</name>
 <argumentList>
 <argument>
 <name>ErrorEUIDs</name>
 <direction>out</direction>
 <relatedStateVariable>ErrorEUIDs</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetDUInfo</name>
 <argumentList>
 <argument>
 <name>DUID</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_ID</relatedStateVariable>
 </argument>
 <argument>
 <name>DUName</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_Name</relatedStateVariable>
 </argument>
 <argument>
 <name>DUVersion</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_Version</relatedStateVariable>

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 71

 </argument>
 <argument>
 <name>DUType</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_DUType</relatedStateVariable>
 </argument>
 <argument>
 <name>DUState</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_DUState</relatedStateVariable>
 </argument>
 <argument>
 <name>DUURI</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_URI</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetEUInfo</name>
 <argumentList>
 <argument>
 <name>EUID</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_ID</relatedStateVariable>
 </argument>
 <argument>
 <name>EUName</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_Name</relatedStateVariable>
 </argument>
 <argument>
 <name>EUVersion</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_Version</relatedStateVariable>
 </argument>
 <argument>
 <name>EURequestedState</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_EURequestedState</relatedStateVariable>
 </argument>
 <argument>
 <name>EURunningState</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_EURunningState</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetACLData</name>
 <argumentList>
 <argument>
 <name>ACL</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_ACL</relatedStateVariable>
 </argument>

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 72

 </argumentList>
 </action>
 </actionList>
<serviceStateTable>
 <stateVariable sendEvents="yes">
 <name>OperationIDs</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>DUIDs</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>EUIDs</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>ActiveEUIDs</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>RunningEUIDs</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>ErrorEUIDs</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Boolean</name>
 <dataType>boolean</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_String</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ID</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_IDs</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_OperationState</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Requested</allowedValue>
 <allowedValue>InProgress</allowedValue>
 <allowedValue>Completed</allowedValue>
 <allowedValue>Error</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_URI</name>
 <dataType>uri</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Action</name>

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 73

 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Install</allowedValue>
 <allowedValue>Update</allowedValue>
 <allowedValue>Uninstall</allowedValue>
 <allowedValue>Start</allowedValue>
 <allowedValue>Stop</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ErrorDescription</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Error_None</allowedValue>
 <allowedValue>Error_ConcurrentAccess</allowedValue>
 <allowedValue>Error_MissingDependency</allowedValue>
 <allowedValue>Error_Network</allowedValue>
 <allowedValue>Error_CorruptedFile</allowedValue>
 <allowedValue>Error_DiskFull</allowedValue>
 <allowedValue>Error_Other</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_DUType</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Firmware</allowedValue>
 <allowedValue>Application</allowedValue>
 <allowedValue>Configuration</allowedValue>
 <allowedValue>Other</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Name</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Version</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_DUState</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Installing</allowedValue>
 <allowedValue>Unresolved</allowedValue>
 <allowedValue>Installed</allowedValue>
 <allowedValue>Uninstalling</allowedValue>
 <allowedValue>Uninstalled</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_EURequestedState</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Active</allowedValue>
 <allowedValue>Inactive</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 74

 <name>A_ARG_TYPE_EURunningState</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Running</allowedValue>
 <allowedValue>Stopped</allowedValue>
 <allowedValue>Starting</allowedValue>
 <allowedValue>Stopping</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ACL</name>
 <dataType>string</dataType>
 </stateVariable>
 </serviceStateTable>
</scpd>

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 75

4 XML Schema (Normative)
This section contains the normative XML schema to be used to check for the correctness of ACL
argument.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:sms="urn:schemas-upnp-org:dm:sms" targetNamespace="urn:schemas-
upnp-org:dm:sms" elementFormDefault="unqualified"
attributeFormDefault="unqualified" version="2-20120216">
 <xs:simpleType name="ActionName">
 <xs:annotation>
 <xs:documentation>UPnP action name.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token"/>
 </xs:simpleType>
 <xs:simpleType name="FilterExpression">
 <xs:annotation>
 <xs:documentation>ACL filter expression. Syntax is
based on XPath 1.0.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="RoleName">
 <xs:annotation>
 <xs:documentation>DeviceProtection role
name.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token"/>
 </xs:simpleType>
 <xs:complexType name="ACL">
 <xs:annotation>
 <xs:documentation>ACL Data.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="ACL" type="sms:ACLEntry"
minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ACLEntry">
 <xs:annotation>
 <xs:documentation>ACL entry.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="Action" type="sms:ActionName"/>
 <xs:choice>
 <xs:element name="Filter"
type="sms:FilterExpression"/>
 <xs:element name="DUID"/>
 <xs:element name="EUID"/>
 </xs:choice>
 <xs:element name="Roles">
 <xs:simpleType>
 <xs:list itemType="sms:RoleName"/>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ACL" type="sms:ACL">

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 76

 <xs:annotation>
 <xs:documentation>GetACLData()
result</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:schema>

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 77

5 Execution Platform Technologies (Informative)
This section is based on a first study of some execution platform technologies targeting embedded devices:
Linux Debian, Microsoft .NET Platform, Java OSGi [OSGi], Java MIDP3 [MIDP]. The ongoing
specification work named OMA SCOMO [SCOMO] is also studied. Like this specification, it is also an
attempt to standardize a generic protocol to manage the software lifecycle of software execution platforms.

Execution Platform technologies
Most of the execution platform technologies define – at least enable – the deployment and the execution of
modular software applications. After the statement of general definitions, the following technologies are
described: Linux, Microsoft .NET, OSGi [OSGi], Java MIDP version 2 and 3 [MIDP], SCOMO
[SCOMO].

Definitions
The management of the lifecycle of software entities is one Device Management function. The managed
entities are of various kinds, e.g., applications, graphical interface items, drivers. Devices that are
embedded usually define a software image that is called firmware that can only be upgraded as a whole.
Other devices often provide the means to manage more fine-grained software entities that are hosted by an
operating system, e.g., Windows, Linux, a modular application, e.g., a browser, or a virtual machine e.g.,
.NET, Java.

Execution Environment’s usually define the following terms. Table 5-1 compares various software
platform technologies:

• Deployment Unit (DU): a binary unit that can be individually deployed on the Execution
Environment. A deployment unit consists of resources such as library files, functional
execution units, and configuration files, i.e. jar files, bundles, assemblies, etc.

• Execution Unit (EU): a functional entity that, once started, initiates process to perform tasks
or provide services, until that it is stopped. Execution units are deployed by deployment
units, i.e. services, scripts, software components, MIDlets, etc.

• Dependencies: resource dependencies – e.g., libraries, files – can be defined between
deployment units, between execution units and between deployment units and execution
units. Execution units appear with the installation of deployment units. They are contained
by deployment units – e.g., a .NET assembly and an OSGi bundle are deployment units that
contain at most one bootstrap class that can be started, a MIDlet Suite can contain one or
more MIDlets that can be started and stopped.

• Metadata: data that describe the software entities – vendor, update location, Execution
Environment, dependencies, configuration, etc.:

o Optional general properties

o Platform-specific properties useful for deployment

• Software lifecycle management operations

o For DUs, e.g., install, uninstall, update.

o For execution units, e.g., start, stop.

• Software entity states

o Of DUs, e.g., unresolved, installed, uninstalled.

o Of execution units, e.g., stopped, started.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 78

• Events: they are usually related to the achievement of management operation and to state
changes. Events are distinct from operation responses in that they are asynchronous and are
notified to not only the operation initiator but also other managing entities.

• DU repositories: Repositories can be defined by the technology or by management tools.
They are sometimes local, e.g., .NET Global Assembly Cache), and sometimes remote, e.g.,
RedHat RPM repositories, OSGi bundle repository.

• Execution unit repositories: Other repositories enumerate active entities, e.g., OMA SCOMO
inventory, or parts of active entities, e.g., Linux process list, OSGi service registry.

Table 5-1: Execution platform technology comparisons

Technology Deployment
Unit

Executio
n Unit

Dependency Actions Events

OSGi Bundle Bundle Bundle,
Package,
Service

DU: Install, DU: Update,
DU: Uninstall

EU: Start, EU: Stop

Installed, Starting,
Resolved, Active,

Uninstalling

Java MIDP Midlet Suite Midlet Library
(MIDP3)

EU: StartApp, EU:
DestroyApp

NA

.NET Assembly Assembly Assembly DU: Download, DU:
Load, DU: Unload
(AppDomain), EU:

Invoke

AssemblyLoad,
AppDomainUnload,
AssemblyResolve

Linux Debian Package RC Script,
possibly
others

Package DU: PackageInstall,
DU : PackageUninstall,

EU : ServiceStart EU :
ServiceStop

Triggering Updates

SCOMO Delivery
Package,

Deployment
Component

Software
Component

NA DU: Download, DU:
DownloadInstall, DU:

DownloadInstallInactive
, DU: Install, DU:

InstallInactive, DU :
Update, DU : Remove,

EU : Activate, EU :
Deactivate

Operational Results

Linux Packages
Linux is probably the most widespread Execution Environment on the embedded devices of local networks
(e.g., the home network). Linux could have been considered as a de facto standard if derivatives were not
as numerous as they are today. Slackware, Debian et Red-Hat define the main families. All the other main
distributions are deriving from these ones, e.g., Ubuntu, Mepis, Zenwalk, Mandriva, Suze. The structure
and the lifecycle of the software entities defined by these distributions are different from one distribution to
the other. However, all the distributions show some common points:

• Package: The Package is common to the three Linux families.

• Execution unit: the RC script is an entity that is common to several Linux distributions. Init
processes can also be considered as execution units .

• Dependencies: package dependencies are explicit in some distributions like the one of the
Debian family where the package manager is able to install all the packages which a package
depends on when the installation of the latter is demanded. No metadata is defined to link the
RC script with packages.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 79

• Metadata: Processes are not described by any metadata. On the contrary, RedHat and
Debian packages show metadata that describe dependencies and general deployment
information. Here is the list of Debian package properties:

o Optional general properties: Package, Version, Section, Installed-Size, Maintainer,
Description.

o Platform-specific properties useful for deployment: Priority, Architecture, Essential,
Depends, Pre-Depends, Recommends, Suggests, Conflicts, Replaces, Provides.

• Software lifecycle management operations (see Figure)

o For DUs: Install, Remove, Upgrade2.

o For execution units: Start, Stop. They are the most common operations that can be
performed on RC scripts or other init processes .

• Software entity states (see Figure)

o Of Deployment Units: Installed, Removed, Resolved. Since dependency resolution
mechanisms are available on Linux Debian and RedHat platforms, the "Resolved" state is
a state that can be displayed for the DUs. Many transitory states are specified but they are
not represented here.

o Of Execution Units: Inactive, Active. RC scripts can be defined whereas useful DUs are
not available yet. However, they can only be started when the necessary DUs are
installed.

• Events: It is possible to be notified of the activity change of the RC scripts thanks to the
process table. POSIX signals are also available for the follow-up of init daemons.

• DU repositories: Debian and RedHat repositories.

• Execution unit repositories: The process table enumerates the running and defunct processes.

Figure 55-1 A general vision of Linux software entities and their state diagrams

OSGi bundles
The OSGi technology defines a modular deployment platform for Java applications. Far from the initial
vision of an Internet Gateway at creation time in 1999, a more general objective has been targeted by the

2 Even if the detailed Debian manual is more sophisticated, the overall set of operations is about
installation, update and uninstallation: http://www.debian.org/doc/debian-policy/ch-
maintainerscripts.html#s-mscriptsinstact

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 80

OSGi Alliance: "OSGi technology is the dynamic module system for Java" is written on their web site. The
technology defines fine-grained code sharing and isolation mechanisms between deployment units called
bundles. These mechanisms and a set of good practices make it possible to simultaneously execute
applications constituted by several bundles that coexist and share code and loaded objects. Sharing and
isolation rules are applied by the platform according to bundle dependencies described in their manifest
and security directives.

Here are the characteristics of the bundle lifecycle defined by the OSGi specification release 4 version 4.1
[OSGi]:

• Deployment Unit: the OSGi bundle is a JAR file that may contain Java class files, other JAR
files, a Manifest file describing bundle metadata, other non-OSGi resources.

• Execution Unit: Every OSGi bundle declaring a fine named "Activator" can be started or
stopped on the platform. The other bundles are inert resource libraries.

• Dependencies: Every OSGi bundle must declare the versioned packages it provides, the ones
it requires and the ones that remain private inside the bundle. It may also define
dependencies towards bundles. The OSGi platform is responsible for the resolution
diagnostic of bundle package dependencies. A non resolved bundle is prevented to start by
the platform. Some more sophisticated component model (e.g., OSGi Declarative Services)
enable the definition of internal components inside bundles and service dependencies
between them.

• Metadata: The following properties are defined for OSGi bundles:

o Optional general properties: Bundle-Category, Bundle-ContactAddress, Bundle-
Copyright, Bundle-Description, Bundle-DocURL, Bundle-Localization, Bundle-Name,
Bundle-Vendor, Bundle-Version.

o Platform-specific properties useful for deployment: Bundle-ActivationPolicy, Bundle-
Activator, Bundle-Classpath, Bundle-ManifestVersion, Bundle-NativeCode, Bundle-
RequiredExecutionEnvironment, Bundle-SymbolicName, Bundle-UpdateLocation,
DynamicImport-Package, Export-Package, Export-Service, Fragment-Host, Import-
Package, Import-Service, Require-Bundle.

• Software lifecycle management operations (see Figure 5-2): Every bundle can be installed,
uninstalled, updated, started, stopped thanks to the available methods: Install, Uninstall,
Update, Start, Stop. However, starting and stopping a bundle that does not declare an
"Activator" file have no effect. Despite a "Resolved" state is specially specified, resolution
mechanisms can only be triggered by the platform itself (no "Resolve" method is defined).

• Software entity states (see Figure 5-2): Installed, Resolved, Uninstalled, Active. The
"Resolved" state indicates that the resolution diagnostic has been performed and that required
packages (and bundles) are effectively available on the platform. OSGi bundles enter
transitory states when start and stop operations are initiated: Starting, Stopping.

• Events: "Installed", "Uninstalled", "Updated", "Resolved", "Unresolved", "Starting",
"Started", "Stopping", "Stopped". The bundle activity is also visible thanks to the state
notification of provided services: "Registered", "Modified" and "Unregistered".

• Deployment Unit repositories: The de facto OBR standard (OSGi Bundle Repository)
describes a list of stored bundles. This format can be used not only for remote repositories
but also for local ones.

• Execution unit repositories: Well-known OSGi platforms provide platform administrators
with a tool listing the hosted OSGi bundles with their state and metadata. The tool also
enables operations on the bundles. Services and their states may also be listed.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 81

Figure 5-2 The OSGi bundle lifecycle

Java MIDlets
Java MIDP (Mobile Information Device Profile) defines software entities deployable on a constrained Java
virtual machine specified by Java CLDC (Connected Limited Device Configuration). MIDP is known
under 3 versions. What is indicated here is true on MIDP2 [MIDP] and on MIDP3. Much more restrictive
than the OSGi model, CLDC/MIDP specifies an all-or-nothing mode for code sharing between software
entities. This mode follows the "sandbox" model. Inside a MIDlet Suite – the MIDP deployment unit,
every part has access to the other parts and to the librairies hosted by the underlying platform. However, no
part has access to the code inside other MIDlet Suites. If MIDP3 brings the notion of library (LIBlet)
sharing between MIDlet Suites, this follows the sandbox model by preventing the sharing of objects at
runtime (the shared library is separately loaded by each requesting MIDlet Suite). Only Inter-Process
Communication (IPC) is enabled between MIDlet Suites. Every MIDlet Suite may contain several
execution units called MIDlets. The lifecycle of each of these entities is described on Figure 5-3.

Here are the platform characteristics [MIDP]:

• Deployment Unit: a MIDlet Suite is a JAR file containing the code of one or several
MIDlets, a JAD (Java Application Descriptor) file describing them and some non-Java
resources.

• Execution Unit: MIDlet.

• Dependencies: A MIDlet Suite may contain one or several MIDlets. Before MIDP3,
dependencies were defined neither between MIDlets nor between MIDlet Suites. With
MIDP3, every MIDlet may provide and require inert libraries.

• Metadata: Metadata is written to the JAD file.

o Optional general properties: MIDlet-Name, MIDlet-Version, MIDlet-Vendor, MIDlet-
Jar-URL, MIDlet-Jar-Size, MIDlet-Description, MIDlet-Icon, MIDlet-Info-URL,
MIDlet-Data-Size.

o Platform-specific properties useful for deployment: MicroEdition-Profile, MicroEdition-
Configuration, MIDlet-n, MIDlet-Install-Notify, MIDlet-Delete-Notify, MIDlet-
Permissions, MIDlet-Permissions-Opt, MIDlet-Push-n, MIDlet-specific attributes,
MIDlet-Jar-RSA-SHA1

• Software lifecycle management operations (see Figure 5-3)

o For Deployment Units: Install, Remove, Update.

o For Execution Units: StartApp, StopApp. The first two versions of MIDP specified a
pausing operation (PauseApp). This operation is now deprecated in the 3rd version.

• Software entity states (see Figure 5-3)

o Of Deployment Units: Installed, Removed.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 82

o Of Execution Units: Destroyed, Active. The "Paused" state is deprecated in MIDP3.
MIDlets appear with the "Destroyed" state when the associated MIDlet Suite is installed
(see on the right of Figure 5-3).

• Events: Only a global application manager, called JAM (Java Application Manager), is
aware of state transition of MIDlets.

• Deployment Unit repositories: It is possible to create a MIDlet Suite repository thanks to the
information of MIDlet Suite application descriptors (JAD files).

• Execution unit repositories: MIDP platforms usually provide a tool listing available MIDlets
and their state.

Figure 5-3 The lifecycle of MIDlet Suites and the one of their MIDlets

.NET Assemblies

.NET is an Execution Environment specified by Microsoft. The innovation mainly relies in the definition
of a virtual machine interpreting a binary code that is common to the compilation of several programming
languages (e.g., C#, VB#, J#). .NET is born in the same period as the OSGi standard (see section 0). Some
similar characteristics are shared by these technologies: virtual machine, dynamic loading of software
software entities called "assembly", assembly dependency resolution performed by the underlying platform
thanks to assembly metadata. Code sharing and isolation are defined at the type level. Visibility levels
called "public" and "internal" distinguish the types that are visible outside the assembly from the types that
remain private to the assembly internal code. The public assembly code is visible from the other assemblies
hosted by the same Application Domain (AppDomain) whereas the assemblies of distinct Domains can
only communicate through the Inter-Process Communication (IPC). An assembly can be dynamically, i.e.,
at runtime, loaded by one or several domains. However, the assemblies are separately loaded by distinct
Domains and one assembly can not be unloaded by a domain without unloading the whole domain. These
limits make the .NET modularity appear between the OSGi flexibility and the all-or-nothing mode of the
MIDP3 sandbox model.

Here, the .NET platform characteristics are summarized:

• Deployment Unit: An assembly is a set of resources described by a manifest file. It can be
dynamically loaded by one or several Application Domains.

• Execution unit: Every activable assembly offers an Entry Point with a generic invocation
method, named invoke(), accepting a table of input arguments.

• Dependencies: Every assembly declares public types and the assemblies that it requires.

• Metadata: The following properties can be found in the manifest file of an assembly. For
convenience, the "Assembly" prefix of every property name has been removed in the list:

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 83

o Optional general properties: Culture, Flags, Version, Company, Copyright, FileVersion,
InformationalVersion, Product, Trademark, DefaultAlias, Description, Title.

o Platform-specific properties useful for deployment: Name, FileList, TypeReference,
ReferencedAssemblies, EntryPoint, Configuration, DelaySign, KeyFile, KeyName.

• Software lifecycle management operations (see Figure 5-4) : every assembly can be

o Downloaded and removed in the local repository called "Global Assembly Cache" or in
the AppDomain particular caches.

o Then loaded (Assemly.Load()), invoked (Assembly.EntryPoint.invoke(Object[]
optionalParams) or AppDomain.ExecuteAssembly(Assembly a)). Dependency resolution
is performed by the underlying platform itself.

• Software entity states (see Figure 5-4): Downloaded, Loaded, Unloaded. No activity state is
defined. And although resolution mechanisms are part of the platform, the successful
invocation (activation) of an assembly does not prevent the hosting Domain to throw
"AssemblyResolve" exceptions when executing it.

• Events: "AssemblyLoad" when an assembly is loaded, "AppDomainUnload" when a Domain
is unloaded, "AssemblyResolve" when a required type is missing at the moment of use.

• Deployment Unit repositories: The Global Assembly Cache is a local assembly cache where
applications share assemblies. Every Domain has also a private cache.

• Execution unit repositories: The .NET platform is delivered on Windows with some tools
like the .Net Framework Configuration, which maintains the list of available assemblies and
enables their removal.

Figure 5-4 The state diagram of a .NET assembly

SCOMO Components: a attempt of generalization
SCOMO [SCOMO] is an ongoing specification of the Open Mobile Alliance. Unlike the previous
execution platforms, SCOMO is not a software platform associated to a programming language. It is a
protocol, which, linked to OMA DM protocols, enables the software management of software entities of
various embedded platforms. It then follows a general approach similar to the one of the specification of
the Software Management Service in the UPnP Device Management Working Committee, i.e., the
definition of a generic protocol for the management of any software platform technology. SCOMO
Delivery Package and Deployment Component both part of the DU concept while SCOMO Software
Component matches the EU concept of this specification.

Here are the "platform" characteristics:

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 84

• Deployment Unit: The concept is specified into two separate entities: the SCOMO Delivery
Package (DP) and the SCOMO Deployment Component (DC). After a DP is downloaded,
the set up of it installs the contained DCs. The removal of a DP does not involve the removal
of the related DCs. A DC can be explicitly removed by a command. Activation and
Deactivation of a DC are defined but these operations are not similar to the activation and
deactivation of an EU in this specification. Indeed, the active DCs are not running. The
activation only makes "services or resources it embodies accessible to other entities or
resources (including end-user)" so that "a service that consists of multiple Deployment
Components is ready for launch after all the relevant Deployment Components have reached
the Active state" (see [SCOMO])3.

• Execution Unit: The concept is reified into SCOMO Software Component (SC). However,
SCOMO does not define any operation on SCs and leaves the launch of "services" to
terminal-specific interactions.

• Dependencies: A DP may contain one or several DCs. A DC contains a Software Component
and related metadata.

• Metadata: Every entity is defined with metadata that are described in a device hierarchical
data model. Several metadata items describing a DP are identical to the ones describing a
DC:

o Optional general properties: name, description, version, PkgType.

o Platform-specific properties useful for deployment: PkgID (DP), PkgURL, ID (DC),
data.

• Software lifecycle management operations:

o For DPs (see Figure 5-5): Download, DownloadInstall, DownloadInstallInactive, Install,
InstallInactive, Remove. Some primitives are defined as "composed" in SCOMO
specification: DownloadInstall, DownloadInstallInactive. The rationale may be to better
match the operations defined in various software platforms or define shortcuts in order to
speed up the networked process. The following citation seems in favour of the second
reason: "When a Composed Primitive is executed, two state transitions happen in the
Device. For example if DownloadInstall is executed, a Deployment Component transits
from Not Downloaded State to Delivered State after successful download procedure. It
transits to Active State after successful installation procedure. If the latter processing
fails it remains in previous state and the second state transition does not happen."

o For DCs (see Figure 5-6): Activate, Deactivate, Remove. Deployment units can be
explicitly activated or deactivated in this specification. The Deactivated state represents a
state where no applications can use the DC (similarly to the UPnP SMS Unresolved
state).. The explicit activation makes the contained services and resources accessible to
applications and the end-user. The SCOMO activation may correspond to an explicit
resolution action in the UPnP SMS diagrams with EUs startable only when the DU
becomes resolved (Installed state).

o For SCs: No operation is defined.

3 Moreover, the inactive state matches more the Unresolved state of the UPnP specification than the
Inactive one. Indeed, this state prevents resources to be accessed by other software entities: "The main goal
of Inactive state is to minimise the downtime of Deployment Component management operations.
Interference with external events (e.g. some end-user actions) could disturb or even block some
management tasks. Inactive state is a powerful concept when implementing fault tolerant systems it enables
controlled management operations. e.g. safe removals of Deployment Components from runtime-
environment."

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 85

• Software entity states:

A. Of DPs (see Figure 5-5): Not Downloaded, Delivered, Installed, Removed. Quoted in the
specification: "Delivered State enables “deliver-first-install-later”-like use cases e.g.
updates of mobile office solutions requiring all the components to be activated
immediately after back-end update. In this case the Delivery and Deployment are
discrete".

B. Of DCs (see Figure 5-6): Inactive, Active, Removed.

C. Of SCs: No state is defined.

• Events: Alerts are defined for every state change.

• Deployment Unit repositories: The inventory of DPs in the "Not Downloaded" state lists the
DPs that are available for delivery. The inventory of DPs in the "Delivered" state lists the
DPs that are available for installation.

• Execution Unit repositories: A DC inventory is also specified in the device data model.

Figure 5-5 SCOMO Delivery Package State Diagram

Figure 5-6 SCOMO Deployment Component State Diagram

6 Software Data Model (Normative)
Software Data Model is OPTIONAL for any SMS implementation. Implementations which choose to
provide additional information to control points can implement the Software Data Model and support CMS
to access this Software Data Model. Refer to the CMS [CMS] document for column definitions and
notations used in the below tables.

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 86

Name Type Acc Req Description EoC Ver
/UPnP/DM/Software/ SingleInstance - R This node contains general information on a DU

instance.
- -

DUNumberOfEntries unsignedInt - R Number of DU instances. - -

/UPnP/DM/Software/
Capabilities/

SingleInstance R Information related to software capabilities of the
targeted Execution Environment.

- -

AbleToAutoStart boolean - R Indicates the ability to automatically start an EU at
start time.

1 R

AbleToAutoRestart boolean - R Indicates the ability to automatically restart an EU. 1 R

AbleToHandleDUDe
pendency

boolean - R Indicates the ability to handle dependency when a
DU is installed or uninstalled.

1 R

AbleToHandleEUDe
pendency

boolean - R Indicates the ability to handle dependency when
an EU is started or stopped.

1 R

/UPnP/DM/Software/
DU/#/

MultiInstance - R This node contains general information of all the
DUs

- -

DUID unsignedInt - R DU identifier
Unique key.
DUID 0 is reserved to identify the primary
firmware (see section 2.2.4.

- -

State string - R State of the DU (see section 2.2.3.1)
Allowed values are:
 "Installing"
 "Unresolved"
 "Installed"
 "Uninstalling"
 "Uninstalled"

1 R

Type string - R Type of the resources contained in the DU
Allowed values are defined in SMS specification.
See Table 2-5.

- -

Name string - R Name of the DU.
For example the name of the DU can be the one
used by the targeted EE.

- -

Description string - R Textual description of the DU.
Format of this value is EE specific

- -

Version string - R Version of the DU.
Format of this value is EE specific.

1 R

URI string - R URI of the DU.
May be used in Update() when the NEWDUURI
argument is not specified

1 R

SystemID string - R Internal ID.
Format of this value is EE specific. The value
should be the ID assigned by the EE to the DU

- -

Size unsignedInt - O Size in Byte of the deployment unit when
installed. This value is not intended to vary during
the lifetime of the DU. Nevertheless it may be
updated when a new version of the DU is
installed.

- -

Date dateTime O Date of installation or of the last update of the
DU.

- -

Dependencies string O CSV list of DUIDs that the DU depends on. An
empty value should be interpreted as: the current
instance does not depend on other DUs.

- -

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 87

Name Type Acc Req Description EoC Ver
EUNumberOfEntries unsignedInt - R Number of EU instances contained in this DU. - -

/UPnP/DM/Software/
DU/#/EU/#/

MultiInstance R This node contains general information on a
particular EU instance.

- -

EUID unsignedInt - R EU identifier provided by the Parent Device on
DU installation.
Unique key, also unique across all the DUs.
EUID 0 is reserved to identify the primary
firmware (see section 2.2.4).

- -

RequestedState string R Requested state of the EU (see section 2.2.3.2)
Allowed values are:
 "Active"
 "Inactive"
Active means that the Start() action has been
called to make this EU running.
Inactive means that the Stop() action has been
called to prevent this EU to be executed.

1 R

RunningState string - R Current Running State of the EU (see section
2.2.3.2).
Allowed values are:
 "Running"
 "Stopped"
 "Starting"
 "Stopping"

1 R

Name string - R EU friendly name. Could be used to track the EU
activity in the EE.
Format of this value is EE specific

- -

Version string - O Version of the EU.
Format of this value is EE specific.

If this DU is the primary firmware (DUID=0), this
value MAY be equal to
/UPnP/DM/DeviceInfo/SoftwareVersion

1 R

Description string - R Textual description of the EU.
Format of this value is EE specific

- -

AutoStart boolean W O Indicate that the EU has to be automatically
started at start time. The initial value is provided
by the DU when installing.

1 R

AutoRestart boolean W O Indicate that the EU has to be automatically re-
started each time it is stopped by another means
that the call to the Stop() action. The initial value is
provided by the DU when installing.

1 R

SystemID string - R Internal ID provided by the EE while the EU is in
the Active state.
Format of this value is EE specific. The value
should be the ID assigned by the EE to the EU.

- -

Dependencies string R CSV list of EUIDs that the EU depends on. An
empty value should be interpreted as: the current
instance does not depend on other EUs.

- -

SystemPath string O System path to the EU's bootstrap. - -

Error String O Detailed description of EU Errors - -

Copyright UPnP Forum © 2012. All rights reserved.

SoftwareManagement: 2 Service Template Version 1.01 88

Copyright UPnP Forum © 2012. All rights reserved.

7 Changes In newer version (Informative)

Support for new Security Feature was added. This resulted in the following actions and state variables to
be added newly in SoftwareManagement:2 service

Action:

getACLData()

State Variable

A_ARG_TYPE_ACL

	1 Overview and Scope
	1.1 Introduction
	1.2 References
	1.3 Glossary
	1.4 Notation
	1.4.1 Data Types
	1.4.2 Strings Embedded in Other Strings

	1.5 Derived Data Types
	1.5.1 Comma Separated Value (CSV) Lists
	1.5.2 Embedded XML Documents

	1.6 Management of XML Namespaces in Standardized DCPs
	1.6.1 Namespace Names, Namespace Versioning and Schema Versioning
	1.6.2 Namespace Usage Examples

	1.7 Vendor-defined Extensions

	2 Service Modeling Definitions
	2.1 Service Type
	2.2 Key Concepts
	2.2.1 Software entities
	2.2.2 Software Data Model
	2.2.3 Lifecycle Management
	2.2.3.1 Deployment Unit lifecycle management
	2.2.3.2 Execution Unit lifecycle management

	2.2.4 Firmware
	2.2.5 Asynchronous actions
	2.2.6 Software entity dependency management
	2.2.7 Security
	2.2.7.1 SoftwareManagement:2 access control data

	2.3 State Variables
	2.4 Eventing and Moderation
	2.5 Actions
	2.5.1.1 Arguments
	2.5.1.2 Device Requirements
	2.5.1.3 Dependency on State
	2.5.1.4 Effect on State
	2.5.1.5 Errors
	2.5.2.1 Arguments
	2.5.2.2 Device Requirements
	2.5.2.3 Dependency on State
	2.5.2.4 Effect on State
	2.5.2.5 Errors
	2.5.3.1 Arguments
	2.5.3.2 Device Requirements
	2.5.3.3 Dependency on State
	2.5.3.4 Effect on State
	2.5.3.5 Errors
	2.5.4.1 Arguments
	2.5.4.2 Device Requirements
	2.5.4.3 Dependency on State
	2.5.4.4 Effect on State
	2.5.4.5 Errors
	2.5.5.1 Arguments
	2.5.5.2 Device Requirements
	2.5.5.3 Dependency on State
	2.5.5.4 Effect on State
	2.5.5.5 Errors
	2.5.6.1 Arguments
	2.5.6.2 Device Requirements
	2.5.6.3 Dependency on State
	2.5.6.4 Effect on State
	2.5.6.5 Errors
	2.5.7.1 Arguments
	2.5.7.2 Device Requirements
	2.5.7.3 Dependency on State
	2.5.7.4 Effect on State
	2.5.7.5 Errors
	2.5.8.1 Arguments
	2.5.8.2 Device Requirements
	2.5.8.3 Dependency on State
	2.5.8.4 Effect on State
	2.5.8.5 Errors
	2.5.9.1 Arguments
	2.5.9.2 Device Requirements
	2.5.9.3 Dependency on State
	2.5.9.4 Effect on State
	2.5.9.5 Errors
	2.5.10.1 Arguments
	2.5.10.2 Device Requirements
	2.5.10.3 Dependency on State
	2.5.10.4 Effect on State
	2.5.10.5 Errors
	2.5.11.1 Arguments
	2.5.11.2 Device Requirements
	2.5.11.3 Dependency on State
	2.5.11.4 Effect on State
	2.5.11.5 Errors
	2.5.12.1 Arguments
	2.5.12.2 Device Requirements
	2.5.12.3 Dependency on State
	2.5.12.4 Effect on State
	2.5.12.5 Errors
	2.5.13.1 Arguments
	2.5.13.2 Device Requirements
	2.5.13.3 Dependency on State
	2.5.13.4 Effect on State
	2.5.13.5 Errors
	2.5.14.1 Arguments
	2.5.14.2 Device Requirements
	2.5.14.3 Dependency on State
	2.5.14.4 Effect on State
	2.5.14.5 Errors
	2.5.15.1 Arguments
	2.5.15.2 Device Requirements
	2.5.15.3 Dependency on State
	2.5.15.4 Effect on State
	2.5.15.5 Errors
	2.5.16 Common Error Codes

	2.6 Theory of Operation
	2.6.1 Scenarios
	2.6.1.1 Dependency Handling
	2.6.1.2 Installing a Software entity successfully
	2.6.1.3 Installing a software entity (failure case)
	2.6.1.4 Update a Software entity successfully
	2.6.1.5 Updating a software entity (failure case)
	2.6.1.6 Uninstall a Software entity successfully
	2.6.1.7 Uninstall a software entity (failure case)
	2.6.1.8 Start a Software entity successfully
	2.6.1.9 Start a Software entity (failure case)
	2.6.1.10 Stop a Software entity successfully
	2.6.1.11 Stop a Software entity (failure case)
	2.6.1.12 Firmware update

	3 XML Service Description (Normative)
	4 XML Schema (Normative)
	5 Execution Platform Technologies (Informative)
	Execution Platform technologies
	Definitions
	Linux Packages
	OSGi bundles
	Java MIDlets
	.NET Assemblies
	SCOMO Components: a attempt of generalization

	6 Software Data Model (Normative)
	7 Changes In newer version (Informative)

