
IoTivity Architecture
Ashok Subash

Samsung Electronics R & D Institute Bangalore

1

Agenda
• IoTivity Overview
• IoTivity Architecture
• IoTivity Base Layer & APIs
• IoTivity Primitive Services & APIs
• IoTivity Roadmap

2

IoTivity Overview

3

• An open source software framework
implementing OCF Standards

• Ensures seamless device-to-device
connectivity to address emerging
needs of IoT

• Licensed under Apache License
Version 2.0

• Available on TIZEN, Android, Arduino,
Linux(Ubuntu) Platforms

OCF
(Standards)

IoTivity
(Open Source)

P2P Direct

OCF Client OCF Server

OCF Intermediary

XMPP/
STUN/

TURN/ICE

Gateway

OCF Servers

OCF Client

Remote Access

Cloud

Gateway

OCF Servers
Cloud based
intelligent Services

OCF Client

OCF Topologies Supported

CoAP over TCP

IoTivity – High Level Architecture

4

Base Layer

Sensing/Control
Application

Base Layer

MessagingDiscovery

Service Layer

Device
Management

Data
Management

Security Discovery

Messaging

APIs
(C/C++/Java/JS)

….

Security

Resource Encapsulation

Low-Power
Management

Resource
Container

Rich Device

Lite Device

Consumer Enterprise Industrial Automotive Health

Key Goals

 Common Solution
 Established Protocols
 Security & Identity
 Standardized Profiles
 Interoperability
 Innovation Opportunities
 Necessary connectivity

IoTivity Profiles

IoTivity Framework

IoTivity Connectivities*

5

IoTivity Base Layer & APIs

Discovery Subsystem

6

[Figure 1] Multicast announcement over Wi-Fi / Ethernet

OCF
Server

OCF
Client

announce resource
“OCF/server”

multicast
listen

[port 5683]

[Figure 2] Multicast/Unicast over WiFi / Ethernet

OCF
Server

OCF
Client

multicast
listen

find
resource

[port 5683]

unicast response “OCF/server”

[Figure 3] Advertise/Scan over BLE/BT

OCF
Server

OCF
Client

advertise
OCF service

scan
OCF service

response “OCF/server”

find resource

CoAP: Constrained Application Protocol
IANA: Internet Assigned Numbers Authority

Server

Server

Client
C

C
Gateway

C

COAP

CCOAP

HTTP

C

COAP

Internet

Constrained
Environment

Connectivity Discovery
Mechanism

Description

WiFi &
Ethernet
(over IP)

IP Multicast CoAP Multicast Port: 5683
(Assigned by IANA)
CoAP Secure Port: 5684

IP Unicast
over UDP

Precondition:
OIC Server Address & Port are
known

Bluetooth
(EDR &
BLE)

Using Scan &
Advertise

OCF Specific Service UUID

CoAP

• Open IETF Standard (RFC 7252)
• Compact 4 Byte Header
• UDP (Default), SMS, TCP

Support
• Strong DTLS Security
• Asynchronous Subscription
• Built-In Discovery

Discovery within
local network

Discovery – Finding a Resource

7

Application

C++ API (SDK)

C API (SDK)
JSON/CBOR

Encode/
Decoder

OCStack

Connectivity
Abstraction

2

1

IoTivity
Device

IoTivity
Device

IoTivity
Device

3
Multicast

4

5

6 OCPlatform::findResource(host, “/light/1”,
connectivityType, resourceHandlerCb);

OCDoResource(resourceHandle, OC_REST_GET, “/light/1”,
0, payLoad, connectivityType, qos, &cbData,
headerOptions, numOptions);

CASendRequest(endPoint, requestInfo);

Sends a
multicast
query

//Devices that matches the query answers as indicated below

OCF
Client

Light
192.168.1.11

Light
192.168.1.12

Fan
192.168.1.21

GET /oc/core?rt=light
(IP multicast) GET /oc/core?rt=light

(multicast) GET /oc/core?rt=light
(multicast)

ACK,CONTENT

ACK, CONTENT

Function Call Flow Sequence Diagram

CoAP

Messaging - Connectivity Abstraction

8

CA API

CA Control

Network
Config.

CoAP
Protocol

Interface
Controller

Transport Adapter

BLE
Adapter

BT
Adapter

Platform Adapter

Ubuntu Android Tizen Arduino

Android
Interface

Ubuntu
Interface

Tizen
Interface

Arduino
Interface

TCP
Adapter

IP
Adapter

NFC
Adapter

Blockwise
Transfer

Resource Model CA Control Component
- Target network selection, interface control & monitoring
- CoAP message serialization & parsing
- Block-wise messaging flow control

Transport Adapter Component
- Data transmission over UDP, TCP, BLE(GATT), BT(SPP) & NFC
- Secure data exchanging using DTLS

Platform Adapter Component
- Wi-Fi, Ethernet and BLE
- Android Wi-Fi, BLE and BT
- Tizen Wi-Fi, BLE and BT
- Arduino Wi-Fi, Ethernet and BLE

Legend

CA Component CA Module External

Ubuntu Android Tizen Arduino

Messaging - Remote Access over XMPP

9

Feature
- Remote client discover & securely interface with resource servers when not on

same subnet
- Adheres to access control policies
- End-to-End Secure

S1
(LW)

GW/Proxy

Local subnet

S3
(cRA)

S2
(LW)

C1
(RA)

RA Server

STUN/
TURN

Signaling
Server

DM
Server

Device Type Use Case
Light weight (LW) Device Accessible within subnet. No RA, require GW/proxy device for access

Constrained RA (cRA)
Endpoint

RA access for non latency-sensitive, low BW applications

RA Endpoint (RA) Full RA access

Messaging – CoAP over TCP

10

RD(**) ServerCoAP CI(*) Server

* CI
** RD

: Cloud Interface
: Resource Directory

3rd Service
3rd Service

3rd Service
3rd Service

TCP and TLS Transport for the CoAP
 CoAP Default transport - UDP.

• Reliable delivery, simple congestion control & flow
control

• Provided by the message layer of CoAP
 CoAP over TCP Benefits .

• To integrate well with existing enterprise infrastructure,
• Ability to work with existing NAT boxes
• Advanced Congestion Control algorithms
• Integration with Web Environment
 Resources should be registered to the Resource

Directory Service for discovery
CoAP over TCP for Cloud extension

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.clipartpanda.com/categories/server-20clipart&ei=DKYiVYCzBYWb8QXg6oDwCA&bvm=bv.89947451,d.dGc&psig=AFQjCNFy9w3FN35wbfomU9C2VH9VBGR-gw&ust=1428420498705062
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.clipartpanda.com/categories/server-20clipart&ei=DKYiVYCzBYWb8QXg6oDwCA&bvm=bv.89947451,d.dGc&psig=AFQjCNFy9w3FN35wbfomU9C2VH9VBGR-gw&ust=1428420498705062

Message Switching

11

 To Pass IoTivity messages through
heterogeneous network

 Uses DSDV* routing algorithm
 Table-driven routing scheme for

ad-hoc mobile network
 Uses CoAP Option

*Destination-Sequenced
Distance-Vector Routing

Source
Length

Source Address Destination
Length

Destination Address Multicast
Sequence No.

1 Byte Length specified in Source
Length

1 Byte Length Specified in Destination
Length

1 Byte

Programming IoTivity Base APIs

12

• Registering a Resource
• Finding a Resource
• Querying a Resource State
• Setting a Resource State
• Observing Resource State

Application Profiles

IoTivity Services

Base Layer

Resource
Introspection Messaging Discovery

Connectivity Abstraction

Security

IoTivity Base API

ISV Client
App

IoTivity
SDK

Client
Wrapper

Client
OCStack

ocresource.get(callBack)

OCDoResource

GET /light/1

Return code

IoTivity
SDK

ACK, CONTENT

wrapperAsyncCallbackFunc

asyncResultHandler

Server
OCStack

Server
Wrapper

ISV Server
App

clientWrapper.get(callBack)

Call entity handler
Call OCResource

Call OCResource
Return code

Return code

OCF Client OCF Server

Querying a Resource State: Sequence Diagram

Steps Involved

IoTivity Security

13

Security Features & Architecture

14

Resource
Server

(Provisioned)

Client
(Provisioned)

Provisioning
Manager

(Admin Device)

 Ownership Transfer
 Credential(Key)/

ACL Provisioning

Resource Access
over DTLS

 Ownership Transfer
 Credential(Key)

Provisioning

Client
(Un-Provisioned)

Access Denied
X

*Platform Hardening not part of the OCF Specs & IoTivity Implementation

DTLS modules, etc.DTLS modules, etc.

Connectivity Abstraction (CA) layer

Secure Resource Manager (SRM)
layer

Resource Introspection (RI) layer

DTLS modules, etc.

Provisioning Manager (PM)

Ownership
Transfer Manager

(OTM)

Secure Resource Provider (SRP)

Provisioning
Database

Manager (PDM) Provisioning
Database

PM C API

Resource
Manager (RM)

Policy Engine
(PE)

Persistent
Storage

Interface (PSI)

Secure Virtual
Database

Security Subsystem Architecture

1) Onboarding
2) Ownership Transfer
3) Provisioning
4) Access Control

Key Functionality

IoTivity Primitive Services & APIs

15

Purpose of Primitive Services

16

 Provides easier and simpler APIs for App developers
(Heavy Lifting done by Framework)

 Mostly designed to run on Smart or Controller devices

 Uses the Iotivity Base APIs Primitive
Services

Soft Sensor
Manager

Protocol
Bridge

Notification
Service

Scene
Manager

Resource
Server
BuilderResource

Broker

Resource
Container

Resource
Directory

Simulator

Multi-Phy
Easy Setup

IoTivity Base

Primitive Services

Applications

Resource Encapsulation

17

Resource Encapsulation

Resource
Broker

Resource
Cache

Server
Builder

Resource
Client Wrapper

Resource
Container

IoTivity Base

Module Description
Resource Broker • Remote Resource Presence check (regardless of Remote Server supporting

presence feature)
• Provide consistent reachability management for discovered resource of

interest

Resource Cache • Maintains last information of Remote Resource (regardless of Remote Server is
observable)

• Data Centric API (Send/Recv Message Getter/Setter, Data Cache)

Server Builder • Att. setter to provide easy way to create resource
• Changes “msg Handling” to “Data Setting” for users
• Monitors value of attributes so that notify-back for observation whenever

attribute has changed

Protocol Bridge using Resource
Container

18

OCF bridge
(with resource container)

hueToOCF.so

2. Loads resource
bundles

1. Loads
configuration

containerConfig.xml
(resource instance

specific configuration)

hueLight.cpp

Maps OCF to
Hue light

OCF
light
interface

OCF
light
interface

OCF
light
interface

• Integrates non-OCF resources (Bundle)
• Handles dynamic loading of resource
bundles & dynamic creation of resources

• Supports C++ .so files & Java .jar files
• Common configuration for bundles and
configured resources

 Designed to work devices with non
OCF devices

 Enables control of legacy devices
which are already in market with
existing APIs using a OIC complaint
device

Scene Manager

19

“ “Away Home” Scene

15 C

Thermostat

LED Bulb

Helps Users to create a Scenario or Scene for controlling
Multiple IoT devices & their functionality

e.g. Away Home – All Lights turned off, Doors locked
Watching Movie – Living Room lights off, TV On, Speaker On

Scene List

Scene
Collection

Scene
Member

Scene
Member

Resource Model

URI:/oic/SceneList

URI:/oic/SceneCollection/1

URI:/oic/SceneMember/1

URI: /oic/SceneMember/2

Door Lock

IoTivity Base

Resource Encapsulation

Scene Manager

0. Discover
Resources

1. Create Scene
Collection Resource

2. Add Scene to
SceneCollection

3. Add SceneAction
to Scene

4. Execute
Scene

Low Power Management – Resource
Hosting

20

Thin(Light) device Subscription User/Consumer

How many subscriptions thin device could
support with its constrained system
resource?

Subscription User/Consumer

Thin(Light) device

Hosting(Rich) device

Thin Device enhances its lifetime delegating its
resource subscriber to richer hosting device

 Offloads request/data handling
from remote clients

 Reduces the power consumption
of resource constraint device

Problem Solution

Low Power Management – Resource
Directory

21

Publishes resources to
Resource Directory

Device 1

Device 4

Device 2

Device 2 hosts RD and
responds on behalf of device 1 & 4.

Multicast
query request

Unicast response by device 2 with
resources of 1, 2 and 4.

Device 3

- Constrained device that needs to sleep and
can not respond to multicast discovery
queries
• Discovery of RD server
• Publish Resource to RD
• Update / Delete Resource

MultiPhy Easy Setup

22

• Mediator
 E.g., UI-capable Smartphone

• Enrollee
 E.g., Out-of-box and UI-less Thing

• Enroller
 E.g., WiFi AP, Zigbee Coordinator

Enrollee

Enroller

Mediator

① Collect Enroller’s
information

(e.g., SSID, Credential)

② Push Enroller’s information
(via WiFi, BT, BLE, Zigbee, etc)

③ Actively connects to
Enroller

(via WiFi, BT, BLE, Zigbee,
etc)

Scenario

Simulator Service

23

Feature
• Server

- OCF resources can be simulated, Using resource model
definition (RAML) files.

- Manages creation, deletion, request handling and notifications
for OCF resources.

• Client

- Searching for different types of resources available in the
network.

- Sending different types of requests both manual and
automatically and displays the response payload received.

Service Provider

Simulates

Simulating different OCF resources

OCF resources

Thermostat

Fan

Light

Sending different requests to verify
features supported by OCF resources
Remote OCF

resources

Client Controller

Modify Temp
erature

Speed
Increase

Power Off

IoTivity Roadmap

24

25

IoTivity
1.1.0

• Scene Manager
• Direct Pairing
• Support for NFC
• IoTivity Cloud Support

IoTivity 2.0

• CoAP-HTTP Proxy
• Integration with Thread connectivity
• Notification Service

IoTivity 2.1

• Cloud to Cloud Interface
• Pub-Sub
• DDS Messaging Support

March 2016

Sep 2016

Not finalized

Appendix

26

IoTivity – Deeper View

27

Base

Sensing/Control
Application

Non-OCF Device

ETC Protocol

Base Layer

MessagingDiscovery

Service Layer

Device Management Data Management

Security

CoAP
/TCP

Resource
Introspection

Multicast
Discovery

Device
Presence

CoAP
Messaging

Message
Switching

Connectivity
Abstraction

Discovery

Multicast/Scan

Resource Introspection

Messaging

APIs
(C/C++/Java/Web)

Application
Component

Messaging
Function Call

Module Callback

Security

Resource Encapsulation

Resource
Cache

Active
Discovery

Resource
Builder

Resource
Broker

Low-Power Mgmt

Protocol
Bridge

Resource
Hosting

Soft SensorResource
DirectoryEasy Setup

Scene
Manager

Device conf.

Noti. Service

Blockwise
Transfer

CoAP
SRM

DTLS

Resource Container

Configura
tion File

Bundle
Loader

Remote
Access SRM

Provisioning
Manager

DTLS

Smart Home
Application

Health
Application….

Automotive
Application

Messaging - CoAP Messaging

28

Message Architecture

Description (Reference: https://tools.ietf.org/html/rfc7252)

 IETF Standard, RFC 7252,
Constrained Application

Protocol
 Web transfer protocol for use

with constrained nodes &
constrained network.

 Designed for M2M scenarios
 Request/response (piggyback

style) interaction between
application endpoint

Setting a Resource State – Sequence
Diagram

29

Client
SDK

Client
Wrapper

Client
OCStack

ocresource.put(
attributeMap, callBack)

OCDoResource

PUT /light/1

Return code

Server
SDK

ACK, CHANGED

wrapperAsyncCallbackFunc

asyncResultHandler

Server
OCStack

Server
Wrapper

ISV Server
App

inProcClient.setResourceAttributes
(Attributes, callBack)

Call entity handler
Call OCResource

InProcClient.put(attributeMap)

Return code

Return code

ISV Client
App

OCF Client OCF Server

Observing Resource State

30

Client
SDK

Client
Wrapper

Client
OCStack

ocresource.observe

OCDoResource
GET /light/1

Return code

Server
SDK

ACK, CONTENT

wrapperAsyncCallbackFunc

asyncResultHandler

Server
OCStack

Server
Wrapper

ISV Server
App

inProcClient.observe

Call entity handler
Call OCResource

InProcClient.observe
Return code

Return code

ISV Client
App

OCF Client OCF Server

Change Event

OCNotifyObservers
OCNotifyObservers

CON, CONTENT

wrapperAsyncCallbackFuncasyncResultHandler

Onboarding & Provisioning Call Flow

31

Secure Communication

32

CoAP
Request / Response Message

DTLS

UDP

IPv4/IPv6

802.11 or 802.3

Client Server

ClientHello

HelloVerifiedRequest (cookie)

ClientHello(cookie)

ServerHello
Certificate

ServerKeyExchange
CertificateRequest
ServerHelloDone

ClientCertificate
ClientKeyExchange

CertificateVerify
ChangeSipherSpec

Finished

ChangeCipherSpec
Finished

- Authentication: Pre-Shared keys (PSK)
or Certificate

- Message Confidentiality &
Integrity: TLS_PSK_AES_128_CCM_8

- Replay protection: MAC includes
sequence number

- Scalability : tiny-DTLS for Constraint
Device

Cipher Suites & Mechanism
Supported

Resource Container

33

• Integrates non-OCF resources
(Bundle)

• Handles dynamic loading of
resource bundles & dynamic
creation of resources

• Supports C++ .so files &
Java .jar files

• Common configuration for
bundles and configured

resources

Resource Container

ProtocolBridgeBundle.so

Bundle Activator

ProtocolBridge
Resource 1

ProtocolBridge
Resource 2

ProtocolBridge
Connector

ProtocolBridge
Resource n

ProtocolBridgeBundle.jar SoftSensorBundle.jar

Bundle Activator

SoftSensor
Resource 1

SoftSensor
Resource 2

SoftSensor
Resource n

Resource instance1 Resource instance2

Bundle Activator

ProtocolBridge
Resource 1

ProtocolBridge
Resource 2

ProtocolBridge
Connector

ProtocolBridge
Resource n

ResourceContainerBundleAPI

R
es

o
ur

ce
C
on

ta
in

er
A
PI Resource

instance3
PrimResServer

co
nf

ig
.x
m

l

1. startContainer
(config.xml)

2. load with dlopen()
3. activate bundle

4. retrieve resource
configuration

5. register bundle
resources

6. create resource servers

Io
Tiv

ity
Br

id
ge

Notification Service

34

Notification
Producer

Notification
Consumer

Resource Encapsulation

IoTivity Base

 Rich Notification Delivery (Text, Audio, Video)
 Uniform Notification Information across platforms

(Linux, Android, Tizen)
 Notification Delivery acknowledgement from

consumer to producer

Notification Service

	IoTivity Architecture
	Agenda
	IoTivity Overview
	IoTivity – High Level Architecture
	IoTivity Base Layer & APIs
	Discovery Subsystem
	Discovery – Finding a Resource
	Messaging - Connectivity Abstraction
	Messaging - Remote Access over XMPP
	Messaging – CoAP over TCP
	Message Switching
	Programming IoTivity Base APIs
	IoTivity Security
	Security Features & Architecture
	IoTivity Primitive Services & APIs
	Purpose of Primitive Services
	Resource Encapsulation
	Protocol Bridge using Resource Container
	Scene Manager
	Low Power Management – Resource Hosting
	Low Power Management – Resource Directory
	MultiPhy Easy Setup
	Simulator Service
	IoTivity Roadmap
	Slide Number 25
	Appendix
	IoTivity – Deeper View
	�Messaging - CoAP Messaging�
	Setting a Resource State – Sequence Diagram
	Observing Resource State
	Onboarding & Provisioning Call Flow
	Secure Communication
	Resource Container
	Notification Service

