
ToolChain
IOTivity-Lite Code explained

IOTivity-Lite API

• Main

• Supported functions

• Global variables for each resource

• Handler implementation for each resource-method

The Generated IOTivity-Lite code explained

2

in
it
ia

liz
e •stack

•build in resources

•application specific
resources

R
u

n
 (

w
a

it
 o

n

c
a

llb
a

c
k
)

•GET: create response

•POST:

•Check input

•Process (assign)
input

•Create response

Typical stages, setup and running of the stack

3

• Set of APIs to create an OCF device (or client)

• Has a set of “build-in” resources:

• oic/res

• oic/p

• oic/d

• Security resources

• introspection

The entity handler of these resources will be handled by the stack.

IOTivity-lite build in resources

4

• Main

• Starts the platform

• Register the device and platform, e.g. initializes oic/d and oic/p

• Create all application specific resources

• Message pump

• A loop that handles the incoming messages, e.g. GET and POST

–Calls the installed callbacks for each resource.

• This loop makes sure that all access to the functions/global variables are not

concurrent.

Main

5

app_init function sets the device (oic/d) information like:

• Device type

• Device name

• Data model versions

No specific things that is being set the platform

- Only name

Register device (app_init)

6

register_resources function sets for each endpoint:

• Resource type

• Interface, including the default interface

• Discoverable

• Observable

• And the GET/POST request handlers

Register resources

7

Each end point has a set of variables:

• The property name

• naming convention:

g_<path>_RESOURCE_PROPERTY_NAME_<propertyname>

• The actual value of the property, which is typed from the json data type

• naming convention: g_<path>_<propertyname>

• The path in a variable:

• naming convention: g_<path>_RESOURCE_ENDPOINT

• Array of interfaces, where by the first will be set as default interface

• naming convention g_<path>_RESOURCE_INTERFACE

Resource global variables

8

Each endpoint can have an Retrieve (GET) operation:

• Naming convention: get_<path>

• Function returns the payload when “coap-get” is called

• Function adds the global variables of that specific endpoint to

the payload that will be returned

Implementation specific:

before assigning the member variables to the payload, one can update

the member variables from the HW.

Handling the Retrieve (GET) operation

9

Each endpoint can have an UPDATE function:

• Naming convention: post_<path>

• Function that interprets the payload when “coap-post” is called

• Function checks if the properties are correct and within the limits.

• If all properties are correct, then the values of the post are assigned to the

global variables for that specific endpoint

Implementation specific:

after assigning the value to the member variables, one can interact with the

HW, using the newly assigned member variables.

Handling the Update (POST) operation

10

