OPEN CONNECTIVITY
FOUNDATION®

ToolChain
Code generation

Code generation

O

Code generation is possible due to

All Resources are defined in an machine readable format
» Using OpenAPI 2.0 definitions

- Defines resource by:
* Which operations are supported (RETRIEVE, UPDATE, ..)
« Schema definition of the payload per operation
- An example of the payload

- Define which query parameters are applicable

e

The DeviceBuilder tool chain

/O openconnectivityfounda: X \E \

<« C O ‘ @ GitHub, Inc. [US] | https://github.com/openconnectivityfoundation/DeviceBuilder
| |
| oneIOTa |
|
|
Resource Type|descriptions
|
Ay -
input | | introspection data (swagger.json) | | cbor |
description | R e >| swag2chor|--------
————————————— >| DeviceBuilder | | | | actual device |
| | code | | src | |
| |------ >| swagger2x |------ >| compiler |-------------------—-
| | data | | | | executable
(swagger)
< 3

|IIIIIIIIIIIIIIIIIIHII

O

The DeviceBuilder toolchain

» The DeviceBuilder tool chain consist of a set of python scripts glued
together with bash scripts.

» The script installs the necessary depended info it needs:
» Git repos
* Install python3 packages using pip3
» The chain works on Linux and on Window (using git bash).

» The chain will be used on a raspberry pi

e

DeviceBuilder

» Python script to merge the resources 1o be used info a single file.

» Takes an set of resources that will be used in the implementation
- Combines swagger resource files intfo 1 large swagger file

* Renames paths and removes properties while processing.

» Does this for optional core resources and all resources in onelOTa.

* Mandatory resources (core and security) are not processed.

* Input: file with resources to be implemented
» Qutput: swagger file that list all “application level” resources
- All resources that the application needs to implement to function

correctly.
—

O

« Can used jinja2 template technology because OpenAPl 2.0 == JSON

swagger2x

- Create code by means of template technology

- Add a bit of glue so that JSON constructs can be converted into correct
code
- Jinja2 constructs allows to loop over the DOM of the swagger file
« Convert by means of instructions in template all the info of the swagger file into code

* The “clever bit” is in the template, it is an mix of the target code and template
language

* An template is tfargeted for an specific code base
—Multiple templates can co-exist, hence the tool can support all languages/APIs
—Target: C |OTivity-Lite API.

Infrospection generation

json2cbor

« Tool to convert json to cbor (and visa versa)
+ Used as first step to create cbor of the infrospection file
cbor2include
- Utility to create include files from cbor
+ Only used to convert the cbor introspection file info an include file
Nofe:
 Include file is updated when code generation is done.
« Hence it will always reflect the implementation

- It will be updated in the tree, hence each build will have an updated introspection device data.

e

Single script

O

Single bash script uses the python scripts to create code
INnput:

- Input file with the wanted resources

- Qutput directory

- Which device type is being implemented
For example:

sh DeviceBuilder_lotivityLiteServer.sh ../input-lightdevice.json ../lightdevice "oic.d.light"

What do you get?
After running the DeviceBuilder script:

- Qutput Directory with:
» Code currently based on C API of IOTivity-Lite 1.3.1

* Infrospection file that matches the implementation
« Available in JSON and CBOR (converted from JSON)

* Initial just works security file

+ Just a copy of an existing file

Problem: how to build this code

O

Github repo that uses |OTivity-Lite v1.3-rel as build environment
and setfs up the device builder tool chain to builld an application

Build environment: |OTivity-Lite-setup

» This github repo sets up an “work area”

- Installs fools/code/etc to build an IOTivity-Lite server application
* Linux
* raspberry pi

* This includes installing a copy of the |OTivity-Lite code

Github to install the environment resides at:
* ©itps://qaithub.com/openconnectivity/IOTivity-Lite-setup

https://github.com/openconnectivity/IOTivity-Lite-setup

|OTivity-Lite-setup github repo
The repo has setup scripts for:

+ Setting up IOTivity-Lite with code and build environment
« |OTivity version: 1.3-rel

- Sets it up in local folder

+ Setting up DeviceBuilder
+ Relative to |OTivity-Lite folder

« Setting up MRAA to interact with the hardware
Everything is set up by executing:
curl https://openconnectivity.github.io/IOTivity-Lite-setup/install.sh | bash

0 openconnectivity/I0Tivity-Lite-sc X -+

& C @ GitHub, Inc. [US] | https://github.com/openconnectivity/IOTivity-Lite-setup ' g Q - 0
~fiot-1lite -
F I f f |-- core core resource definitions (in swagger)
O er s rUC Ure | -- DeviceBuilder The device builder tool chain
| -- device_output The output of device builder.
: I I
All folders are placed in the top folder | |- code The generated code.
. . . | | the files will be copied to folder iotivity/examples/0CFDeviceBuilder
In this case ~/iot-lite | |- server.cpp
| |- server security.dat SVR data
| |- server_introspection.dat.h introspection device data, encoded in header file
I
|-- iotivity-lite I0Tivity Lite source code
I I
I |-- apps
| | |- device_builder_server.c <--- gensrated code
I I
| |-- include
| | | - server_introspection.dat.h <--- generated introspection data
I I
| | -- port/<portinglayer>
| |- device builder server <--- executable (after creation on linux)
| | - devbuildmake ¢--- makefile with the target
| |- Makefile ¢--- original make file from IOTivity lite
| |- device builder server creds <--- SVR storage
| when the folder is not there has the meaning:
| The device is ready for onboarding
I
| -- I0TDataModels onel0Ta resource definitions (in swagger format)
|-- T0Tivity-Lite-setup This github repo.
| -- swagger2x swagger2x code generation
|- gen.sh generation command to convert the example.json in to code
|- build.sh building the generated code
|- run.sh run the gensrated code
|- reset.sh reset the device to ready for onboarding state.
|- edit code.sh edits the iotivity-lite/apps/device_builder server.cpp file with nano.
|- edit_input.sh edits the example.json file with nano.
| - example.json the input for device builder scripts.
legenda: folder
|-- folder
|-- folder/subfolder
|- file

Preconfigured commands (in iot-lite folder)

- Generate code with gen.sh

Compile code with build.sh

Edit code with edit_code.sh (using nano, editing in the ioftivity-lite tree)

Run code with run.sh

Reset to onboarding state with reset.sh

+ Using just works, script removes files from the iotivity-lite free.

The scripts that are convenience wrappers around command line tools.
« All paths, etc. are filled in.

- Code is generated from example.json.

« Code is generated in iofivity-lite/apps

Example input file: binary switch

[{
"path" : "/binaryswitch", Pafh to be used
rt as look up value
Which interfaces are supported

Which properties you do not want

"rt" . ["oic.r.switch.binary"],

“if* o [Moic.if.a", "oic.if.baseline"],

"remove_properties" : ["range”, "step", "id", "precision"]

boA
"path" :"/oic/p",

" . ["oic.wk.p"],

it ["oic.if.baseline", "oic.if.r'],

"remove_properties" : ["n", "range", "value", "step",

1l

precision”, "vid"]
Needed for introspection

OPEN CONNECTIVITY
FOUNDATION®

