

IoTivity Architecture

Ashok Subash

Samsung Electronics R & D Institute Bangalore

OPEN CONNECTIVITY **FOUNDATION**[™]

Agenda

- IoTivity Overview
- **IoTivity Architecture**
- IoTivity Base Layer & APIs
- IoTivity Primitive Services & APIs
- **IoTivity Roadmap**

IoTivity Overview

• An open source software framework

Ensures seamless device-to-device

implementing OCF Standards

loTivitv

OCF Topologies Supported

OCF

IoTivity – High Level Architecture

OPEN

CONNECTIVITY

IoTivity Base Layer & APIs

Discovery – Finding a Resource

OPEN CONNECTIVITY FOUNDATION™

OPEN Messaging - Connectivity Abstraction CONNECTIVITY

CA Control Component

- Target network selection, interface control & monitoring
- CoAP message serialization & parsing
- Block-wise messaging flow control

Transport Adapter Component

- Data transmission over UDP, TCP, BLE(GATT), BT(SPP) & NFC
- Secure data exchanging using DTLS

Platform Adapter Component

- Wi-Fi, Ethernet and BLE
- Android Wi-Fi, BLE and BT
- Tizen Wi-Fi, BLE and BT
- Arduino Wi-Fi, Ethernet and BLE

FOUNDATION^{¹⁷}

Messaging - Remote Access over XMPP CONNECTIVITY FOUNDATION

- Remote client discover & securely interface with resource servers when not on same subnet
- Adheres to access control policies

- End-to-End Secure

Device Type	Use Case	
Light weight (LW) Device	Accessible within subnet. No RA, require GW/proxy device for access	
Constrained RA (cRA) Endpoint	RA access for non latency-sensitive, low BW applications	
RA Endpoint (RA)	Full RA access	

IOI IVITY

Messaging – CoAP over TCP

CoAP over TCP for Cloud extension

* CI : Cloud Interface ** RD : Resource Directory

TCP and TLS Transport for the CoAP

- ✤ CoAP Default transport UDP.
 - Reliable delivery, simple congestion control & flow control
 - Provided by the message layer of CoAP
- CoAP over TCP Benefits .
 - To integrate well with existing enterprise infrastructure,
 - Ability to work with existing NAT boxes
 - Advanced Congestion Control algorithms
 - Integration with Web Environment
- Resources should be registered to the Resource
 Directory Service for discovery

OPEN

CONNECTIVITY FOUNDATION[™]

Message Switching

OPEN CONNECTIVITY **FOUNDATION**[™]

- To Pass IoTivity messages through heterogeneous network
- Uses DSDV* routing algorithm
- Table-driven routing scheme for ad-hoc mobile network
- Uses CoAP Option

Programming IoTivity Base APIs

OPEN CONNECTIVITY FOUNDATION™

Steps Involved

- Registering a Resource
- Finding a Resource
- Querying a Resource State
- Setting a Resource State
- Observing Resource State

Querying a Resource State: Sequence Diagram

IoTivity Security

Security Features & Architecture

Key Functionality

IoTivity Primitive Services & APIs

Purpose of Primitive Services

- Provides easier and simpler APIs for App developers (Heavy Lifting done by Framework)
- Mostly designed to run on Smart or Controller devices
- Uses the lotivity Base APIs

Resource Encapsulation

Resource Container **Resource Encapsulation** Resource **Client Wrapper** Server Builder Resource Resource Cache Broker **IoTivity Base**

Module	Description
Resource Broker	 Remote Resource Presence check (regardless of Remote Server supporting presence feature) Provide consistent reachability management for discovered resource of interest
Resource Cache	 Maintains last information of Remote Resource (regardless of Remote Server is observable) Data Centric API (Send/Recv Message Getter/Setter, Data Cache)
Server Builder	 Att. setter to provide easy way to create resource Changes "msg Handling" to "Data Setting" for users Monitors value of attributes so that notify-back for observation whenever attribute has changed

Protocol Bridge using Resource Container

- Integrates non-OCF resources (Bundle)
- Handles dynamic loading of resource bundles & dynamic creation of resources
- Supports C++ .so files & Java .jar files
- Common configuration for bundles and

- Designed to work devices with non
- Enables control of legacy devices which are already in market with existing APIs using a OIC complaint device

Scene Manager

Helps Users to create a Scenario or Scene for controlling Multiple IoT devices & their functionality

e.g. Away Home – All Lights turned off, Doors locked Watching Movie – Living Room lights off, TV On, Speaker On

OPEN

CONNECTIVITY

Low Power Management – Resource Hosting

How many subscriptions thin device could support with its constrained system resource?

Thin(Light) device 🔺 Subscription

Thin Device enhances its lifetime delegating its resource subscriber to richer hosting device

Hosting(Rich) device Thin(Light) device

User/Consumer

 Offloads request/data handling from remote clients

 Reduces the power consumption of resource constraint device

OPEN

CONNECTIVITY FOUNDATION[™]

Low Power Management – Resource Directory - Constrained device that no

- Constrained device that needs to sleep and can not respond to multicast discovery queries
 - Discovery of RD server
 - Publish Resource to RD
 - Update / Delete Resource

OPEN

CONNECTIVITY

FOUNDATION[™]

MultiPhy Easy Setup

OPEN CONNECTIVITY **FOUNDATION**[™]

- Mediator
 - E.g., UI-capable Smartphone
- Enrollee
 - E.g., Out-of-box and UI-less Thing
- ۲ Enroller
 - E.g., WiFi AP, Zigbee Coordinator \checkmark

Scenario

<Mode 1>

1>	<mode 2=""></mode>		
1(WiFi, STA)	Network type (onboarding)	2(WiFi, SoftAP)	
OIC-network	SSID	OIC-network	
WPA-PSK2	Passphrase type	WPA-PSK2	
password	Passphrase	password	
3(WiFi, STA)	Target network type	3(WiFi, STA)	

Simulator Service

Simulating different OCF resources

Sending different requests to verify <u>features supported</u> by OCF resources

Feature

- Server
 - OCF resources can be simulated, Using resource model definition (RAML) files.
 - Manages creation, deletion, request handling and notifications for OCF resources.
- Client
 - Searching for different types of resources available in the network.
 - Sending different types of requests both manual and automatically and displays the response payload received.

OPEN CONNECTIVITY **FOUNDATION**[™]

IoTivity Roadmap

OPEN

Appendix

IoTivity – Deeper View

OPEN CONNECTIVITY FOUNDATION™

Messaging - CoAP Messaging

Message Architecture

Figure 2: Reliable Message Transmission Figure 3: Unreliable Message Transmission

Description (Reference: <u>https://tools.ietf.org/html/rfc7252</u>)

OPEN CONNECTIVITY FOUNDATION[™]

- IETF Standard, RFC 7252, Constrained Application
 Protocol
- Web transfer protocol for use with constrained nodes & constrained network.
- Designed for M2M scenarios
- Request/response (piggyback style) interaction between application endpoint

Setting a Resource State – Sequence oundation Diagram

Observing Resource State

Onboarding & Provisioning Call Flow

Secure Communication

Cipher Suites & Mechanism Supported

- Authentication: Pre-Shared keys (PSK) or Certificate
- Message Confidentiality & Integrity: TLS_PSK_AES_128_CCM_8
- Replay protection: MAC includes sequence number
- **Scalability** : tiny-DTLS for Constraint Device

Resource Container

OPEN CONNECTIVITY **FOUNDATION**[™]

- Integrates non-OCF resources (Bundle)
- Handles dynamic loading of resource bundles & dynamic creation of resources
- Supports C++ .so files & Java .jar files
- Common configuration for bundles and configured resources

Notification Service

- Rich Notification Delivery (Text, Audio, Video)
- Uniform Notification Information across platforms (Linux, Android, Tizen)
- Notification Delivery acknowledgement from consumer to producer

OPEN

CONNECTIVITY FOUNDATION[™]