

ContentSync:1 Service Template Version 1.01
For UPnP™ Version 1.0
Status: Standardized DCP
Date: July 14, 2009

This Standardized DCP has been adopted as a Standardized DCP by the Steering
Committee of the UPnP™ Forum, pursuant to Section 2.1(c)(ii) of the UPnP™ Forum
Membership Agreement. UPnP™ Forum Members have rights and licenses defined by
Section 3 of the UPnP™ Forum Membership Agreement to use and reproduce the
Standardized DCP in UPnP™ Compliant Devices. All such use is subject to all of the
provisions of the UPnP™ Forum Membership Agreement.

THE UPNP™ FORUM TAKES NO POSITION AS TO WHETHER ANY
INTELLECTUAL PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS.
THE STANDARDIZED DCPS ARE PROVIDED "AS IS" AND "WITH ALL FAULTS".
THE UPNP™ FORUM MAKES NO WARRANTIES, EXPRESS, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE STANDARDIZED DCPS,
INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A
PARTICULAR PURPOSE, OF REASONABLE CARE OR WORKMANLIKE EFFORT,
OR RESULTS OR OF LACK OF NEGLIGENCE.
Copyright © 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Authors1 Company

John Ritchie Intel

Bryan Roe Intel

Gunner Daneels Intel

Jaewook Lee LG Electronics

Geert Knapen Philips

Russell Berkoff Pioneer

Wonseok Kwon (Editor) Samsung Electronics

S. Jae Oh Samsung Electronics

Mafuzur Rahman (Chair) Samsung Electronics

ContentSync:1 Service Template Version 1.01 2

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

1 Note: The UPnP Forum in no way guarantees the accuracy or completeness of this author list and in no
way implies any rights for or support from those members listed. This list is not the specifications’
contributor list that is kept on the UPnP Forum’s website.

ContentSync:1 Service Template Version 1.01 3

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Contents

1. OVERVIEW AND SCOPE ..7
1.1. INTRODUCTION...7

1.1.1. ContentSync Function..9
1.1.2. Media Server Device and ContentDirectory Service...10

1.2. NOTATION ..10
1.2.1. Data Types...11

1.3. VENDOR-DEFINED EXTENSIONS..11
1.4. NAMESPACE FOR CONTENTSYNC SERVICE...11
1.5. REFERENCES...12

2. SERVICE MODELING DEFINITIONS ..13
2.1. SERVICETYPE...13
2.2. TERMS..13

2.2.1. Synchronization Object and Pair ..13
2.2.2. Synchronization Data Structure ..14
2.2.3. Synchronization Policy and Behavior ...15
2.2.4. Minimally Complete Synchronization Relationship Data Structure......................................19

2.3. SYNCHRONIZATION DATA STRUCTURE MANAGEMENT ..19
2.3.1. Synchronization Data Structure Addition..19
2.3.2. Synchronization Data Structure Modification...19
2.3.3. Synchronization Data Structure Deletion..20

2.4. SYNCHRONIZATION OPERATION (CDS TO CDS) ..20
2.5. SYNCHRONIZATION OPERATION (CDS TO NON CDS)...23
2.6. GARBAGE COLLECTION..24
2.7. STATE VARIABLES..24

2.7.1. SyncChange ...25
2.7.2. SyncStatusUpdate ..27
2.7.3. A_ARG_TYPE_ActionCaller ...34
2.7.4. A_ARG_TYPE_SyncData ..34
2.7.5. A_ARG_TYPE_SyncPair ...40
2.7.6. A_ARG_TYPE_SyncID..40
2.7.7. A_ARG_TYPE_ObjectID...41
2.7.8. A_ARG_TYPE_SyncStatus ..41
2.7.9. A_ARG_TYPE_ChangeLog ...41
2.7.10. A_ARG_TYPE_Index...42
2.7.11. A_ARG_TYPE_Count..42
2.7.12. A_ARG_TYPE_ResetObjectList ..42
2.7.13. Eventing and Moderation ..44

2.8. ACTIONS...44
2.8.1. AddSyncData()...45
2.8.2. ModifySyncData()..46
2.8.3. DeleteSyncData()...48
2.8.4. GetSyncData() ...49
2.8.5. ExchangeSyncData() ...50
2.8.6. AddSyncPair() ...51
2.8.7. ModifySyncPair()...53
2.8.8. DeleteSyncPair() ...54
2.8.9. StartSync() ...55
2.8.10. AbortSync()..57
2.8.11. GetChangeLog() ..58
2.8.12. ResetChangeLog() ...59
2.8.13. ResetStatus() ..60

ContentSync:1 Service Template Version 1.01 4

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

2.8.14. GetSyncStatus() ...61
2.8.15. Non-Standard Actions Implemented by a UPnP Vendor...62
2.8.16. Common Error Codes..62

2.9. THEORY OF OPERATION ...63
2.9.1. Introduction ...63
2.9.2. CDS Synchronization...63
2.9.3. Synchronization of a Reference Object..85

3. XML SERVICE DESCRIPTION ..91

4. TEST...99

APPENDIX A. AV WORKING COMMITTEE PROPERTIES...100
A.1 BASE PROPERTIES OVERVIEW ..100

A.1.1 @id ..100
A.2 RESOURCE ENCODING CHARACTERISTICS PROPERTIES ..100

A.2.1 res@avcs:syncAllowed ..100
A.2.2 res@avcs:resModified...100

A.3 CONTENT SYNCHRONIZATION-RELATED PROPERTIES...101
A.3.1 avcs:syncable...101
A.3.2 avcs:syncInfo ...101
A.3.3 avcs:syncInfo@updateID ..102
A.3.4 avcs:syncInfo::pair..102
A.3.5 avcs:syncInfo::pair@syncRelationshipID...102
A.3.6 avcs:syncInfo::pair@partnershipID ...102
A.3.7 avcs:syncInfo::pair@pairGroupID...103
A.3.8 avcs:syncInfo::pair::remoteObjID..103
A.3.9 avcs:syncInfo::pair::remoteParentObjID ...103
A.3.10 avcs:syncInfo::pair::virtualRemoteParentObjID..103
A.3.11 avcs:syncInfo::pair::policy ...103
A.3.12 avcs:syncInfo::pair::status..104

APPENDIX B. SYNCABLE OBJECTS AND PROPERTIES ..104
B.1 DECIDING SYNCABILITY OF CDS OBJECT ..104
B.2 SYNCHRONIZATION OF CDS OBJECT PROPERTIES (INFORMATIVE)..106

List of Tables
Table 1-1: Namespace Definitions...11

Table 2-1: State Variables..24

Table 2-2: Status Codes of Synchronization Operation ..32

Table 2-3: Event Moderation ...44

Table 2-4: Actions..44

Table 2-5: Arguments for AddSyncData() ...45

Table 2-6: Error Codes for AddSyncData() ...46

Table 2-7: Arguments for ModifySyncData() ..47

Table 2-8: Error Codes for ModifySyncData()...47

ContentSync:1 Service Template Version 1.01 5

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Table 2-9: Arguments for DeleteSyncData() ...48

Table 2-10: Error Codes for DeleteSyncData()...49

Table 2-11: Arguments for GetSyncData() ...49

Table 2-12: Error Codes for GetSyncData() ...50

Table 2-13: Arguments for ExchangeSyncData() ...50

Table 2-14: Error Codes for ExchangeSyncData() ...50

Table 2-15: Arguments for AddSyncPair() ...52

Table 2-16: Error Codes for AddSyncPair() ...52

Table 2-17: Arguments for ModifySyncPair() ..53

Table 2-18: Error Codes for ModifySyncPair()...53

Table 2-19: Arguments for DeleteSyncPair() ...54

Table 2-20: Error Codes for DeleteSyncPair() ...55

Table 2-21: Arguments for StartSync()...56

Table 2-22: Error Codes for StartSync() ...56

Table 2-23: Arguments for AbortSync()..57

Table 2-24: Error Codes for AbortSync()..57

Table 2-25: Arguments for GetChangeLog()..58

Table 2-26: Error Codes for GetChangeLog() ..59

Table 2-27: Arguments for ResetChangeLog() ...59

Table 2-28: Error Codes for ResetChangeLog() ...60

Table 2-29: Arguments for ResetStatus()..60

Table 2-30: Error Codes for ResetStatus() ..61

Table 2-31: Arguments for GetSyncStatus() ...61

Table 2-32: Error Codes for GetSyncStatus() ...61

Table 2-33: Common Error Codes..62

Table 2-34: Actions for example sequence ...64

Table A-1: Content Synchronization-related Properties Overview ...101

Table B-1: Syncability of CDS object class ...104

Table B-2: Syncability of CDS Object property...106

List of Figures

ContentSync:1 Service Template Version 1.01 6

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Figure 1 Content Synchronization Model ...7

Figure 2 High-level Synchronization Flow Diagram ..8

Figure 3 Unidirectional Contents Synchronization ...9

Figure 4 ContentSync Function...9

Figure 5 Types of Synchronization Pair ..14

Figure 6 Synchronization Data Structure ..15

Figure 7 Interaction Diagram (Synchronization Operation)..21

Figure 8 Synchronization Relationship between two CDSs..64

Figure 9 Synchronization Relationship between two CDSs..86

ContentSync:1 Service Template Version 1.01 7

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

1. Overview and Scope
This service definition is compliant with the UPnP Device Architecture version 1.0.

1.1. Introduction
Content Synchronization service enables two or more ContentDirectory services [CDS] to synchronize
content with each other. This service also enables a UPnP control point to synchronize content with a
ContentDirectory service. We refer this service as “CSS” or “ContentSync service” from hereon. If a CDS
wants to support synchronization of objects and its resources with other CDSs, the implementation MUST
enable this ContentSync service (CSS). CSS keeps change log as part of CDS object property that describe
which CDS objects are added or modified or deleted since it has synchronized last. Since synchronization
enables interaction between ContentSync services, each service has a Control Point (CP) functionality that
invokes actions to other ContentSync service to achieve synchronization of contents with each other.

Figure 1 Content Synchronization Model

Figure 1 shows how synchronization is accomplished between two CSSs. In the figure above, a stand alone
control point is managing the synchronization between two CSSs. This includes management of content
synchronization data structure (i.e., creating, browsing and deleting of synchronization data structure) and
invocation of synchronization operation, etc. An embedded control point in the CSS has the role of
performing the actual synchronization of objects which include retrieving the change log for objects that
have changed, monitoring the status of the other CSS and updating the synchronization data structure when
an object is successfully synchronized etc.

Figure 2 shows a high-level flow diagram of how Content Sync services, ContentDirectory services and
Control Point interact with each other to achieve content synchronization..

Firstly, a stand-alone control point (controlled by a user) creates a synchronization relationship that
describes which devices to participate in the synchronization, which objects are to be synchronized, and

ContentSync:1 Service Template Version 1.01 8

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

how to resolve conflicts and so on. When the control point creates a synchronization relationship, it MUST
be responsible to define valid information for the CSS. If the synchronization relationship is successfully
created, the CDS implementation that supports CSS MUST keep track of change log of the objects that are
subject to synchronization. When a synchronization relationship is created between two devices, identical
synchronization data structure information is maintained in both devices.

Once a synchronization relationship is created, a stand-alone control point can trigger a synchronization
operation on either of CSSs. If the CSS is ready to synchronize (i.e. successfully respond to the trigger
from the stand-alone control point), the embedded control point in the CSS retrieves change log from the
other partner device.

After obtaining the change log, the CSS parses and interprets the change log. The CSS then updates the
CDS by retrieving object information from the partner device based on the change log and the rule defined
in this specification. In this step, the CSS notifies the CSS of the partner device whenever an object in the
change log is dealt with regardless of success or failure. If successful update for an object is notified, the
CSS implementation MUST clear the change log for that object and the CDS must keep track of new
change log since this last synchronization.

Figure 2 High-level Synchronization Flow Diagram

The ContentSync service also provides a functionality by which a control point can only track changes of
objects that the control point is interested in. This functionality is helpful for unidirectional
synchronization. Figure 3 shows such a scenario. In this scenario, a control point with its own local storage
(not compliant to CDS) can synchronize with a CDS by its own local policy. In other words, the control
point does not follow any policies that are defined in this specification. The control point creates
synchronization relationship information on a CDS with its interest for the CDS to track some objects. The
CDS keeps change log for the objects the control point is interested. Therefore, an embedded control point
in the CSS is disabled for this type of synchronization. Section 2 explains in details how this kind of
unidirectional synchronization can be achived.

ContentSync:1 Service Template Version 1.01 9

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Change
Log

Media Server

Control Point

ContentSync Service

ContentDirectory
Service

Control Point

Synchronization Relationship
Management

Storage

Getting Change Log

UPnP actions
Out-of-band

Transfer (Pull) resource binaries
(Out-of-band)

Figure 3 Unidirectional Contents Synchronization

1.1.1. ContentSync Function

ContentSync Function

Control Point interface to other
ContentSync Service

ContentSync
Service interface

for external
Control Point

ContentSync Service

ContentSync CP

Figure 4 ContentSync Function

The Content Sync function is an essential part of the Content Synchronization. This function is a
combination of a ContentSync service and a Content Sync CP in a CSS as shown in Figure 4.

ContentSync Service:

ContentSync service is responsible for managing synchronization data structure and performing
synchronization operation with a partner CSS.

ContentSync CP:

The ContentSync CP provides Control Point functionality that controls other ContentSync service
running on the network.

The interface between the ContentSync CP and the ContentSync service is device-dependent and not
defined by the UPnP ContentSync Service specifications.

ContentSync:1 Service Template Version 1.01 10

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

1.1.2. Media Server Device and ContentDirectory Service
Since a ContentSync service provides the functionality to synchronize ContentDirectory service objects,
ContentSync service implementation MUST appear together with ContentDirectory service implementation
and MUST be also deployed on an UPnP Media Server device [MSD] that supports synchronization.
Therefore, a Media Server implementation MUST expose an XML device description document which
contains description of both ContentSync service and ContentDirectory service when the Media Server
implementation supports synchronization of CDS objects.

The following device type identifies a Media Server device that is compliant with this specification:

urn:schemas-upnp-org:device:MediaServer:2

The following service type identifies a ContentDirectory service that is compliant with this specification:

urn:schemas-upnp-org:service:ContentDirectory:2

To enable synchronization of CDS objects, this specification imposes additional requirements on
ContentDirectory:2 service specification. When supporting synchronization of CDS objects, these
additional requirements MUST be implemented on top of ContentDirectory:2 service implementation. See
Appendix A for the additional requirements on ContentDirectory:2 service specification (especially
CDS properties of ContentDirectory:2 service).

Additionally, since this specification adds extended properties to CDS, the AVCS XML schema [AVCS-
XSD] for those properties is specified in this specification, not in UPnP AV. In other words, a CDS object
expressed by original DIDL-Lite XML document MUST also refer to the AVCS XML schema when the
new properties are added to the object. (The schema of the DIDL-Lite XML document does not have any
reference to the AVCS XML schema). Note that the schema is informative only and hence the XML data
types defined in this specification take precedence over all the XML schemas.

1.2. Notation
• In this document, features are described as Required, Recommended, or Optional as follows:

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this
specification are to be interpreted as described in [RFC 2119].

In addition, the following keywords are used in this specification:

PROHIBITED – The definition or behavior is an absolute prohibition of this specification.
Opposite of REQUIRED.

CONDITIONALLY REQUIRED – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is REQUIRED, otherwise it is
PROHIBITED.

CONDITIONALLY OPTIONAL – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is OPTIONAL, otherwise it is
PROHIBITED.

These keywords are thus capitalized when used to unambiguously specify requirements over
protocol and application features and behavior that affect the interoperability and security of
implementations. When these words are not capitalized, they are meant in their natural-language
sense.

• Strings that are to be taken literally are enclosed in “double quotes”.

ContentSync:1 Service Template Version 1.01 11

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

• Words that are emphasized are printed in italic.

• Keywords that are defined by the UPnP ContentSync and AV Working Committee are printed
using the forum character style.

• Keywords that are defined by the UPnP Device Architecture are printed using the arch character
style.

• A double colon delimiter, “::”, signifies a hierarchical parent-child (parent::child) relationship
between the two objects separated by the double colon. This delimiter is used in multiple contexts,
for example: Service::Action(), Action()::Argument, parentProperty::childProperty.

1.2.1. Data Types
This specification uses data type definitions from two different sources. The UPnP Device Architecture
defined data types are used to define state variable and action argument data types.

For UPnP Device Architecture defined Boolean data types, it is strongly RECOMMENDED to use the
value “0” for false, and the value “1” for true. However, when used as input arguments, the values “false”,
“no”, “true”, “yes” may also be encountered and MUST be accepted. Nevertheless, it is strongly
RECOMMENDED that all state variables and output arguments be represented as “0” and “1”.

For XML Schema defined Boolean data types, it is strongly RECOMMENDED to use the value “0” for
false, and the value “1” for true. However, when used as input properties, the values “false”, “true” may
also be encountered and MUST be accepted. Nevertheless, it is strongly RECOMMENDED that all
properties be represented as “0” and “1”.

1.3. Vendor-defined Extensions
Whenever vendors create additional vendor-defined state variables, actions or properties, their assigned
names and XML representation MUST follow the naming conventions and XML rules as specified in
[DEVICE]

1.4. Namespace for ContentSync Service
All data types represented by XML document in this specification MUST use the following namespaces
and XML schemas. Note that this schema is informative only and hence the XML data types defined in this
specification take precedence over the XML schema.

Table 1-1: Namespace Definitions

Standard
Name-
space
Prefix Namespace Name Namespace Description

Normative Definition
Document
Reference

cs: urn:schemas-upnp-org:cs

Reference: http://www.upnp.org/schemas/cs/cs-v1-
2007xxxx.xsd

Common data types for use in
ContentSync schema

[CSS-XSD]

avcs: urn:schemas-upnp-org:cs:avcs

Reference: http://www.upnp.org/schemas/cs/avcs-v1-
2007xxxx.xsd

Metadata for UPnP AV CDS [AVCS-XSD]

ContentSync:1 Service Template Version 1.01 12

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

1.5. References
[RFC 2119] – IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, S. Bradner,
1997.

[RFC 4122] – IETF RFC 4122, A Universally Unique Identifier (UUID) URN Namespace, P. Leach, et. al.,
2005.

[CDS] – ContentDirectory:2, UPnP Forum, May 31, 2006.

[DIDL-LITE-XSD] – XML Schema for ContentDirectory:2 Structure and Metadata (DIDL-Lite), UPnP
Forum, May 31, 2006.

[CSS-XSD] – XML Schema for ContentSync Service:1, UPnP Forum, July 26, 2007.

[AVCS-XSD] – XML Schema for additional CDS Object Properties of ContentSync Service:1, UPnP
Forum, July 26, 2007.

[DEVICE] – UPnP Device Architecture, version 1.0, UPnP Forum, June 13, 2000.

[XML] – Extensible Markup Language (XML) 1.0 (Third Edition), François Yergeau, Tim Bray, Jean
Paoli, C. M. Sperberg-McQueen, Eve Maler, eds., W3C Recommendation, February 4, 2004.

[XML SCHEMA-2] – XML Schema Part 2: Data Types, Second Edition, Paul V. Biron, Ashok Malhotra,
W3C Recommendation, 28 October 2004.

[MSD] – MediaServer:2, UPnP Forum, May 31, 2006.

ContentSync:1 Service Template Version 1.01 13

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

2. Service Modeling Definitions

2.1. ServiceType
The following service type identifies a service that is compliant with this template:

 urn:schemas-upnp-org:service:ContentSync:1.

2.2. Terms

2.2.1. Synchronization Object and Pair
A CDS object that is to be synchronized is called a synchronization object.

A synchronization pair represents a binding between a synchronization object in the local device and a
synchronization object in the partner device. This binding information is stored in the avcs:syncInfo
property of the synchronization objects. The avcs:syncInfo property for an object also keeps information
related to which property or resource has been changed for that object since the object synchronized last
with a remote object. This property MUST be updated whenever there is a change to that object. Therefore,
any change to avcs:syncInfo property MUST not be perceived as object change. See Appendix A and
Appendix B for details on synchronization object property. It is possible that an object that is new or
yet to be synchronized does not have the corresponding remote object. In that case the remote object gets
created in the partner device during the synchronization operation if specified by the policy. When creating
a synchronization pair for an object, one of the three possible scenarios as shown in Figure 5 will occur.

 Scenario 1: an (local) object is paired with an existing remote object in the partner device.

 Scenario 2: the local object does not have a corresponding remote object in the partner device
and the remote object gets created under an exsiting container object in the partner device which
is designated by the control point. The existing container object here is called as Remote Parent
Object.

 Scenrios 3: This is similar to scenarios 2, however the remote parent object under which the
remote object will be created does not exist either and it gets created along with the remote object
during the synchronization operation. In scenario 3, the remote parent object that will be created
MUST be paired with the parent object of the local object which is called as Virtual Remote
Parent Object.

ContentSync:1 Service Template Version 1.01 14

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Figure 5 Types of Synchronization Pair

The avcs:syncInfo property for an object can have multiple synchronization pair information if the object
is paired with multiple remote objects in different devices. In such case, there are some restrictions that
MUST be followed. See 2.8.6 AddSyncPair() action for details.

2.2.2. Synchronization Data Structure
A Synchronization Data Structure consists of the following information.

 Synchronization PairGroup is the data structure that identifies a group of synchronization pairs
where identical synchronization policy will be applied. The actual synchronization pair
information describing which object in the local CDS is paired with an object in the partner CDS
is contained in the object itself as part of object property.

 Synchronization Partnership is the data structure that describes a synchronization operation
between two specific CDSs. These two CDSs are called partners. A synchronization partnership
contains multiple synchronization pairGroups. A synchronization partnership contains policy
information that is applicable to all the pairGroups contained within that partnership. If a
pairGroup has its own policy information then the pairGroup policy overrides partnership policy
for that specific pairGroup.

 Synchronization Relationship is the data structure that describes a synchronization operation
between two or more CDSs. A synchronization relationship is composed of one or more
synchronization partnerships and each partnership is composed of one or more synchronization
pairGroups.

ContentSync:1 Service Template Version 1.01 15

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Figure 6 shows an example synchronization data structure with all its components.

The synchronization data structure allows an object in one device to synchronize with an object in another
device. Every syncable object in CDS has synchronization pair information that describes how the object
gets synchronized with another object. See Section 2.2.3 Synchronization Policy for more details.

A synchronization relationship or a partnership or a pairGroup is identified by a unique ID. Regardless of
disappearance/reappearance of this service on the network, the implementations that support ContentSync
service implementations MUST maintain the same value for these IDs in the CDS over its life-time. The
value once used MUST be never re-used. In order to make the value of this state variable globally unique,
it must be generated using GUID as defined in [RFC 4122]. A GUID is 128 bits long, and can guarantee
uniqueness across space and time.

Structurally, single synchronization relationship can have multiple partnerships by definition. However,
this version of the specification allows only one partnership within a synchronization relationship as
shown in Figure 6. But, multiple pairGroups within a partnership are allowed in this version of the
specification. For example, the synchronization relationship, S2, is only effective one in the figure below.

Figure 6 Synchronization Data Structure

2.2.3. Synchronization Policy and Behavior
A synchronization policy indicates how synchronization partners that are involved in a synchronization
relationship can exchange synchronization objects. In general, a synchronization policy indicates which
device should provide metadata and resources to which device. There are four types of policies defined
which is explained below:

2.2.3.1. “replace” synchronization policy
In “replace” synchronization policy, one of the synchronization partners becomes the source and the other
becomes the sink. The purpose of “replace” synchronization is to make a sink identical to the source. That
is, contents of the sink objects are replaced with the contents of the source. The terms source and sink are
merely conceptual between the synchronization pair.

 The behavior of “replace” synchronization policy is as follows.

 The object added to the source which does not have any corresponding object in the sink
MUST be copied to the sink.

 Any modification, including deletion, to the existing objects in the source will be applied to
the corresponding objects in the sink. To protect an object in the sink from deletion by

ContentSync:1 Service Template Version 1.01 16

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

synchronization, this object MUST be marked as deletion protected in the synchronization
policy. The protected object will not be deleted after synchronization, and will be excluded
from the relationship.

Note1: There should not be any object in the sink in a relationship that does not have a
corresponding object in the source.

Note2: Any changes in the sink are not useful, as these will be replaced by the source. To retain
changes in an object in the sink, the object should be excluded from the relationship or it needs to
be copied before synchronization.

2.2.3.2. “merge” synchronization policy
The “merge” synchronization policy defines that after synchronization, each partner will end up with a
superset of synchronization objects of all the partners. In other words, the synchronization objects from all
the partners will be merged according to the following rules:

 An object added to a synchronization partner that does not have any corresponding object in
the other partner will be copied to the other partner.

 Any metadata or resources that are missing on either partner that missing data is copied to
the other partner. If an object and its corresponding object have the same properties with
different values, then the values of properties of the partner with higher precedence will be
copied to the other partner.

2.2.3.3. “blend” synchronization policy
The “blend” synchronization policy defines that after synchronization, each partner will end up with a
superset of synchronization objects of all the partners. In other words, the synchronization objects from all
the partners will be blended according to the following rules:

 An object added to a synchronization partner that does not have any corresponding object in
the other partner will be copied to the other partner.

 Any metadata or resources that are missing on either partner that missing data is copied to
the other partner. If an object and its corresponding object have the same properties with
different values, then the values are left as is on both partners.

2.2.3.4. “tracking” synchronization policy
A “tracking” synchronization policy is useful only when synchronizing between a CDS and a non-CDS
device. The actual synchronization operation for this policy is out of the scope of this specification. In this
policy, only the device having a CDS keeps track of the change log for synchronization objects. The device
clears the change log by invocation of the ResetChangeLog() action and starts keeping new log from that
point. The device stops keeping change log when the synchronization relationship is destroyed.

 The behavior of “tracking” synchronization policy is as follows.

 A new object is automatically added to a synchronization pairGroup of its parent object if
the parent object (container) of the newly added object is also a synchronization object and
the autoObjAdd (automatic addition of new child object to synchronization pairGroup)
option in the policy of the parent object is set to "1".

 However, descendent objects except direct child object are not affected by the option
above.

2.2.3.5. Deleting object from synchronization relationship
If a user wants to delete an object from the CDS permanently, the user MUST exclude that object from the
relationship. The object may be created again by a synchronization operation if the object is just deleted

ContentSync:1 Service Template Version 1.01 17

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

and not excluded from the synchronization relationship. If an object is associated with multiple
synchronization relationships, it is not permanently deleted until the object is excluded from all the
synchronization relationships.

2.2.3.6. policy Data Format
The synchronization policy is included in the <policy> element in the ContentSync XML document which
contains zero or more synchronization data structure (See Section 2.7.4 A_ARG_TYPE_SyncData state
variable) and in the avcs:syncInfo::pair::policy property in a CDS object if overriding policy is necessary
(See Appendix A.3 Content Synchronization-related Properties.) The following example shows an
XML fragment of the policy.

Example:

<policy>
 <syncType>replace</syncType>
 <priorityPartnerID>1</priorityPartnerID>
 <delProtection>1</delProtection>
<policy>

The (one and only) root element, <policy>, MUST contain zero or more elements, each of which
represents a synchronization policy.

The following example shows a generalized “template” for the format of the policy XML document.
Additional elements and/or attributes MAY be added to future versions of this specification. Furthermore,
a 3rd-party vendor MAY add vendor-defined elements and/or attributes. However, by definition, this
specification does not define the format and/or values for these 3rd-party elements. In order to eliminate
element/attribute naming conflicts, the name of any vendor-defined element/attribute MUST follow the
rules set forth in Section 1.3 “Vendor-defined Extensions” All control points should gracefully ignore
any element/attribute that it does not understand.

The following notation includes the forum character style to indicate names that are defined by the
ContentSync Working Committee. Additionally, fields that need to be filled out by individual
implementations are shown in the vendor character style.

<?xml version="1.0"?>
<policy
 xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <syncType>synchronization policy type</syncType>syncDataUpdate
 <priorityPartnerID>Role of a partner</priorityPartnerID>
 <delProtection>Protect an object deletion</delProtection>
 <autoObjAdd>flag indicating automatic addition of new direct child to a
 pairGroup</autoObjAdd>
</policy>

xml

OPTIONAL. Case sensitive.

ContentSync:1 Service Template Version 1.01 18

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

SyncChange

REQUIRED. MUST have “urn:schemas-upnp-org:av:css-event” (which is the UPnP ContentSync Working Committee
Schema) as the value for the xmlns attribute that declares the default namespace; Contains all elements and
attributes defined by the CDS Event schema as follows:

syncType

REQUIRED. Indicates whether it is a “replace” or “merge” or "blend" or "tracking" synchronization.

priorityPartnerID

OPTIONAL. Indicates the role of a partner. If present, in a “replace” synchronization policy, it identifies
the partner that is a source device. If present, in a “merge” synchronization policy, it identifies the
partner that takes precedence on conflict. In "blend" and "tracking" synchronization, it is not applicable,
therefore it could be omitted. The value of the element MUST be the partner@id in a synchronization
data structure. See 2.7.4.1 A_ARG_TYPE_SyncData_Data Format for details. Because of the
definition of <partner> element in the synchronization data structure, the vaule MUST be either "1" or
"2".

delProtection

OPTIONAL. indicates whether an object will remain or not in the CDS hierarchy even after the deletion
of the object by a synchronization operation. A default behavior is that an object will be deleted by
synchronization. If this property is not appeared in the policy property of the avcs:syncInfo::pair::policy
property, the default behavior MUST be applied.

autoObjAdd

OPTIONAL. indicates whether a new direct child object will be automatically added into the
synchronization pairGroup of the parent object.

Although there are four types of synchronization polices defined above, some properties of an objects in a
CDS MUST be dealt with apart from synchronization. For example, the values of @id and @parentID are
dependent on local CDS and a CDS cannot assign a new value to @id and @parentID by copying these
values from other objects. They MUST NOT be considered as syncable and the changes on them MUST be
ignored during the synchronization operation. These properties that are independent of synchronization are
listed in the Appendix B, "Syncablility of CDS object."

2.2.3.7. Synchronization behavior

A synchronization operation updates metadata and resource(s) of a synchronization object using change
log in order to keep same metadata and resources between two objects in two different CDSs. While
synchronizing objects between two CDSs, the following behavior MUST be applied;

 There is a case where a CDS does not support some metadata that the other
synchronization partner supports. In this situation, the CDS that does not support those
metadata MUST ignore them.

 Synchronizing two objects under the merge synchronization policy, both of the objects will
end up with a superset of all properties between these two objects. However, in case of a
property that exists in both objects, the object without precedence will copy the value of
the property from the object with precedence. The same rule applies to in case of multi-
value property. For example, if an object has two properties of the same (i.e. multi-value
property) and this object takes precedence while synchronizing with another object, then
these properties will be copied to the other object after synchronization even if the other
has less or more properties of the same than the object with precedence.

ContentSync:1 Service Template Version 1.01 19

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 In the case of the res property, the res@avcs:resModified property indicates whether the
resource has been changed. Therefore, while synchronizing, an object without precedence
MUST always retrieve the resource from the other object with precedence if the
res@avcs:resModified property of the object with precedence has set to "1".

 For replace synchronization policy, when source object is deleted, the sink object MUST
be deleted after synchronization.

 Note that deleted object information SHOULD be provided in change log.

 For merge synchronization policy, when an object with precedence is deleted, it will be
revived with all metadata and resource of the partner object after synchronization when
change log from the partner device contains the partner object.

2.2.4. Minimally Complete Synchronization Relationship Data Structure
A minimally complete synchronization data structure defines exactly one synchronization relationship,
exactly one partnership within synchronization relationship and exactly one pairGroup within that
partnership. See 2.7.4 A_ARG_TYPE_SyncData state variable for details.

2.3. Synchronization Data Structure Management
This sub-section describes how a synchronization data structure gets added, modified and deleted. The
synchronization data structure is defined by the A_ARG_TYPE_SyncData state variable (See Section
2.7.4) and any changes to the data structures get evented by the SyncChange state variable. See "2.7.1
SyncChange state variable" and "2.7.13 Eventing and Moderation" for details on how to send an
event message for the synchronization data structure change.

2.3.1. Synchronization Data Structure Addition
Since the same synchronization data structure is kept in the partner devices within a partnership, any
addition to the existing synchronization data structure such as adding a new synchronization relationship or
new a pairGroup within an existing partnership MUST abide by the following rules:

Note: a new partnership within an existing synchronization relationship is not allowed in this version
of the specification.

 When adding a new synchronization relationship or adding a new pairGroup, the two partner
devices MUST be in the network. When a partner leaves the network while adding a
synchronization data structure, the first partner that receives this addition request MUST not
update its synchronization data structure. Likewise, when a partner fails for some reason after
receiving a successful response for addition from the second partner, added synchronization
relationship or pairGroup in the second partner MUST be destroyed. To remove such stale data
in the second partner, the second partner exchanges its own synchronization data structure with
the first partner by invoking the UPnP action ExchangeSyncData() when the first partner comes
back to the network..

2.3.2. Synchronization Data Structure Modification
Since the same synchronization data structure is kept in all the partner devices, any modifications to the
existing synchronization data structure such as modification to an XML element in a synchronization
relationship or in a partnership within an existing synchronization relationship or in a pairGroup within an
existing partnership MUST follow the following rules:

ContentSync:1 Service Template Version 1.01 20

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 To modify a synchronization relationship or a partnership or a pairGroup, all partner devices
MUST be in the network. When a partner leaves the network while modifying a synchronization
data structure, the first partner that receives this modification request MUST not update its
synchronization data structure..When a partner fails for some reason after receiving a successful
response for modifications from the second partner, the modified synchronization relationship or
pairGroup in the second partner MUST be destroyed. To remove such stale data in the second
partner, the second partner exchanges its own synchronization data structure with the first partner
by invoking the UPnP action ExchangeSyncData() when the first partner comes back to the
network..The partner device can determine the staleness of its partnership or pairGroup data by
comparing the partnership@updateID attribute and the pairGroup@updateID with the one in the
other partner device, respectively. Upon creation of a synchronization data structure, all partner
devices MUST keep the partnership@updateID and the pairGroup@updateID attributes that are
increased by 1 whenever a change is made on the partnership or pairGroup that the partner
belongs to. If the values of the partnership@updateID or pairGroup@updateID are different
then the partnership information with higher value of partnership@updateID or
pairGroup@updateID is up-to-date, and the partner with the lower value MUST update its
partnership or pairGroup information with the one from the other partner. After update, the
partnership@updateID and pairGroup@updateID values on both the partners become identical.

 The change of the partner device in a partnership is NOT allowed.
 A device which is currently processing a modification request MUST reject any subsequent

modification requests on the same data structure or part of the data structure that is the target of
the current modification request which is in progress. When a device is performing a
synchronization operation, any modification request on the associated data strucutre MUST be
rejected.

2.3.3. Synchronization Data Structure Deletion
Any deletions to an existing data structure MUST follow the following rules:

 When a synchronization relationship or a partnership or a pairGroup is deleted from an existing
data structure, the changed data structure after the deletion MUST be synchronized among all the
partners.

 Any deletions in one of the partners are allowed. However, the deleted information MUST be
synchronized when the other partner come to the network.

 When a synchronization relationship is deleted, all related information stored in the device such
as partnership, pairGroup, synchronization pair and deleted object list relevant to the relationship
MUST be deleted.

 After a partnership is deleted, all information associated with this partnership such as pairGroup,
synchronization pair and deleted object list MUST be deleted.

 When a pairGroup is deleted, all related information stored in the device such as synchronization
pair and deleted object list relevant to the pairGroup MUST be deleted.

 When the last pairGroup within an existing partnership is deleted, the partnership MUST be
deleted as well because the synchronization data structure does not allow a partnership without at
least one pairGroup.

2.4. Synchronization Operation (CDS to CDS)
A Synchronization operation is performed according to the policies described in the synchronization data
structure and/or in the synchronization pair. Therefore, before synchronizing objects between two or more
CDSs, the synchronization data structure MUST be created, if it does not exist, by describing the devices to
be involved in the synchronization along with the policies to be applied and synchronization pair

ContentSync:1 Service Template Version 1.01 21

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

information for objects that are to be synchronized. See Section 2.8.1 AddSyncPair() action for details on
how to add synchronization pair information.

Figure 7 and the texts below describe the sequence of steps during a synchronization operation:

ContentSync
Service Control Point ContentSync

Service

GetSyncData()

GetChangeLog() [called once]

ResetChangeLog() to indicate end of sync, error conditions,
Completion of syncing single object

[called whenever the object status is changed]

Update CDS Update CDS

StartSync() [called once]

StartSync() [called once]

ContentDirectory
Service

ContentDirectory
Service

Asynchronous transfer (pull) to obtain resources
(HTTP GET)

Figure 7 Interaction Diagram (Synchronization Operation)

1. A control point MAY invoke GetSyncData() action to retrieve existing synchronization data
structure. The result of this action is a collection of synchronization relationships.

2. The control point triggers a synchronization operation by invoking the StartSync() action on one
of the partner devices in the selected synchronization relationship. While invoking this action, the
control point passes the target synchronization ID for identifying the synchronization relationship
or partnership or pairGroup that is to be synchronized.

A. The partner that receives the StartSync() action from a control point, MUST also trigger the
synchronization operation on the other partner by invoking the StartSync() action on the
partner.

3. Once the synchronization operation has been triggered successfully, the devices that are part of
the synchronization operation perform the synchronization simultaneously. The subsequent
process is as follows:

A. Each device invokes GetChangeLog() action on the partner device to retrieve
synchronization objects, which basically include the change log as objects are updated in the
CDS.

B. After receiving responses for the two actions above, each partner device parses and
interprets the received DIDL-Lite XML document (Change log) to get synchronization
object information. Since during the synchronization operation, some of the objects need to
be created under a container object which itself needs to be created as well, the order how
objects are to be synchronized should be handled very carefully. The synchronization
operation MUST be done according to the following orders. See Section "2.9 Theory of
Operation" for details on how individual object is synchronized.

Note: Each object in the change log MUST have one of the following XML elements;

ContentSync:1 Service Template Version 1.01 22

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

avcs:pair::remoteObjID
or avcs:pair::remoteParentObjID
or avcs:pair::virtualRemoteParentObjID

 First, the device MUST synchronize objects (Scenario 1 pair) that have the
avcs:pair::remoteObjID property.

 Second, the device MUST synchronize objects (Scenario 2 pair) that have the
avcs:pair::remoteParentObjID property.

 The device creates new (local) object under the object that is identified by the
value of the avcs:pair::remoteParentObjID property.

 The partner device MUST replace the avcs:pair::remoteParentObjID property
with the the avcs:pair::remoteObjID property and the value of which MUST
be set to object@id of the newly created object. (See Step E below how the
partner device receives the information of the newly created object)

 Finally, the device MUST synchronize objects that have the
avcs:pair::virtualRemoteParentObjID property. The device starts with the objects
for which the value of the avcs:pair::virtualRemoteParentObjID property, is found
in the avcs:pair::remoteObjID property of the objects. Once synchronized, the
partner device MUST replace the avcs:pair::virtualRemoteParentObjID property
with the avcs:pair::remoteObjID property and the value of which MUST be set to
object@id of the newly created object. The device continues this process recursively
until all objects are synchronized.

C. Whenever a device obtains the DIDL-Lite XML fragment for each synchronization object,
the device updates the local CDS in accordance with the synchronization policy as described
in Section 2.2.2.

D. Finally, the partner devices transfer resources using HTTP GET method as the transport
protocol. Each partner device sends an event message whenever an object is processed. This
event message includes the status of synchronization (i.e. SyncStatusUpdate state variable)
which indicates whether the object is synchronized successfully or is failed to synchronize.
When an object is synchronized successfully the corresponding change log for that objects
gets cleared and the CDS starts keeping log for new changes.

Note: Each CDS object MUST have at least one res property of which resource MUST
be transferred using HTTP GET method if the object has a resource.

E. When a device receives the ResetChangeLog() action with objects that have synchronized,
the device updates the avcs:pair property in the CDS object.

i. Each device MUST invoke the ResetChangeLog() action on the partner device to
inform (acknowledge) the partner which remote objects have successfully
synchronized with the local objects. A device can acknowledge multiple objects by a
single action invocation. When invoking the ResetChangeLog() action, the device
MUST provide the avcs:syncInfo@updateID for each object that is extracted from the
result of the last GetChangeLog() action in order for the partner to decide what to reset
in the change log. See Section 2.8.12 ResetChangeLog() how to reset the change log.

4. After receiving an event message from the partner device that notifies the end of synchronization
for all objects, the device releases all system resources that are involved in the synchronization
operation.

ContentSync:1 Service Template Version 1.01 23

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

2.5. Synchronization Operation (CDS to non CDS)
The synchronization between a CDS and a non-CDS (Control Point) is unidirectional and consists of the
following steps:

1. A UPnP Control Point creates a new synchronization data structure containing a single
synchronization relationship on the device with which the control point wants to synchronize.
The process of creating such data structure is defined in Section 2.7.1.The following rules MUST
be applied while creating a synchronization data structure for CDS-non CDS synchronization:

 Either <partner id="1"> or <partner id="2"> elements in the <partnership> element
MUST be assigned to Non-CDS entity and its <deviceUDN> element and <serviceID>
MUST have the empty string.

 If one of two partners is a non-CDS, adding another partnership is NOT allowed.

 A partnership between CDS and Non-CDS can not be added into an existing
synchronization relationship.

The following XML document shows an example format of the synchronization data structure for CDS and
Non-CDS synchronization. (See Section 2.7.4 A_ARG_TYPE_SyncData for details on a
synchronization data structure)

<syncRelationship id="1cce93c2-6144-4093-9650-ae6c7ba28c91" active="1"
 xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <title>ABC Electronic Program Guide</title>
 <partnership id="3fa8e9f8-ff21-47ee-90c8-7730793a613f" active="1">
 <partner id="1">
 <deviceUDN>e832a654-9c64-429b-9f34-8f55278f73a7</deviceUDN>
 <serviceID>AcmeContentSync-001</serviceID>
 </partner>
 <partner id="2">
 <deviceUDN></deviceUDN>
 <serviceID></serviceID>
 </partner>
 <policy>
 <syncType>tracking<syncType>
 <priorityPartnerID>1</priorityPartnerID>
 <autoObjAdd>1</autoObjAdd>
 </policy>
 <pairGroup id="bca02e62-e9d6-454c-b1b2-a52e199e02e7" active="1"/>
 </partnership>
</syncRelationship>

2. Once the synchronization data structure is created and pair information is added to the CDS
objects, the CDS starts keeping track of changes to the objects.

3. A control point can retrieve the change log for all the objects that are part of the synchronization
relationship by invoking the GetChangeLog() action defined in Section 2.7.11. After retrieving
the change log, a control point can invoke the ResetChangeLog() action to instruct the CDS
whether to continue accumulating the change log once it has been retrieved or starts keeping new
log after flushing out the old logs.

ContentSync:1 Service Template Version 1.01 24

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

4. Once the change log is retrieved, the control point compares the changes to objects with its
internal database and updates its internal data base and hence essentially synchronizing with the
CDS.

5. When a control point is no-longer interested in the change log for objects that are part of a
synchronization relationship, the control point will delete the synchronization relationship by
invoking the action DeleteSyncData() defined in Section 2.7.3.

6. Any resource transfer on this type of a synchronization relationship is out of scope of the
specificatieon. Therefore, the StartSync() action invocation on the synchronization relationship
containing a partnership between a CDS and a non-CDS MUST fail with an appropriate error
code.

2.6. Garbage Collection
If a synchronization data structure is either inactive or has not been used for a long time for the purpose of
synchronization, a CSS implementation can decide to remove that data structure and similarly the CDS
implementation related to that CSS MUST remove all pair information associated with that data structure.

A synchronization pair that is not synchronized for a long time, an implementation can decide to remove
that synchronization pair as well.

The future version of this specification will investigate to provide a standardized mechanism for garbage
collection.

2.7. State Variables

Table 2-1: State Variables

Variable Name Req. or
Opt.1

Data
Type

Allowed
Value 2

Default
Value 2

Eng.
Units

SyncChange R string

SyncStatusUpdate R string

A_ARG_TYPE_ActionCaller R string

A_ARG_TYPE_SyncData R string

A_ARG_TYPE_SyncPair R string

A_ARG_TYPE_SyncID R string

A_ARG_TYPE_ObjectID R string

A_ARG_TYPE_SyncStatus R string

A_ARG_TYPE_ChangeLog R string

A_ARG_TYPE_Index R ui4

ContentSync:1 Service Template Version 1.01 25

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Variable Name Req. or
Opt.1

Data
Type

Allowed
Value 2

Default
Value 2

Eng.
Units

A_ARG_TYPE_Count R ui4

A_ARG_TYPE_ResetObjectList R string

Non-standard state variables implemented
by an UPnP vendor go here.

X TBD TBD TBD TBD

1 R = Required, O = Optional, X = Non-standard.
2 Values listed in this column are required. To specify standard optional values or to delegate assignment
of values to the vendor, you must reference a specific instance of an appropriate table below.

2.7.1. SyncChange
The SyncChange state variable contains an XML document identifying all changes that have occurred
since the last time the SyncChange state variable was evented. Synchronization data structure change and
synchronization object chage are evented in this version of the specification. See Section 2.4 “Eventing
and Moderation” for details. Individual events MUST be buffered and delivered in the order that they
occurred with the most recent event corresponding to the last XML element within the SyncChange XML
Document that is stored in the SyncChange state variable. Refer to Section 2.7.1.1 “SyncChange Data
Format” and the “ContentSync service Event Schema” document for more details.

The SyncChange state variable is evented and moderated according to the GENA eventing mechanism as
defined by the UPnP Device Architecture specification [DEVICE]. When multiple changes of object and
synchronization data structure occur within the same moderation period (as determined by the
implementation), each change MUST be accumulated in the SyncChange state variable and MUST be
evented as a single event notification message when the current moderation period expires. After the event
notification message has been sent to all subscribed control points, the value of the SyncChange state
variable is reset when an update to the SyncChange state variable becomes necessary i.e. when the next
event occurs. The resulting value is a fresh XML document that contains a single element that represents
the update (i.e. it contains the first update event following the distribution of the previous event message to
all subscribers). Subsequently, additional update elements are added to the XML document until the
current moderation period ends and the current value of the SyncChange state variable (i.e. the current
event message) is propagated to all event subscribers.

2.7.1.1. SyncChange Data Format
The optional XML header <?xml version=”1.0” ?> is allowed. The (one and only) root element,
<SyncChange>, MUST contain zero or more elements, each of which represents a change to a specific
synchronization data structure.

The following example shows a generalized “template” for the format of the SyncChange state variable.
Additional elements and/or attributes MAY be added to future versions of this specification. Furthermore,
a 3rd-party vendor MAY add vendor-defined elements and/or attributes. However, by definition, this
specification does not define the format and/or values for these 3rd-party elements. In order to eliminate
element/attribute naming conflicts, the name of any vendor-defined element/attribute MUST follow the
rules set forth in Section 1.3 “Vendor-defined Extensions” All control points should gracefully ignore
any element/attribute that it does not understand.

ContentSync:1 Service Template Version 1.01 26

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Note: The content of this state variable (i.e. the SyncChange XML document) MUST be properly escaped
before it is sent to an event subscriber via GENA.

The following notation includes the forum character style to indicate names that are defined by the
ContentSync Working Committee. Additionally, fields that need to be filled out by individual
implementations are shown in the vendor character style.

<?xml version="1.0"?>
<SyncChange
 xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <syncDataUpdate syncID="synchronization relationship or partnership or
 pairGroup ID of updated synchronization relationship"/>
 <syncObjUpdate objectID="object ID of updated synchronization object"/>
</SyncChange>

xml

OPTIONAL. Case sensitive.

SyncChange

REQUIRED. MUST have “urn:schemas-upnp-org:cs” (which is the UPnP ContentSync Working Committee Schema) as
the value for the xmlns attribute that declares the default namespace; Contains all elements and attributes
defined by the CDS Event schema as follows:

syncDataUpdate

OPTIONAL. Indicates that a synchronization relationship among the local device and other partner
devices has been modified on line. If the device receives this state variable, the local device MUST
browse updated relationship on the partner devices and update its local relationship information with
the partner device’s relationship information. This asynchronous update behavior only happens in case
of deletion of the synchronization data structure. See 2.3.3 "Synchronization Data Structure Deletion"
for details on the synchronization data structure update. The contents of this element MUST be the
empty string. However, future versions of this specification may define specific values for this element.
Consequently, control points must be prepared to gracefully ignore any element contents and/or
element attributes that it does not understand. Contains all of the following attributes:

syncID

REQUIRED. xsd:string, Contains the @id attribute of the synchronization relationship or
partnership or pairGroup that was added or modified.

syncObjUpdate

OPTIONAL. Indicates that a synchronization object has been modified since last synchronization
operation. If the partner device receives this state variable, the local device can do synchronization
operation immediately. The contents of this element MUST be the empty string. However, future
versions of this specification may define specific values for this element. Consequently, control points
must be prepared to gracefully ignore any element contents and/or element attributes that it does not
understand. Contains all of the following attributes:

ContentSync:1 Service Template Version 1.01 27

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

objectID

REQUIRED. xsd:string, Contains the object@id property of the synchronization object that was
modified.

2.7.2. SyncStatusUpdate
This state variable is used for eventing purposes which allow a control point to receive meaningful event
notifications whenever there is a update in synchronization operation involving a synchronization
relationship. [CSS-XSD] defines the schema for the SyncStatusUpdate XML Document used in this state
variable. The optional XML header =<? xml version="1.0"?> is allowed. One root element,
<SyncStatusUpdate> has a list of one or more synchronization operation information structures
representing currently ongoing synchronization operations. A synchronization operation information
structure includes the status of the opreation. Other update elements MAY be added in the future CSS
specifications as needed.

SyncStatusUpdate state variable is sent whenever a synchronization object is successfully synchronized or
failed to synchronize during a synchronization operation. This state variable only contains new updates
since the last time the state variable was evented. Once the update is sent, this update information is never
sent again.

Example (before XML escaping):

<?xml version="1.0" encoding="utf-8">
<SyncStatusUpdate
 xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d">
 <status numberOfTotalObjects="50" numberOfCompletedObjects="47"
 numberOfFailedObjects="2">
 IN_PROGRESS_WITH_ERROR
 </status>
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6">
 <status numberOfTotalObjects="50" numberOfCompletedObjects="45"
 numberOfFailedObjects="2">
 IN_PROGRESS_WITH_ERROR
 </status>
 <pairGroup id="0ada9f4f-596f-4906-93d0-230f9df78a10">
 <status numberOfTotalObjects="25" numberOfCompletedObjects="23"
 numberOfFailedObjects="1">
 IN_PROGRESS_WITH_ERROR
 </status>
 <logEntry>
 <localObjectID>obj01</localObjectID>
 <remoteObjectID>robj07</remoteObjectID>
 <statusCode>001</statusCodes>
 <statusDescription>Succeeded completely</statusDescription>
 </logEntry>
 </pairGroup>
 <pairGroup id=’70a74981-35f3-4262-84e8-ba0ec1794c0c’>
 <status numberOfTotalObjects="25" numberOfCompletedObjects="22"
 numberOfFailedObjects="1">

ContentSync:1 Service Template Version 1.01 28

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 IN_PROGRESS_WITH_ERROR
 </status>
 <logEntry>
 <localObjectID>obj03</localObjectID>
 <remoteObjectID>robj02</remoteObjectID>
 <statusCode>001</statusCodes>
 <statusDescription>Succeeded completely</statusDescription>
 </logEntry>
 </pairGroup>
 </partnership>
 </syncRelationship>
</SyncStatusUpdate>

The SyncStatusUpdate state variable MUST only be cleared just before adding the first update event that
occurs after the last event message was sent.

A series of updates and the resulting eventing activity are illustrated in their temporal order in the example
shown above.

2.7.2.1. SyncStatusUpdate Data Format
The optional XML header <?xml version=”1.0” ?> is allowed. The (one and only) root element,
<SyncStatusUpdate>, MUST contain zero or more elements, each of which represents a log of the
synchronization object that is synchronized.

The following example shows a generalized “template” for the format of the SyncStatusUpdate state
variable. Additional elements and/or attributes MAY be added to future versions of this specification.
Furthermore, a 3rd-party vendor MAY add vendor-defined elements and/or attributes. However, by
definition, this specification does not define the format and/or values for these 3rd-party elements. In order
to eliminate element/attribute naming conflicts, the name of any vendor-defined element/attribute MUST
follow the rules set forth in Section 1.3 “Vendor-defined Extensions” All control points should
gracefully ignore any element/attribute that it does not understand.

The following notation includes the forum character style to indicate names that are defined by the
ContentSync Working Committee. Additionally, fields that need to be filled out by individual
implementations are shown in the vendor character style.

<?xml version="1.0"?>
<SyncStatusUpdate
 xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <syncRelationship id="synchronization relationship ID">
 <status numberOfTotalObjects="total number of synchronizing objects"
 numberOfCompleteObjects="number of synchronized objects"
 numberOfFailedObjects="number of synchronization-failed objects">
 synchronization status of this synchronization relationship
 </status>
 <partnership id="synchronization partnership ID"
 <status numberOfTotalObjects="total number of synchronizing objects"
 numberOfCompleteObjects="number of synchronized objects"
 numberOfFailedObjects="number of synchronization-failed objects">
 synchronization status of this synchronization partnership

ContentSync:1 Service Template Version 1.01 29

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 </status>
 <pairGroup id="synchronization pairGroup ID"
 <status numberOfTotalObjects="total number of synchronizing objects"
 numberOfCompleteObjects="number of synchronized objects
 within this pairGroup"
 numberOfFailedObjects="number of synchronization-failed objects">
 synchronization status of this synchronization pairGroup
 </status>
 <logEntry>
 <localObjID>local object ID</localObjID>
 <remoteObjID>remote object ID</remoteObjID>
 <statusCode>synchronization status codes</statusCode>
 <statusDesc>synchronization status description</statusDesc>
 </logEntry>
 </pairGroup>
 </partnership>
 </syncRelationship>
</SyncStatusUpdate>

xml

OPTIONAL. Case sensitive.

SyncStatusUpdate

REQUIRED. MUST have “urn:schemas-upnp-org:cs” (which is the UPnP ContentSync Working Committee Schema) as
the value for the xmlns attribute that declares the default namespace; Contains all elements and attributes
defined by the CSS schema as follows:

syncRelationship

OPTIONAL. a wrapper element that holds the synchronization operation information associated with a
synchronization relationship. This element can appear multiple times to contain multiple
synchronization relationships in the XML document.

@id

REQUIRED. xsd:string, contains an identifier to distinguish synchronization relationship from
other synchronization relationships.

status

REQUIRED. xsd:string, indicates the status of a synchronization operation of the
synchronization relationship identified by @id attribute above. This element MUST assume one
of the following enumerated values:

 IN_PROGRESS: The operation is in progress without any errors.

 IN_PROGRESS_WITH_ERROR: The operation is in progress where some objects are failed to
 synchronization.

 COMPLETED: The operation is completed.

 COMPLETED_WITH_ERROR: The operation is finished, but some objects are failed to
 synchronization.

 STOPPED: The operation is stopped by any reasons.

ContentSync:1 Service Template Version 1.01 30

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 TEMPORARILY_STOPPED: The operation is temporarily stopped by any reason. This
operation could be resumed at any time.

@numberOfTotalObjects

REQUIRED. xsd:unsignedInt, contains the total number of synchronization objects that
are in the change log.

@numberOfCompletedObjects

REQUIRED. xsd:unsignedInt, contains the total number of objects that are successfully
imported into the local CDS.

@numberOfFailedObjects

REQUIRED. xsd:unsignedInt, contains the number of objects that are failed to be
imported into the local CDS.

partnership

REQUIRED. xsd:string, a wrapper element that holds the synchronization operation information
associated with a synchronization partnership.

@id

REQUIRED. xsd:string, contains an identifier to distinguish a partnership from other
partnerships in a synchronization relationship.

status

REQUIRED. xsd:string, indicates the status of a synchronization operation of the
synchronization partnership identified by @id attribute above. This element MUST
assume one of the following enumerated values:

 IN_PROGRESS: The operation is in progress without any errors.

 IN_PROGRESS_WITH_ERROR: The operation is in progress where some objects are failed to
 synchronization.

 COMPLETED: The operation is completed.

 COMPLETED_WITH_ERROR: The operation is finished, but some objects are failed to
 synchronization.

 STOPPED: The operation is stopped by any reasons.

TEMPORARILY_STOPPED: The operation is temporarily stopped by any reason. This
operation could be resumed at any time.

@numberOfTotalObjects

REQUIRED. xsd:unsignedInt, contains the total number of synchronization
objects that are found in the change log from a partner device.

@numberOfCompletedObjects

REQUIRED. xsd:unsignedInt, contains the total number of objects that are
successfully imported into the local CDS.

ContentSync:1 Service Template Version 1.01 31

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

@numberOfFailedObjects

REQUIRED. xsd:unsignedInt, contains the number of objects that are failed to
be imported into the local CDS.

pairGroup

REQUIRED. xsd:string, a wrapper element that holds the synchronization operation
information associated with a synchronization pairGroup.

@id

REQUIRED. xsd:string, contains an identifier to distinguish a pairGroup from
other pairGroups in a synchronization partnership.

status

REQUIRED. xsd:string, indicates the status of a synchronization operation of
the synchronization pairGroup identified by @id attribute above. This
element MUST assume one of the following enumerated values:

 IN_PROGRESS: The operation is in progress without any errors.

IN_PROGRESS_WITH_ERROR: The operation is in progress where some objects are
failed to synchronize.

 COMPLETED: The operation is completed.

 COMPLETED_WITH_ERROR: The operation is finished, but some objects are failed to
 synchronize.

 STOPPED: The operation is stopped by any reasons.

TEMPORARILY_STOPPED: The operation is temporarily stopped for any
reason. This operation could be resumed at any time.

@numberOfTotalObjects

REQUIRED. xsd:unsignedInt, contains the total number of
synchronization objects that are found in the change log from a
partner device.

@numberOfCompletedObjects

REQUIRED. xsd:unsignedInt, contains the total number of objects
that are successfully imported into the local CDS.

@numberOfFailedObjects

REQUIRED. xsd:unsignedInt, contains the number of objects that are
failed to be imported into the local CDS.

logEntry

REQUIRED. xsd:string, contains the result of synchronization operation for
each synchronization object.

ContentSync:1 Service Template Version 1.01 32

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

localObjID

REQUIRED. xsd:string, identifies a CDS object that resides on the
local CDS of the device issuing the event. When the
SyncStatusUpdate XML document is sent to the partner as an event
message, this localObjID element is perceived as a remote object by
the partner.

remoteObjID

REQUIRED. xsd:string, identifies a CDS object in the partner CDS
that is paired with an object in the local CDS for synchronization.
When the partner receives the SyncStatusUpdate XML document as
an event message, this remoteObjID element is perceived as a local
object at the partner device.

statusCode

REQUIRED. xsd:unsignedInt, indicates pre-defined status codes for a
synchronization operation for the logEntry element. The table below
defines the status codes to identify various synchronization
conditions. This status list can be extended in the future by vendors.
The status codes are grouped into separate categories and labeled
as 1xx, 2xx, 3xx and 4xx, where each group represents the nature of
status; such as: success status, general errors, media errors, system
error and synchronization errors, respectively. The grouping of
status codes allows a control point to be able to understand the
nature of status when an unknown status code (that is: extended
specification or vendor extended) is encountered. For example, for
an unknown error labeled as 2xx, it can be interpreted by the
control point as 200.

Table 2-2: Status Codes of Synchronization Operation
Value R/O Description

Non-positive N/A These error codes are reserved for future use. Control
points should gracefully ignore any non-positive error
codes.

001-099 N/A Non-Error Group
001 R Success – Synchronization of an object is succeeded.

002 O Partial Success – Synchronization of an object is
succeeded, but some DIDL-Lite properties are missing
due to device capability.

003 R Not Accepted - the object is not accepted due to device
capability

004-099 N/A Reserved

100-199 N/A General Error Code Group - arbitrary errors, which do not
belong to other groups.

100 R General Problem –a problem is confirmed, but no specific
reason can be identified.

101 O Disabled Sync Operation- the synchronization operation is
disabled by the user.

102 O The destination for the new object is not specified.

102-149 N/A Reserved for future General Error Codes.

ContentSync:1 Service Template Version 1.01 33

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Value R/O Description

150-199 N/A Reserved for vendor-defined General Error Codes.
200-299 N/A Media Error Code Group - arbitrary media related errors.

200 O General Media Problem–some trouble related to media is
detected. Checking the media to resolve it.

201 O Insufficient Disk Space–storage of the sync device (i.e.,
HDD or Flash Memory, etc…) does not have enough
available space to complete the synchronization.

202 O Storage Low Space - the storage of sync device has low
available space and the synchronization process may fail.
The criteria to determine “low space” is vendor dependent
and may be independent from the size of the sync
contents to synchronize.

203-249 N/A Reserved for future Media Error Codes.

250-299 N/A Reserved for vendor-defined Media Error Codes.
300-399 N/A System Error Code Group - arbitrary system related error.

300 O General System Problem –a problem related to the
system is detected. It may affect all synchronization
processes in the sync-enabled Content Directory service.

301 O Insufficient Memory- the system does not have enough
system memory to complete the synchronization
processes.

302 O Insufficient Processing - the system does not have
enough CPU power to execute the designated
synchronization processes.

303 O Low Memory - the system has low available memory and
the designated synchronization process may fail. The
criteria to determine “low memory” is vendor dependent
and may be independent from the size of the sync content
to synchronize.

304 O Low Processing - the system has low available CPU
power and the designated synchronization process may
fail. The criteria to determine “low processing” is vendor
dependent and may be independent from the size of the
sync content to synchronize.

305-349 N/A Reserved for future System Error Codes.
350-399 N/A Reserved for vendor-defined System Error Codes.
400-499 N/A Content Error Code Group - arbitrary errors related to the

content to be synchronized.

400 O General Content Problem –a problem related to the
content is detected. It may be associated with the content
that is being synchronized.

401 O No Sync Content–the necessary content is missing from
the sync devices.

ContentSync:1 Service Template Version 1.01 34

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Value R/O Description

402 O Content Write Protect - write access to the recording
content is prohibited.

403 O Synchronization Loser –there are other synchronizing
process with the same contents(i.e., CDS objects) at the
same period, and the current synchronization process is
superseded by the conflicting synchronization process.

404 O Content Locked- the originally sync content has been
preempted by another synchronization process.

405 O Invalid XML – xml document format for content metadata
is not valid.

404-449 N/A Reserved for future Content Error Codes.

450-499 N/A Reserved for vendor-defined Content Error Codes.

500 and
above

N/A Reserved for future new category information extensions.

statusDesc

REQUIRED. xsd:string, expresses readable error status of the
synchronization operation for this logEntry element.

2.7.3. A_ARG_TYPE_ActionCaller
This state variable is introduced to provide type information for the ActionCaller argument in various
actions. The ActionCaller argument identifies the caller of an action. If the caller is a control point
embedded in a UPnP device then the value MUST be the device’s UDN. Otherwise the value MUST be set
to the empty string indicating that the caller is a stand-alone control point.

2.7.4. A_ARG_TYPE_SyncData
This state variable is introduced to provide type information for various arguments that contain different
parts of a synchronization data structure to be used in various actions. The A_ARG_TYPE_SyncData state
variable MUST contain one of the following types of synchronization-related XML fragments:

 Synchronization relationship data: Represents synchronization relationship level information.

 Partnership data: Represents partnership level information for a given synchronization
relationship. This fragment MUST NOT contain any synchronization or pairGroup level
information.

 Pairgroup data: Represents pairGroup level information in a synchronization relationship for a
given partnership. This fragment MUST NOT contain any synchronization or partnership level
information.

All instances of this data type MUST comply with the [CSS-XSD] schema.

Note that since the ContentSync format of an argument of data type A_ARG_TYPE_SyncData is an XML
document, it needs to be escaped (using the normal XML rules: [XML] Section 2.4 Character Data and
Markup) before embedding in a SOAP response message.

The example below shows synchronization data structure for synchronization between two CDSs:

ContentSync:1 Service Template Version 1.01 35

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Example:

<?xml version="1.0" encoding="utf-8">
<ContentSync xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" active="1">
 <title>Sync between My iPod, My PMP and Home Media Server</title>
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1"
 updateID="0">
 <partner id="1">
 <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
 <serviceID>service_ID_A</serviceID>
 </partner>
 <partner id="2">
 <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN>
 <serviceID>service_ID_B</serviceID>
 </partner>
 <policy>
 <syncType>merge<syncType>
 <priorityPartnerID>1</priorityPartnerID>
 </policy>
 <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active="1">
 <policy>
 <syncType>replace</syncType>
 <priorityPartnerID>1</priorityPartnerID>
 </policy>
 </pairGroup>
 <pairGroup id="0ada9f4f-596f-4906-93d0-230f9df78a10" active="1">
 <policy>
 <syncType>replace</syncType>
 <priorityPartnerID>2</priorityPartnerID>
 </policy>
 </pairGroup>
 <!-- More pairGroups can go here -->
 </partnership>
 <partnership id="864074ec-dad5-4d2c-b5c6-41e3e6f53b79" active="1"
 updateID="0">
 <partner id="1">
 <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
 <serviceID>service_ID_A</serviceID>
 </partner>
 <partner id="2">
 <deviceUDN>e832a654-9c64-429b-9f34-8f55278f73a7</deviceUDN>
 <serviceID>service_ID_C</serviceID>
 </partner>
 <policy>
 <syncType>merge</syncType>
 <priorityPartnerID>2</priorityPartnerID>
 </policy>
 <pairGroup id="265193c0-0b07-4f33-979c-f4701a98a1d9" active="1"/>
 </partnership>
 <!-- More partnerships can go here -->
 </syncRelationship>
 <syncRelationship id="e884c276-c489-44f0-bcec-332450dab074" active="1">
 <title>Sync between My PMP and Home Media Server</title>
 <partnership id="1ab3fef4-777e-496a-82ed-d2580cdafa75" active="1"

ContentSync:1 Service Template Version 1.01 36

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 updateID="0">
 <partner id="1">
 <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
 <serviceID>service_ID_A</serviceID>
 </partner>
 <partner id="2">
 <deviceUDN>ef7c6650-5748-4cc7-9cde-6a5b8719615f</deviceUDN>
 <serviceID>service_ID_D</serviceID>
 </partner>
 <policy>
 <syncType>replace</syncType>
 <priorityPartnerID>2</priorityPartnerID>
 </policy>
 <pairGroup id="c1bc5bd7-0207-4226-beee-b528fe63a919" active="1"/>
 </partnership>
 </syncRelationship>
</ContentSync>

The XML document example above contains multiple synchronization relationships and multiple
partnerships in the first synchronization relationship. However, only one partnership is allowed in a
synchronization relationship in this version of the specification.

A synchronization relationship (and its syncRelationship data structure) is identified by a globally unique
syncRelationship@id element. A synchronization relationship is composed of one or more partnerships
(see below). A synchronization relationship can be in an active or inactive state. An active state means that
the synchronization relationship participates in a synchronization operation whereas an inactive
synchronization relationship does not participate in a synchronization operation. The active state of a
synchronization relationship is expressed by the syncRelationship@active element.

A partnership identifies two specific partner devices containing content that is synchronized during a
synchronization operation. A partnership exists only between two sync partner devices. The partner devices
are identified by their respective UDN values. Each partnership is identified by a globally unique
partnership@id element.

Each partnership consists of one or more synchronization PairGroups. A PairGroup identifies a set of
synchronization pairs where identical synchronization policies are applied. Each object that belongs to a
pair and is associated with a pairGroup includes a avcs:syncInfo::pair property that contains a reference to
that PairGroup via the PairGroup’s id. .

Within every synchronization data structure (relationship, partnership, and PairGroup) a default policy is
defined such that all dependent structures inherit that policy unless the dependent structure specifies a
policy on its own.For example if policies are defined for a PairGroup and for a pair under that pairGroup,
the pair policy will override the pairGroup policy. Similarly, if policies are defined for a partnership and a
pairGroup under that partnership, then pairGroup policy will override partnership policy.

The partnership@updateID element can be used to determine whether locally cached partnership
information has become stale. The partnership@updateID element value is increased by one whenever the
partnership information is modified. See the action ModifySyncData() for more details.

The synchronization data structure for a given synchronization relationship MUST be identical in all
devices that are referenced within that synchronization relationship before performing any synchronization
operation.

ContentSync:1 Service Template Version 1.01 37

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

2.7.4.1. A_ARG_TYPE_SyncData Data Format
The optional XML header <?xml version=”1.0” ?> is allowed. The (one and only) root element,
<ContentSync>, MUST contain zero or more elements, each of which represents a synchronization data
structure.

The following example shows a generalized “template” for the format of the A_ARG_TYPE_SyncData
state variable. Additional elements and/or attributes MAY be added to future versions of this specification.
Furthermore, a 3rd-party vendor MAY add vendor-defined elements and/or attributes. However, by
definition, this specification does not define the format and/or values for these 3rd-party elements. In order
to eliminate element/attribute naming conflicts, the name of any vendor-defined element/attribute MUST
follow the rules set forth in Section 1.3 “Vendor-defined Extensions”. All control points should
gracefully ignore any element/attribute that it does not understand.

The following notation includes the forum character style to indicate names that are defined by the
ContentSync Working Committee. Additionally, fields that need to be filled out by individual
implementations are shown in the vendor character style.

<?xml version="1.0"?>
<ContentSync
 xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <syncRelationship id="synchronization relationship ID"
 active="flag indicates whether a relationship is enabled or disabled"
 systemUpdateID="system update ID of the CDS at the time of change">
 <title>title of this synchronization relationship</title>
 <partnership id="synchronization partnership ID"
 active="flag indicates whether a partnership is enabled or disabled"
 updateID="uniquely assigned ID when a partnership is updated">
 <partner id="1">
 <deviceUDN>device UDN of the first partner</deviceUDN>
 <serviceID>ID of a service of the first partner</serviceID>
 </partner>
 <partner id="2">
 <deviceUDN>device UDN of the second partner</deviceUDN>
 <serviceID>ID of a service of the second partner</serviceID>
 </partner>
 <policy>synchronization policy in a partnership level</policy>
 <pairGroup id="synchronization pairGroup ID"
 active="flag indicates whether a pairGroup is enabled or disabled">
 <policy>synchronization policy in a pairGroup level</policy>
 </pairGroup>
 </partnership>
 </syncRelationship>
</ContentSync>

xml

OPTIONAL. Case sensitive.

ContentSync:1 Service Template Version 1.01 38

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

ContentSync

REQUIRED. MUST have “urn:schemas-upnp-org:cs” (which is the UPnP ContentSync Working Committee Schema) as
the value for the xmlns attribute that declares the default namespace; Contains all elements and attributes
defined by the CSS schema as follows:

syncRelationship

OPTIONAL. a wrapper element that holds the information associated with a synchronization relationship.
This element can appear multiple times to contain multiple synchronization relationship in the XML
document.

@id

REQUIRED. xsd:string, contains an identifier to distinguish a synchronization relationship from
other synchronization relationships. The value of this attribute MUST be generated using GUID
as defined in RFC 4122. A GUID is 128 bits long and can guarantee uniqueness across space and
time.

@active

REQUIRED. xsd:boolean, Indicates whether a synchronization relationship is enabled. To
indicate a synchronization relationship is currently disabled, the syncRelationship@active
attribute MUST be set to false (“0”). Attempting to synchronize a disabled synchronization
relationship MUST result in an error. Each synchronization partner MUST keep its local Change
Log even though the synchronization relationship is disabled. Enabling is accomplished by
setting the active attribute to true (“1”). If a relationship is disabled then all partnerships
under this relationship will be treated as disabled regardsless of the setting of the active flags
of those partnerships.

@systemUpdateID

REQUIRED. xsd:string, Indicates systemUpdateID property of the CDS at the time of change

title

REQUIRED. xsd:string, contains a user-friendly name for the synchronization relationship.

partnership

REQUIRED. xsd:string, indicates which two devices in a synchronization relationship are
partnered together. Sub-properties of the partnership element describe detailed information
of the partnership. This element MUST appear under the <syncRelationship> element.

@id

REQUIRED. xsd:string, contains an identifier to distinguish a partnership from other
partnerships in a synchronization relationship. The value of the partnership@id
attribute MUST be generated using GUID as defined in RFC 4122. A GUID is 128 bits
long and can guarantee uniqueness across space and time.

@active

REQUIRED. xsd:boolean, indicates whether a partsnerhip is enabled. To indicate that
a partnership is currently disabled, the partnership@active MUST be set to false (“0”).
Attempting to synchronize a disabled partnership MUST result in an error. Each
synchronization partner MUST keep its local Change Log even though the partnership
is disabled. Enabling is accomplished by setting the active attribute to true (“1”). If a
partnership is disabled then all pairGroups under this partnership will be treated as
disabled regardsless of the setting of the active flags of those pairGroups.

ContentSync:1 Service Template Version 1.01 39

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

@updateID

REQUIRED. xsd:string, a counter that increases its value whenever there is a change in
this partnership. The value of the change must be increased by 1. This attribute is
used to prevent updates with stale data.

partner

REQUIRED. xsd:string, indicates individual device information that is involved in a
partnership.

@id

REQUIRED. xsd:string, contains the unique ID to identify a partner in a
partnership. The value of partner@id attribute is static, “1” or “2”. “1”
represents the first partner and “2” represents the second partner.

deviceUDN

REQUIRED. xsd:string, contains the UDN of the device that provides
ContentSync service.

serviceID

REQUIRED. xsd:string, contains the service ID of the CSS of the partner
device.

policy

REQUIRED. xsd:string, indicates how to synchronize objects that are involved in a
synchronization partnership. See "2.2.3 Synchronization Policy" for policy definition
and format.

pairGroup

REQUIRED. xsd:string, indicates pairGroup information within a partnership. This
element can appears multiple times under the <partnership> element.

@id

REQUIRED. xsd:string, uniquely identifies a pairGroup within a partnership to
distinguish it from other pairGroups in a synchronization partnership. The
value of this attribute MUST be generated using GUID as defined in RFC 4122.
A GUID is 128 bits long and can guarantee uniqueness across space and time.

@active

REQUIRED. xsd:string, indicates whether a pairGroup is enabled. To indicate
that a pairGroup is currently disabled, the pairGroup@active MUST be set to
false (“0”). Attempting to synchronize a disabled pairGroup MUST result in an
error. Each synchronization partner MUST keep its local Change Log even
though the pairGroup is disabled. Enabling is accomplished by setting the
active attribute to true (“1”).

@updateID

REQUIRED. xsd:string, a counter that increases its value whenever there is a
change in this pairGroup.

ContentSync:1 Service Template Version 1.01 40

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

policy

REQUIRED. xsd:string, indicates how to synchronize objects that are involved
in a synchronization pairGroup. See "2.2.3 Synchronization Policy" for
policy definition and format.

2.7.5. A_ARG_TYPE_SyncPair
This state variable is introduced to provide type information for various arguments that contain a
synchronization pair for a CDS object to be used in various actions.

The following illustrates a typical example of the A_ARG_TYPE_SyncPair state variable

Example:

<?xml version="1.0" encoding="UTF-8"?>
<syncInfo updateID="3" xmlns="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-20070XXXX.xsd">
 <pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <remoteObjID>B1</remoteObjID>
<policy>
 <syncType>replace</syncType>
 <priorityPartnerID>1</priorityPartnerID>
</policy>

 <status>MODIFIED</status>
 </pair>
 <pair
 syncRelationshipID="e884c276-c489-44f0-bcec-332450dab074"
 partnershipID="1ab3fef4-777e-496a-82ed-d2580cdafa75"
 pairGroupID="c1bc5bd7-0207-4226-beee-b528fe63a919">

<remoteParentObjID>B2</remoteParentObjID>
<status>NEW</status>

 </pair>
</syncInfo>

Since XML elements in this state variable are CDS object property, see Appendix A for details of pair
information. Also, see [CSS-XSD] for a schema of the A_ARG_TYPE_SyncPair state variable.

2.7.6. A_ARG_TYPE_SyncID
This state variable is introduced to provide type information for various action arguments that uniquely
identify a synchronization relationship, or a partnership or a pairGroup. The value of this variable MUST
be generated using GUID as defined in RFC 4122. A GUID is 128 bits long and can guarantee uniqueness
across space and time.

ContentSync:1 Service Template Version 1.01 41

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

2.7.7. A_ARG_TYPE_ObjectID
This state variable is introduced to provide type information for various action arguments that uniquely
identify a CDS object. The format of the A_ARG_TYPE_ObjectID state variable MUST follow the
definition of the A_ARG_TYPE_ObjectID in the ContentDirectory:2 Service specification and the
definition of the @id property in the Appendix A.

2.7.8. A_ARG_TYPE_SyncStatus
This state variable is introduced to provide type information for the SyncStatus argument in the
GetSyncStatus() action which contains a list of zero or more synchronization operation information
structures representing both currently ongoing and the previous synchronization operation. A
synchronization operation information structure includes the status of the opreation. All instances of this
data type MUST comply with the SyncStatus XML document schema. See 2.7.2 SyncStatusUpdate state
variable for details.

Note that since the SyncStatus format of an argument of data type A_ARG_TYPE_SyncStatus is an XML
document, it needs to be escaped (using the normal XML rules: [XML] Section 2.4 Character Data and
Markup) before embedding in a SOAP response message.

This value of this state variable is identical to the value of the SyncStatusUpdate state variable except that
the SyncStatusUpdate only contains the status of currently ongoing synchronization operations. The
A_ARG_TYPE_SyncStatus state variable contains the status of both currently ongoing synchronization
operations and the status of the last synchronization operation.

When a synchronization operation is invoked on a relationship level, the status information of the last
synchronization operation of that specific synchronization relationship including the status of the last
synchronization operations of all partnerships within that relationship and the status of the last
synchronization operations of all pairGroups within each partnership MUST be cleared. When a
synchronization operation is invoked on a partnership level then the status information of the last
synchronization operation for that specific partnership including the status of last synchronization
operations of all pairGroups within that partnership MUST be cleared. When a synchronization operation
is invoked on a pairGroup level then the status information of the last synchronization operation for that
specific pairGroup MUST be cleared.

2.7.9. A_ARG_TYPE_ChangeLog
This state variable is introduced to provide type information for the ChangeLog argument in the
GetChangeLog() action. The structure of the ChangeLog argument is a DIDL-Lite XML Document.

A change log is a list of CDS objects represented by DIDL-Lite XML document with extension in this
specification. The change log contains the CDS objects which have changed since the last synchronization
operation. When the change log is returned as a reponse of the GetChangeLog() action, it contains only the
changed CDS objects which are bound to a specific synchronization relationship or partnership or
pairGroup.

 Optional XML declaration <?xml version="1.0" ?>
 <DIDL-Lite> is the root element.
 <container> is the element representing objects of class container and all its derived classes,

which has been changed since the last synchronization operation.
 <item> is the element representing objects of class item and all its derived classes, which has

been changed since the last synchronization operation.
 Elements in the Dublin Core (dc) and UPnP (upnp) namespaces represent object metadata.
 See the DIDL-Lite schema [DIDL-LITE-XSD] for more details on the structure. The available

properties and their names are described in Appendix B, "AV Working Committee Extended
Properties" in the ContentDirectory:2 service [CDS].

ContentSync:1 Service Template Version 1.01 42

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Note that since the value of ChangeLog is XML, it needs to be escaped (using the normal XML rules:
[XML] Section 2.4 Character Data and Markup) before embedding in a SOAP response message.

For objects that are deleted outside of synchronization operation, the change log SHOULD provide deleted
objects information with only item or container, and its avcs:syncInfo properties if and only if a
synchronization policy is replace. If an object which is deleted is part of multiple synchronization pairs,
then deleted information MUST be kept until all synchronization pairs are synchronized. The following
gives an example of deleted objects information in a change log.

Example: (The namesapce declaration is omitted)

<item id="A3" parentID="A2">
 <avcs:syncInfo updateID="1">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="a8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>B3</avcs:remoteObjID>
 <avcs:status>DELETED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
</item>

2.7.10. A_ARG_TYPE_Index
This state variable is introduced to provide type information for an argument in various actions. Arguments
specify an offset into an arbitrary list of objects (change log). A value of 0 represents the first CDS object
in the change log.

2.7.11. A_ARG_TYPE_Count
This state variable is introduced to provide type information for an argument in various actions. Arguments
specify an ordinal number of arbitrary objects.

2.7.12. A_ARG_TYPE_ResetObjectList
This state variable is introduced to provide type information for an argument that contains a list of
synchronization objects of which the change log will be cleaned.

The structure of the argument of data type A_ARG_TYPE_ResetObjectList is an XML document (See
[CSS-XSD]):

Note that since A_ARG_TYPE_ResetObjectList is an XML document, it needs to be escaped (using the
normal XML rules: [XML] Section 2.4 Character Data and Markup) before embedding in a SOAP
response message.

Example:

<ResetObjectList xmlns="urn:schemas-upnp-org:cs
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <object id="A1" remoteObjID="32" updateID="2"/>

ContentSync:1 Service Template Version 1.01 43

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 <object id="A72" remoteObjID="9547" updateID="4"/>
</ResetObjectList>

2.7.12.1. A_ARG_TYPE_ResetObjectList Data Format
The optional XML header <?xml version=”1.0” ?> is allowed. The (one and only) root element,
<ResetObjectList>, MUST contain zero or more elements, each of which identifies a synchronization
object.

The following example shows a generalized “template” for the format of the
A_ARG_TYPE_ResetObjectList state variable. Additional elements and/or attributes MAY be added to
future versions of this specification. Furthermore, a 3rd-party vendor MAY add vendor-defined elements
and/or attributes. However, by definition, this specification does not define the format and/or values for
these 3rd-party elements. In order to eliminate element/attribute naming conflicts, the name of any vendor-
defined element/attribute MUST follow the rules set forth in Section 1.3 “Vendor-defined Extensions”.
All control points should gracefully ignore any element/attribute that it does not understand.

The following notation includes the forum character style to indicate names that are defined by the
ContentSync Working Committee. Additionally, fields that need to be filled out by individual
implementations are shown in the vendor character style.

<?xml version="1.0"?>
<ResetObjectList
 xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="rn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <objectID id="object ID"
 remoteObjID="object ID of a partner paired with this object"
 updateID="uniquely assigned ID when the object is changed">
 </objectID>
</ResetObjectList>

xml

OPTIONAL. Case sensitive.

ResetObjectList

REQUIRED. MUST have “urn:schemas-upnp-org:cs” (which is the UPnP ContentSync WC Schema) as the value for
the xmlns attribute that declares the default namespace; Contains all elements and attributes defined by the CSS
schema as follows:

objectID

OPTIONAL. xsd:string, contains object@id property of the CDS which identifies the object of which
changed log will be cleaned.

@id

REQUIRED. xsd:string, contains the ID of the object of which change log to be reset.

ContentSync:1 Service Template Version 1.01 44

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

@remoteObjID

REQUIRED. xsd:string, contains the object ID in a partner, which is paired with the local
object.

@updateID

REQUIRED. xsd:unsignedInt, contains the value of avcs:syncInfo@updatedID which was
retrieved by the GetChangelog() action before.

2.7.13. Eventing and Moderation

Table 2-3: Event Moderation

Variable Name Evented Moderated
Event

Max Event
Rate

Logical
Combination

Min Delta
per Event

SyncChange YES YES 0.2 sec

SyncStatusUpdate YES YES 0.2 sec

The SyncStatusUpdate state variable is evented and moderated. When multiple updates occur between
moderation periods, the SyncStatusUpdate state variable accumulates all updates within that period and
sends an event message at the end of the moderation period that contains all of the accumulated events.
The SyncStatusUpdate state variable MUST only be cleared just before adding the first update event that
occurs after the last event message was sent.

2.8. Actions
Immediately following this table is detailed information about these actions, including short descriptions of
the actions, the effects of the actions on state variables, and error codes defined by the actions.

Table 2-4: Actions

Name Req. or Opt. 1

AddSyncData() R

ModifySyncData() R

DeleteSyncData() R

GetSyncData() R

ExchangeSyncData() R

AddSyncPair() R

ModifySyncPair() R

DeleteSyncPair() R

StartSync() O

AbortSync() O

ContentSync:1 Service Template Version 1.01 45

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Name Req. or Opt. 1

GetChangeLog() R

ResetChangeLog() R

ResetStatus() R

GetSyncStatus() O

Non-standard actions implemented by an UPnP vendor go here. X
1 R = Required, O = Optional, X = Non-standard.

2.8.1. AddSyncData()
This action creates either a new synchronization relationship template, or a new partnership template within
an existing relationship or a new pairGroup template within an existing partnership.

When creating a new synchronization relationship by invoking the AddSyncData() action, the SyncData
input argument MUST contain a minimally complete synchronization relationship data structure. The
control point can add additional pairGroups for the partnership by invoking the AddSyncData() action
where the SyncData input argument contain the pairGroup data structure. See Section "2.7.4
A_ARG_TYPE_SyncData state variable" for details.

The ActionCaller argument identifies the deviceUDN of the caller. See Section "2.7.3
A_ARG_TYPE_ActionCaller state variable" for details.

If the ActionCaller argument specifies a deviceUDN then this action is invoked by a partner device and the
caller does not need to disseminate synchronization data structure (SyncData) to the partner device.
However, if the ActionCaller argument is null, the device MUST disseminate the synchronization data
structure (SyncData) to the partner device, by invoking the AddSyncData() action on the partner .

When creating a new synchronization relationship, the partner device involved in the relationship MUST
be in the network. See "Section 2.3.1 Synchronization Data Structure Addition" for detailed rules.

When a device receives the AddSyncData() action from a stand-alone control point to create a new
synchronization relationship, the device generates three IDs to identify the synchronization relationship,
the partnership and the pairGroup for the minimally complete synchronization data structure. The
generated IDs conform to the requirement of A_ARG_TYPE_SyncID state variable.

When a stand-alone control point is adding a synchronization relationship, the value of the SyncID input
argument MUST be set to the empty string. While adding a partnership, the SyncID argument will contain
the SyncID of an existing synchronization relationship where the partnership information will be added.
Likewise, while adding a pairGroup, the SyncID argument will contain the SyncID of an existing
partnership where the pairGroup information will be added.

The SyncDataResult output argument returns the synchronization relationship data structure containing the
newly added data specified by the SyncData argument. In the case of adding a pairGroup to an existing
synchronization relationship, the SyncDataResult argument will return the whole synchronization
relationship data structure which contains that pairGroup.

2.8.1.1. Arguments

Table 2-5: Arguments for AddSyncData()

ContentSync:1 Service Template Version 1.01 46

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Argument Direction Related State Variable

ActionCaller IN A_ARG_TYPE_ActionCaller

SyncID IN A_ARG_TYPE_SyncID

SyncData IN A_ARG_TYPE_SyncData

SyncDataResult OUT A_ARG_TYPE_SyncData

2.8.1.2. Dependency on State
None.

2.8.1.3. Effect on State
None.

2.8.1.4. Errors

Table 2-6: Error Codes for AddSyncData()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 No such sync data The AddSyncData() request failed because the specified SyncID
argument is invalid.

702 Invalid XML The AddSyncData() request failed because the specified SyncData
argument

703 Invalid action
caller

The AddSyncData() request failed because the action caller is a
part of the sync data.

704 Partner Timeout The AddSyncData() request failed because the sync data structure
could not be exchanged due to time out of the partner device.

705 Partner not online The AddSyncData() request failed because partner device is not in
the network.

2.8.2. ModifySyncData()
This action modifies either a synchronization relationship, or a partnership within an existing relationship
or a pairGroup within an existing partnership.

To modify synchronization relationship level information, all partner devices involved in the relationship
MUST be in the network. See "Section 2.3.2 Synchronization Data Structure Modification" for
detailed rules.

To modify a synchronization data structure, SyncID argument that identifies which synchronization data
structure is being modified MUST be specified.

To maintain identical synchronization relationship, partnership and pairGroup information on all partner
devices, the device that receives this action MUST invoke the ModifySyncData() action on the partner

ContentSync:1 Service Template Version 1.01 47

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

device by including identical synchronization relationship, partnership or pairGroup data structure in the
SyncData action argument.

The ActionCaller argument identifies the deviceUDN of the caller. See Section "2.7.3
A_ARG_TYPE_ActionCaller state variable" for details.

If the ActionCaller argument specifies a deviceUDN then this action is invoked by a partner device and the
caller does not need to disseminate synchronization data structure (SyncData) to the partner device.
However, if the ActionCaller argument is empty string, the device MUST disseminate the synchronization
data structure (SyncData) to the partner device, by invoking the ModifySyncData() action on the partner .

To prevent updating synchronization data structure by stale data, the SyncData input argument MUST
contain the @updateID attribute of a partnership or pairGroup when the partnership or pairGroup level is
modified.

If the modification would result in a synchronization relationship that is no longer valid, the
ModifySyncData() action MUST fail without any change and return an appropriate error code.

2.8.2.1. Arguments

Table 2-7: Arguments for ModifySyncData()

Argument Direction Related State Variable

ActionCaller IN A_ARG_TYPE_ActionCaller

SyncID IN A_ARG_TYPE_SyncID

SyncData IN A_ARG_TYPE_SyncData

2.8.2.2. Dependency on State
None.

2.8.2.3. Effect on State
None.

2.8.2.4. Errors

Table 2-8: Error Codes for ModifySyncData()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 No such sync data The ModifySyncData() request failed because the specified SyncID
argument is invalid.

702 Invalid XML The ModifySyncData() request failed because the specified
SyncData argument

703 Invalid action
caller

The ModifySyncData() request failed because the action caller is a
part of the sync data.

ContentSync:1 Service Template Version 1.01 48

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

errorCode errorDescription Description

704 Partner Timeout The ModifySyncData() request failed because the sync data
structure could not be exchanged due to time out of the partner
device.

705 Partner not online The ModifySyncData() request failed because partner device is not
in the network.

706 Update in-progress The ModifySyncData() request failed because another action
request is still being processed.

707 Stale data The ModifySyncData() request failed because the sync data is
stale.

2.8.3. DeleteSyncData()
This action deletes either a synchronization relationship, or a partnership within an existing
synchronization relationship or a pairGroup within an existing partnership. The SyncID argument of the
action DeleteSyncData() identifies the synchronization relationship or the partnership or the pairGroup to
be deleted.

The ActionCaller argument identifies the deviceUDN of the caller. See Section "2.7.3
A_ARG_TYPE_ActionCaller state variable" for details.

If the ActionCaller argument specifies a deviceUDN then this action is invoked by a partner device and the
caller does not need to inform the partner device of the deletion. However, if the ActionCaller argument is
null, the device MUST inform the partner device of the deletion, by invoking the DeleteSyncData() action
on the partner.

A deletion of a partnership or a pairGroup is allowed even when one of the partner devices is not in the
network. In this case, the other partner device gets updated synchronization data structure by invoking the
ExchangeSyncData() action before performing any synchronization operation when the device rejoins the
network. See "Section 2.3.3 Synchronization Data Structure Deletion" for detailed rules.

When the last pairGroup within an existing partnership is deleted, the partnership MUST be deleted as well
because the synchronization data structure does not allow a partnership without at least one pairGroup.

Likewise, when the last partnership within an existing relationship is deleted, the relationship MUST be
deleted, as well.

2.8.3.1. Arguments

Table 2-9: Arguments for DeleteSyncData()

Argument Direction Related State Variable

ActionCaller IN A_ARG_TYPE_ActionCaller

SyncID IN A_ARG_TYPE_SyncID

2.8.3.2. Dependency on State
None.

ContentSync:1 Service Template Version 1.01 49

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

2.8.3.3. Effect on State
None.

2.8.3.4. Errors

Table 2-10: Error Codes for DeleteSyncData()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 No such sync data The DeleteSyncData() request failed because the specified SyncID
argument is invalid.

703 Invalid action
caller

The DeleteSyncData() request failed because the action caller is a
part of the sync data.

2.8.4. GetSyncData()
This action returns the synchronization data structure identified by the SyncID input argument. If the value
of the action argument SyncID identifies a synchronization relationship then the SyncData output argument
contains the entire synchronization data structure for that synchronization relationship including all
partnerships within that relationship and all pairGroups for each partnership contained within that
relationship. If the value of the action argument SyncID identifies a partnership then the SyncData output
argument contains the synchronization data structure for that partnership including all pairGroups
contained within that partnership. If the value of the action argument SyncID identifies a pairGroup then
the SyncData output argument contains the synchronization data structure for the identified pairGroup. If
the value of the action argument SyncID is the empty string then the SyncData output argument contains
the synchronization data structure for all synchronization relationships.

2.8.4.1. Arguments

Table 2-11: Arguments for GetSyncData()

Argument Direction Related State Variable

SyncID IN A_ARG_TYPE_SyncID

SyncData OUT A_ARG_TYPE_SyncData

2.8.4.2. Dependency on State
None.

2.8.4.3. Effect on State
None.

ContentSync:1 Service Template Version 1.01 50

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

2.8.4.4. Errors

Table 2-12: Error Codes for GetSyncData()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 No such sync data The GetSyncData() request failed because the specified SyncID
argument is invalid.

2.8.5. ExchangeSyncData()
This action exchanges a synchronization data structure between two partner devices. When the partner
device joins the network, the device MUST evaluate whether or not the synchronization data structure is
stale by exchanging its own synchronization data structure with other partner devices that are also in the
network.

The LocalSyncData input argument contains the synchronization data structure for the local device. The
partner device’s synchronization data structure is returned in the RemoteSyncData output argument as
response to the ExchangeSyncData() action.

The RemoteSyncData output argument MUST contain the synchronization data structure that is updated
with the LocalSyncData input argument. It means that the partner device MUST do the update operation
before responding to the the ExchangeSyncData() action.

2.8.5.1. Arguments

Table 2-13: Arguments for ExchangeSyncData()

Argument Direction Related State Variable

LocalSyncData IN A_ARG_TYPE_SyncData

RemoteSyncData OUT A_ARG_TYPE_SyncData

2.8.5.2. Dependency on State
None.

2.8.5.3. Effect on State
None.

2.8.5.4. Errors

Table 2-14: Error Codes for ExchangeSyncData()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

ContentSync:1 Service Template Version 1.01 51

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

errorCode errorDescription Description

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.8.6. AddSyncPair()
This action adds synchronization pair information into a CDS object. See Section "2.2.1 Synchronization
Object and Pair" definition for details.

The ActionCaller input argument identifies the deviceUDN of the caller. See Section "2.7.3
A_ARG_TYPE_ActionCaller state variable" for details. If the ActionCaller argument specifies a
deviceUDN then this action is invoked by a partner device and the caller does not need to disseminate pair
information to the partner device. However, if the ActionCaller argument is null then the device that
receives this action MUST invoke the AddSyncPair() action on the partner device to maintain identical pair
information on the partner.

The ObjectID input argument of the action identifies the object to which the pairGroup information is
being added.

The SyncPair input argument includes an XML fragment containing the pair information. See "Appendix
A.3 Content Synchronization-related Properties" for details.

There are three possible scenarios that may occur while invoking this action while adding pairGroup
information for an object:

 Both objects that are part of the pair already exist (Scenario 1):

The object@id value of the remote object MUST be included in the avcs:pair::remoteObjID
element.

 Object on only one of the partner exists (Scenario 2 and Scenario 3):

 The partner device does not have a corresponding partner object for the pair. The object will
be created on the partner device during the first synchronization operation. The rules to
create an object on the partner device are as follows:

 If the parent container object under which the new object item will be created exists in
the partner device, the avcs:pair::remoteParentObjID element MUST include the
object@id value of the parent container object.

 If the parent container object does not exist in the partner and the container object
under which the new object item will be located is to be created from the local
container object, the avcs:pair::virtualRemoteParentObjID element MUST include the
object@id value of the local container (i.e. this container object will be the parent
object in the partner device.) This parent container object MUST have an pair in the
same partnership as well. During the synchronization operation, if a local device
determines that no corresponding object exist in the local device for the pair, the device
MUST create a new object in the local device and MUST update the
avcs:pair::RemoteObjID by assigning the value of the object ID of the newly created
object. The device then MUST delete the avcs:pair::remoteParentObjID or the
avcs:pair::virtualRemoteParentObjID.

A result of the AddSyncPair() action is that the avcs:pair property is added into avcs:syncInfo property of
the CDS object. If this is the first synchronization pair for this object the avcs:syncInfo property MUST be
created first and then the avcs:pair property is added into it.

ContentSync:1 Service Template Version 1.01 52

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

An object can be part of multiple pairGroups within a single synchronization relationship. But, the
following rules apply in such cases:

 If the synchronization policy is ‘replace’, the object that is a source is allowed to have multiple
pairs.

 If the synchronization policy is ‘blend’, the object with precedence is allowed to have multiple
pairs.

 If the synchronization policy is ‘merge’, only single pairGroup is allowed.

However, the rules above are not applied between multiple synchronization relationships.

The avcs:pair::policy property overrides any policy that are specified in the upper level hierarchy of the
synchronization relationship structure.

2.8.6.1. Arguments

Table 2-15: Arguments for AddSyncPair()

Argument Direction Related State Variable

ActionCaller IN A_ARG_TYPE_ActionCaller

ObjectID IN A_ARG_TYPE_ObjectID

SyncPair IN A_ARG_TYPE_SyncPair

2.8.6.2. Dependency on State
None.

2.8.6.3. Effect on State
None.

2.8.6.4. Errors

Table 2-16: Error Codes for AddSyncPair()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

703 Invalid action
caller

The AddSyncPair() request failed because the action caller is a
part of the sync data.

704 Partner Timeout The AddSyncPair() request failed because the sync data structure
could not be add due to time out of the partner device.

705 Partner not online The AddSyncPair() request failed because partner device is not in
the network.

708 Invalid object The AddSyncPair() request failed because the specified ObjectID
argument is invalid.

ContentSync:1 Service Template Version 1.01 53

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

errorCode errorDescription Description

709 Invalid pair The AddSyncPair() request failed because the specified SyncPair
argument is invalid.

2.8.7. ModifySyncPair()
The ModifySyncPair() action modifies the synchronization pair property for a CDS object.

This modification includes only the policy information. All other modifications are not allowed.

The ActionCaller argument identifies the deviceUDN of the caller. See Section "2.7.3
A_ARG_TYPE_ActionCaller state variable" for details. If the ActionCaller argument specifies a
deviceUDN then this action is invoked by a partner device and the caller does not need to disseminate
pairGroup information to the partner device. However, if the ActionCaller argument is null then the action
is called by a stand-alone control point and to maintain identical pair information on the partner device, the
device MUST disseminate the pair information included in the SyncPair to the partner device, by invoking
the ModifySyncPair() action on the partner.

The ObjectID argument identifies the object whose pair information is to be modified. The SyncPair input
argument includes an XML fragment containing the pair information to be added.

The SyncPair input argument includes an XML fragment containing the pair information. In the SyncPair
argument, avcs:pair@syncRelationshipID, avcs:pair@partnershipID and avcs:pair@pairGroupID MUST
be specified and valid. A SyncPair also includes either a avcs:pair::remoteObject or a
avcs:pair::remoteParentObjID or a avcs::virtualRemoteParentObjID MUST be specified. See "Appendix
A.3 Content Synchronization-related Properties" for details.

2.8.7.1. Arguments

Table 2-17: Arguments for ModifySyncPair()

Argument Direction Related State Variable

ActionCaller IN A_ARG_TYPE_ActionCaller

ObjectID IN A_ARG_TYPE_ObjectID

SyncPair IN A_ARG_TYPE_SyncPair

2.8.7.2. Dependency on State
None.

2.8.7.3. Effect on State
None.

2.8.7.4. Errors

Table 2-18: Error Codes for ModifySyncPair()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

ContentSync:1 Service Template Version 1.01 54

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

errorCode errorDescription Description

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

703 Invalid action
caller

The ModifySyncPair() request failed because the action caller is a
part of the sync data.

704 Partner Timeout The ModifySyncPair() request failed because the sync data
structure could not be modified due to time out of the partner
device.

705 Partner not online The ModifySyncPair() request failed because partner device is not
in the network.

708 Invalid object The ModifySyncPair() request failed because the specified
ObjectID argument is invalid.

709 Invalid pair The ModifySyncPair() request failed because the specified
SyncPair argument is invalid.

2.8.8. DeleteSyncPair()
The DeleteSyncPair() action sets the value of the avcs:syncInfo::pair::status property of a synchronizing
object to “EXCLUDED”.

The ActionCaller argument identifies the deviceUDN of the caller. See Section "2.7.3
A_ARG_TYPE_ActionCaller state variable" for details. If the ActionCaller argument specifies a
deviceUDN then this action is invoked by a partner device and the caller does not need to disseminate pair
information to the partner device. However, if the ActionCaller argument is null then the action is called by
a stand-alone control point and to maintain identical pair information on the partner device, the device
MUST disseminate the pair information included in the SyncPair to the partner device, by invoking the
DeleteSyncPair() action on the partner.

The ObjectID argument identifies the CDS object in which avcs:syncInfo::pair::status property is to be set.

The SyncID input argument identifies the target of the deletion. If the SyncID identifies a synchronization
relationship then all pairs that are associated with the relationship MUST be deleted. . If the SyncID
identifies a synchronization partnership, then all pairs that are associated with the partnership MUST be
deleted. . If the SyncID identifies a synchronization pairGroup, then all pairs associated with the pairGroup
MUSt be deleted.

Once the status property is set to “EXCLUDED”, the avcs:pair property of the object is deleted during the
next synchronization operation and thereby the object is permanently excluded from the synchronization
relationship.

2.8.8.1. Arguments

Table 2-19: Arguments for DeleteSyncPair()

Argument Direction Related State Variable

ActionCaller IN A_ARG_TYPE_ActionCaller

ObjectID IN A_ARG_TYPE_ObjectID

SyncID IN A_ARG_TYPE_SyncID

ContentSync:1 Service Template Version 1.01 55

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

2.8.8.2. Dependency on State
None.

2.8.8.3. Effect on State
None.

2.8.8.4. Errors

Table 2-20: Error Codes for DeleteSyncPair()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 No such sync data The DeleteSyncPair() request failed because the specified SyncID
argument is invalid.

703 Invalid action
caller

The DeleteSyncPair() request failed because the action caller is a
part of the sync data.

704 Partner Timeout The DeleteSyncPair() request failed because the sync data
structure could not be modified due to time out of the partner
device.

705 Partner not online The DeleteSyncPair() request failed because partner device is not
in the network.

708 No such object The DeleteSyncPair() request failed because the specified
ObjectID argument is invalid.

2.8.9. StartSync()
The StartSync() action triggers a synchronization operation which is performed asynchronously in other
words, the action MAY return to the caller before the synchronization operation completes (or even before
the synchronization starts). The status of the synchronization operation can be monitored through the
eventing of the SyncStatusUpdate state variable or via the GetSyncStatus() action. The SyncStatusUpdate
state variable contains incremental synchronization status information which is evented and the
GetSyncStatus() action returns the value of the SyncStatus state variable which contains the accumulation
of all synchronization status information from when the synchronization operation was started.

When the StartSync() action is invoked, the device prepares itself for the synchronization operation e.g.,
locking internal data structure and returns to the caller. After returning to the caller, the device
asynchronously performs the synchronization operation. The caller of the action may leave the network
anytime without effecting the synchronization operation.

The ActionCaller argument identifies the deviceUDN of the caller. See Section "2.7.3
A_ARG_TYPE_ActionCaller state variable" for details. The ActionCaller argument also determines the
behavior of the StartSync() action. If the ActionCaller argument is the empty string then the device MUST
invoke the StartSync() action on the partner(s) to trigger synchronization operations on the partner(s). The
list of partners can be determined from the synchronization relationship that contains the specified SyncID.
However, If the value of ActionCaller argument is set to a deviceUDN, then the device MUST NOT invoke
the StartSync() action on the partner(s).

ContentSync:1 Service Template Version 1.01 56

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

The SyncID action argument identifies what is to be synchronized. If the SyncID argument identifies a
pairGroup then only that specific pairGroup MUST be synchronized. If the SyncID argument identifies a
partnership then all pairGroups within that specific partnership MUST be synchronized. If the SyncID
argument identifies a synchronization relationship then all pairGroups within each partnership contained
within that specific relationship MUST be synchronized.

2.8.9.1. Arguments

Table 2-21: Arguments for StartSync()

Argument Direction Related State Variable

ActionCaller IN A_ARG_TYPE_ActionCaller

SyncID IN A_ARG_TYPE_SyncID

2.8.9.2. Dependency on State
None.

2.8.9.3. Effect on State
None.

2.8.9.4. Errors

Table 2-22: Error Codes for StartSync()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 No such sync data The StartSync() request failed because the specified SyncID
argument is invalid.

703 Invalid action
caller

The StartSync() request failed because the action caller is a part of
the sync data.

704 Partner Timeout The StartSync() request failed because the sync operation could
not progress due to time out of the partner device.

705 Partner not online The StartSync() request failed because partner device is not in the
network.

710 Inactive state The StartSync() request failed because the specified SyncID
argument is not active.

711 Sync operation in-
progress

The StartSync() request failed because the sync operation of the
specified sync data is in-progress.

712 Invalid Sync
operation
invocation

The StartSync() request failed because the relationship contain a
non-CDS partner.

ContentSync:1 Service Template Version 1.01 57

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

2.8.10. AbortSync()
This action cancels an active synchronization operation which is being performed asynchronously.

The ActionCaller argument identifies the deviceUDN of the caller. See Section "2.7.3
A_ARG_TYPE_ActionCaller state variable" for details. The ActionCaller argument also determines the
behavior of the AbortSync() action. If the ActionCaller argument is the empty string then the device MUST
invoke the AbortSync() action on the partner(s) to abort synchronization operations on the partner(s). The
list of partners can be determined from the synchronization relationship that contains the specified SyncID.
However, If the value of ActionCaller argument is set to a deviceUDN, then the device MUST NOT invoke
the AbortSync() action on the partner(s).

The SyncID action argument identifies which on-going synchronization operation is to be aborted. The
SyncID argument is the same as was used to start the synchronization operation via the StartSync() action.

When a device aborts a synchronization operation, the CDS MUST be left in a fully consistent state. When
aborting an implementation MUST NOT roll back any changes that already have been exposed on the
network. Consequently, the resulting Content Directory database will reflect either the state prior to the
synchronization or partial synchronization.

2.8.10.1. Arguments

Table 2-23: Arguments for AbortSync()

Argument Direction Related State Variable

ActionCaller IN A_ARG_TYPE_ActionCaller

SyncID IN A_ARG_TYPE_SyncID

2.8.10.2. Dependency on State
None.

2.8.10.3. Effect on State
None.

2.8.10.4. Errors

Table 2-24: Error Codes for AbortSync()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 No such sync data The AbortSync() request failed because the specified SyncID
argument is invalid.

703 Invalid action
caller

The AbortSync() request failed because the action caller is a part
of the sync data.

704 Partner Timeout The AbortSync() request failed because the sync operation could
not progress due to time out of the partner device.

ContentSync:1 Service Template Version 1.01 58

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

errorCode errorDescription Description

705 Partner not online The AbortSync() request failed because partner device is not in the
network.

2.8.11. GetChangeLog()

This action allows a caller to get all the objects that have changed since the last synchronization operation.
The SyncID identifies a synchronization relationship or a partnership or a pairGroup for which changed
objects to be retrieved.

StartingIndex is zero-based offset to enumerate changed objects associated with SyncID.

RequestedCount is requested number of entries under the change log associated with SyncID.
RequestedCount = 0 indicates request all entries.

A CDS MUST keep track of all objects since the last synchronization operation to provide response to the
GetChangeLog() action. The deleted objects information can be deleted when the synchronization
relationship, partnership or pairGroup that the objects belong to are deleted.

The Result output argument includes all the objects that have changed since the last synchronization
operation. The format of the Result argument is represented by the A_ARG_TYPE_ChangeLog.

NumberReturned is number of objects returned in the Result argument.

TotalMatches MUST be set to the total number of objects in the changed log specified for the
GetChangeLog() action (independent of the starting index specified by the StartingIndex argument). If the
ContentSync service implementation cannot timely compute the value of TotalMatches, but there are
matching objects that have been found by the ContentSync service implementation, then the
GetChangeLog() action MUST successfully return with the TotalMatches argument set to zero and the
NumberReturned argument indicating the number of returned objects. If the ContentSync service
implementation cannot timely compute the value of TotalMatches, and there are no matching objects
found, then the GetChangeLog() action MUST return error code 712.

2.8.11.1. Arguments

Table 2-25: Arguments for GetChangeLog()

Argument Direction Related State Variable

SyncID IN A_ARG_TYPE_SyncID

StartingIndex IN A_ARG_TYPE_Index

RequestedCount IN A_ARG_TYPE_Count

Result OUT A_ARG_TYPE_ChangeLog

NumberReturned OUT A_ARG_TYPE_Count

TotalMatches OUT A_ARG_TYPE_Count

2.8.11.2. Dependency on State
None.

ContentSync:1 Service Template Version 1.01 59

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

2.8.11.3. Effect on State
None.

2.8.11.4. Errors

Table 2-26: Error Codes for GetChangeLog()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 No such sync data The GetChangeLog() request failed because the specified SyncID
argument is invalid.

720 Cannot process the
request

The GetChangeLog() request failed because the ContentSync
service is unable to compute, in the time allotted, the total number
of objects that are a match for the synchronization ID and is
additionally unable to return, in the time allotted, any objects that
match the synchronization ID.

2.8.12. ResetChangeLog()
This action allows a caller to clear the existing change log of synchronization objects and start keeping new
logs.

The SyncID identifies a pairGroup for which the change log of all objects included in the identified
synchronization data structure will be cleared.

The ObjectIDs argument identifies individual objects for which the change logs will be cleared and
contains one or more CDS object IDs. In other word, the device MUST clear the change logs of multiple
objects within the action processing period if the ObjectIDs argument has multiple object IDs. When all
synchronization objects that are involved with a pairGroup or a partnership or a relationship are to be
cleared, this input argument should have the value of "*". Otherwise, this argument should have a list of
individual object@id. In order to clear the change log of the objects that are involved in different
pairGroups, the SyncID should be empty string.

By comparing the @updateID in the ObjectIDs input argument and avcs:pair@updateID of the CDS
object, the device can determine whether the CDS object has changed. A caller keeps this @updateID
value until it invokes the ResetChangeLog() action. Whenever the property of a synchronization object is
changed, the CDS MUST increase the @updateID property of the object by 1. The device sets the
avcs:pair:status value as "MODIFIED" if two values (@updateID in the ObjectIDs input argument and
avcs:pair@updateID of the CDS object) are different from each other. Otherwise, the value of
avcs:pair:status property is reset to “SYNC’ED”. This process removes the necessity for the device to lock
object properties while it is synchronizing.

2.8.12.1. Arguments

Table 2-27: Arguments for ResetChangeLog()

Argument Direction Related State Variable

ContentSync:1 Service Template Version 1.01 60

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Argument Direction Related State Variable

SyncID IN A_ARG_TYPE_SyncID

ObjectIDs IN A_ARG_TYPE_ResetObjectList

2.8.12.2. Dependency on State
None.

2.8.12.3. Effect on State
None.

2.8.12.4. Errors

Table 2-28: Error Codes for ResetChangeLog()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 No such sync data The ResetChangeLog() request failed because the specified
SyncIDs argument is invalid.

2.8.13. ResetStatus()

This action allows a caller to reset status of synchronization pairs that are bound to a synchronization
relationship or partnership or pairGroup regardless of current status of the pair. In other words, the action
changes the value of status of a synchronization pair to "NEW" similar to as a newly created
synchronization pair.

This action is only effective when the policy defined for a synchronization relationship or partnership or
pairGroup is a tracking policy.

The SyncID identifies a synchronization relationship, or a partnership or a pairGroup for which the status
of change log of all objects included in the identified synchronization data structure will be reseted.

2.8.13.1. Arguments

Table 2-29: Arguments for ResetStatus()

Argument Direction Related State Variable

SyncID IN A_ARG_TYPE_SyncID

2.8.13.2. Dependency on State
None.

ContentSync:1 Service Template Version 1.01 61

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

2.8.13.3. Effect on State
None.

2.8.13.4. Errors

Table 2-30: Error Codes for ResetStatus()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 Invalid SyncID The ResetStatus() request failed because the specified SyncID
argument is invalid.

2.8.14. GetSyncStatus()
This action returns the status of the current synchronization operation identified by the SyncID. If the
synchronization operation is completed, then invocation of this action returns the status of the last
synchronization operation. Therefore, the device MUST keep status of the last synchronization operation
until the next synchronization operation starts.

If the action argument SyncID identifies a synchronization relationship then the SyncStatus output
argument contains the current value of the A_ARG_TYPE_SyncStatus state variable. If the action argument
SyncID identifies a partnership then the SyncStatus output argument contains the status information of that
specific partnership contained in the A_ARG_TYPE_SyncStatus state variable. If the action argument
SyncID identifies a pairGroup then the SyncStatus output argument contains the status information of that
specific pairGroup contained in the A_ARG_TYPE_SyncStatus state variable.

2.8.14.1. Arguments

Table 2-31: Arguments for GetSyncStatus()

Argument Direction Related State Variable

SyncID IN A_ARG_TYPE_SyncID

SyncStatus OUT A_ARG_TYPE_SyncStatus

2.8.14.2. Dependency on State
None.

2.8.14.3. Effect on State
None.

2.8.14.4. Errors

Table 2-32: Error Codes for GetSyncStatus()

ContentSync:1 Service Template Version 1.01 62

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 No such sync data The StartSync() request failed because the specified SyncID
argument is invalid.

2.8.15. Non-Standard Actions Implemented by a UPnP Vendor
To facilitate certification, non-standard actions implemented by UPnP vendors should be included in this
service template. The UPnP Device Architecture lists naming requirements for non-standard actions (see
the section on Description).

2.8.16. Common Error Codes
The following table lists error codes common to actions for this service type. If a given action results in
multiple errors, the most specific error MUST be returned.

Table 2-33: Common Error Codes

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 No such sync data The action request failed because the specified sync data is
invalid.

702 Invalid XML The action failed because given XML fragment violates the XML
schema

703 Invalid action
caller

The action failed because the action caller is a part of the sync
data.

704 Partner Timeout The action failed because the sync data structure could not be
modified due to time out of the partner device.

705 Partner not online The action failed because partner device is not in the network.

706 Update in-progress The action failed because another action request is still being
processed.

707 Stale data The action failed because the sync data is stale.

708 No such object The action failed because the specified object is invalid.

709 Invalid pair The action failed because the specified sync pair is invalid.

710 Inactive state The action failed because given sync data is inactive.

711 Sync operation in-
progress

The action failed because the sync operation of the specified sync
data is in-progress.

ContentSync:1 Service Template Version 1.01 63

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

errorCode errorDescription Description

712 Cannot process the
request

The action failed because the ContentSync service was unable to
complete the necessary computations in the time allotted.

2.9. Theory of Operation

2.9.1. Introduction
This section shows several scenarios to illustrate the various actions supported by the ContentSync service.
These include synchronization relationship creation and deletion, transferring synchronization data
structures in preparation for a synchronization operation, performing a synchronization operation and
terminating a synchronization operation.

2.9.2. CDS Synchronization
In order to synchronize objects between two CDSs, a control point must first establish a synchronization
relationship and then create synchronization pair(s) that determines which CDS object(s) will be
synchronized. After creating the synchronization relationship and its synchronization pair(s), the control
point can execute the synchronization operation. Once the initial synchronization operation is successfully
done (to establish the basis of a common set of objects between the partners), two CDSs maintain same
synchronization pair(s) information for the CDS synchronization object. When an object is changed after
the synchronization, the CDS implementation must recognize which object is changed and then provide
information about that object as a change log when the next synchronization is triggered by the control
point.

The following shows the example sequence of the lifetime of synchronization.

Example Sequence

 Synchronization setup
 Creation of minimally complete synchronization data structure
 Creation of synchronization pair.

 Creation of policy for an synchronization pair (i.e. A3) that overrides partnership
policy

 Trigger first synchronization operation
 Update Objects in partner 1
 Update (delete) Objects in partner 2
 Trigger subsequent synchronization operation
 Update synchronization data structure
 Synchronize synchronization data structure

2.9.2.1. Synchronization Setup
In order to demonstrate how the ContentSync service works, let us consider the following logical structure
of two separate CDSs. The content in Partner 1 includes two music items and one container. The content in
Partner 2 includes only a single music item. The logical directory hierarchies for each CDS are presented
as follows:

ContentSync:1 Service Template Version 1.01 64

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

[Partner 1 CDS hierarchy]

• Name="Content", ID="A0"

 Name="Would - Alice In Chains.wma", ID="A1", Size="90000"

 Name="My Music", ID="A2"

 Name="Chloe Dancer - Mother Love Bone.mp3", ID="A3", Size="200000"

[Partner 2 CDS hierarchy]

• Name="My Multimedia Content", ID="B0"

 Name="Alice In Chains", ID="B1", Size="90000"

 Name="Wonder - Tell Me", ID="B4", Size="500000"

Figure 8 shows a visual representation of two CDS hierarchies above and which object is to be
synchronized (see a solid line between objects) in order to provide better understanding of the example.

Figure 8 Synchronization Relationship between two CDSs

Let us consider that object A1 and B1 are to be synchronized with each other and object A2 is to be
synchronized under object B0 and object A3 is to synchronize under a new container object which will be
created while synchronizing object A2 and object B4 is to be synchronized under object A0. In order to
perform this synchronization operation, a control point first MUST create a new synchronization
relationship and then, create new synchronization pairs for each of the three objects that are to be
synchronized. Metadata and resources for all items in this example are expected to synchronize (i.e., each
item has avcs:pair and res@avcs:syncAllowed properties.). Let us also assume that the example will create
only single partnership and single pairGroup in the synchronization relationship.

The following sub-sections describe how a synchronization relationship between two devices is established
and synchronization objects in these two devices are synchronized with each other. Table 2-34 summarizes
which action will be invoked for each step of sequence in this example.

Table 2-34: Actions for example sequence

ContentSync:1 Service Template Version 1.01 65

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Task Related Action Task Result

Creating a synchronization data
structure

AddSyncData() 1 pairGroup within 1 partnership within 1
synchronization relationship

Creating a synchronization pair AddSyncPair()

4 synchronization pairs as shown below.
Control point invokes invokes
AddSyncPair() on Partner 1 for pairs 1, 2,
and 3. Control point invokes
AddSyncPair() on partner 2 for 4.

 1. A1-B1 pair

 2. A2-new object (B2) (that will be
created under the container object (B0))

 3. A3-new object (B3) (that will be
created under the object B2)

 4. B4-new object (A4) (that will be
created under the container object (A0))

Initiating a synchronization operation StartSync() Patners start the operation

Performing a synchronization
operation

GetChangeLog() Updated CDS

Resetting a change log ResetChangeLog() Reset a change log of an object

2.9.2.2. Creating a Complete Synchronization Data Structure
To create a synchronization relationship, the control point first invokes the AddSyncData() action with a
minimally complete synchronization data structure on one of the synchronization partner devices. It is
immaterial which parter of the relationship that the control point invokes the AddSyncData() action on,
however, for this example it will be assumed to be Partner 1.

Request: (Control point to Partner 1)

AddSyncData("", "", "
<syncRelationship id="" active="1" xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <title>Sync between My MP3P and Home Media Server</title>
 <partnership id="" active="1">
 <partner id="1">
 <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
 <serviceID>service_ID_A</serviceID>
 </partner>
 <partner id="2">
 <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN>
 <serviceID>service_ID_B</serviceID>
 </partner>
 <policy>
 <syncType>merge<syncType>
 <priorityPartnerID>1</priorityPartnerID>
 </policy>

ContentSync:1 Service Template Version 1.01 66

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 <pairGroup id="" active="1"></pairGroup>
 </partnership>
</syncRelationship>
");

Upon receiving this action invocation, Partner 1 will initialize its internal data structures for the
relationship and then Partner 1 invokes the AddSyncData() action on Partner 2 with its deviceUDN as the
ActionCaller argument in order to propagate the synchronization data structure to Partner 2. The
difference between the call from the control point to Partner 1 to initialize the relationship and the call
between Partner 1 and Partner 2 to propagate this information is that the latter invocation of
AddSyncData() includes device UDN as the first argument of the action and the values of synchronization
relationship, partnership and pairGroup ID are not the empty strings. Receiving this call, Partner 2
understands by the initialized values of the synchronization relationship, partnership and pairGroup IDs
and by the presence of a deviceUDN as the ActionCaller argument that this is an initialized synchronization
relationship and it does not need to propagate the information further.

Request: (Partner 1 to Partner 2)

AddSyncData("343bd2a2-189b-40c0-8eb5-ea91ea730402", "", "
<syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" active="1"
 xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <title>Sync between My MP3P and Home Media Server</title>
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1">
 <partner id="1">
 <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
 <serviceID>service_ID_A</serviceID>
 </partner>
 <partner id="2">
 <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN>
 <serviceID>service_ID_B</serviceID>
 </partner>
 <policy>
 <syncType>merge<syncType>
 <priorityPartnerID>1</priorityPartnerID>
 </policy>
 <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active="1"/>
 </partnership>
</syncRelationship>
");

At this point, Partner 2 intializes its internal data structures with the relationship and returns a success or
failure response to Partner 1.

Response: (Partner 2 to Partner 1)

AddSyncData("
<syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" active="1"
 xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <title>Sync between My MP3P and Home Media Server</title>
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1">

ContentSync:1 Service Template Version 1.01 67

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 <partner id="1">
 <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
 <serviceID>service_ID_A</serviceID>
 </partner>
 <partner id="2">
 <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN>
 <serviceID>service_ID_B</serviceID>
 </partner>
 <policy>
 <syncType>merge<syncType>
 <priorityPartnerID>1</priorityPartnerID>
 </policy>
 <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active="1"/>
 </partnership>
</syncRelationship>
");

Only after receiving the response from the call to Partner 2 can Partner 1 responsd to the original
AddSyncData() action.

Response: (Partner 1 to Control Point)

AddSyncData("
<syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" active="1"
 xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <title>Sync between My MP3P and Home Media Server</title>
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1">
 <partner id="1">
 <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
 <serviceID>service_ID_A</serviceID>
 </partner>
 <partner id="2">
 <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN>
 <serviceID>service_ID_B</serviceID>
 </partner>
 <policy>
 <syncType>merge<syncType>
 <priorityPartnerID>1</priorityPartnerID>
 </policy>
 <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active="1"/>
 </partnership>
</syncRelationship>
");

2.9.2.3. Creating a Synchronization Pair
After creating the synchronization relationship, the control point creates the necessary synchronization
object pairs and associates the pairs with the synchronization relationship. In this example, object A1 and
object B1 are to be synchronized with each other and objects A2 and A3 are to be synchronized with the
objects that will be created during the synchronization operation.

ContentSync:1 Service Template Version 1.01 68

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Creating the pair between object A1 and B1

In the next step of the process, the control point establishes the synchronization pairs that will be used as
part of the synchronization relationship. In order to do this, the control point invokes the AddSyncPair()
action,on one of the Partners. It must specify the local ID of the object on the partner that it is invoking as
a parameter. The object ID on the other partner is carried as an element of the sync pair data structure.
Note that the pair between A1 and B1 is Scenario 1 pairing according to the definition of a synchronization
pair, where both objects currently exist within their respective CDS.. See 2.2.1 Synchronization Object
and Pair for details.

Request: (Control Point to Partner 1)

AddSyncPair("", "A1", "
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>B1</avcs:remoteObjID>
</avcs:pair>
");

Note: a control can know 3 input IDs for the avcs:pair property by invoking the GetSyncData() action of
which purpose is to retrieve a synchronization data structure kept by the device.

Upon receiving the invocation of the AddSyncPair() action, the Partner must initialize its internal data
structures and propagate the call to the other partner in the relationship. In order to create a pair, the
partner 1 device which received the AddSyncPair() action invokes the AddSyncPair() action on the partner
2 based-on the information described above. The AddSyncPair() action call to propagate the call from the
control point includes device UDN as the first argument of the action. See section 2.7.1 for details on
AddSyncPair() action.

Request: (Partner 1 to Partner 2)

AddSyncPair("343bd2a2-189b-40c0-8eb5-ea91ea730402", "B1", "
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>A1</avcs:remoteObjID>
</avcs:pair>
");

Response: (Partner 2 to Partner 1)

AddSyncPair("")

ContentSync:1 Service Template Version 1.01 69

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

After receiving the second AddSyncPair() action response, the partner 1 responds to the first
AddSyncPair() action.

Response: (Parnter 1 to Control Point)

AddSyncPair();

Creating the pair for object A2

In this case, only one AddSyncPair() action must be invoked on the partner 1 because there is no
corresponding remote object on partner 2. In other words, the partner 1 does not invoke the second
AddSyncPair() action to propagate the pair information. Instead of the remoteObjID property, object A2
includes the remoteParentObjID property.

Request: (Control Point to Partner 1)

AddSyncPair("", "A2", "
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <remoteParentObjID>B0</avcs:remoteParentObjID>
</avcs:pair>
");

Response: (Parnter 1 to Control Point)

AddSyncPair();

Creating the pair for object A3 with the policy overriding

In this case, the AddSyncPair() action is invoked on the partner 1 only because the partner 2 does not
contain the object to be synchronized with. In other words, the partner 1 does not invoke the second
AddSyncPair() action to propagate pair information. Instead of the remoteObjID property, object A2
includes the virtualRemoteParentObjID property.

Request: (Control Point to Parnter 1)

AddSyncPair("", "A3", "
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:virtualRemoteParentObjID>A2</avcs:virtualRemoteParentObjID>
 <avcs:policy>

ContentSync:1 Service Template Version 1.01 70

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 <avcs:syncType>replace</avcs:syncType>
 <avcs:priorityPartnerID>1</avcs:priorityPartnerID>
 </avcs:policy>
</avcs:pair>
");

Response: (Partner 1 to Control Point)

AddSyncPair();

Creating the pair for object B4

Similar to creating the pair for object A2, only one AddSyncPair() action must be invoked on the partner 2
because there is no corresponding remote object on partner 1.

Request: (Control Point to Partner 2)

AddSyncPair("", "B4", "
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteParentObjID>A0</avcs:remoteParentObjID>
</avcs:pair>
");

Response: (Parnter 2 to Control Point)

AddSyncPair();

By one AddSyncData() action and four AddSyncPair() action calls, the synchronization data structure for
this example is established. After creating the synchronization data structure, a control point can trigger a
synchronization operation with relationship ID or partnership ID or pairing ID at any time.

2.9.2.4. Synchronizing CDS
In order to synchronize two CDSs, a control point invokes the StartSync() action on either of the two
partners as shown below. In this example, a synchronization relationship ID is used to trigger the CDS to
start the synchronization operation.

Request: (Control Point to Partner 1)

StartSync("", "d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d");

The device that receives this action invokes StartSync() action on Partner 2 subsequently.

ContentSync:1 Service Template Version 1.01 71

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Request: (Partner 1 to Partner 2)

StartSync("343bd2a2-189b-40c0-8eb5-ea91ea730402", "d8c9fa13-d79b-4a0c-
999b-6ae2ff91a46d");

Response: (Parnter 2 to Partner 1)

StartSync();

After receiving the second action response, the partner 1 responds to the first StartSync() action.

Response: (Partner 1 to Control Point)

StartSync();

Getting Change Log:

After the partner devices respond to the StartSync() action successfully, the partner devices perform the
synchronization operation simultaneously. To get synchronization objects as a change log, the embedded
control points in the partners invoke GetChangeLog() action which is shown below.

Since during the first synchronization operation, some of the objects need to be created under a container
object which itself needs to be created as well, the order how objects are to be synchronized should be
handled very carefully.

The partner 1 gathers the DIDL-Lite XML document as a change log as shown below.

Request: (Partner 1 to Partner 2)

GetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", 0, 0);

Response: (Partner 2 to Partner 1)

GetChangeLog("
<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
 urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd">
 <item id="B1" parentID="B0" restricted="1">
 <dc:title>Alice In Chains</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/x-ms-wma:*" size="90000"
 avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.2/getcontent.asp?id=1
 </res>

ContentSync:1 Service Template Version 1.01 72

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>A1</avcs:remoteObjID>
 <avcs:status>NEW</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
 <item id="B4" parentID="B0" restricted="1">
 <dc:title>Wonder - Tell Me</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/mpeg:*" size="500000"
 avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.2/getcontent.asp?id=4
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteParentObjID>A0</avcs:remoteParentObjID>
 <avcs:status>NEW</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
</DIDL-Lite>
", 1, 1);

When partner 1 processes the received change log, it does not update object A1 as the object in the partner
2 does not have any new properties that can be added to the object A1 in the partner 1. In this example,
object A1 in partner 1 has the precedence over object B1 in partner 2 as defined in the synchronization
policy. Therefore, the dc:title property of the partner 1 in this example is not updated by synchronization.
In addition, there are no corresponding objects for object A2 and A3 in the change log because the
corresponding objects will be created in the partner 2 by synchronization.

For object B4 in partner 2, partner 1 creates a new object under the container object A0 that is specified in
the remoteParentObjID element of the avcs:pair in the change log as partner 1 does not have a
corresponding pair object for object B4. While creating the new object, partner 1 accepts all properties and
a resource from object B4. Let us assume that the newly created object has A4 as the value of object@id
property. This object A4 is now associated with object B4, which means that the value of the remoteObjID
element is B4 as shown below:

<item id="A4" parentID="A0" restricted="1">
 <dc:title>Wonder - Tell Me</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/mpeg:*" size="500000"
 avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.1/getcontent.asp?id=4
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair

ContentSync:1 Service Template Version 1.01 73

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>B4</avcs:remoteObjID>
 <avcs:status>SYNC'ED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
</item>

After finishing the update, partner 1 sends an event message to notify the status of the operation. The
following is an example of an event message for object A1 and A4 in the partner 1.

GENA Message: (Partner 1 to Partner 2)

<?xml version="1.0" encoding="utf-8">
<SyncStatusUpdate xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d">
 <status numberOfTotalObjects="2" numberOfCompletedObjects="2"
 numberOfFailedObjects="0">
 COMPLETED_ALL
 </status>
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6">
 <status numberOfTotalObjects="2" numberOfCompletedObjects="2"
 numberOfFailedObjects="0">
 COMPLETED_ALL
 </status>
 <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <status numberOfTotalObjects="2" numberOfCompletedObjects="2"
 numberOfFailedObjects="0">
 COMPLETED_ALL
 </status>
 <logEntry>
 <localObjectID>A1</localObjectID>
 <remoteObjectID>B1</remoteObjectID>
 <statusCode>001</statusCodes>
 <statusDescription>Succeeded completely</statusDescription>
 </logEntry>
 <logEntry>
 <localObjectID>A4</localObjectID>
 <remoteObjectID>B4</remoteObjectID>
 <statusCode>001</statusCodes>
 <statusDescription>Succeeded completely</statusDescription>
 </logEntry>
 </pairGroup>
 </partnership>
 </syncRelationship>
</SyncStatusUpdate>

The GENA event message above is sent for the entire change log entry regardless of synchronization
status. However, the partner device explictly invokes the ResetChangeLog() action to Partner 2 in order to
inform that an individual object in change log is successfully synchronized.

ContentSync:1 Service Template Version 1.01 74

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Request: (Partner 1 to Partner 2)

ResetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", "
<ResetObjectList xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <object id="B1" remoteObjID="A1" updateID="0"/>
 <object id="B4" remoteObjID="A4" updateID="0"/>
</ResetObjectList>
");

Response: (Partner 2 to Partner 1)

ResetChangeLog();

When the partner 2 receives the ResetChangeLog() action, it can now change the value of the avcs:status
property of the object B1 and B4 to "SYNC'ED"

The partner 2 gathers the DIDL-Lite XML document as change log as shown below:

Request: (Partner 2 to Partner 1)

GetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", 0, 0);

Response: (Partner 1 to Partner 2)

GetChangeLog("
<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
 urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd">
 <item id="A1" parentID="0" restricted="1">
 <dc:title>Would - Alice In Chains.wma</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/x-ms-wma:*"
 size="90000"avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.1/getcontent.asp?id=A1
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair

ContentSync:1 Service Template Version 1.01 75

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>B1</avcs:remoteObjID>
 <avcs:status>NEW</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
 <item id="A2" parentID="A0" restricted="1">
 <dc:title>My Music</dc:title>
 <upnp:class>object.container.album</upnp:class>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteParentObjID>B0</avcs:RemoteParentObjID>
 <avcs:status>NEW</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
 <item id="A3" parentID="A2" restricted="1">
 <dc:title>Chloe Dancer - Mother Love Bone.mp3</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/mpeg:*" size="200000"
 avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.1/getcontent.asp?id=A3
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:virtualRemoteParentObjID>A2</avcs:virtualRemoteParentObjID>
 <avcs:policy>
 <avcs:syncType>replace</avcs:syncType>
 <avcs:priorityPartnerID>1</avcs:priorityPartnerID>
 </avcs:policy>
 <avcs:status>NEW</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
</DIDL-Lite>
", 3, 3)

When partner 2 processes the received change log, it updates its object B1 with dc:title and downloads a
resource from partner 1 because the object in partner 1 is new to partner 2 and the object in partner 2 does
not take precedence by the synchronization policy.

For object A2 in partner 1, partner 2 creates a new object under the container object B0 that is specified in
the remoteParentObjID element of the avcs:pair in the change log as partner 2 does not have a
corresponding pair object for object A2. While creating the new object, partner 2 accepts all properties and
a resource from object A2. Let us assume that the newly created object has B2 as the value of @objectID
property. This object B2 is now associated with object A2, which means that the value of the remoteObjID
element is A2 as shown below:

ContentSync:1 Service Template Version 1.01 76

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

<item id="B2" parentID="B0" restricted="1">
 <dc:title>My Music</dc:title>
 <upnp:class>object.container.album</upnp:class>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>A2</avcs:remoteObjID>
 <avcs:status>SYNC'ED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
</item>

For object A3 in partner 1, partner 2 creates a new object under the newly-created container object (i.e. B2)
during processing of object A2 as shown above. Let us assume that newly created object has B3 as the
value of the @objectID property. The virtualRemoteParentObjID> element of the avcs:pair in the change
log is replaced with the remoteObjID element when creating this new object. This object B3 is now
associated with object A3, which means that the value of the remoteObjID element is A3 as shown below.

<item id="B3" parentID="B2" restricted="1">
 <dc:title>Chloe Dancer - Mother Love Bone.mp3</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/mpeg:*"
 size="200000"avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.2/getcontent.asp?id=B3
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>A3</avcs:remoteObjID>
 <avcs:policy>
 <avcs:syncType>replace</avcs:syncType>
 <avcs:priorityPartnerID>1</avcs:priorityPartnerID>
 </avcs:policy>
 <avcs:status>SYNC'ED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
</item>

After finishing updates for each object, partner 2 sends an event message to notify the status of each update
operation. The following is an example of an event message that is sent to partner 1. Here, we assume that
the first 2 events are sent within a single moderation time and the third event message will be sent during
the next moderation time.

The partner 2 sends a GENA message during the first moderation time as shown below:

GENA Message: (Partner 2 to Partner 1)

<?xml version="1.0" encoding="utf-8">

ContentSync:1 Service Template Version 1.01 77

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

<SyncStatusUpdate xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d">
 <status numberOfTotalObjects="3" numberOfCompletedObjects="2"
 numberOfFailedObjects="0">
 IN_PROGRESS
 </status>
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6">
 <status numberOfTotalObjects="3" numberOfCompletedObjects="2"
 numberOfFailedObjects="0">
 IN_PROGRESS
 </status>
 <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <status numberOfTotalObjects="3" numberOfCompletedObjects="2"
 numberOfFailedObjects="0">
 IN_PROGRESS
 </status>
 <logEntry>
 <localObjectID>B1</localObjectID>
 <remoteObjectID>A1</remoteObjectID>
 <statusCode>001</statusCodes>
 <statusDescription>Succeeded completely</statusDescription>
 </logEntry>
 <logEntry>
 <localObjectID>B2</localObjectID>
 <remoteObjectID>A2</remoteObjectID>
 <statusCode>001</statusCodes>
 <statusDescription>Succeeded completely</statusDescription>
 </logEntry>
 </pairGroup>
 </partnership>
 </syncRelationship>
</SyncStatusUpdate>

The partner 2 sends a GENA event message for the second moderation time as shown below:

GENA Message: (Partner 2 to Partner 1)

<?xml version="1.0" encoding="utf-8">
<SyncStatusUpdate xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d">
 <status numberOfTotalObjects="3" numberOfCompletedObjects="3"
 numberOfFailedObjects="0">
 COMPLETED_ALL
 </status>
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6">
 <status numberOfTotalObjects="3" numberOfCompletedObjects="3"
 numberOfFailedObjects="0">
 COMPLETED_ALL
 </status>
 <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <status numberOfTotalObjects="3" numberOfCompletedObjects="3"

ContentSync:1 Service Template Version 1.01 78

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 numberOfFailedObjects="0">
 COMPLETED_ALL
 </status>
 <logEntry>
 <localObjectID>B3</localObjectID>
 <remoteObjectID>A3</remoteObjectID>
 <statusCode>001</statusCodes>
 <statusDescription>Succeeded completely</statusDescription>
 </logEntry>
 </pairGroup>
 </partnership>
 </syncRelationship>
</SyncStatusUpdate>

After updating the CDS of Parter 2, it explictly invokes the ResetChangeLog() action to Partner 1 in order
to inform that individual object in change log is successfully synchronized.

Request: (Partner 1 to Partner 2)

ResetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", "
<ResetObjectList xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <object id="A1" remoteObjID="B1" updateID="0"/>
 <object id="A2" remoteObjID="B2" updateID="0"/>
 <object id="A3" remoteObjID="B3" updateID="0"/>
 </ResetObjectList>
");

Response: (Partner 2 to Partner 1)

ResetChangeLog();

When the partner 1 receives the ResetChangeLog() action, it can now change the value of the avcs:status
property of the object A1, A2 and A3 to "SYNC'ED", repectively. In addition, the
avcs:remoteParentObjID property of the object A2 and the avcs:virtualRemoteParentObjID property of
the object A3 are replaced with the avcs:remoteObjID property since the Partner 2 notifies those objects
are successfully synchronized.

After completing the synchronization operation, two CDSs MUST show the following hierarchies.

CDS hierarchy of the partner 1:

<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00

ContentSync:1 Service Template Version 1.01 79

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
 urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd">
<item id="A1" parentID="A0" restricted="1">
 <dc:title>Would - Alice In Chains.wma</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/x-ms-wma:*" size="90000"
 avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.1/getcontent.asp?id=A1
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>B1</avcs:remoteObjID>
 <avcs:status>SYNC'ED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
 <item id="A2" parentID="A0" restricted="1">
 <dc:title>My Music</dc:title>
 <upnp:class>object.container.album</upnp:class>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>B2</avcs:remoteObjID>
 <avcs:status>SYNC'ED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
 <item id="A3" parentID="A2" restricted="1">
 <dc:title>Chloe Dancer - Mother Love Bone.mp3</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/mpeg:*" size="200000"
 avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.1/getcontent.asp?id=A3
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>B3</avcs:remoteObjID>
 <avcs:policy>
 <avcs:syncType>replace</avcs:syncType>
 <avcs:priorityPartnerID>1</avcs:priorityPartnerID>
 </avcs:policy>
 <avcs:status>SYNC'ED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
 <item id="A4" parentID="A0" restricted="1">
 <dc:title>Wonder - Tell Me</dc:title>

ContentSync:1 Service Template Version 1.01 80

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/mpeg:*" size="500000"
 avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.1/getcontent.asp?id=4
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>B4</avcs:remoteObjID>
 <avcs:status>SYNC'ED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
</DIDL-Lite>

CDS hierarchy of the partner 2:

<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
 urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd">
 <item id="B1" parentID="B0" restricted="1">
 <dc:title>Would - Alice In Chains.wma</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/x-ms-wma:*" size="90000"
 avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.2/getcontent.asp?id=B1
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>A1</avcs:remoteObjID>
 <avcs:status>SYNC'ED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
 <item id="B2" parentID="B0" restricted="1">
 <dc:title>My Music</dc:title>
 <upnp:class>object.container.album</upnp:class>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">

ContentSync:1 Service Template Version 1.01 81

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 <avcs:remoteObjID>A2</avcs:remoteObjID>
 <avcs:status>SYNC'ED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
 <item id="B3" parentID="B2" restricted="1">
 <dc:title>Chloe Dancer - Mother Love Bone.mp3</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/mpeg:*" size="200000"
 avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.2/getcontent.asp?id=B3
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>A3</avcs:remoteObjID>
 <avcs:policy>
 <avcs:syncType>replace</avcs:syncType>
 <avcs:priorityPartnerID>1</avcs:priorityPartnerID>
 </avcs:policy>
 <avcs:status>SYNC'ED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
 <item id="B4" parentID="B0" restricted="1">
 <dc:title>Wonder - Tell Me</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/mpeg:*" size="500000"
 avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.2/getcontent.asp?id=4
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>A4</avcs:remoteObjID>
 <avcs:status>SYNC'ED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
</DIDL-Lite>

2.9.2.5. Next Synchronization after Changing Objects

Objects changed:

If an object is changed since the last synchronization, the DIDL-Lite object keeps track of which property
is changed. In this example, the dc:title property of object A1 in partner 1 is changed and object A3 is
deleted. To find out the changed object, the embedded control point in the partner device uses the
GetChangeLog() action. To trigger synchronization operation, the procedure as described in Section above
needs to be followed.

ContentSync:1 Service Template Version 1.01 82

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Getting Change Log:

The partner 1 gets no changed CDS objects as there is no change in objects on the partner 2 in this
example.

However, when the partner 2 calls the GetChangeLog() action on the partner 1, it will get the following
changed CDS objects..

Request: (Parnter 2 to Partner 1)

GetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", 0, 0);

Response: (Parnter 1 to Partner 2)

GetChangeLog("
<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
 urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd">
 <item id="A1" parentID="0" restricted="1">
 <dc:title>Alice In Chains(Live)</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/x-ms-wma:*"
 size="90000"avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.1/getcontent.asp?id=A1
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="1">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>A1</avcs:remoteObjID>
 <avcs:status>MODIFIED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
 <item id="A3" parentID="A2">
 <avcs:syncInfo updateID="1">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="a8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>B3</avcs:remoteObjID>
 <avcs:status>DELETED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
</DIDL-Lite>

ContentSync:1 Service Template Version 1.01 83

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

", 2, 2)

Therefore, partner 2 updates the <dc:title> property for object B1 and destroys object B3 based on the
rules defined by the synchronization policy.

To confirm that the objects in the received change log are successfully synchronized, the Partner 2 invokes
the GetChangeLog() action with object A1 and A3 information.

Request: (Partner 2 to Partner 1)

ResetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", "
<ResetObjectList xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <object id="A1" remoteObjID="B1" updateID="0"/>
 <object id="A3" remoteObjID="B3" updateID="0"/>
</ResetObjectList>
");

Response: (Partner 1 to Partner 2)

ResetChangeLog("");

When the Partner 1 receives the GetChangeLog() action above, it change the value of the avcs:status of the
object A1 and A3 to "SYNC'ED" repectively.

2.9.2.6. Modifications of a Synchronization Data Structure
To explain how to update a synchronization data structure, assume that there are two synchronization
partners in a synchronization relationship as described in the XML document below.

<?xml version="1.0" encoding="UTF-8"?>
<ContentSync xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" active="1">
 <title>Sync between My iPod and Home Media Server</title>
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1"
 updateID="0">
 <partner id="1">
 <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
 <serviceID>service_ID_A</serviceID>
 </partner>
 <partner id="2">
 <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN>
 <serviceID>service_ID_B</serviceID>
 </partner>
 <policy>
 <syncType>merge</syncType>
 <priorityPartnerID>1</priorityPartnerID>

ContentSync:1 Service Template Version 1.01 84

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 </policy>
 <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active="1"/>
 </partnership>
 </syncRelationship>
</ContentSync>

The following example demonstrates how to update the partnership in the synchronization relationship by
the ModifySyncData() action:

Request: (Control Point to Partner 1)

ModifySyncData("", "a0e4d0a7-3378-4f17-8af2-3f7de3345dc6",
<partnership updateID="0" xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <policy>
 <syncType>merge</syncType>
 <precedence>2</precedence>
 </policy>
</partnership>
");

The partner1 that receives the ModifySyncData() action invokes the ModifySyncData() action on the
partner 2 to maintain identical information for the synchronization relationship on both partner devices.

Request: (Partner 1 to Partner 2)

ModifySyncData("343bd2a2-189b-40c0-8eb5-ea91ea730402", "a0e4d0a7-3378-
4f17-8af2-3f7de3345dc6",
<partnership updateID="0" xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <policy>
 <syncType>merge</syncType>
 <precedence>2</precedence>
 </policy>
</partnership>
");

Response: (Partner 2 to Partner 1)

ModifySyncData();

After receiving the second action response, the partner 1 responds to the first ModifySyncData() action.

Response: (Partner 1 to Control Point)

ContentSync:1 Service Template Version 1.01 85

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

ModifySyncData();

When the update is successfully processed, the updated synchronization relationship MUST be shown as
below. (partnership@updateID is increased by 1.)

<?xml version="1.0" encoding="UTF-8"?>
<ContentSync xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" active="1">
 <title>Sync between My iPod and Home Media Server</title>
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1"
 updateID="1">
 <partner id="1">
 <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
 <serviceID>service_ID_A</serviceID>
 </partner>
 <partner id="2">
 <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN>
 <serviceID>service_ID_B</serviceID>
 </partner>
 <policy>
 <syncType>merge</syncType>
 <priorityPartnerID>2</priorityPartnerID>
 </policy>
 <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active="1"/>
 </partnership>
 </syncRelationship>
</ContentSync>

2.9.3. Synchronization of a Reference Object
To explain how to synchronize a reference object, let us consider the following logical structure of two
separate CDSs as shown below. Each of the CDS exposes physical directory structure like a PC file
system. The content in the partner 1 includes two items each of which is a music item. One of the music
items is a reference item. The content in the partner 2 does not include anything.

[Partner 1CDS hierarchy]

• Name=“Content”, ID=”0”

 Name=“Would - Alice In Chains.wma”, ID=”A1”, Size=“90000”

 Name=”Music Playlist”, ID=”A2”

 Name=“Would - Alice In Chains.wma”, ID=”A3”, refID=”A1”, Artist=”Mary”
Size=“200000”

[Partner 2CDS hierarchy]

• Name=“My Multimedia Content”, ID=”0”

ContentSync:1 Service Template Version 1.01 86

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Figure 9 shows the visual Hierarchy of two CDSs. Object A3 refers to object A1 and has an additional
property such as the upnp:artist property.

A1

A0 B0

Synchronization
Relationship

Partner 1 Partner 2

Reference

A2

A3

Figure 9 Synchronization Relationship between two CDSs

Creating a Pair of a Reference Object:

Firstly, let us assume that the synchronization relationship is setup. To synchronize a reference object, a
control point should make a synchronization pair and associate the pair with the synchronization
relationship. There is no difference in making an pair for a regular object such as audio or video item and a
reference object. Therefore, the control point invokes the AddSyncPair() as shown below. However, this
action does not invoke subsequent AddSyncPair() action on the partner 2 device since there is no
corresponding remote object in the partner 2.

Request: (Control Point to Partner 1)

AddSyncPair("", "A3", "
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteParentObjID>B0</avcs:remoteParentObjID>
 <avcs:policy>
 <avcs:syncType>replace</avcs:syncType>
 <avcs:priorityPartnerID>1</avcs:priorityPartnerID>
 </avcs:policy>
</avcs:pair>
");

Response: (Partner 1 to Control Point)

AddSyncPair();

ContentSync:1 Service Template Version 1.01 87

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Once the pair information is created, the DIDL-Lite XML document for object A3 is shown as below:

<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
 urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd">
 <item id="A3" parentID="A2" restricted="1">
 <dc:title>Alice In Chains</dc:title>
 <upnp:artist>Mary</upnp:artist>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/x-ms-wma:*"
 size="90000" avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.2/getcontent.asp?id=1
 </res>
 <avcs:syncable/>
 <avcs:syncInfo>
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteParentObjID>0</avcs:remoteParentObjID>
 <avcs:status>NEW</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
</DIDL-Lite>

Getting Change Log:

Once the partners are triggered to start the synchronization operation, each partner gets the synchronization
object by invoking GetChangeLog() actions.

In this example, the partner 1 will not get anything. However, the partner 2 will get the DIDL-Lite XML
document for object A3 as shown below.

Request: (Partner 2 to Partner 1)

GetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", 0, 0);

Response: (Partner 1 to Partner 2)

GetChangeLog(
<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"

ContentSync:1 Service Template Version 1.01 88

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
 urn:schemas-upnp-org:cs:avcs
 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd">
 <item id="A3" parentID="A2" restricted="1">
 <dc:title>Alice In Chains</dc:title>
 <upnp:artist>Mary</upnp:artist>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/x-ms-wma:*"
 size="90000"avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.2/getcontent.asp?id=1
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="0">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteParentObjID>B0</avcs:remoteParentObjID>
 <avcs:status>NEW</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
</DIDL-Lite>
", 1, 1)

Then, the partner 2 creates the new object that is paired with object A3. After creating the new object, the
partner 2 sends an event message to notify the status of the operation. The following is an example of the
event message for object B1 that is newly created in the partner 2.

GENA Message: (Partner 2 to Partner 1)

<?xml version="1.0" encoding="utf-8">
<SyncStatusUpdate xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d">
 <status numberOfTotalObjects="1" numberOfCompletedObjects="1"
 numberOfFailedObjects="0">
 COMPLETED_ALL
 </status>
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6">
 <status numberOfTotalObjects="1" numberOfCompletedObjects="1"
 numberOfFailedObjects="0">
 COMPLETED_ALL
 </status>
 <pairGroup id="pr001">
 <status numberOfTotalObjects="1" numberOfCompletedObjects="1"
 numberOfFailedObjects="0">
 COMPLETED_ALL
 </status>

ContentSync:1 Service Template Version 1.01 89

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 <logEntry>
 <localObjectID>B1</localObjectID>
 <remoteObjectID>A3</remoteObjectID>
 <statusCode>001</statusCodes>
 <statusDescription>Succeeded completely</statusDescription>
 </logEntry>
 </pairGroup>
 </partnership>
 </syncRelationship>
</SyncStatusUpdate>

To confirm that the object A1 in the received change log are successfully synchronized, the Partner 2
invokes the GetChangeLog() action.

Request: (Partner 2 to Partner 1)

ResetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", "
<ResetObjectList xmlns="urn:schemas-upnp-org:cs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:cs
 http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
 <object id="A3" remoteObjID="B1" updateID="0"/>
</ResetObjectList>
");

Response: (Partner 1 to Partner 2)

ResetChangeLog("");

When the Partner 1 receives the GetChangeLog() action above, it change the value of the avcs:status of the
object A1 to "SYNC'ED".

Changing the referenced object:

If a referenced object is changed, it affects the change to a reference object. Therefore, the reference object
MUST show changed properties whenever the referenced object is changed.

To explain this example, assume that object A1 which is the referenced object for object A3 changes its
dc:title property then object A3 MUST change its dc:title property as shown below.

<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
 urn:schemas-upnp-org:cs:avcs

ContentSync:1 Service Template Version 1.01 90

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd">
 <item id="A3" parentID="A2" restricted="1">
 <!-- this property is changed in object A1 -->
 <dc:title>Alice In Chains(Classic)</dc:title>
 <upnp:artist>Mary</upnp:artist>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <res protocolInfo="http-get:*:audio/x-ms-wma:*"
 size="90000"avcs:syncAllowed="ALL" avcs:resModified="0">
 http://10.0.0.2/getcontent.asp?id=1
 </res>
 <avcs:syncable/>
 <avcs:syncInfo updateID="1">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>B1</avcs:remoteObjID>
 <avcs:status>MODIFIED</avcs:status>
 </avcs:pair>
 </avcs:syncInfo>
 </item>
</DIDL-Lite>

At the next synchronization operation, the partner 2 replaces its dc:title property with the new value from
the partner 1. (Note that detailed UPnP Action examples are omitted.)

Note: If dc:title property of object B1 in the partner 2 is changed and synchronized with object
A3, then the dc:title property for object A3 will be different from the one in object A1. From
now on, the changes in dc:title property for object A1 does not propagate to the dc:title in object
A3.

ContentSync:1 Service Template Version 1.01 91

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

3. XML Service Description
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>AddSyncData</name>
 <argumentList>
 <argument>
 <name>ActionCaller</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ActionCaller
 </relatedStateVariable>
 </argument>
 <argument>

<name>SyncID</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncID
</relatedStateVariable>

</argument>
<argument>

<name>SyncData</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncData
</relatedStateVariable>

</argument>
<argument>

<name>SyncDataResult</name>
<direction>out</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncData
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>
 <name>ModifySyncData</name>
 <argumentList>
 <argument>
 <name>ActionCaller</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ActionCaller
 </relatedStateVariable>
 </argument>
 <argument>

<name>SyncID</name>
<direction>in</direction>

ContentSync:1 Service Template Version 1.01 92

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

<relatedStateVariable>
 A_ARG_TYPE_SyncID

</relatedStateVariable>
</argument>
<argument>

<name>SyncData</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncData
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>
 <name>DeleteSyncData</name>
 <argumentList>
 <argument>
 <name>ActionCaller</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ActionCaller
 </relatedStateVariable>
 </argument>
 <argument>

<name>SyncID</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncID
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>
 <name>GetSyncData</name>
 <argumentList>
 <argument>
 <name>SyncID</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_SyncID
 </relatedStateVariable>
 </argument>
 <argument>

<name>SyncData</name>
<direction>out</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncData
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>
 <name>ExchangeSyncData</name>
 <argumentList>
 <argument>
 <name>LocalSyncData</name>

ContentSync:1 Service Template Version 1.01 93

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_SyncData
 </relatedStateVariable>
 </argument>
 <argument>

<name>RemoteSyncData</name>
<direction>out</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncData
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>
 <name>AddSyncPair</name>
 <argumentList>
 <argument>
 <name>ActionCaller</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ActionCaller
 </relatedStateVariable>
 </argument>
 <argument>

<name>ObjectID</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_ObjectID
</relatedStateVariable>

</argument>
 <argument>

<name>SyncPair</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncPair
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>
 <name>ModifySyncPair</name>
 <argumentList>
 <argument>
 <name>ActionCaller</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ActionCaller
 </relatedStateVariable>
 </argument>
 <argument>

<name>ObjectID</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_ObjectID
</relatedStateVariable>

ContentSync:1 Service Template Version 1.01 94

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

</argument>
 <argument>

<name>SyncPair</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncPair
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>
 <name>DeleteSyncPair</name>
 <argumentList>
 <argument>
 <name>ActionCaller</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ActionCaller
 </relatedStateVariable>
 </argument>
 <argument>

<name>ObjectID</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_ObjectID
</relatedStateVariable>

</argument>
 <argument>

<name>SyncID</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncID
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>
 <name>StartSync</name>
 <argumentList>
 <argument>
 <name>ActionCaller</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ActionCaller
 </relatedStateVariable>
 </argument>
 <argument>

<name>SyncID</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncID
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>

ContentSync:1 Service Template Version 1.01 95

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 <name>AbortSync</name>
 <argumentList>
 <argument>
 <name>ActionCaller</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ActionCaller
 </relatedStateVariable>
 </argument>
 <argument>

<name>SyncID</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncID
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>
 <name>GetChangeLog</name>
 <argumentList>
 <argument>

<name>SyncID</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncID
</relatedStateVariable>

</argument>
 <argument>

<name>StartingIndex</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_Index
</relatedStateVariable>

</argument>
 <argument>

<name>RequestedCount</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_Count
</relatedStateVariable>

</argument>
 <argument>

<name>Result</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_ChangeLog
</relatedStateVariable>

</argument>
 <argument>

<name>NumberReturned</name>
<direction>out</direction>
<relatedStateVariable>

 A_ARG_TYPE_Count
</relatedStateVariable>

</argument>

ContentSync:1 Service Template Version 1.01 96

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

 <argument>
<name>TotalMatches</name>
<direction>out</direction>
<relatedStateVariable>

 A_ARG_TYPE_Count
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>
 <name>ResetChangeLog</name>
 <argumentList>
 <argument>

<name>SyncID</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncID
</relatedStateVariable>

</argument>
 <argument>

<name>ObjectIDs</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_ResetObjectList
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>
 <name>ResetStatus</name>
 <argumentList>
 <argument>

<name>SyncID</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncID
</relatedStateVariable>

</argument>
 </argumentList>
 </action>
 <action>
 <name>GetSyncStatus</name>
 <argumentList>
 <argument>

<name>SyncID</name>
<direction>in</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncID
</relatedStateVariable>

</argument>
 <argument>

<name>SyncStatus</name>
<direction>out</direction>
<relatedStateVariable>

 A_ARG_TYPE_SyncStatus
</relatedStateVariable>

ContentSync:1 Service Template Version 1.01 97

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

</argument>
 </argumentList>
 </action>

Declarations for other actions added by UPnP vendor (if any) go
here

 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="yes">
 <name>SyncChange</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>SyncStatusUpdate</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ActionCaller</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_SyncData</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_SyncPair</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_SyncID</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ObjectID</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_SyncStatus</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ChageLog</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Index</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Count</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ResetObjectList</name>
 <dataType>string</dataType>
 </stateVariable>
 Declarations for other state variables added by UPnP vendor

ContentSync:1 Service Template Version 1.01 98

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

(if any) go here
 </serviceStateTable>
</scpd>

ContentSync:1 Service Template Version 1.01 99

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

4. Test
Content requirements for this section to be specified in revision 1a of this standard template.

ContentSync:1 Service Template Version 1.01 100

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Appendix A. AV Working Committee Properties
The tables and sections below list the properties of ContentDirectory service objects which are necessary
for ContentSync service. The property that is already defined in ContentDirectory service is overridden by
the definition of the Contentsync service. New property defined here MUST conform to general rules
which are defined in the Appendix B.

A.1 Base Properties Overview

A.1.1 @id
Namespace: DIDL-Lite Property Data Type: xsd:string Multi-Valued: NO

Description: The @id property is a REQUIRED property of an item or container object and contains an
identifier for the object. The value of each object @id property MUST be unique with respect to the CDS.
It is highly RECOMMENDED that an object’s @id property NOT change during the lifetime of the object.
However, the @id property of an object MAY change, if absolutely necessary, for example, on reboot or
when the object is moved by the MoveObject()action. If the ContentSync service is supported, the value of
object @id property MUST NOT change during the lifetime of the object and the value assigned once
MUST NOT be reused even after the object is removed.

DefaultValue: N/A

A.2 Resource Encoding Characteristics Properties

A.2.1 res@avcs:syncAllowed
Namespace: DIDL-Lite Property Data Type: xsd:string Multi-Valued: NO

Description: The res@avcs:syncAllowed property indicates how the resource should be handled in
synchronization perspective. The allowed enumerated values are: “ALL”, “METADATA_ONLY”, and
“PROHIBITED”. When a resource resides on the local storage, the resource can be copied to the other
partner device. In this case, res@avcs:syncAllowed value is set to “ALL” and the resource is copied and
the partner device assigns new URI value for the res property. When a resource resides on somewhere
outside of the device, res@avcs:syncAllowed is set to “METADATA_ONLY” and the specified metadata,
URI in the res property is copied to the other sync partner as it is. When a resource cannot be
synchronized, then “PROHIBITED” is set to the res@avcs:syncAllowed property.

The value of the res@avcs:syncAllowed property MUST be determined by a device when the CDS
populates the object. If the associated resource of the object is changed for some reason during the system
life-cycle, the device MUST change this property according to the characteristic of the resource.

Default Value: N/A –The property is REQUIRED when ContentSync service is supported and the res
property is present.

A.2.2 res@avcs:resModified
Namespace: DIDL-Lite Property Data Type: xsd:boolean Multi-Valued: NO

Description: The res@avcs:resModified property indicates whether a resource has been modified. If the
resource is modified after a synchronization operation, the value of this property MUST be set to "1".
Otherwise, the value will be set to "0".

ContentSync:1 Service Template Version 1.01 101

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Default Value: N/A –The property is REQUIRED when ContentSync service is supported and the res
property is present.

A.3 Content Synchronization-related Properties
Any changes to Content Synchronization-related properties MUST not be perceived as object changes. All
synchronization related properties are used to track changes to all other CDS object properties.

Table A-1: Content Synchronization-related Properties Overview

Property Name NS Data Type M-Val Reference

avcs:syncable avcs xsd:string NO

avcs:syncInfo avcs xsd:string NO

avcs:syncInfo::pair@updateID avcs xsd:unsignedInt NO

avcs:syncInfo::pair avcs xsd:string YES

avcs:syncInfo::pair@syncRelationshipID avcs xsd:string NO

avcs:syncInfo::pair@partnerID avcs xsd:string NO

avcs:syncInfo::pair@pairGroupID avcs xsd:string NO

avcs:syncInfo::pair::remoteObjectID avcs xsd:string NO

avcs:syncInfo::pair::parentObjectID avcs xsd:string NO

avcs:syncInfo::pair::policy avcs xsd:string NO

avcs:syncInfo::pair::status avcs xsd:string NO

A.3.1 avcs:syncable
Namespace: cs Property Data Type: xsd:string Multi-Valued: NO

Description: The avcs:syncable property is a REQUIRED property for an item or a container object if the
ContentSync service is supported. The avcs:syncable property indicates whether an object can be
synchronized or not. The existence of this property implies syncability of the object. The device MUST
determine whether the object has the avcs:syncable property or not when the CDS populates the object.
The guidelines to determine the avcs:syncable property is described in Appendix B.

Default Value: N/A

A.3.2 avcs:syncInfo
Namespace: cs Property Data Type: xsd:string Multi-Valued: NO

Description: The avcs:syncInfo property is a REQUIRED property for an item or a container object if the
ContentSync service is supported. The avcs:syncInfo property identifies to which Sync Relationship(s) an
item or a container belongs and more specifically, to which remote object it corresponds. Since object@id
is unique and persistent, this information is enough to unambiguously map the local object to its remote
counterpart. A typical CDS object can be involved in multiple synchronization relationships and
partnerships at one time and will therefore have the following embedded information. The avcs:syncInfo
property contains one or more avcs:pair property which encapsulates the pair information. The following
illustrates a typical example of the avcs:syncInfo property content:

ContentSync:1 Service Template Version 1.01 102

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<avcs:syncInfo updateID="2">
 <avcs:pair
 syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d "
 partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
 pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173">
 <avcs:remoteObjID>B1</avcs:remoteObjID>
<avcs:policy>
 <avcs:syncType>replace</avcs:syncType>
 <avcs:priorityPartnerID>1</avcs:priorityPartnerID>
</avcs:policy>
<avcs:status>MODIFIED</avcs:status>

</avcs:pair>
 <avcs:pair
 syncRelationshipID="6b5016ef-b548-4b27-9c37-8cd8863ed59a"
 partnershipID="381fdea8-ad49-4d55-baed-e3b1672e34a8"
 pairGroupID="410259b0-b617-48fe-b9eb-8734f3c9c610">
 <avcs:remoteParentObjID>B2</avcs:remoteParentObjID>
 <avcs:status>NEW</avcs:status>
 </avcs:pair>
</avcs:syncInfo>

Default Value: N/A

A.3.3 avcs:syncInfo@updateID
Namespace: cs Property Data Type: xsd:unsignedInt Multi-Valued: NO

Description: The avcs:syncInfo@updateID is a counter that increases its value whenever there is a change
in this object. The value of the change MUST be increased by 1.

Default Value: N/A

A.3.4 avcs:syncInfo::pair
Namespace: cs Property Data Type: xsd:string Multi-Valued: YES

Description: The avcs:syncInfo::pair represents which remote object in the partner device is involved with
the local object for the given synchronization relationship.

Default Value: N/A

A.3.5 avcs:syncInfo::pair@syncRelationshipID
Namespace: cs Property Data Type: xsd:string Multi-Valued: NO

Description: The avcs:syncInfo::pair@syncRelationshipID identifies the synchronization relationship that
the pair belongs to. It is REQUIRED when avcs:syncInfo::pair property is present.

Default Value: N/A

A.3.6 avcs:syncInfo::pair@partnershipID
Namespace: cs Property Data Type: xsd:string Multi-Valued: NO

ContentSync:1 Service Template Version 1.01 103

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Description: The avcs:syncInfo::pair@partnershipID identifies the partnership in a synchronization
relationship that the pair belongs to. It is REQUIRED when avcs:syncInfo::pair property is present.

Default Value: N/A

A.3.7 avcs:syncInfo::pair@pairGroupID
Namespace: cs Property Data Type: xsd:string Multi-Valued: NO

Description: The avcs:syncInfo::pair@pairGroupID identifies the pairGroup in a synchronization
relationship thatthe pair belongs to. It is REQUIRED when avcs:syncInfo::pair property is present.

Default Value: N/A

A.3.8 avcs:syncInfo::pair::remoteObjID
Namespace: cs Property Data Type: xsd:string Multi-Valued: NO

Description: The avcs:syncInfo::pair::remoteObjID identifies an object in the partner device that is paired
with an object in the local device for synchronization.

A.3.9 avcs:syncInfo::pair::remoteParentObjID
Namespace: cs Property Data Type: xsd:string Multi-Valued: NO

Description: The avcs:syncInfo::pair:remoteParentObjID identifies the object id of the parent container in
the partner CDS where the remote object will be created during the first synchronization. This property is
only required when the remote object that is to be paired with an object in the local CDS does not exist in
the partner CDS.

Default Value: N/A

A.3.10 avcs:syncInfo::pair::virtualRemoteParentObjID
Namespace: cs Property Data Type: xsd:string Multi-Valued: NO

Description: The avcs:syncInfo::pair::virtualRemoteParentObjID identifies where the new remote object
will be located in the partner device after the first synchronization. This property is only required when
both the remote object that is to be paired with an object in the local CDS and its corresponding parent
container do not exist in the partner CDS. This property specifies the object@id of the parent container of
the local object. This local object is to be paired with an object that will be created along with its parent
container in the partner CDS after synchronization. The parent container in the local CDS MUST be in the
partnership where the local object belongs after synchronization.

Default Value: N/A

A.3.11 avcs:syncInfo::pair::policy
Namespace: cs Property Data Type: xsd:string Multi-Valued: NO

ContentSync:1 Service Template Version 1.01 104

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Description: The avcs:syncInfo::pair::policy contains synchronization policy information such as
syncType or priorityPartnerID. When this policy is not set, the object is synchronized based on the policy
specified in the partnership or pairGroup. When exists the avcs:syncInfo::pair:: policy, it overrides the
upper level policy and the object is synchronized based on the policy defined within avcs:syncInfo::pair::
policy. See 2.2.3 Synchronization Policy for more details of the policy. In Section 2.2.3, synchronization
policy is defined in terms of the "cs" namespace. However, the synchronization policy MUST use "avcs"
namespace when it is writtend in the DIDL-Lite XML document as defined in this Appendix.

Default Value: N/A

A.3.12 avcs:syncInfo::pair::status
Namespace: cs Property Data Type: xsd:string Multi-Valued: NO

Description: The avcs:syncInfo::pair::status indicates the status of the synchronization and assumes one
of the following enumerated values: NEW, MODIFIED, SYNCED, EXCLUDED and DELETED.

 NEW: The object is added in the synchronization relationship.

 MODIFIED: Any property of the object is modified.

 SYNCED: The object is synchronized for a given partnership in a synchronization relationship.

EXCLUDED: The pair is excluded from the synchronization relationship. If the avcs:pair property
has this status, avcs:pair property MUST be deleted from DIDL-Lite object after next
synchronization operation.

DELETED: An object is deleted outside of synchronization operation.

Default Value: N/A

Appendix B. Syncable Objects and Properties

B.1 Deciding Syncability of CDS Object
The device supporting CDS and ContentSync service MUST be able to decide whether a ContentDirectory
object can be synchronized or not. The following guideline determines the syncability of CDS object.

 Generally, when the resource of an object, if any, can be transferred or the URI of the resource
is accessible by the other sync partner, the object can be synchronized. In other words, if one of
res has “ALL” or “METADATA_ONLY” value in res@avcs:syncAllowed property, then the
object is syncable.

 When the metadata of an object is not just informative values and can be affected by device
dependent characteristics, then the object MUST not be synchronized. The table below
describes the syncablility of CDS object based on its upnp:class property.

 When an object cannot remain in the ContentDirectory instable status, the object should not be
synchronized. For example, if an audio item is removed or added again due to the
characteristics of removable storage medium (e.g. CD), the audio item should not be
synchronized.

 When the resource is copy-protected by any type of DRM, the object MUST not be
synchronized.

Table B-1: Syncability of CDS object class

ContentSync:1 Service Template Version 1.01 105

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Value of upnp:class Property Sync-
able

Remark

“object.item” Yes

“object.item.imageItem” Yes

“object.item.imageItem.photo” Yes

“object.item.audioItem” Yes

“object.item.audioItem.musicTrack” Yes

“object.item.audioItem.audioBroadcast” No The URI for local tuner is not configurable with
other sync partner’s res

“object.item.audioItem.audioBook” Yes

“object.item.videoItem” Yes

“object.item.videoItem.movie” Yes

“object.item.videoItem.videoBroadcast” No The URI for local tuner is not configurable
withother sync partner’s res

“object.item.videoItem.musicVideoClip” Yes

“object.item.playlistItem” Yes

“object.item.bookmarkItem” Yes The bookmark item should be synchronized
with the bookmarked item. Otherwise, the
synced bookmark item is useless since the
device does not have any valid content to be
played.

“object.item.textItem” Yes

“object.item.epgItem” Yes

“object.item.epgItem.audioProgram” Yes

“object.item.epgItem.videoProgram” Yes

“object.container” Yes

“object.container.persion” Yes

“object.container.persion.musicArtist” Yes

“object.container.playlistContainer” Yes

“object.container.album” Yes

“object.container.album.musicAlbum” Yes

“object.container.album.photoAlbum” Yes

“object.container.genre” Yes

“object.container.genre.musicGenre” Yes

ContentSync:1 Service Template Version 1.01 106

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

“object.container.genre.movieGenre” Yes

“object.container.channelGroup” No

“object.container.channelGroup.audioC
hannelGroup”

No

“object.container.channelGroup.videoC
hannelGroup”

No

“object.container.epgContainer” Yes

“object.container.storageSystem” No The properties of the class is physical device
characteristic dependent.

“object.container.storageVolume” No The properties of the class is physical device
characteristic dependent.

“object.container.storageFolder” No The properties of the class are physical device
characteristic dependent.

“object.container.bookmarkFolder” Yes

B.2 Synchronization of CDS object properties (Informative)
Table B-2 lists all properties of CDS objects as defined by the UPnP AV Working Committee. Some of
properties may be synchronized by copying the other synchronization partner’s property value. However,
some of properties MUST not be synchronized, since those properties are not content related information
but physical device related or local ContentDirectory hierarchy related information. The CDS MUST
reassign new value or leave it as blank for those properties when an object is created by synchronization.
The table below is informative and provides a guideline to determine whether each object property can be
synchronized or not.

Table B-2: Syncability of CDS Object property

Property Name C/P1 Remark

Base Properties

@id

@parentID

@refID P

When a reference item is selected for synchronization,
the metadata and resource of actual referenced item
which is not overridden by the reference item will be
synchronized. Therefore, the change of referenced item
should be propagated.

@restricted C/P

@searchable C/P

@childCount

dc:title C/P

ContentSync:1 Service Template Version 1.01 107

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Property Name C/P1 Remark

dc:creator C/P

upnp:class C/P

upnp:class@name C/P

upnp:searchClass C/P Depend on the Search() action implementation

upnp:searchClass@name C/P Depend on the Search() action implementation

upnp:searchClass@includeDerived C/P Depend on the Search() action implementation

upnp:createClass C/P Depend on the CreateObject() action implementation

upnp:createClass@name C/P Depend on the CreateObject () action implementation

upnp:createClass@includeDerived C/P Depend on the CreateObject () action implementation

upnp:writeStatus C/P

Resource Encoding Characteristics Properties

Res C/P When the resource resides on an external device, res
property is copied and its change is propagated.

res@protocolInfo

res@importUri

res@size C/P

res@duriation C/P

res@protection C/P

res@bitrate C/P

res@bitsPerSample C/P

res@sampleFrequency C/P

res@nrAudioChannels C/P

res@resolution C/P

res@colorDepth C/P

res@tspec C/P

res@allowedUse The value MUST be changed after synchronization. It
MUST behave as when the object is copied.

res@validityStart C/P

res@validityEnd C/P

res@remainingTime C/P

ContentSync:1 Service Template Version 1.01 108

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Property Name C/P1 Remark

res@usageInfo C/P

res@rightsInfoURI C/P

res@contentInfoURI C/P

res@recordQuality C/P

Contributor-relatedProperties

upnp:artist C/P

upnp:artist@role C/P

upnp:actor C/P

upnp:actor@role C/P

upnp:author C/P

upnp:author@role C/P

upnp:producer C/P

upnp:director C/P

dc:publisher C/P

dc:contributor C/P

Affiliation-related Properties

upnp:genre C/P

upnp:genre@id C/P

upnp:genre@extended C/P

upnp:album C/P

upnp:playlist

Associated Resources Properties

upnp:albumArtURI C/P

upnp:artistDiscographyURI C/P

upnp:lyricsURI C/P

dc:relation C/P

Storage-Related Properties

upnp:storageTotal

upnp:storageUsed

ContentSync:1 Service Template Version 1.01 109

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Property Name C/P1 Remark

upnp:storageFree

upnp:storageMaxPartition

upnp:storageMedium

GeneralDescription Properties

dc:description C/P

upnp:longDescription C/P

upnp:icon P
It is recommended that the icon which is pointed to by
the URI of this property should be copied to the sync
partner and new URI value should be assigned.

upnp:region C/P

dc:rights C/P

dc:date C/P

dc:language C/P

upnp:playbackCount

upnp:lastPlaybackTime

upnp:lastPlaybackPosition

upnp:recordedStartDateTime C/P

upnp:recordedDuration C/P

upnp:recordedDayOfWeek C/P

upnp:srsRecordScheduleID

upnp:srsRecordTaskID

upnp:recordable C/P

Recorded Object-related Properties

upnp:programTitle C/P

upnp:seriesTitle C/P

upnp:programID C/P

upnp:programID@type C/P

upnp:seriesID C/P

upnp:seriesID@type C/P

upnp:episodeCount C/P

ContentSync:1 Service Template Version 1.01 110

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Property Name C/P1 Remark

upnp:episodeNumber C/P

upnp:programCode C/P

upnp:programCode@type C/P

upnp:rating C/P

upnp:rating@type C/P

upnp:episodeType C/P

User Channel and EPG Related Properties

upnp:channelGroupName C/P

upnp:channelGroupName@id

upnp:callSign C/P

upnp:networkAffiliation C/P

upnp:serviceProvider C/P

upnp:price C/P

upnp:price@currency C/P

upnp:payPerView C/P

upnp:epgProviderName C/P

upnp:dateTimeRange C/P

Radio Broadcast Properties

upnp:radioCallSign

upnp:radioStationID

upnp:radioBand

Video Broadcast Properties

upnp:channelNr

upnp:channelName

upnp:scheduledStartTime

upnp:scheduledEndTime

Physical Tuner Status-related Properties

upnp:signalStrength

upnp:signalLocked

ContentSync:1 Service Template Version 1.01 111

© 2009 Contributing Members of the UPnP™ Forum. All Rights Reserved.

Property Name C/P1 Remark

upnp:tuned

Bookmark-related Properties

@neverPlayable C The value of this property is static.

upnp:bookmarked

upnp:bookmarkedObjectID

upnp:deviceUDN C/P

upnp:deviceUDN@serviceType C/P

upnp:deviceUDN@serviceId C/P

upnp:stateVariableCollection C/P

upnp:stateVariableCollection@

serviceName
C/P

upnp:stateVariableCollection@

rcsInstanceType
C/P

Miscellaneous Properties

upnp:DVDRegionCode

upnp:originalTrackNumber C/P

upnp:toc C/P

upnp:userAnnotation C/P

1C= Copy metadata value as it is, P= Propagate change of metadata

