

### **IOTIVITY INTRODUCTION**

Martin Hsu

Intel Open Source Technology Center

Content may contain references, logos, trade or service marks that are the property of their respective owners.



- Overview
- Architecture
- Base Layer & APIs
- Primitive Services & APIs



### **IoTivity Overview**



Licensed under Apache License Version2.0

•Available on TIZEN, Android, Arduino, Linux(Ubuntu) Platforms







### **IoTivity – High Level Architecture**



#### Key Goals

- Common Solution
- Established Protocols
- Security & Identity
- Standardized Profiles
- ✤ Interoperability
- Innovation Opportunities
- Necessary connectivity



loTivity Profiles

IoTivity Framework

IoTivity Connectivities\*



### **IoTivity Base Layer & APIs**

### **IoTivity – High Level Architecture**



**IoTivity Profiles** 

**IoTivity Framework** 

IoTivity Connectivities\*

### **Discovery Subsystem**



| Connectivity                    | Discovery<br>Mechanism    | Description                                                               | СоАР                                                                                                                                                                                                                       |
|---------------------------------|---------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WiFi &<br>Ethernet<br>(over IP) | IP Multicast              | CoAP Multicast Port: 5683<br>(Assigned by IANA)<br>CoAP Secure Port: 5684 | <ul> <li>Open IETF Standard (RFC 7252)</li> <li>Compact 4 Byte Header</li> <li>UDP (Default), SMS, TCP<br/>Support</li> <li>Strong DTLS Security</li> <li>Asynchronous Subscription</li> <li>Built-In Discovery</li> </ul> |
|                                 | IP Unicast<br>over UDP    | Precondition:<br>OIC Server Address & Port are<br>known                   |                                                                                                                                                                                                                            |
| Bluetooth<br>(EDR &<br>BLE)     | Using Scan &<br>Advertise | OCF Specific Service UUID                                                 |                                                                                                                                                                                                                            |

CoAP: Constrained Application Protocol IANA: Internet Assigned Numbers Authority

### **Security Features & Architecture**



Note platform hardening not part of the OCF Specs & IoTivity implementation.

### **Messaging - Connectivity Abstraction**





#### CA Control Component

- Target network selection, interface control & monitoring
- CoAP message serialization & parsing
- Block-wise messaging flow control

#### Transport Adapter Component

- Data transmission over UDP, TCP, BLE(GATT), BT(SPP) & NFC
- Secure data exchanging using DTLS

#### Platform Adapter Component

- Ubuntu, Wi-Fi, Ethernet and BLE
- Android Wi-Fi, BLE and BT
- Tizen Wi-Fi, BLE and BT
- Arduino Wi-Fi, Ethernet and BLE

### Messaging - Remote Access over XMPP



- Remote client discover & securely interface with resource servers when not on same subnet
- Adheres to access control policies

#### - End-to-End Secure

| Device Type                      | Use Case                                                            |
|----------------------------------|---------------------------------------------------------------------|
| Light weight (LW) Device         | Accessible within subnet. No RA, require GW/proxy device for access |
| Constrained RA (cRA)<br>Endpoint | RA access for non latency-sensitive, low BW applications            |
| RA Endpoint (RA)                 | Full RA access                                                      |





### **IoTivity Primitive Services & APIs**

### **IoTivity – High Level Architecture**



#### Key Goals

- Common Solution
- Established Protocols
- Security & Identity
- Standardized Profiles
- ✤ Interoperability
- Innovation Opportunities
- Necessary connectivity



IoTivity Profiles

IoTivity Framework

IoTivity Connectivities\*

### **Purpose of Primitive Services**

- Provides easier and simpler APIs for App developers (Heavy Lifting done by Framework)
- Mostly designed to run on Smart or Controller devices
- Uses the lotivity Base APIs





13

Helps Users to create a Scenario or Scene for controlling Multiple IoT devices & their functionality

#### e.g.

- Away Home All Lights turned off, Doors locked
- Watching Movie Living Room lights off, TV On, Speaker On







### **Simulator Service**



### Sending different requests to verify <u>features supported</u> by OCF resources



### Feature

- Server
  - OCF resources can be simulated, Using resource model definition (RAML) files.
  - Manages creation, deletion, request handling and notifications for OCF resources.
- Client
  - Searching for different types of resources available in the network.
  - Sending different types of requests both manual and automatically and displays the response payload received.



### MultiPhy Easy Setup

Schematic illustrations













### Low Power Management – Resource Hosting





How many subscriptions thin device could support with its constrained system resource?

Thin(Light) device 🔺 Subscription





Thin Device enhances its lifetime delegating its resource subscriber to richer hosting device

Hosting(Rich) device

Thin(Light) device



User/Consumer

Offloads request/data handling from remote clients
Reduces the power consumption of resource constraint device



### **Supporting Material**

### **Resource Encapsulation**





| Module          | Description                                                                                                                                                                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resource Broker | <ul> <li>Remote Resource Presence check (regardless of Remote Server supporting presence feature)</li> <li>Provide consistent reachability management for discovered resource of interest</li> </ul>                                        |
| Resource Cache  | <ul> <li>Maintains last information of Remote Resource (regardless of Remote Server is observable)</li> <li>Data Centric API (Send/Recv Message Getter/Setter, Data Cache)</li> </ul>                                                       |
| Server Builder  | <ul> <li>Att. setter to provide easy way to create resource</li> <li>Changes "msg Handling" to "Data Setting" for users</li> <li>Monitors value of attributes so that notify-back for observation whenever attribute has changed</li> </ul> |



### Low Power Management – Resource Directory



-Constrained device that needs to sleep and can not respond to multicast discovery queries

- Discovery of RD server
- Publish Resource to RD
- Update / Delete Resource

### **Cloud-Native Architecture for IoT**



- Devices can reach the cloud <u>directly</u>.
  - Devices can self-organize if the cloud is not accessible.
- Architecture and protocols don't have to be replaced when device deployment changes from local-only to cloudconnected.
- Encourages end-to-end micro-services.



### **Onboarding & Provisioning Call Flow**





### **Protocol Bridge using Resource Container**





- Integrates non-OCF resources (Bundle)
- Handles dynamic loading of resource bundles & dynamic creation of resources
  - Supports C++ .so files & Java .jar files

device

Common configuration for bundles and

- 23

### Interoperability ...



- Full interoperability from the connectivity layer up to the service layer is the only way to truly guarantee a satisfactory UX
- Interoperability at the Connectivity and/or Platform layer only provides partial interoperability which can ultimately lead to fragmentation





# Consumer Radio-Based Standards

Applications & Services Data & Control Points

Profiles, Data & Resource Models

**Comms Protocols** 

Transports







## Security Building Blocks





