

IoTivity: The Open Connectivity Foundation and the IoT Challenge Thiago Macieira

Embedded Linux Conference / Open IoT Summit – Berlin, October 2016

Who am I?

About the Open Connectivity Foundation

Specification

Defines OCF framework including standard model for IoT devices, apps & services to interact

IoTivity Open Source

Delivers reference implementation of OCF framework & translation layers for non-OCF devices

Certification

Ensures interoperability via compliance and interop testing

Stop fragmentation and increase device orchestration by creating a common standard for IoT device connectivity

	_	

Ease developer burden through **open** source code availability and royaltyfree license

	_
	1
	Ľ
	Ľ

Ensure interoperability through a formal **testing and certification** program

Deliver an IoT connectivity standard that is...

Free

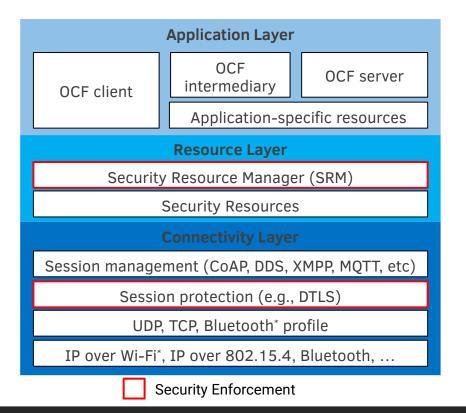
Seamless

Fair & Accessible

Cross Industry

More Secure

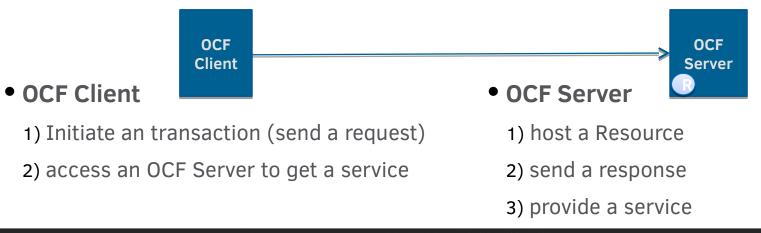
OCF Current members



Where the stack sits

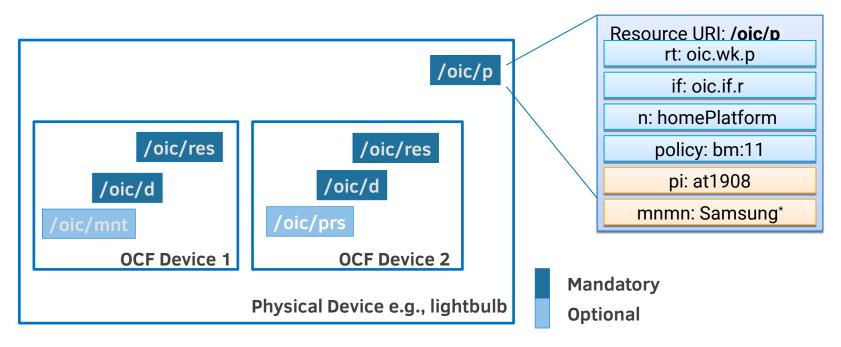
Applications & Services Data & Control Points Translation Layers OCF Comms Framework (Single Resource & Data Model) Exte nsibl e hread* NO. ZigBee* ZigBee* Z-Wave* Ш MO ш Z-Wave* IP IP Ω Bluetooth* Ω Bluetooth IP ш Energy BL Energy Wi-Fi* over 802. 802. 802. 15.4 15.4 15.4 Р

OCF Protocol Stack



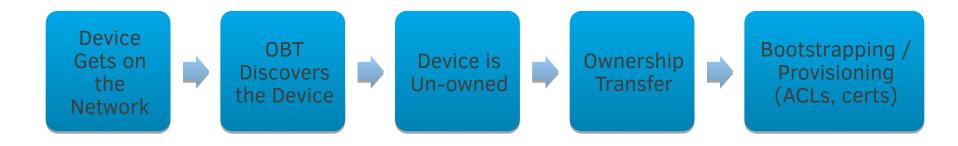
- Based on standard technologies
 - Does not require TCP (only UDP)
- Security built in from the start
 - "Security 2.0" will be end-to-end
- Hardening left as an exercise for the manufacturer

Core Protocol


- OCF adopted RESTful APIs
- Core framework defines 2 logical roles that devices can take:
 - OCF Server : A logical entity that exposes hosted resources
 - OCF Client : A logical entity that accesses resources on an OIC Server

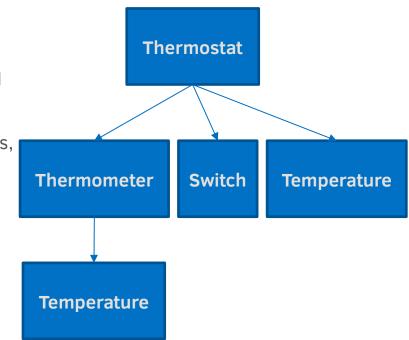
Organisation of an OCF device

Device concept:

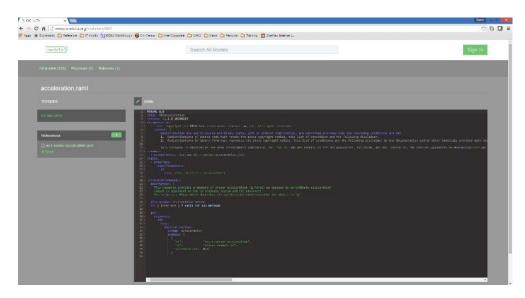

Device Example: Light Device (oic.d.light)

- Example overview
 - Smart light device with i) binary switch & ii) brightness resource
- Device type: Light device (oic.d.light)
- Associated resources

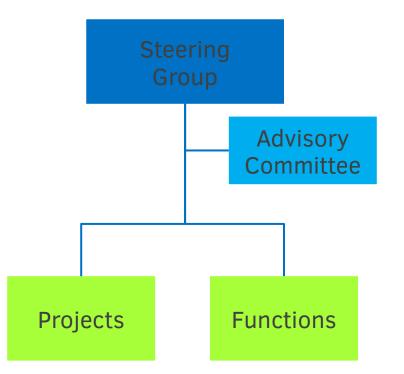
Device Title	Device Type	Associated Resource Type	Mandatory
Light	oic.d.light	/oic/res (oic.wk.core)	Yes
		/oic/d (oic.d.light)	Yes
		Binary switch (oic.r.switch.binary)	Yes
		Brightness (oic.r.light.brightness)	No


Ownership transfer and bootstrapping

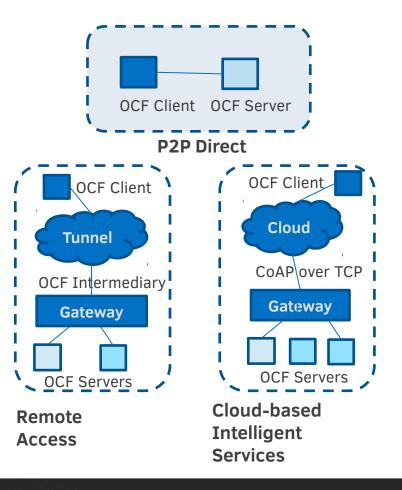
OCF Data Models


- Starts with definition of individual elements
 - Built on generic description strategy (e.g., RAML, JSON schemas)
 - Starts with physical properties (e.g., temperature, mass, color ...)
- Devices are comprised of collections of elements / properties
 - Including previously defined devices
- Abstract devices can also be defined
 - (e.g., Joe's house, upstairs bedrooms ...)

oneIoTa.org


- A crowd-sourced Integrated Development Environment (IDE)
 - RAML & JSON validated and syntax aware editors with shared editing
- Automatic support for derived models and multiple organizations
- Submission and approval process per organization

IoTivity Project Overview


- An Open Source Project, hosted by the Linux* Foundation
 - License: Apache Version 2.0
- Goal: implement the reference implementation of OCF specification
- Meritocratic, fair and open development process

IoTivity Main reference implementation

- An open source software framework implementing OCF Standards
- Available on Android*, Linux*, Tizen* and Windows*
- Notable features:
 - CoAP over TCP and over Bluetooth* LE
 - Bridge plugins to other ecosystems
 - Cloud integration

Other IoTivity reference implementations

IoTivity for constrained devices

- Designed from scratch for small devices (e.g., Intel[®] Quark[™] family)
 - Static memory allocation
- Fully compatible with OIC 1.1 specification and main IoTivity
- Support for Linux* and Zephyr

See session on IoTivity Constrained

IoTivity for Node.js*

- API in JavaScript*, provided as an npm package
- "Feels" native for Node.js developers
- Easy to integrate with other Node.js packages for richer experience

IoTivity for Node.js* API Sample

Client

Promise findResources(); Promise retrieve(id); Promise update(resource); Promise observe(id); Events: resourcefound

Resource

Events:

update

delete

Server

Promise<resource> register(data); Events: retrieverequest updaterequest observerequest

IoTivity for Node.js* Example Code

var device = require("iotivity-node")();

```
device.configure({role: "client"});
```

```
device.on("resourcefound", function(event) {
      console.log("client: resource found %s", event.resource.id.path);
      if (event.resource.id.path == "/a/light") {
             device.retrieveResource(event.resource.id)
             .then(function(resource) {
                   resource.properties.on = !resource.properties.on; // toggle
                   device.updateResource(resource).then(function() {
                         console.log("client: update OK");
                         process.exit(0);
                   });
             });
});
device.findResources();
```


Other IoTivity Projects

- Bridge to UPnP
- Bridge to AllJoyn*
- Testing tool, with network simulation

Get Involved!

- Participate in developing the reference implementation IoTivity (https://www.iotivity.org/get-involved)
- Participate in creating the specification & certification program OCF (http://openconnectivity.org/join)
- Participate in developing the OCF data models oneIoTa tool (https://www.oneiota.org)

Thiago Macieira thiago.macieira@intel.com http://google.com/+ThiagoMacieira

