
ToolChain
Code generation

Code generation is possible due to :

All Resources are defined in an machine readable format

• Using OpenAPI 2.0 definitions

• Defines resource by:

• Which operations are supported (RETRIEVE, UPDATE, ..)

• Schema definition of the payload per operation

• An example of the payload

• Define which query parameters are applicable

Code generation

2

The DeviceBuilder tool chain

3

• The DeviceBuilder tool chain consist of a set of python scripts glued

together with bash scripts.

• The script installs the necessary depended info it needs:

• Git repos

• Install python3 packages using pip3

• The chain works on Linux and on Window (using git bash).

• The chain will be used on a raspberry pi

The DeviceBuilder toolchain

4

• Python script to merge the resources to be used into a single file.

• Takes an set of resources that will be used in the implementation

• Combines swagger resource files into 1 large swagger file

• Renames paths and removes properties while processing.

• Does this for optional core resources and all resources in oneIOTa.

• Mandatory resources (core and security) are not processed.

• Input: file with resources to be implemented

• Output: swagger file that list all “application level” resources

• All resources that the application needs to implement to function

correctly.

DeviceBuilder

5

• Create code by means of template technology

• Can used jinja2 template technology because OpenAPI 2.0 == JSON

• Add a bit of glue so that JSON constructs can be converted into correct

code

• Jinja2 constructs allows to loop over the DOM of the swagger file

• Convert by means of instructions in template all the info of the swagger file into code

• The “clever bit” is in the template, it is an mix of the target code and template

language

• An template is targeted for an specific code base

–Multiple templates can co-exist, hence the tool can support all languages/APIs

–Target: C IOTivity-Lite API.

swagger2x

6

json2cbor

• Tool to convert json to cbor (and visa versa)

• Used as first step to create cbor of the introspection file

cbor2include

• Utility to create include files from cbor

• Only used to convert the cbor introspection file into an include file

Note:

• Include file is updated when code generation is done.

• Hence it will always reflect the implementation

• It will be updated in the tree, hence each build will have an updated introspection device data.

Introspection generation

7

Single bash script uses the python scripts to create code

Input:

- Input file with the wanted resources

- Output directory

- Which device type is being implemented

For example:

Single script

8

sh DeviceBuilder_IotivityLiteServer.sh ../input-lightdevice.json ../lightdevice "oic.d.light"

After running the DeviceBuilder script:

• Output Directory with:

• Code currently based on C API of IOTivity-Lite 1.3.1

• Introspection file that matches the implementation

• Available in JSON and CBOR (converted from JSON)

• Initial just works security file

• Just a copy of an existing file

Problem: how to build this code

What do you get?

9

Github repo that uses IOTivity-Lite v1.3-rel as build environment

and sets up the device builder tool chain to build an application

• This github repo sets up an “work area”

• Installs tools/code/etc to build an IOTivity-Lite server application

• Linux

• raspberry pi

• This includes installing a copy of the IOTivity-Lite code

Github to install the environment resides at:

• https://github.com/openconnectivity/IOTivity-Lite-setup

Build environment: IOTivity-Lite-setup

10

https://github.com/openconnectivity/IOTivity-Lite-setup

The repo has setup scripts for:

• Setting up IOTivity-Lite with code and build environment

• IOTivity version: 1.3-rel

• Sets it up in local folder

• Setting up DeviceBuilder

• Relative to IOTivity-Lite folder

• Setting up MRAA to interact with the hardware

Everything is set up by executing:

curl https://openconnectivity.github.io/IOTivity-Lite-setup/install.sh | bash

IOTivity-Lite-setup github repo

11

All folders are placed in the top folder

In this case ~/iot-lite

Folder structure

12

• Generate code with gen.sh

• Compile code with build.sh

• Edit code with edit_code.sh (using nano, editing in the iotivity-lite tree)

• Run code with run.sh

• Reset to onboarding state with reset.sh

• Using just works, script removes files from the iotivity-lite tree.

The scripts that are convenience wrappers around command line tools.

• All paths, etc. are filled in.

• Code is generated from example.json.

• Code is generated in iotivity-lite/apps

Preconfigured commands (in iot-lite folder)

13

[{

"path" : "/binaryswitch",

"rt" : ["oic.r.switch.binary"],

"if" : ["oic.if.a", "oic.if.baseline"],

"remove_properties" : ["range", "step" , "id", "precision"]

}, {

"path" : "/oic/p",

"rt" : ["oic.wk.p"],

"if" : ["oic.if.baseline", "oic.if.r"],

"remove_properties" : ["n", "range", "value", "step", "precision", "vid"]

}]

Example input file: binary switch

14

Path to be used

Which interfaces are supported

rt as look up value

Which properties you do not want

Needed for introspection

