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• What is IoTivity?

• Structure of an OCF implementation

• IoTivity-Lite

• Protocols and payloads

• Support for OCF roles

• Porting

• Directory structure

• IoTivity-Lite resources

Outline
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• Umbrella of projects for building IoT devices

• Open-source, reference implementations of OCF specifications

• Serve as starting point for developing and certifying OCF products

What is IoTivity?
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Specifications

Vertical Data Models

Device Certification

Strategy, Marketing

Independent governance with coordinated efforts



Structure of an OCF implementation
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• Lightweight implementation of OCF specifications

• Suitable for all device classes (including few constrained devices)

• Port to any target by implementing a thin platform abstraction layer

• Runs on Linux, Windows, Android1, macOS2, and multiple RTOSes

• C and Java3 APIs

1, 3: Working Android adaptation with Java binding currently on “swig” branch

2: Work-in-progress

3: Java bindings may be used to build Java applications for platforms with the Java 
runtime (Eg. Linux, Windows, etc.)

IoTivity-Lite
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• Constrained Application Protocol (RFC 7252) 

• Lightweight protocol for constrained nodes and networks

• Security 

• DTLS-based authentication, encryption and access control

• Leverages mbedTLS https://github.com/ARMmbed/mbedtls

• Concise Binary Object Representation (RFC 7049)

• Handle OCF request/response payloads using simple C APIs

• Payloads typically consist of key-value pairs 

• Leverages tinyCBOR https://github.com/intel/tinycbor

Protocols and payloads
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• REST architectural style; ”things” modeled as resources

• Servers

• Expose resources to Clients

• Clients

• Access resources hosted in Servers

• Onboarding Tools (OBT)

• Takes on the Client role

• Manage security context across a network of OCF Devices

• APIs for creating OBTs

Support for OCF roles
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• OS-agnostic core 

• Abstract interfaces hook into platform-specific components

• Bounded definitions, elicit specific contract from implementations

• Platform-specific blocks

• Clock

• Connectivity

• PRNG

• Storage

Porting
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api apps

include onboarding_tool

messaging deps

port security      

tests patches

tools util

LICENSE.md IoTivityConstrained-Arch.png

README.rst

Directory structure – <IoTivity-Lite root>/*
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oc_connectivity.h oc_clock.h

oc_random.h oc_storage.h

oc_log.h oc_network_events_mutex.h

oc_assert.h

linux windows

android zephyr

...

Directory structure - <IoTivity-Lite root>/port/*
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• IoTivity-Lite repository 

• https://github.com/iotivity/iotivity-lite

• IoTivity-Lite build instructions

• https://github.com/iotivity/iotivity-lite/blob/master/README.rst

• Each OS adaptation (port) employs a build system native to its environment (E.g. 
Linux uses make, Windows uses VS projects, etc.)

• IoTivity Wiki

• https://wiki.iotivity.org/

• OCF Specification documents

• https://openconnectivity.org/developer/specifications

IoTivity-Lite resources
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