
IoTivity Overview
OCF EU Developer Training 2019, Budapest, Hungary

Kishen Maloor, Intel

• What is IoTivity?

• Structure of an OCF implementation

• IoTivity-Lite

• Protocols and payloads

• Support for OCF roles

• Porting

• Directory structure

• IoTivity-Lite resources

Outline

2

• Umbrella of projects for building IoT devices

• Open-source, reference implementations of OCF specifications

• Serve as starting point for developing and certifying OCF products

What is IoTivity?

3

Specifications

Vertical Data Models

Device Certification

Strategy, Marketing

Independent governance with coordinated efforts

Structure of an OCF implementation

4

IP Connectivity

Security Flows

Resource Model

APIs & Language

Bindings

High-level Services

Bridging to other

ecosystems

IoT Applications

OCF

Device

Stack

Network Interfaces

OS & Kernel

User space

Kernel space

BLE, Zigbee, Z-Wave, etc.

Resource directory,

Wi-Fi Easy Setup,

OCF Cloud Connectivity

Security

Provisioning

Infrastructure

Device on-boarding,

Credentials provisioning,

Access-control lists

Outer functional blocks

• Lightweight implementation of OCF specifications

• Suitable for all device classes (including few constrained devices)

• Port to any target by implementing a thin platform abstraction layer

• Runs on Linux, Windows, Android1, macOS2, and multiple RTOSes

• C and Java3 APIs

1, 3: Working Android adaptation with Java binding currently on “swig” branch

2: Work-in-progress

3: Java bindings may be used to build Java applications for platforms with the Java
runtime (Eg. Linux, Windows, etc.)

IoTivity-Lite

5

• Constrained Application Protocol (RFC 7252)

• Lightweight protocol for constrained nodes and networks

• Security

• DTLS-based authentication, encryption and access control

• Leverages mbedTLS https://github.com/ARMmbed/mbedtls

• Concise Binary Object Representation (RFC 7049)

• Handle OCF request/response payloads using simple C APIs

• Payloads typically consist of key-value pairs

• Leverages tinyCBOR https://github.com/intel/tinycbor

Protocols and payloads

March 7, 2019 6

https://github.com/ARMmbed/mbedtls
https://github.com/intel/tinycbor

• REST architectural style; ”things” modeled as resources

• Servers

• Expose resources to Clients

• Clients

• Access resources hosted in Servers

• Onboarding Tools (OBT)

• Takes on the Client role

• Manage security context across a network of OCF Devices

• APIs for creating OBTs

Support for OCF roles

March 7, 2019 7

• OS-agnostic core

• Abstract interfaces hook into platform-specific components

• Bounded definitions, elicit specific contract from implementations

• Platform-specific blocks

• Clock

• Connectivity

• PRNG

• Storage

Porting

March 7, 2019 8

api apps

include onboarding_tool

messaging deps

port security

tests patches

tools util

LICENSE.md IoTivityConstrained-Arch.png

README.rst

Directory structure – <IoTivity-Lite root>/*

March 7, 2019 9

oc_connectivity.h oc_clock.h

oc_random.h oc_storage.h

oc_log.h oc_network_events_mutex.h

oc_assert.h

linux windows

android zephyr

...

Directory structure - <IoTivity-Lite root>/port/*

March 7, 2019 10

• IoTivity-Lite repository

• https://github.com/iotivity/iotivity-lite

• IoTivity-Lite build instructions

• https://github.com/iotivity/iotivity-lite/blob/master/README.rst

• Each OS adaptation (port) employs a build system native to its environment (E.g.
Linux uses make, Windows uses VS projects, etc.)

• IoTivity Wiki

• https://wiki.iotivity.org/

• OCF Specification documents

• https://openconnectivity.org/developer/specifications

IoTivity-Lite resources

11

https://github.com/iotivity/iotivity-lite
https://github.com/iotivity/iotivity-lite/blob/master/README.rst
https://wiki.iotivity.org/
https://openconnectivity.org/developer/specifications

