
IOTIVITY INTRODUCTION
Martin Hsu

Intel Open Source Technology Center

1 Content may contain references, logos, trade or service marks that are the property of their respective owners.

Agenda

•Overview

•Architecture

• Base Layer & APIs

• Primitive Services & APIs

2

IoTivity Overview

3

•An open source software framework

implementing OCF Standards

•Ensures seamless device-to-device and

device-to-cloud connectivity to address

emerging needs of IoT

•Licensed under Apache License Version

2.0

•Available on TIZEN, Android, Arduino,

Linux(Ubuntu) Platforms

OCF
(Standards)

IoTivity
(Open Source)

P2P Direct

OCF Client OCF Server

OCF Intermediary

XMPP/

STUN/

TURN/ICE

Gateway

OCF Servers

OCF Client

Remote Access

Cloud

Gateway

OCF Servers
Cloud based

intelligent Services

OCF Client

OCF Topologies Supported

CoAP over TCP

IoTivity – High Level Architecture

4

Base Layer

Sensing/Control

Application

Base Layer

Messaging Discovery

Service Layer

Device

Management

Data

Management

Security Discovery

Messaging

APIs

(C/C++/Java/JS)

….

Security

Resource Encapsulation

Low-Power

Management

Resource

Container

Rich Device

Lite Device

Consumer Enterprise Industrial Automotive Health

 Key Goals

 Common Solution

 Established Protocols

 Security & Identity

 Standardized Profiles

 Interoperability

 Innovation Opportunities

 Necessary connectivity

IoTivity Profiles

IoTivity Framework

IoTivity Connectivities*

 5

IoTivity Base Layer & APIs

IoTivity – High Level Architecture

6

Base Layer

Sensing/Control

Application

Base Layer

Messaging Discovery

Service Layer

Device

Management

Data

Management

Security Discovery

Messaging

APIs

(C/C++/Java/JS)

….

Security

Resource Encapsulation

Low-Power

Management

Resource

Container

Rich Device

Lite Device

Consumer Enterprise Industrial Automotive Health

 Key Goals

 Common Solution

 Established Protocols

 Security & Identity

 Standardized Profiles

 Interoperability

 Innovation Opportunities

 Necessary connectivity

IoTivity Profiles

IoTivity Framework

IoTivity Connectivities*

Discovery Subsystem

7

CoAP: Constrained Application Protocol
IANA: Internet Assigned Numbers Authority

Server

Server

Client
C

C
Gateway

C

COAP

C COAP

HTTP

C

COAP

Internet

Constrained
Environment

Connectivity Discovery

Mechanism

Description

WiFi &

Ethernet

(over IP)

IP Multicast CoAP Multicast Port: 5683

(Assigned by IANA)

CoAP Secure Port: 5684

IP Unicast

over UDP

Precondition:

OIC Server Address & Port are

known

Bluetooth

(EDR &

BLE)

Using Scan &

Advertise

OCF Specific Service UUID

 CoAP

• Open IETF Standard (RFC 7252)

• Compact 4 Byte Header

• UDP (Default), SMS, TCP

 Support

• Strong DTLS Security

• Asynchronous Subscription

• Built-In Discovery

Discovery within
local network

Security Features & Architecture

8

Note platform hardening not part of the OCF Specs & IoTivity implementation.

Messaging - Connectivity Abstraction

9

CA API

CA Control

Network
Config.

CoAP
Protocol

Interface
Controller

Transport Adapter

BLE
Adapter

BT
Adapter

Platform Adapter

Ubuntu Android Tizen Arduino

Android
Interface

Ubuntu
Interface

Tizen
Interface

Arduino
Interface

TCP
Adapter

IP
Adapter

NFC
Adapter

Blockwise
Transfer

Resource Model CA Control Component

- Target network selection, interface control & monitoring

- CoAP message serialization & parsing

- Block-wise messaging flow control

Transport Adapter Component

- Data transmission over UDP, TCP, BLE(GATT), BT(SPP) & NFC

- Secure data exchanging using DTLS

Platform Adapter Component

- Ubuntu, Wi-Fi, Ethernet and BLE

- Android Wi-Fi, BLE and BT

- Tizen Wi-Fi, BLE and BT

- Arduino Wi-Fi, Ethernet and BLE
Legend

CA Component CA Module External

Ubuntu Android Tizen Arduino

Messaging - Remote Access over XMPP

10

Feature

- Remote client discover & securely interface with resource servers when not on

same subnet

- Adheres to access control policies

- End-to-End Secure

S1
(LW)

GW/Proxy

Local subnet

S3
(cRA)

S2
(LW)

C1
(RA)

RA Server

STUN/
TURN

Device Type Use Case

Light weight (LW) Device Accessible within subnet. No RA, require GW/proxy device for access

Constrained RA (cRA)
Endpoint

RA access for non latency-sensitive, low BW applications

RA Endpoint (RA) Full RA access

IoTivity Primitive Services & APIs

11

IoTivity – High Level Architecture

12

Base Layer

Sensing/Control

Application

Base Layer

Messaging Discovery

Service Layer

Device

Management

Data

Management

Security Discovery

Messaging

APIs

(C/C++/Java/JS)

….

Security

Resource Encapsulation

Low-Power

Management

Resource

Container

Rich Device

Lite Device

Consumer Enterprise Industrial Automotive Health

 Key Goals

 Common Solution

 Established Protocols

 Security & Identity

 Standardized Profiles

 Interoperability

 Innovation Opportunities

 Necessary connectivity

IoTivity Profiles

IoTivity Framework

IoTivity Connectivities*

Purpose of Primitive Services

13

 Provides easier and simpler APIs for App developers

 (Heavy Lifting done by Framework)

 Mostly designed to run on Smart or Controller devices

 Uses the Iotivity Base APIs
Primitive
Services

Soft Sensor
Manager

Protocol
Bridge

Notification
Service

Scene

Manager

Resource
Server
Builder Resource

Broker

Resource
Container

Resource
Directory

Simulator

Multi-Phy
Easy Setup

IoTivity Base

Primitive Services

Applications

Scene Manager

14

Helps Users to create a Scenario or

Scene for controlling

Multiple IoT devices & their

functionality

e.g.

• Away Home – All Lights turned off,

Doors locked

• Watching Movie – Living Room

lights off, TV On, Speaker On

“ “Away Home” Scene

15 C

Thermostat

LED Bulb

Door Lock

Simulator Service

15

Feature

• Server

- OCF resources can be simulated, Using

resource model definition (RAML) files.

- Manages creation, deletion, request

handling and notifications for OCF

resources.

• Client

- Searching for different types of resources

available in the network.

- Sending different types of requests both

manual and automatically and displays the

response payload received.

Service Provider

Simulates

 Simulating different OCF resources

OCF resources

Thermostat

Fan

Light

Sending different requests to verify
features supported by OCF resources

Remote OCF
resources

Client Controller

Modify Temp
erature

Speed
Increase

Power Off

MultiPhy Easy Setup

Low Power Management – Resource Hosting

17

Thin(Light) device Subscription User/Consumer

How many subscriptions thin device could
support with its constrained system resource?

Subscription User/Consumer

Thin(Light) device

Hosting(Rich) device

Thin Device enhances its lifetime delegating its
resource subscriber to richer hosting device

Offloads request/data handling

 from remote clients

Reduces the power

consumption of resource

constraint device

Problem Solution

Supporting Material

18

Resource Encapsulation

19

Resource Encapsulation

Resource

Broker

Resource

Cache

Server

Builder

Resource

Client Wrapper

Resource

Container

IoTivity Base

Module Description

Resource Broker • Remote Resource Presence check (regardless of Remote Server supporting

presence feature)

• Provide consistent reachability management for discovered resource of

interest

Resource Cache • Maintains last information of Remote Resource (regardless of Remote Server is

observable)

• Data Centric API (Send/Recv Message Getter/Setter, Data Cache)

Server Builder • Att. setter to provide easy way to create resource

• Changes “msg Handling” to “Data Setting” for users

• Monitors value of attributes so that notify-back for observation whenever

attribute has changed

Low Power Management – Resource Directory

20

Publishes resources to

Resource Directory

Device 1

Device 4

Device 2

Device 2 hosts RD and

responds on behalf of device 1 & 4.

Multicast

query request

Unicast response by device 2

with resources of 1, 2 and 4.

Device 3

-Constrained device that

needs to sleep and can

not respond to multicast

discovery queries

• Discovery of RD server

• Publish Resource to RD

• Update / Delete Resource

Cloud-Native Architecture for IoT

• Devices can reach the cloud directly.

• Devices can self-organize if the cloud is not accessible.

• Architecture and protocols don’t have to be replaced when

device deployment changes from local-only to cloud-

connected.

• Encourages end-to-end micro-services.

Onboarding & Provisioning Call Flow

22

Protocol Bridge using Resource Container

23

OCF bridge
(with resource container)

hueToOCF.so

2. Loads resource
bundles

1. Loads
configuration

containerConfig.xml
(resource instance

specific configuration)

hueLight.cpp

Maps OCF to
Hue light

OCF
light
interface

OCF
light
interface

OCF
light
interface

• Integrates non-OCF resources (Bundle)

• Handles dynamic loading of resource

bundles & dynamic creation of resources

• Supports C++ .so files & Java .jar files

• Common configuration for bundles and

configured resources

 Designed to work devices with non

OCF devices

 Enables control of legacy devices

which are already in market with

existing APIs using a OIC complaint

device

Interoperability …

• Full interoperability from the connectivity layer up to the service layer is

the only way to truly guarantee a satisfactory UX

• Interoperability at the Connectivity and/or Platform layer only provides

partial interoperability which can ultimately lead to fragmentation

24

Vertical

Services

Platform

Connectivity

Vertical

Services

Platform

Connectivity

① Connectivity Level

Interoperability

③ Service Level

 Interoperability

Vertical

Services

Platform

Connectivity

Vertical

Services

Platform

Connectivity

② Platform Level

 Interoperability

Vertical

Services

Platform

Connectivity

Vertical

Services

Platform

Connectivity

OIC Scope

 25

Entity

Handler

Client

CoAP

DTLS

UDP

IP

CoAP

DTLS

UDP

IP
Transport

Specific

Consumer Radio-Based Standards

Applications & Services

Data & Control Points

Comms Protocols

Transports

Profiles, Data &
Resource Models

W
i-
F
i

Z
ig

B
e

e

Th
re

a
d

Z
-W

a
v
e

IP

8
0
2
.1

5
.4

8
0
2
.1

5
.4

IP

B
lu

e
to

o
th

®
 L

o
w

 E
n

e
rg

y

?
?

B
LE

IP

?

IP = 6LoWPAN

E
x
te

n
si

b
le

26

Security Building Blocks

27

Secure Resource Manager

Resources

ACL

AMACL

PSTAT

CRED

DOXM SVC

CRL

Persistent

Storage

Resource

Manager
Policy

Engine

Provisioning Manager

Credential

Generator
Random PIN Just Works

Ownership

transfer
Provisioning

Database

CK

manager

